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Extreme statistics of the excitations in the random transverse Ising chain
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In random quantum magnets, like the random transverse Ising chain, low energy excitations are localized
in rare regions and there are only weak correlations between them. It is an open question whether these
correlations are relevant in the sense of the renormalization group. To answer this question, we calculate the
distribution of the excitation energy of the random transverse Ising chain in the disordered Griffiths phase with
high numerical precision by the strong disorder renormalization group method and—for shorter chains—by
free-fermion techniques. Asymptotically, the two methods give identical results, which are well fitted by the
Fréchet limit law of the extremes of independent and identically distributed random numbers. Considering the
finite size corrections, the two numerical methods give very similar results, but these differ from the correction
term for uncorrelated random variables, indicating that the weak correlations between low-energy excitations in
random quantum magnets are relevant.
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I. INTRODUCTION

Many-body systems in the presence of quenched disorder
have unusual dynamical properties due to rare-region ef-
fects. In these systems—due to extreme fluctuations of strong
couplings—domains are formed, which can remain locally or-
dered even in the paramagnetic phase. The relaxation time τ ,
associated with turning the spins in such domains, can be ex-
tremely large and it has no upper limit in the thermodynamic
limit. These types of Griffiths singularities are responsible for
nonanalytical behavior of several physical quantities (suscep-
tibility, specific heat, autocorrelation function) in the so called
Griffiths phase, which is an extended part of the paramagnetic
phase [1].

In random quantum systems, Griffiths effects are stronger
than in classical ones, manifested in the power-law decay
of the autocorrelation function, as well as power-law sin-
gularities of the susceptibility and the specific heat at low
temperatures [2,3]. In random quantum magnets with dis-
crete symmetry, such as in the random transverse Ising model
(RTIM), the low-energy excitations are localized and their
properties can be successfully studied by the so called strong
disorder renormalization group (SDRG) method [4]. As initi-
ated by Ma, Dasgupta, and Hu [5], and further developed by
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Fisher [6], the SDRG is a local renormalization technique in
which quantum and disorder fluctuations are treated simulta-
neously, and degrees of freedom with a large excitation energy
are successively eliminated. In these random quantum mag-
nets the SDRG method is expected to provide asymptotically
exact results at the critical point, the properties of which are
governed by an infinite disorder fixed point [7]. Here, the
Griffiths phase is controlled by strong disorder fixed points,
but there are some cases in which the SDRG describes the
dynamical singularities asymptotically exactly [8–10], for a
counterexample see Ref. [11].

In phenomenological descriptions, it is often assumed that
the localized excitations in random quantum magnets are
independent [12]. For example, distributions of low-energy
excitations in these systems are well approximated by the
Fréchet distributions [13], which represents the limit law of
the extremes of independent and identically distributed (iid)
random numbers. Recently, extreme value statistics (EVS)
has been applied to several problems, we can mention earth-
quakes, tsunamis, extreme flooding, big wildfires, extremes
of climate, stock market risks in finance, sport records, etc.
[14–19]. A complete understanding of extreme value statistics
is known for uncorrelated random numbers, in which case also
the convergence to the limit laws is derived by mathematical
[20] and renormalization group [21–24] (RG) methods. The
iid limit distributions also apply to weakly correlated random
numbers, while new types of limit distributions appear for
strongly correlated cases [25].

It is an intriguing problem to what extent the localized
excitations in random quantum magnets are independent?
Are weak correlations between the rare regions manifested
in some effects, such as in the form of finite-size correc-
tions? In this paper, we address this question and consider the
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paradigmatic model, the RTIM in one dimension (1D), and
calculate numerically the distribution of the first energy gap
by the asymptotically exact SDRG method with high accu-
racy. For moderate L system sizes, we use also free-fermion
techniques [26–28] to calculate the gaps of the random sam-
ples exactly. The distribution of the gaps for finite L are
compared with an appropriate Fréchet distribution and their
difference is analyzed through finite-size scaling. To check
the potential form of numerical corrections, the same type of
numerical test is repeated for iid random numbers too.

The rest of the paper is organized as follows. In Sec. II the
RTIM model is introduced and known results are summarized.
In Sec. III the basic results about the extremes of uncorrelated
variables and their finite-size corrections are recapitulated. In
Sec. IV the distributions of gaps of the RTIM are calculated
and the finite-size corrections are compared with the analyt-
ical results of uncorrelated variables. To test the numerical
accuracy we repeat this analysis for uncorrelated Kesten vari-
ables [29]. Our paper concludes with a discussion in the final
section. The methods to calculate the excitation energy of the
RTIM are described in the Appendix.

II. MODEL AND KNOWN RESULTS

Here, we consider the RTIM in 1D defined by the Hamil-
tonian

Ĥ = −
L−1∑
i=1

Jiσ
z
i σ z

i+1 −
L∑

i=1

hiσ
x
i , (1)

in terms of the σ x,z
i Pauli matrices at site i and the nearest

neighbor couplings Ji > 0 and the transverse fields hi > 0 are
taken from the distributions π1(J ) and π2(h), respectively.
Generally, we use open boundary conditions (OBCs) and
work at zero temperature T = 0.

