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Molecular polaritonics in dense mesoscopic disordered ensembles
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We study the dependence of the vacuum Rabi splitting (VRS) on frequency disorder, vibrations, near-field
effects, and density in molecular polaritonics. In the mesoscopic limit, static frequency disorder alone can
already introduce a loss mechanism from polaritonic states into a dark state reservoir, which we quantitatively
describe, providing an analytical scaling of the VRS with the level of disorder. Disorder additionally can split
a molecular ensemble into donor-type and acceptor-type molecules and the combination of vibronic coupling,
dipole-dipole interactions, and vibrational relaxation induces an incoherent FRET (Förster resonance energy
transfer) migration of excitations within the collective molecular state. This is equivalent to a dissipative disorder
and has the effect of saturating and even reducing the VRS in the mesoscopic, high-density limit. Overall,
this analysis allows to quantify the crucial role played by dark states in cavity quantum electrodynamics with
mesoscopic, disordered ensembles.
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I. INTRODUCTION

The strength of light-matter coherent exchanges is en-
hanced when confined light modes, such as provided by
optical cavities, are utilized. For N ideal two-level quantum
emitters, equally coupled to a cavity mode, a collective en-
hancement proportional to N 1/2 can be obtained [1]. This is
evident in the scaling of the collective vacuum Rabi splitting
(VRS) in cavity quantum electrodynamics (cQED) [2–4]. In
the particular case where more complex emitters such as
organic molecules (J-Aggregates, dye molecules, etc.,) are
collectively coupled to optical or plasmonic resonators, these
standard results of cQED have been extensively invoked to
describe the collective Rayleigh scattering loss from a cav-
ity [5], the modification of energy transfer and transport
[6–11], charge transport [12–15], or chemical reactions in the
presence of strong light-matter interactions [16–19]. How-
ever, molecular polaritonics is characterized by emitters with
large inhomogenous broadening, coupled to local vibrational
baths and with strong near-field interactions, in which case
analytical approaches are typically limited to only a few
molecules and often with only one vibrational mode [20–23].
The numerical complexity of treating many electronic and
vibrational degrees of freedom renders such problems hard to
solve even with extensive simulations [24–26].

We propose here a fully analytical approach that allows
to quantify the effect of disorder on light-matter interactions
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in the strong coupling regime. In a first step, we introduce
the formalism for the case of pure two-level systems (involv-
ing electronic transitions only) with general applicability to
cQED with atoms, quantum dots, superconducting qubits, etc.
[27–29]. In a second step, we exemplify the application of
this formalism to more complex systems involving electron-
phonon interactions and in particular to molecular polaritonics
[18].

The two main conceptual ingredients of our approach con-
sist in the move to a collective basis for N emitters and the
occurrence of a natural averaging in the mesoscopic limit (as
opposed to averaging over many realizations [30–33]). As
widely acknowledged, polaritons are formed by one bright
superposition state hybridized with light while the rest of
N − 1 dark states are only indirectly coupled owing to disor-
der [20,34–38]. We take an open system dynamics approach
to derive an analytical rate for the irreversible loss of energy
from polaritonic states into the dark state manifold accom-
panied by a degradation of the VRS. In the bare basis, we
elucidate the reduction of the VRS by showing that particles
which are too far detuned or too lossy can fall out of the
macroscopic polaritonic superposition.

We then apply our formalism to molecular polaritonics
where the interplay between static disorder, near-field cou-
plings, and vibrational relaxation leads to a FRET process
characterized by incoherent transfer of excitations from ener-
getically higher donor-type to lower frequency, acceptor-type
molecules (see Fig. 1). We map this problem into an inco-
herent dynamics in Lindblad form describing migration of
excitation at rates analytically computable and derive the scal-
ing law for the VRS with density applying the open system
dynamics previously derived for pure two-level systems.

The paper is structured as follows: We introduce the Tavis-
Holstein-Cummings model for N molecules each with two
electronic and n vibronic degrees of freedom coupled to a
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FIG. 1. (a) Cavity-enclosed dense, disordered molecular ensem-
ble, with electronic transitions subject to vibronic and near-field
couplings is naturally split (owing to frequency disorder) between
donor-like (red) and acceptor-like (blue) molecules. (b) Schematics
of processes leading to the incoherent FRET migration of excitations.
The near-field coupling [with distance dependent strength �(r)] fol-
lowed by rapid vibrational relaxation within the vibrational manifold
of the excited electronic acceptor state, leads to a unidirectional flow
of energy.

confined cavity mode in Sec. II. We then proceed by analyzing
the cavity transmission in the presence of frequency disorder
in Sec. III and show how a mesoscopic average leads to a
decay of polaritons into the dark state manifold. To charac-
terize the degree of participation of quantum emitters to the
collective strong coupling condition, we introduce a measure
of macroscopicity of quantum superpositions reaching value
N for perfect superpositions and unity for complete mixtures.
The effects of dipole-dipole couplings together with vibra-
tional relaxation are taken into account in Sec. IV and the
elimination of the dark state reservoir is revisited, this time in-
cluding the process of incoherent excitation migration within
the molecular ensemble. Finally, we conclude and present an
outlook in Sec. V.

II. MODEL

We consider N molecules indexed by j = 1, ...N with
electronic states |g〉 j and |e〉 j (lowering operator σ j =
|g〉 j 〈e| j) separated by energy splittings ω j (h̄ = 1) inhomo-
geneously distributed around ω with a distribution function
p(δ) normalized to unity

∫∞
−∞ p(δ)dδ = 1. In particular we

choose p(δ) = (1/
√

2πw2)e−δ2/(2w2 ). We write each molecule
frequency splitting as ω + δ j where the average around the
central frequency vanishes 〈δ j〉cl = 0 while the variance is
〈δ2

j 〉cl
= w2. The molecules are randomly spatially distributed

within a volume V at positions r j . Each molecule exhibits a
number n of nuclear coordinates each with frequency νk (with
k = 1...n) with harmonic motion described by the annihilation
operators bjk such that [b jk, b†

jk] = 1. The vibronic couplings
are modeled as Holstein terms with Huang-Rhys factors λ2

k
stemming from a difference in the equilibrium positions of
the ground and excited electronic potential landscapes.

For high densities, the near-field dipole-dipole interactions
at rates � j j′ are dependent on the separation (with a standard
|r j − r j′ |−3 dependence) and relative orientation of transition
dipoles. The dipole-dipole Hamiltonian is

Hd-d = ∑
j �= j′ � j j′σ

†
j σ j′ (1)

and describes an excitation transfer via a virtual photon ex-
change. The free Hamiltonian is (see Ref. [23])

H0 =
N∑
j=1

[
ω + δ j +

n∑
k=1

λ2
kνk

]
σ

†
j σ j +

N∑
j=1

n∑
k=1

νkb†
jkb jk, (2)

and adds to the vibronic coupling Hamiltonian [39]

HHol = −
N∑
j=1

n∑
k=1

λkνkσ
†
j σ j (b

†
jk + b jk ). (3)

The vibronic coupling is obtained as a harmonic approxima-
tion of a Morse potential surface by expanding the electronic
potential landscapes around their minima: the difference be-
tween the minima in the ground and excited state leads then to
the Huang-Rhys factors λ2

k . Such a model is widely employed
[20,21,40,41] especially for molecules in condensed matter
environments, as fast vibrational relaxation insures that states
with more than one vibrational excitation are never reached.

The cavity mode is described by bosonic operator a at
frequency ωc coupled with g j (r j ) ≡ g j to each molecule. The
Tavis-Cummings Hamiltonian is then

HTC = a
N∑
j=1

g jσ
†
j + a†

N∑
j=1

g∗
jσ j . (4)

This is a simplification of the Dicke model when neglect-
ing counter-rotating terms such as a†σ

†
j . While some current

experiments operate on the brink of the ultrastrong coupling
regime [42–44], polariton dynamics is well reproduced within
this approximation.

We then proceed by writing the master equation of the
system

∂tρ = i[ρ,H] + L[ρ], (5)

where the dissipative dynamics is included in the Lindblad
part. For a collapse operator O with rate γO the Lindblad term
applied to a density operator ρ is

LO[ρ] = γO{2OρO† − ρO†O − O†Oρ}. (6)

All channels of dissipation are then modeled as standard Lind-
blad superoperators with collapse operators a, σ j, b jk and loss
rates κ, γ , 
k .

III. EFFECTS OF DISORDER

We will first show the effect of frequency disorder as the
occurrence of dark state resonances in the (linear) spectral re-
sponse of the cavity when driven with an external (weak) laser
source. The pump is modelled via the following Hamiltonian

Hd = iη(a†e−iω�t − aeiω�t ), (7)

where the pump frequency is ω� and the weak drive amplitude
is η. The equations of motion for the averages α = 〈a〉 and
β j = 〈σ j〉 then read

β̇ j = −i(ω − ω� + δ j − iγ )β j − ig jα, (8a)

α̇ = −i(ωc − ω� − iκ )α − i
∑

jg
∗
jβ j + η, (8b)
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FIG. 2. (a) Transmission for N = 16, g = 0.25, γ = 10−2 (units of κ) for w = 0 and w = 0.5. (b) In the mesoscopic limit (N = 4 × 104)
with g = 0.005 the dark state peaks are smoothed out. Loss into dark states leads to a reduction of polariton height and increase of splitting
(orange, w = 0.5) compared to the w = 0 case (blue). (c) Elimination of the dark state reservoir. The transformation to a collective basis sees
the cavity mode a solely coupled to a bright mode at rate gN . The dark state manifold provides a loss channel at rate γdark. (d) Decay rate γdark

as a function of w. (e) VRS with increasing disorder w. (f) Exact numerical results for the cavity transmission as a function of the width w

for N = 4 × 104. Dashed line shows the maxima of the transmission under the Markovian approximation. (g) VRS degradation from g
√
N to

g
√
N − 1 as a particle is removed from the polaritonic superposition by increasing its detuning from the cavity resonance.

In a more compact form we can write

v̇ = −iMv + vd , (9)

where the vector of amplitudes is v = (β1, . . . , βN , α)
, driv-
ing is included also in vector form as vd = (0, . . . , 0, η)
 and
the drift matrix is explicitly given in Appendix A.

A. Steady state cavity transmission

In steady state, the equations above lead to the normalized
cavity amplitude transmission t = κ 〈a〉 /η expressed as

t = κ

[
κ + i(ωc − ω�) +

N∑
j=1

|g j |2
γ + i(ω − ω�) + iδ j

]−1

,

(10)

valid also for positioning and orientational disorder with ran-
domized couplings g j . The effect of orientational disorder
is a trivial renormalization of the collective coupling from
g
√
N to g

√
N /2 (for a completely random orientation of the

molecular dipoles, as discussed in Appendix D).
In the following we restrict the discussion to the case of

identical couplings g j = g (for all j). For a given realization
of disorder, Fig. 2(a) shows two polaritonic peaks at ±g

√
N

obtained by the hybridization of a symmetric collective state
to the cavity field. Nonzero disorder introduces couplings
to N − 1 orthogonal asymmetric states visible in the cavity
transmission as unequal height peaks between the polaritons.
In the mesoscopic limit [see Fig. 2(b)], a natural averaging
occurs that leads to a smoothing out of the additional peaks.
Also, the polariton’s height is decreased while their width is
increased suggesting a loss mechanism, which we will quanti-
tatively address in the following in a transformed bright-dark
basis.

B. Bright-dark state dynamics

We start with w = 0 and note that the cavity couples only
to a symmetric superposition B̂ = ∑

j σ j/
√
N , i.e., a bright

state, with a collective coupling strength gN = √
Ng. The

other N − 1 combinations define dark states, which are gen-
erally obtainable by a Gram-Schmidt algorithm that leads to
all vectors orthogonal to the bright state one and to each
other. However, for the simplest case g j = g a straightforward
choice of coefficients is indicated by a discrete Fourier trans-
form

D̂k = 1√
N

N∑
j=1

e−i2π jk/Nσ j . (11)

We index the dark state manifold for k = 1, . . . ,N − 1 and
note that for k = N we recover the bright state D̂N = B̂. The
equations of motion for averages B = 〈B̂〉, D = 〈D̂〉 and α

become (in a frame rotating at the central emitter frequency
ω)

Ḋk = −γDk − i
N∑

k′=1

�kk′Dk′ − igNαδkN , (12a)

α̇ = −i(δ − iκ )α − ig∗
NDN + η, (12b)

with δ = ωc − ω� and the couplings are defined as Fourier
transforms of the disorder distribution

�kk′ = 1

N

N∑
j=1

δ je
−i2π j(k−k′ )/N . (13)

For k = N , the equations above indicate that the bright state
is the only one coupled to the cavity mode with the expected
collective rate gN . However, disorder induces couplings to the
whole manifold of dark states and within the dark manifold as
well.

033141-3



SOMMER, REITZ, MINEO, AND GENES PHYSICAL REVIEW RESEARCH 3, 033141 (2021)

We can more compactly write the equations above as
∂t V = −iMcollV where V = (D1, . . . ,DN−1,B, α)
 and the
drift matrix is

Mcoll =

⎛
⎜⎜⎜⎜⎝

(δ̄ − iγ ) �12 . . . �1N 0
�21 (δ̄ − iγ ) . . . �2N 0
...

...
. . .

...
...

�N 1 �N 2 . . . (δ̄ − iγ ) gN
0 0 . . . g∗

N (δ − iκ )

⎞
⎟⎟⎟⎟⎠,

(14)

where the average of the disorder distribution (expected to
vanish in the mesoscopic limit) is δ̄ = �kk = ∑N

j=1 δ j/N .
This matrix can be put in a more convenient form due to the
structure of the terms �lN . Considering the relations �N l =
�N−lN and �1N = �NN−1, we can rewrite the matrix as

Mcoll =
(

Mred p
p† (δ − iκ )

)
, (15)

with p = (0, . . . , 0, gN )
. Notice that here we have separated
between the cavity and matter states by introducing the re-
duced matrix of dimensions N × N (referring to the matter
part), which assumes the following form

Mred =

⎛
⎜⎜⎜⎜⎝

(δ̄ − iγ ) �N−1N �N−2N . . . �1N
�1N (δ̄ − iγ ) �N−1N . . . �2N
�2N �1N (δ̄ − iγ ) . . . �3N

...
...

...
. . .

...

�N−1N �N−2N �N−3N . . . (δ̄ − iγ )

⎞
⎟⎟⎟⎟⎠.

(16)

The eigenvectors of the cyclic matrix Mred are given by
v j = (1/

√
N )(1, ξ j, ξ

2
j , . . . , ξ

N−1
j )
 for j ∈ {1, . . . ,N − 1}

where ξ j = exp(i2π j/N ). The eigenvalues are given by λ j =
(δ̄ − iγ ) + �N−1N ξ j + · · · + �1N ξN−1

j .

C. Elimination of the dark reservoir

The procedure we will employ roughly follows the illus-
tration in Fig. 2(c) showing first the identification of a bright
state and then the elimination of the dark reservoir resulting in
an effective unidirectional loss of energy from the polaritonic
states. The elimination of the dark state manifold can be done
in an exact way without making a Markovian approximation,
which would imply that the dark state reservoir has no mem-
ory and therefore it would allow to set all derivatives of Dk

to zero. Instead, we formally integrate the equations for Dk to
obtain (Appendix C)

Ḃ(t ) = −(γ + iδ̄)B(t ) −
∫ ∞

−∞
dt ′ f (t − t ′)B(t ′) − igNα,

(17)

and obtain a memory kernel describing a generally
non-Markovian loss process. In the mesoscopic limit,
one finds f (t − t ′) ≈ �(t − t ′)w2e−i(δ̄−iγ )(t−t ′ )sinc(2w(t −
t ′)). Now one can identify a Markovian limit as a particular
case of wide frequency distributions w 
 γ . The Markovian
result is then simply reproduced by seeing that the kernel
f (t − t ′) naturally tends to a delta function. In such a case the

treatment can be simplified by setting all derivatives to zero in
Eqs. (12) to find the dark state amplitudes

Dk = −
∑

k′
(M−1)kk′�k′NB. (18)

The matrix M has dimensions (N − 1) × (N − 1) and rep-
resents the part of the matrix Mred referring to the dark states
only

M =

⎛
⎜⎜⎝

(δ̄ − iγ ) �12 . . . �1(N−1)

�21 (δ̄ − iγ ) . . . �2(N−1)
...

...
. . .

...

�(N−1)1 �(N−1)2 . . . (δ̄ − iγ )

⎞
⎟⎟⎠. (19)

Replacing the eliminated variables into the equation of motion
for the bright mode we obtain the effective dissipative dynam-
ics

Ḃ = −i[(δ̄ − δdark) − i(γ + γdark)]B − igNα, (20)

where the effect of the reservoir is to induce an effective
frequency shift δdark and loss rate γdark obtained as the real and
imaginary parts, respectively, of the following expression:

δdark + iγdark =
N−1∑
k,k′=1

�N k (M−1)kk′�k′N (21)

= 1

N 2

N∑
j, j′=1

N−1∑
k,k′=1

δ jδ j′ (M−1)kk′e−i2π ( jk− j′k′ )/N .

In the mesoscopic limit of large N , one can further sim-
plify the expression of the loss rate to find extremely simple
scaling laws of the decay rate induced by the dark state mani-
fold (see Appendix B for details):

γdark =
{

w2/γ for γ 
 w

πw/4 for w 
 γ
. (22)

The analytical results are in excellent agreement with numeri-
cal simulations [see Fig. 2(d)], which also indicate that both δ̄

and δdark vanish. From here we can deduce the dependence of
the VRS on disorder, which can be obtained by diagonalizing
the dynamics in the reduced cavity-bright state subspace to
lead to

VRS ≈ �{2
√

(γ + γdark − κ )2/4 − g2
N }. (23)

This is an important result later generalized to molecules to
analytically quantify the effect of time-dependent disorder
associated with continuous shifting of electronic resonances
via vibronic driving. The VRS is illustrated in Fig. 2(e) as
a function of increasing disorder. The initial increase of the
polariton splitting occurs in the case κ > γ as the maximum
value of 2gN is reached when γ + γdark = κ . The complete
degradation of the strong coupling condition occurs when
the disorder level is of the order of the cavity photon loss.
The validity of the Markovian approximation is graphically
illustrated in Fig. 2(f). In Appendix C, we perform a more
in-depth analysis of the non-Markovian regime by means of
the quantum Langevin equations approach.
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D. Reduction of VRS owing to far detuned particles

Let us now provide further clarifications of the mechanism
of VRS degradation owed to inhomogeneous broadening by
reverting our analysis to the alternative bare basis approach.
To this end we start with the standard scenario of N identical
particles coupled equally to the cavity field,

β̇ j = −γ β j − igα, (24a)

α̇ = −κα − ig
N∑
j=1

β j . (24b)

and notice immediately that the equations can be described in
terms of a single bright state such that

ḂN = −γBN − ig
√
Nα, (25a)

α̇ = −κα − igβ1 − ig
√
NBN . (25b)

This indicates that the problem is simply described by a
single collective mode strongly coupled with g

√
N magnitude

while the dark manifold is completely decoupled and does not
play any role in the dynamics. Now instead we assume N − 1
particles identically and resonantly coupled to the cavity mode
while an additional particle is detuned by δ. We can rewrite
the equations above now in terms of the new bright state
composed of N − 1 particles:

β̇1 = −γ β1 − iδβ1 − igα, (26a)

ḂN−1 = −γBN−1 − ig
√
N − 1α, (26b)

α̇ = −κα − igβ1 − i
√
N − 1gBN−1. (26c)

The bright state is similarly defined as BN−1 =
(1/

√
N − 1)

∑N
j=2 β j . A close inspection of the above equa-

tions shows that when δ is detuned from the cavity resonance,
the corresponding VRS shows a drop from g

√
N for δ = 0 to

g
√
N − 1 for δ 
 κ [see Fig. 2(g)]. For large w, this behav-

ior indicates that, when disorder is strong more particles are
likely to have frequencies very far from the cavity resonance,
which finally leads to the degradation of the strong coupling
condition as clearly illustrated in Fig. 2(e).

E. Macroscopicity of mesoscopic quantum superposition states

As the VRS can be derived from a Hamiltonian formulation
restricted to the single excitation subspace it is interesting to
also investigate the connection between VRS, as observed for
example in the cavity transmission and the properties of the
quantum superposition state. To this end, we propose a simple
measure of quantum macroscopicity,

C =
∑

j, j′, j �= j′
| 〈σ †

j σ j′ 〉red
| + 1, (27)

that aims at describing the number of quantum emitters
actively and identically participating in an extended quan-
tum state. The measure is restricted to the single excitation
subspace spanned by states where one individual emitter
is excited by | j〉 = |g, . . . , e j, . . . , g, 0〉 for j ∈ {1, . . . ,N }.
The cavity mode excitation is represented by |N + 1〉 =
|g, . . . , g, 1〉 and the ground state is |0〉 = |g, . . . , g, 0〉. The

averaging in the reduced subspace is performed with the
reduced density operator

ρred = PN+1P0ρP0PN+1

Tr[PN+1P0ρP0PN+1]
. (28)

The projectors P0 = 1N+2 − |0〉 〈0|, PN+1 = 1N+2 −
|N + 1〉 〈N + 1| simply eliminate the parts of the density
matrix containing the ground and the photonic state.

Notice that

Tr(PN+1P0ρP0PN+1) =
N∑
j=1

ρ j j, (29)

which can be computed simply as 1 − ρ00 − ρN+1,N+1. This
allows us to rewrite the macroscopicity with respect to com-
ponents of the original density matrix ρ as

C(t ) =
N∑

j, j′ = 1
j �= j′

∣∣∣∣ ρ j j′ (t )

1 − ρ00(t ) − ρN+1,N+1(t )

∣∣∣∣ + 1. (30)

Notice that the measure is tuned such that it equals N
for a perfect W-state |W 〉 = ∑

j | j〉 /
√
N and it drops to

unity for completely mixed states such as described by a
density operator ρ = ∑

j | j〉 〈 j| /N . We illustrate the time
dynamics of the introduced measure of macroscopicity in
three distinct cases for three different initial states. We dis-
tinguish between an initial state with maximal macroscopicity
(the W-state) and two states with single particle participation
(mixed state versus single excitation state). The important
result illustrated in Fig. 3(b) shows that by coherently driv-
ing the cavity mode one can create maximal macroscopicity
independently on the initial state. Also, in the presence of
disorder, the macroscopicity is diminished for all initial states
by the same amount. According to the interpretation obtained
in the VRS case, one can see that for this given realization
of disorder two far-detuned particles fall out of the macro-
scopic superposition thus diminishing C by 2 [Fig. 3(c)]. In
conclusion, we find that cavity driving can create macroscop-
icity while disorder and strong donor behavior can destroy
it. It will therefore be interesting to extend such a measure
beyond the single excitation subspace and to pursue in the
future an analysis of the connection between collective strong
coupling and the macroscopicity of quantum superposition
states.

IV. REDUCTION OF THE VRS IN MOLECULAR
POLARITONICS

Light-matter interactions in molecular ensembles are
strongly modified in the presence of electron-vibron coupling
as well as by the incoherent dynamics of molecular vibrations.
In addition, in standard experimental situations densities are
very high meaning that near-field effects such as dipole-dipole
couplings can play an important role. We will provide here
a semi-analytical approach incorporating the competition be-
tween static disorder, vibronic, and dipole-dipole couplings
together with vibrational relaxation, which can lead to a mi-
gration of excitation from a higher energy molecule (donor)
to a lower energy one (acceptor) [as illustrated in Fig. 1(b)].
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FIG. 3. Time dynamics of macroscopicity. Time dynamics of macroscopicity C(t ) for N = 10 particles for three different initial collective
states of the quantum emitter ensemble: perfect superposition |W 〉, completely mixed state and single particle excitation (e.g., |1〉). (a) Undriven
cavity shows conservation of macroscopicity. (b) Driven cavity without disorder and η = γ shows production of maximal macroscopicity in
all cases. (c) Driven cavity with disorder at the level w = 30γ . Other parameters are: g = 40γ , κ = 20γ . Partial reduction of macroscopicity
is obtained as an effect of disorder.

As such ensembles are typically subject to strong inhomo-
geneous broadening, an automatic separation into donor-like
and acceptor like molecules will then take place. To quantify
the emergent incoherent FRET migration behavior we pro-
vide a phenomenological model, which allows analytical and
numerical insight into the scaling of the VRS of molecular
ensembles with density.

A. FRET migration of excitation

For two near-field coupled adjacent molecules j and j′,
each with a single vibrational mode b j and b j′ we per-
form a polaron transformation, which leads to the following
transformed operators σ̃ j = Q†

jσ j and σ̃ j′ = Q†
j′σ j′ (with dis-

placement operators defined as Q j = eλ j (b
†
j−b j )). Under the

assumption of low population of the excited electronic levels,
the dipole-dipole interaction couples the quantum Langevin

dynamics of the two molecules

˙̃σ j = −(γ + iδ j )σ̃ j − i� j j′ σ̃ j′Q j′Q†
j +

√
2γ σ̃ in

j , (31a)

˙̃σ j′ = −(γ + iδ j′ )σ̃ j′ − i� j j′ σ̃ jQ jQ†
j′ +

√
2γ σ̃ in

j′ . (31b)

This coupled dynamics can be solved in perturbation the-
ory, assuming that � j j′ is small compared to the vibrational
relaxation rates. The solution indicates an effective, largely
unidirectional, energy transfer at rate κ

j j′
ET from molecule j to

molecule j′. The rate is computed by assuming multiple paths
of energy transfer between the two molecules involving all vi-
brational modes. We assume an initially electronically excited
state with no vibrations present |e j ; 01, 02...0n〉 of molecule
j and ground state without vibrations |gj′ ; 01, 02...0n〉 for
molecule j′. The emission of molecule j leads it into state
|g j ; m1, ...mk, ...mn〉 and resonant interactions can occur with
state |e j′ ; l1, ...lk′ , ...ln〉 of molecule j′. Summing over all these
processes leads to an analytical expression for the energy
transfer rate (for detailed derivation see Appendix E)

[κET] j j′ =
∞∑

m1=0

∞∑
l1=0

...

∞∑
mn=0

∞∑
ln=0

{
n∏

k=1

e−2λ2
k
λ

2(mk+lk )
k

mk!lk!

} ∑n
k=1(mk + lk )
k�

2
j j′

[
∑n

k=1(mk + lk )
k]2 + [δ j − δ j′ − ∑n
k=1(mk + lk )νk]2 , (32)

which is the discrete version of the well established integral
formulation [45] describing the overlap between the emis-
sion spectrum of molecule j and absorption spectrum of
molecule j′. This is illustrated in Fig. 4(a) for a donor-acceptor
pair with 8 vibrational modes and spectral density J (ω) =∑

k 2λ2
kν

2
k 
k/[
2

k + (ω − νk )2] (stemming from the coupling
of the molecular vibrations to some external phonon bath
allowing for vibrational relaxation at rates 
k). The process
is unidirectional as shown in Fig. 4(b) as δ j − δ j′ dictates the
direction of the energy flow.

B. VRS scaling at high densities

The expression of the energy transfer rate in Eq. (32)
greatly simplifies numerical simulations as it allows one to
introduce an effective model of loss where for each pair of
molecules j and j′ a collapse operator σ jσ

†
j′ with correspond-

ing rate κ
j j′

ET is introduced. For molecule j, summing over

all the paths of incoherent migration modifies the inherent
radiative rate γ to an increased one γ + ∑N

j′ �= j κ
j j′

ET . Owing
to the random spatial positioning within the ensemble, the
FRET migration leads to an effective disorder in dissipation
rates. This is directly incorporated in Eqs. (8) by amending
the diagonal elements of the evolution matrix

Mj j = γ + i(ω − ω�) + iδ j + ∑N
j′ �= j κ

j j′
ET . (33)

Results are then possible for large systems (where a direct
simulation of the evolution of the master equation is un-
tractable) by a simple diagonalization of this matrix. The
obtained scaling presented in Fig. 4(c) shows that the FRET
mechanism can lead to a strong deviation from the standard
one ubiquitous in cavity QED with

√
N .

Beyond numerical estimates, a fully analytical approach
based on the formalism introduced in the previous section is
possible allowing one to compute the effective polariton loss
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FIG. 4. (a) Absorption and emission spectra for donor-acceptor pair with 8 vibrational modes [spectral density J (ω) shown in inset]. The
spectral overlap between j and j′ gives rise to an incoherent rate κ

j j′
ET from j to j ′. (b) Plot of κ

j j′
ET as a function of frequency mismatch δ j − δ j′

for the same spectral density as in (a) and � j j′ = 60γ . (c) Collective VRS for variable N in a sphere with radius r = 150 nm for n = 1.
The parameters are g = κ/8, ν = 0.5κ , w = ν = 0.5κ , γ = 10−2κ , λ = 0.5, and 
 = 0.1ν. We averaged over 25 spatial realizations for each
point. The green dotted curve is a fit with κ̄ET = 3.16 × 10−5N 2κ . The blue stars show the results without FRET. The light blue dashed curve
shows the (Markovian) theoretical prediction from Eq. (23). The histograms show the normalized distributions of the decay rates γ + ∑

j κ
j j′

ET

for N = 120 and N = 400 particles, respectively. (d) Illustration of the gradual degradation of the VRS for N = 16 particles with increasing
single strong donor behavior and g = κ . (e) Progressive degradation of the collective VRS for N = 16.

rate κ̄ET + γ̃dark stemming from the competition between static
disorder and FRET migration. The average FRET dissipation
rate

κ̄ET = 1

N

N∑
j=1

N∑
j′ �= j

κ
j j′

ET , (34)

is performed over the whole ensemble. In addition, the pre-
viously defined γ̃dark is derived from the matrix of Fourier
transformed detunings and FRET rates (Appendix F)

�̃kk′ = 1

N

N∑
j=1

(
δ j − i

∑
j′ �= j

κ
j j′

ET

)
e−i2π j(k−k′ )/N , (35)

and it suffers modifications from the purely frequency dis-
ordered case. The new expression, seen as an extension of
Eq. (23) (see Appendix F for more details of the derivation) is

VRS ≈ �{2
√

(γ + κ̄ET + γdark − κ )2/4 − g2
N }. (36)

An averaging over disorder and position is possible assuming
homogeneous media showing a scaling of κ̄ET with N 2. This
allows for a fit of the result in Fig. 4(c) showing that saturation
stems from the strong increase of κ̄ET with density squared.

C. Reduction of VRS owing to strong donors

A very simple analysis in terms of bright and dark states
can then shed insight into this scaling by assuming the effect
of large decay onto the VRS. Assuming N − 1 molecules
with identical decay rates γ and a single lossier molecule with
γ ′ similar conclusions as in section III referring to disorder are

obtained. We can again cast the equations as

β̇1 = −γ ′β1 − igα, (37a)

ḂN−1 = −γBN−1 − ig
√
N − 1α, (37b)

α̇ = −κα − igβ1 − i
√
N − 1gBN−1. (37c)

When γ ′ = γ the system’s bright state leads to polaritons
at roughly ±g

√
N while with increasing γ ′ the polariton fre-

quencies decrease to ±g
√
N − 1 [as illustrated in Fig. 4(d)].

For the many strong donors case we illustrate in Fig. 4(e) the
gradual degradation of the VRS in time, from g

√
N to zero,

when successively particles are turned from weak to strong
donors. Following this interpretation, we added histograms in
the inset of Fig. 4(c) showing the distribution of dissipation
rates within the ensemble. This provides a qualitative means
to count out the number of lossy donors that fall out of the
collective strong coupling condition.

V. CONCLUSIONS AND OUTLOOK

We proposed here an analytical approach that allows to
quantify the effect of disorder on light-matter interactions
in the strong coupling regime and which is extendable to
molecular ensembles characterized by vibronic effects as well
as near-field effects owing to the electromagnetic vacuum.
Employing a phenomenological model that incorporates all
these aspects in an effective incoherent FRET migration of
energy, scalings of the VRS with increasing density have been
obtained, showing a strong divergence from the standard

√
N

scaling in the absence of particle-particle interactions.
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The models used throughout the paper, albeit of limited
validity, are standard and widely employed. For example,
while the Holstein model for electron-vibron coupling is
limited to molecules with large vibrational relaxation (such
that anharmonicity is not reached), it provides a proper de-
scription to light-molecule [21,23,46] and molecule-molecule
interactions [23,47]. The Tavis-Cummings model has also
been universally used to predict and explain effects such as
cavity mediated energy transfer [8–10,23], energy and charge
transport [6,7,12–15], cavity chemistry [16–19] etc. However,
as some experiments are showing effects brought on by the
onset of the ultrastrong coupling regime (such as for example
the work function of a material [48]), recent theoretical works
suggest that such regime is challenging and interesting [49,50]
and approaches are greatly interdisciplinary, mixing aspects of
quantum optics with quantum chemistry methods [51]. In the
future, we will extend our formalism based on linear quantum

Langevin equations to include counter-rotating terms in the
light-matter interaction Hamiltonian.
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APPENDIX A: THE DRIFT MATRIX

The drift matrix from Sec. III of the main text reads (in the original basis)

M =

⎛
⎜⎜⎜⎜⎝

(ω − ω� + δ1 − iγ ) 0 · · · 0 g1

0 (ω − ω� + δ2 − iγ ) · · · 0 g2
...

...
. . .

...
...

0 0 · · · (ω − ω� + δN − iγ ) gN
g∗

1 g∗
2 · · · g∗

N (ωc − ω� − iκ )

⎞
⎟⎟⎟⎟⎠. (A1)

APPENDIX B: ELIMINATION OF THE DARK RESERVOIR IN THE MARKOVIAN LIMIT

The expression for the frequency shift and decay rate induced by the dark state reservoir is

δdark + iγdark =
N−1∑
k,k′=1

�N k (M−1)kk′�k′N = 1

N 2

N∑
j, j′=1

N−1∑
k,k′=1

δ jδ j′ (M−1)kk′e−i2π ( jk− j′k′ )/N . (B1)

Some more insight can be obtained by evaluating the norm of the coupling vector for the dark states m = (�1N , . . . , �N−1N )
.
Here, we obtain

m†m =
N−1∑
k=1

|�N k|2 =
N−1∑
k=1

1

N 2

( N∑
j, j′=1

δ jδ j′e
i2πk( j− j′ )/N

)
= 1

N 2

N∑
j, j′=1

δ jδ j′

(
N∑

k=1

ei2πk( j− j′ )/N − 1

)
(B2)

= 1

N 2

N∑
j, j′=1

δ jδ j′ (N δ j j′ − 1) = 1

N

N∑
j

δ2
j −

(
1

N

N∑
j

δ j

)2

= Var(δ),

which is the variance of the frequency distribution. In the case of a Gaussian distribution p(δ) = (1/
√

2πw2)e−δ2/(2w2 ) for the
disorder we obtain Var(δ) = w2. We can use this result to rewrite m = wm̂, where m̂ is the normalized vector of m. This allows
us to further evaluate the expression in Eq. (B1) to

δdark + iγdark = m†M−1m = w2m̂†M−1m̂ = w2ĉ†D̃−1ĉ, (B3)

where M = T D̃T † with the diagonal matrix D̃ and ĉ = T †m̂. Since D̃−1 is diagonal, we can find the expression

δdark + iγdark = w2
N−1∑
j=1

|ĉ j |2D̃−1
j j ≈ w2

N−1∑
j=1

|ĉ j |2λ̃−1
j , (B4)

which is the weighted average over the eigenvalues λ̃−1
j of the matrix M−1 times the variance of the distribution. Since the

eigenvalues of M follow the form λ1,...,N−1 = δ̄ − iγ − λ̃1,...,N−1 where λ̃1,...,N−1 ∈ R we obtain

δdark + iγdark = w2
N−1∑
j=1

|ĉ j |2 1

δ̄ − iγ − λ̃ j
. (B5)
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FIG. 5. (a) Sorted eigenvalue distribution for N = 1000 and w = 4. The solid line shows the real part of the eigenvalues λ̃1,...,N−1 of the
matrix M while the dashed line gives the linear eigenvalue distribution fit used in the derivation to determine γdark. The blue dotted line shows
the quantile of the corresponding Gaussian distribution. (b) The blue dots give the numerical derivation of γdark averaged over many disorder
realizations (400) for N = 100 as a function of the width (standard deviation) w of the disorder distribution. The solid red line shows the
approximation with γdark = (π/4) ∗ w. We have used γ = 10−2. (c) In the case that γ 
 w we find good agreement of the numerical data blue
dots with the relation γdark = w2/γ given by the red line for γ = 4.

For large N where δ̄ → 0 we finally obtain the expression

δdark + iγdark = w2
N−1∑
j=1

|ĉ j |2 −1

λ̃ j + iγ
=
(

w2
N−1∑
j=1

|ĉ j |2 −λ̃ j

λ̃2
j + γ 2

)
+ i

(
w2

N−1∑
j=1

|ĉ j |2 γ

λ̃2
j + γ 2

)
. (B6)

In the case that γ 
 λ̃1,...,N−1, which is given if γ 
 w, we can obtain a solution for γdark, which is obtained from

δdark + iγdark ≈
(

w2
N−1∑
j=1

|ĉ j |2 −λ̃ j

γ 2

)
+ i

(
w2

N−1∑
j=1

|ĉ j |2 1

γ

)
=
(

−w2

γ 2

N−1∑
j=1

|ĉ j |2λ̃ j

)
+ i

(
w2

γ

)
, (B7)

since
∑N−1

j=1 |ĉ j |2 = 1. Since the eigenvalues λ̃1,...,N−1 are equally distributed around zero as shown in Fig. 3(a) and the weights
can be roughly approximated by |ĉ j |2 ≈ 1/(N − 1) [due to the fact that 〈|ĉ j |2〉 = 1/(N − 1)], the frequency shift becomes
δdark → 0 for large N and γdark = w2/γ .

A rough approximation can be performed in the case λ̃ j 
 γ for most j ∈ {1, . . . ,N − 1}. Here we set again |ĉ j |2 ≈ 1/(N −
1) and we obtain

δdark + iγdark ≈
(

w2

N − 1

N−1∑
j=1

−λ̃ j

λ̃2
j + γ 2

)
+ i

(
w2

N − 1

N−1∑
j=1

γ

λ̃2
j + γ 2

)

≈ − w

2q

∫ qw

−qw

dλ̃
λ̃

λ̃2 + γ 2
+ i

wγ

2q

∫ qw

−qw

dλ̃
1

λ̃2 + γ 2
≈ i

wγ

2q

[
2

γ
arctan

(
qw

γ

)]
≈ i

π

2q
w, (B8)

where we have assumed that the eigenvalues λ̃ j are linearly distributed from −qw to qw where q is an adjustment or fitting
parameter. This is a rather rough approximation of the real eigenvalue distribution depicted in Fig. 5(a). In reality the sorted
eigenvalue distribution follows λ̃ j = √

2πwerf−1(2 j/N − 1) for j ∈ {1, . . . ,N − 1} when N → ∞, which is the quantile
function of the Gaussian distribution for the energy disorder. The best approximation is given for q = 2 resulting in γdark =
(π/4)w as shown in Fig. 5(b) while δdark = 0.

APPENDIX C: QUANTUM LANGEVIN EQUATIONS APPROACH TO NON-MARKOVIAN LOSS INTO
THE DARK RESERVOIR

Starting with the full equations of motion for the bright and dark modes given by

˙̂v = −iMv̂ − imB̂ +
√

2γ v̂in, (C1a)

˙̂B = −i(δ̄ − iγ )B̂ − im†v̂ +
√

2γ B̂in, (C1b)

where we have defined v̂ = (D̂1, . . . , D̂N−1)
 we obtain by injecting the steady state solution for the dark modes

v̂(t ) =
∫ t

−∞
dse−iM(t−s)(−imB̂(s) +

√
2γ v̂in(s)), (C2)
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into Eq. (C1b) the reduced equation of motion for the bright mode

˙̂B = −i(δ̄ − iγ )B̂ −
∫ ∞

−∞
ds�(t − s)m†e−iM(t−s)mB̂(s) − i

√
2γ

∫ ∞

−∞
ds�(t − s)m†e−iM(t−s)v̂in(s) +

√
2γ B̂in

= −i(δ̄ − iγ )B̂ −
∫ ∞

−∞
ds�(t − s)

N−1∑
j=1

|c j |2e−i(δ̄−iγ−λ̃ j )(t−s)B̂(s) + ξdark +
√

2γ B̂in, (C3)

where we have defined the noise term emerging from the dark reservoir by ξdark(t ) = −i
√

2γ
∫∞
−∞ ds�(t − s)m†e−iM(t−s)v̂in(s).

Following the same steps introduced in the previous subsection where we approximate |c j |2 ≈ w2/(N − 1) and assuming λ̃ j

being linearly distributed between −2w and 2w we obtain

N−1∑
j=1

|c j |2eiλ̃ j (t−s) ≈ w

4

∫ 2w

−2w

dλ̃eiλ̃(t−s) = w2sinc(2w(t − s)), (C4)

for the convolution kernel, which results in

˙̂B = −i(δ̄ − iγ )B̂ − w2
∫ ∞

−∞
ds�(t − s)e−i(δ̄−iγ )(t−s)sinc(2w(t − s)) B̂(s) + ξdark +

√
2γ B̂in. (C5)

Before taking the limit for large width w 
 γ , we evaluate the noise correlation term for the dark states

〈ξdark(t )ξ †
dark(t ′)〉 = 2γ

∫ ∞

−∞
ds

∫ ∞

−∞
ds′�(t − s)�(t ′ − s′)m†e−iM(t−s)〈v̂in(s)v̂in(s′)〉eiM†(t ′−s′ )m

= 2γ

∫ ∞

−∞
ds

∫ ∞

−∞
ds′�(t − s)�(t ′ − s′)m†e−iM(t−s)δ(s − s′)1eiM†(t ′−s′ )m

= 2γ

∫ ∞

−∞
ds�(t − s)�(t ′ − s)m†e−iM(t−s)eiM†(t ′−s)m

= 2γ −iδ̄(t−t ′ )e−γ (t+t ′ )m†e−i�̂(t−t ′ )m
∫ ∞

−∞
ds�(t − s)�(t ′ − s)e2γ s

=
{

m†e−iM(t−t ′ )m = ∑N−1
j=1 |c j |2e−i(δ̄−iγ−λ̃ j )(t−t ′ ), t � t ′

m†eiM†(t ′−t )m = ∑N−1
j=1 |c j |2ei(δ̄+iγ−λ̃ j )(t ′−t ), t < t ′.

(C6)

Here, we have used the definition �̂ = M + iγ1. For our approximation, this equates to

〈ξdark(t )ξ †
dark(t ′)〉 =

{
w2e−i(δ̄−iγ )(t−t ′ )sinc(2w(t − t ′)), t � t ′

w2ei(δ̄+iγ )(t ′−t )sinc(2w(t ′ − t )), t < t ′ (C7)

For very large width w 
 γ we can make the approximation sin (2w(t − t ′))/(π (t − t ′)) ≈ δ(t − t ′), which results in

〈ξdark(t )ξ †
dark(t ′)〉 ≈ π

2
wδ(t − t ′) = 2γdarkδ(t − t ′), (C8)

which describes delta correlated noise (Markovian noise) in this limit. With the correlation relation 2γ 〈B̂in(t )B̂in(t ′)〉 = 2γ δ(t −
t ′) for the noise of the bright mode and simplifying the term

w2
∫ ∞

−∞
ds�(t − s)e−i(δ̄−iγ )(t−s)sinc(2w(t − s))B̂(s) = π

2
w

∫ ∞

−∞
ds�(t − s)e−i(δ̄−iγ )(t−s) sin (2w(t − s))

π (t − s)
B̂(s)

≈ π

2
w

∫ ∞

−∞
ds�(t − s)e−i(δ̄−iγ )(t−s)δ(t − s)B̂(s)

= π

4
wB̂(t ) = γdarkB̂(t ), (C9)

in Eq. (C5), we obtain for the equation of motion in the Markovian limit the expression

˙̂B = −i(δ̄ − i(γ + γdark))B̂ +
√

2(γ + γdark)B̂in. (C10)

The Markovian limit can be obtained much more directly and irrespective of the given shape of the disorder distribution in the
case where γ 
 w. By using the relation (γ /2) exp(−γ |t − s|) ≈ δ(t − s) for large γ we can rewrite∫ ∞

−∞
ds�(t − s)

N−1∑
j=1

|c j |2e−i(δ̄−iγ−λ̃ j )(t−s)B̂(s) ≈ 1

γ

N−1∑
j=1

|c j |2B̂(t ) = Var(δ)

γ
B̂(t ), (C11)
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while simultaneously we obtain for the noise correlation term

〈ξdark(t )ξ †
dark(t ′)〉 =

{
e−i(δ̄−iγ )(t−t ′ ) ∑N−1

j=1 |c j |2eiλ̃ j (t−t ′ ), t � t ′

ei(δ̄+iγ )(t ′−t ) ∑N−1
j=1 |c j |2e−iλ̃ j (t ′−t ), t < t ′

≈ 2

γ

(N−1∑
j=1

|c j |2
)

δ(t − t ′) = 2

(
Var(δ)

γ

)
δ(t − t ′). (C12)

This results in γdark = Var(δ)/γ for Eq. (C10). In this regime in particular we have identified

B̂in(t ) = −i
m†vin(t )√

m†m
. (C13)

APPENDIX D: ORIENTATIONAL DISORDER

In the case that we have molecules with randomly oriented dipole moments the cavity coupling strength gj varies from
molecule to molecule. The effect of this disorder manifest itself in the definition of the bright and dark modes where the bright

mode is now given by B̂ = (1/

√∑N
j=1 |g j |2)

∑N
j=1 g∗

jσ j , which results in the equation of motion for the cavity

α̇ = −i(δ − iκ )α − ig̃NB + η, (D1)

where g̃N =
√∑N

j=1 |g j |2 and δ = ωc − ωl . Taking the limit for large numbers of molecules N where we describe the random
orientation with respect to the electric field of the cavity mode a by gj = gcos(θ j ) where θ j ∈ [0, π ] we obtain

g̃2
N ≈ Ng2

π

∫ π

0
dθ cos2(θ ) = Ng2

2
. (D2)

The dark modes D̂k = (1/

√∑N
j=1 |g j |2)

∑N
j=1 d∗

k jσ j can be obtained by employing the Gram-Schmidt orthogonalization proce-

dure starting with the vector (1/

√∑N
j=1 |g j |2)(g∗

1, . . . , g∗
N ) containing the coefficients of the bright mode. This results in

Ḋ j = −i(δl + �
(g)
j j − iγ )D j − i

N−1∑
j �= j′

�
(g)
j j′D j′ − i�(g)

jNB, (D3a)

Ḃ = −i(δl + δB − iγ )B − i
N−1∑
j′=1

�
(g)
N j′D j′ − ig̃Nα, (D3b)

α̇ = −i(δ − iκ )α − ig̃NB + η, (D3c)

where �
(g)
j j′ = (

∑N
j=1 |g j |2)−1 ∑N

k=1 d∗
jkδkdk j′ , δl = ω − ωl and δB = �

(g)
NN = (

∑N
j=1 |g j |2)−1 ∑N

j=1 δ j |g j |2. From the equations
of motion we obtain the matrix for the dark states

M(g) =

⎛
⎜⎜⎜⎝

(δl + δD1 − iγ ) �
(g)
12 . . . �

(g)
1(N−1)

�
(g)
21 (δl + δD2 − iγ ) . . . �

(g)
2(N−1)

...
...

. . .
...

�
(g)
(N−1)1 �

(g)
(N−1)2 . . . (δl + δDN−1 − iγ )

⎞
⎟⎟⎟⎠, (D4)

where δDk = �
(g)
kk . Assuming steady state for the dark manifold we obtain the reduced equations of motion

Ḃ = −i

(
δl + δB −

N−1∑
kk′=1

�
(g)
N k

[
(M(g) )−1

]
kk′�

(g)
k′N − iγ

)
B − ig̃Nα, (D5a)

α̇ = −i(δ − iκ )α − ig̃NB + η. (D5b)

APPENDIX E: FRET MIGRATION PROCESS RATES

Here we want to derive a first-order FRET rate between two near-field coupled molecules j and j′, each with a single
vibrational mode bj and b j′ [23]. To this end, we go into a polaron frame and start with the equations of motion for the dressed
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dipole operators σ̃ j = Q†
jσ j and σ̃ j′ = Q†

j′σ j′ with the displacement operator Q j = eλ j (b
†
j−b j ):

˙̃σ j = −(γ + iδ j )σ̃ j − i� j j′ σ̃ j′Q j′Q†
j +

√
2γ σ̃ in

j , (E1a)

˙̃σ j′ = −(γ + iδ j′ )σ̃ j′ − i� j j′ σ̃ jQ jQ†
j′ +

√
2γ σ̃ in

j′ . (E1b)

For simplicity, for the numerical simulations, we will assume parallel orientation of all dipoles. The dipole-dipole interaction
then expresses as � j j′ = 3

2γ /(k|r j − r j′ |)3 with wave number k = 2π/λ0 (λ0 is the wavelength of the electronic transition)
[52]. We will consider initial excitation of molecule j and assume molecule j′ to be in the electronic ground state initially. The
equation of motion for the acceptor’s population reads

Ṗj′ = −2γ Pj′ + 2� j j′� 〈σ †
j′σ j〉 +

√
2γ 〈σ †

j′σ
in
j′ + σ

†,in
j′ σ j′ 〉 . (E2)

We therefore have to evaluate the term 2� j j′� 〈σ †
j′σ j〉, which signals the energy transfer. Formal integration of the equation of

motion for the acceptor gives

σ
†
j′ (t ) = σ j′ (0)e−(γ−iδ j′ )tQ j′ (0)Q†

j′ (t ) +
∫ t

0
dt ′e−(γ−iδ j′ )(t−t ′ )[i� j j′σ

†
j (t ′) +

√
2γ σ

†,in
j′ (t ′)

]
Q j′ (t

′)Q†
j′ (t ). (E3)

The correlation 〈σ †
j′ (t )σ j (t )〉 can then be expressed as (assuming free evolution of j)

〈σ †
j′σ j〉 = i� j j′

∫ t

0
dt ′e−(γ+i(δ j−δ j′ ))(t−t ′ )e−γ t ′

e−γ t Pj (0) 〈Q j (0)Q†
j (t

′)Q j (t )Q†
j (0)〉 〈Q j′ (t

′)Q†
j′ (t )〉 =: i� j j′Pj (0) · I (t ). (E4)

where we defined Pj (0) = 〈σ †
j σ j (0)〉. We therefore have to evaluate the two correlation functions 〈Q j′ (t ′)Q†

j′ (t )〉 and

〈Q j (0)Q†
j (t

′)Q j (t )Q†
j (0)〉 (we will assume identical Huang-Rhys factors for both molecules λ := λ j = λ j′):

〈Q j′ (t
′)Q†

j′ (t )〉 = e−λ2
eλ2e−(
−iν)(t−t ′ )

, (E5)

〈Q j (0)Q†
j (t

′)Q j (t )Q†
j (0)〉 = e−λ2

eλ2e−(
−iν)(t−t ′ )
e−λ2e−(
+iν)t ′

eλ2e−(
−iν)t ′
, (E6)

where to obtain the expression for the latter one, we commuted Q†
j (0) with Q j (t ) and Q†

j (t
′), respectively and assumed large

times t 
 1/
. We can now evaluate the integral I (t ):

I (t ) = e2λ2
∑

n1,n2,n3,n4

sλ
n1

sλ
n2

sλ
n3

sλ
n4

(−1)n2
e−[2γ+(n2+n3 )
+i(n2−n3 )ν]t − e[−2γ−(n1+n4 )
−i(�−n1ν−n4ν)]t

(n1 − n2 + n3 + n4)
 + i(δ j − δ j′ − n1 − n2 + n3 − n4)ν
. (E7)

Due to the fast decay of terms containing 
 (we assume 
 
 γ ), we can approximate the energy transfer rate as (n2 = n3 = 0)

2� 〈σ †
j′σ j〉 =

∑
n1,n4

2�2
j j′s

λ
n1

sλ
n4

(n1 + n4)


(n1 + n4)2
2 + [δ j − δ j′ − (n1 + n4)ν]2
Pj (0)e−2γ t

≈
∑
n1,n4

2�2
j j′s

λ
n1

sλ
n4

(n1 + n4)


(n1 + n4)2
2 + [δ j − δ j′ − (n1 + n4)ν]2
Pj (t )

=
∑
n j ,n j′

2�2
j j′s

λ
n j

sλ
n j′

(n j + n j′ )


(n j + n j′ )2
2 + [δ j − δ j′ − (n j + n j′ )ν]2
Pj (t ) =: 2[κET] j j′Pj (t ), (E8)

where we introduced the Poissonian coefficients sλ
n = e−λ2

λ2n/n!.
In the case of many vibrational modes n for donor and acceptor, we can generalize the result by writing general displacements

Q j′ = ∏n
k=1 Qk

j′ and Q j = ∏n
k=1 Qk

j for all vibrational modes. The equations of motion can then be expressed in the same form
as in Eqs. (E1)

˙̃σ j = −(γ + iδ j )σ̃ j − i�σ̃ j′Q j′Q†
j +

√
2γ σ̃ in

j , (E9a)

˙̃σ j′ = −(γ + iδ j′ )σ̃ j′ − i�σ̃ jQ jQ†
j′ +

√
2γ σ̃ in

j′ . (E9b)

We further more assume that different vibrational modes are independent of each other, i.e., we assume factorizability of all
correlation functions, e.g.,

〈Q j′ (t
′)Q†

j′ (t )〉 =
∏

k

〈Qk
j′ (t

′)Qk,†
j′ (t )〉 =

∏
k

e−λ2
k eλ2

k e−(
k −iνk )(t−t ′ )
. (E10)

033141-12



MOLECULAR POLARITONICS IN DENSE MESOSCOPIC … PHYSICAL REVIEW RESEARCH 3, 033141 (2021)

Assuming that the two molecules have the same vibrational properties 〈Qk
j′ (t

′)Qk,†
j′ (t )〉 = 〈Qk

j (t
′)Qk,†

j (t )〉, one can then obtain a
generalized energy transfer rate

[κET] j j′ =
∞∑

{mk=0}

∞∑
{lk=0}

n∏
k=1

e−2λ2
k
λ

2(mk+lk )
k

mk!lk!

∑n
k=1(mk + lk )
k�

2
j j′

[
∑n

k=1(mk + lk )
k]2 + [δ j − δ j′ −
∑n

k=1(mk + lk )νk]2
, (E11)

where the sums go over all indices {mk} = m1, . . . , mn and {lk} = l1, . . . , ln.

APPENDIX F: EQUATIONS OF MOTION FOR N MOLECULES. VACUUM-RABI SPLITTING AT HIGH DENSITIES

We derive the equations of motion only for individual operators (a and σ j) for any excitation level and justify the single
excitation approximation. Also we consider individual decay of the emitters and low excitation, i.e., σ z

j ≈ −1.
From the master equation we obtain the equations of motion for an operator O via

˙〈O〉 = Tr[ρ̇O] = Tr
[( i

h̄
[ρ, H] + Lc[ρ] + Le[ρ] + LFRET[ρ]

)
O
]
, (F1)

where LFRET[ρ] = ∑
i �= j κ

i j
ET(2σ

†
j σiρσ

†
i σ j − σ

†
i σiσ jσ

†
j ρ − ρσ

†
i σiσ jσ

†
j ).

For O = σ j we derive

Tr[LFRET[ρ]σ j] = −
∑
k �= j

κ
jk

ET 〈σ j〉 +
∑
k �= j

(
κ

jk
ET − κ

k j
ET

) 〈σ jσ
†
k σk〉 , (F2)

while for O = σ
†
j σ j we obtain

Tr[LFRET[ρ]σ †
j σ j] = −

∑
k �= j

2κ
jk

ET 〈σ †
j σ j〉 +

∑
k �= j

2κ
k j
ET 〈σ †

k σk〉 +
∑
k �=i, j

2
(
κ

jk
ET − κ

k j
ET

) 〈σ †
j σ jσ

†
k σk〉 . (F3)

This results in the equations of motion

˙〈a〉 = −(κ + iδ) 〈a〉 − i
∑

j

g∗
j 〈σ j〉 + η, (F4a)

˙〈σ j〉 = −
⎛
⎝γ +

∑
k �= j

κ
jk

ET + i(δl + δ j )

⎞
⎠ 〈σ j〉 − ig j 〈a〉 +

∑
k �= j

(
κ

jk
ET − κ

k j
ET

) 〈σ jσ
†
k σk〉 , (F4b)

where δ = ωl − ωc and δl = ωl − ωe. Additionally we obtain for the population

˙〈σ †
j σ j〉 = −2

⎛
⎝γ +

∑
k �= j

κ
jk

ET

⎞
⎠ 〈σ †

j σ j〉 +
∑
k �= j

2κ
k j
ET 〈σ †

k σk〉 + i
(
g∗

j 〈a†σ j〉 − g j 〈aσ
†
j 〉
) +

∑
k �= j

2
[
κ

jk
ET − κ

k j
ET

] 〈σ †
k σkσ

†
j σ j〉 , (F5)

which in general for small population approximates to

Ṗj ≈ −2

⎛
⎝γ +

∑
k �= j

κ
jk

ET

⎞
⎠Pj +

∑
k �= j

2κ
k j
ETPk + i(g∗

j 〈a†σ j〉 − g j 〈aσ
†
j 〉), (F6)

where we have defined Pj = 〈σ †
j σ j〉.

These results agree with the expressions obtained by starting from the general quantum Langevin equations where we obtain

ȧ = −(κ + iδ)a − i
∑

j

g∗
jσ j + η +

√
2κain (F7a)

σ̇ j = −
⎛
⎝γ +

∑
k �= j

κ
jk

ET + i(δl + δ j )

⎞
⎠σ j − ig ja +

∑
k �= j

(
κ

jk
ET − κ

k j
ET

)
σ

†
k σkσ j −

√
2γ σ in

j ,
∑
k �= j

[√
2κ

jk
ETξ

†
in, jkσk −

√
2κ

k j
ETσkξin,k j

]
,

(F7b)

where ain, σin, and ξin,i j are the noise operators for the collapse operators a, σ and σ
†
i σ j , respectively.
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For low population, we can linearize the equations of motion for the molecule-cavity system

α̇ ≈ −(κ + iδ)α − i
∑

j

g∗
jβ j + η (F8a)

β̇ j ≈ −
⎛
⎝γ +

∑
k �= j

κ
jk

ET + i(δl + δ j )

⎞
⎠β j − ig jα, (F8b)

which results in the cavity transmission

t = κ

[
κ + iδ +

N∑
j=1

|g j |2
γ + ∑

k �= j κ
jk

ET + i(δl + δ j )

]−1

. (F9)

Additionally, we obtain for the equations of motion in the bright dark basis the expressions

Ḋk = −i

(
δl + δ̄ − i

(
γ + 1

N

N∑
j=1

N∑
j′ �= j

κ
j j′

ET

))
Dk − i

N−1∑
k′ �=k

�̃kk′Dk′ − i�̃kNB, (F10a)

Ḃ = −i

(
δl + δ̄ − i

(
γ + 1

N

N∑
j=1

N∑
j′ �= j

κ
j j′

ET

))
B − i

N−1∑
k′=1

�̃N k′Dk′ − i
√
Ngα, (F10b)

α̇ = −i(δ − iκ )α − i
√
Ng∗B + η, (F10c)

where �̃kk′ = (1/N )
∑N

j=1(δ j − i
∑

j′ �= j κ
j j′

ET )e−i2π j(k−k′ )/N . By performing the same steps as introduced in previous chapters
where we have injected the solution for the dark modes at steady state into the bright mode, we finally obtain

Ḃ = −i

(
δl + δ̄ − i(γ + κ̄ET) −

N−1∑
k,k′=1

�̃N kM̃−1
kk′ �̃k′N

)
B − i

√
Ngα, (F11a)

α̇ = −i(δ − iκ )α − i
√
Ng∗B + η, (F11b)

where M̃kk′ = (δl − iγ )δkk′ + �̃kk′ for k, k′ ∈ {1, . . . ,N − 1}, κ̄ET = 1
N
∑N

j=1

∑N
j′ �= j κ

j j′
ET and δdark + iγdark =∑N−1

k,k′=1 �̃N kM̃−1
kk′ �̃k′N . This allows us to obtain the vacuum Rabi splitting (VRS) in the case of disorder and FRET

transfer by diagonalizing the corresponding matrix to Eq. (F11a) and Eq. (F11b) and setting δl = δ = 0, which is given by

VRS = �
⎧⎨
⎩2

√
((γ + κ̄ET + γdark − κ ) + i(δ̄ − δdark))2

4
− N |g|2

⎫⎬
⎭. (F12)

We can get qualitative expressions for the FRET induced rates from the following procedure. In the case of two molecules with
only one vibrational mode each we can use the expression for the energy transfer rate in Eq. (E11) to obtain

∑
j j′

κ
j j′

ET =
∞∑
n1

∞∑
n2

sλ
n1

sλ
n2

(n1 + n2)

∞∑

j′ �= j

�2
j j′

[(n1 + n2)
]2 + [δ j − δ j′ − (n1 + n2)ν]2
. (F13)

Considering a homogeneous distribution of molecules, in the term for the dipole-dipole interaction � j j′ = (3/2)γ /(k|r j − r j′ |)3

we can set r j to zero, since each molecule witnesses the same surrounding environment. Additionally, by using the probability
distribution p(r, δ) to find a molecule at a distance r with detuning δ we exchange the sum over j′ with the integration

1

N
∑
j′ �= j

≈
∫ R

rmin

dr
∫ ∞

−∞
dδp(r, δ), (F14)

where R is the radius of a spherical volume V and rmin is the minimal radius that follows from the volume V/N that each
molecule occupies individually. Assuming that r and δ are independent we can rewrite p(r, δ) = p(r)p(δ), where p(r) = 4πr2/V
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and p(δ) = (1/
√

2πw2)e−(δ/
√

2w2 )2
. This allows us to obtain

∑
j j′

κ
j j′

ET ≈
∞∑
n1

∞∑
n2

sλ
n1

sλ
n2

(n1 + n2)
N
∫ R

rmin

dr p(r)

(
3γ

2(kr)3

)2 ∫ ∞

−∞
dδ

p(δ)

[(n1 + n2)
]2 + [δ − δ − (n1 + n2)ν]2
.

≈ N 2π

(
3γ

2(kR)3

)2 ∞∑
n1

∞∑
n2

sλ
n1

sλ
n2

V (δ j − (n1 + n2)ν; w, (n1 + n2)
), (F15)

where V (x; w, γ ) describes a Voigt profile. We find here that
∑

j j′ κ
j j′

ET is proportional to N 2, which allows us to find a qualitative
expression for the VRS in Eq. (F12) that can be used for fitting.
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