In the thermodynamic limit L → ∞, the control parameter
is defined as [6]

δ = [ln h]av − [ln J]av

var(h) + var(J )
, (2)

where [· · · ]av denotes averaging over quenched disorder and
var(x) stands for the variance of x. For δ < 0 (δ > 0) the sys-
tem is in the ordered ferromagnetic (disordered paramagnetic)
phase and at δ = 0 there is a random quantum critical point.
According to SDRG calculations [6,8,9] and numerical results
[30,31] the critical behavior of the system is controlled by an
infinite disorder fixed point [7]. For example, the energy scale,
defined by the lowest gap ε, and the length scale are related as

ln ε ∼ L1/2, δ = 0. (3)

In the paramagnetic phase this relation is in a power-law form

ε ∼ L−z, δ > 0, (4)

which is due to Griffiths singularities. Here, the dynamical
exponent z = z(δ) depends on the distance from the critical
point and is given by the positive root of the equation [8–10]

[(J

h

)1/z]
av

= 1, (5)

and in the vicinity of the critical point it diverges as z ≈
1/(2δ).

The distribution of the first gap has been calculated analyt-
ically through the SDRG method [32]

PL(ε; z) = 1

z
u1/z−1 exp(−u1/z ) (6)

in terms of u = u0ε(L/ξ )z, ξ being the correlation length and
u0 is a constant, fixed by the choice of standardization, as
discussed in the next section. This relation is valid for L � ξ

and for δ � 1, in which limit ξ ∼ δ−2. We observe that Eq. (6)
is just the Fréchet distribution, see Eq. (19).

An approximate form of the distribution of the low-energy
excitations can be obtained from the assumption that these
excitations are localized and are due to extreme fluctuations
of say n � L consecutive strong bonds [12]. The probability
to find such a strongly connected cluster in the system is
given by PL(n) ∼ L exp(−an). At the same time the excita-
tion energy due to such a cluster is exponentially small: ε ∼
exp(−bn). Combining these expressions we obtain PL(ln ε) ∼
Lε1/z, with z = b/a being the dynamical exponent in agree-
ment with Eq. (4). Then, the cumulated distribution of the
relaxation times τ ∼ 1/ε is obtained in this approach as

μ(τ ) ≈ 1 − Aτ−1/z, τ � 1. (7)

If we assume that the excitations are uncorrelated following
the reasoning in Sec. III we arrive at the distribution in Eq. (6),
which is calculated by the SDRG approach in the given limits.

In this paper, we aim to study this problem in more detail,
considering the following points. (i) To calculate the distribu-
tion function through numerical implementation of the SDRG
approach and to check if the result in Eq. (6) is valid in the
entire Griffiths phase. (ii) To confirm the results of the SDRG
calculation with the exact gaps obtained through free-fermion
techniques. (iii) To check the form of the finite-size correc-
tions of the two methods and to compare with the analytical
result for the extremes of uncorrelated random variables.

III. EXTREME STATISTICS OF UNCORRELATED
VARIABLES

Let us have a process of iid random numbers u1, u2, . . . , uN

and consider the maximum value u = max(u1, u2, . . . , uN ).
Each random variable is distributed by the same, so called
parent distribution function ρ(u) and the cumulative (or in-
tegrated) parent distribution is given by μ(u) = ∫ u

−∞ ρ(t )dt .
The cumulative distribution of the maximum value u is easy
to compute:

Mmax
N (u) = Prob[u1 � u, u2 � u, . . . , uN � u] = μN (u).

(8)
According to extreme value statistics (EVS) Mmax

N (u) has a
limit distribution for large N and large u in terms of the scaling
combination v = (u − bN )/aN as

MN (v) = Mmax
N (aNv + bN ) → M(v), (9)

and similarly for the extreme density PN (v) = dMN/dv,

PN (v) = aN Pmax
N (aNv + bN ) → P(v). (10)

Here, the aN and bN are free up to an additive constant, the
value of which is fixed by different standardization conditions.
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For the analytical calculation the condition

M(0) = P(0) = 1/e (11)

is convenient to use, whereas for analyzing numerical data it
is often better to require∫ ∞

−∞
vP(v) = 0,

∫ ∞

−∞
v2P(v) = 1, (12)

provided the second moment of the distribution exists. In
this paper, we refer to Eqs. (11) and (12) as first and second
standardization conditions, respectively.

A. Renormalization group analysis

In a renormalization group treatment [21,22], one starts
with the invariance condition

M(v) = M p[a(p)v + b(p)] ≡ [R̂pM](v), (13)

which should be satisfied for any positive rational number p.
The operator R̂p acts on the parent integrated distribution as

[R̂pμ](v) = μp[a(p)v + b(p)], (14)

and the first standardization condition in Eq. (11) requires

b(p) = μ−1(e−1/p), (15)

a(p) = p
db(p)

d p
. (16)

In the RG treatment, the invariance condition in Eq. (13) is
interpreted as a fixed-point relation

[R̂pM](v) = M(v), (17)

and its general solutions depend on the parameter γ and are
given in the form

M(v; γ ) = exp[−(1 + γ v)−1/γ ], (18)

P(v; γ ) = (1 + γ v)−1/γ−1 exp[−(1 + γ v)−1/γ ], (19)

for 1 + γ v � 0. The parameter γ is related to the large u tail
of the parent distribution and defines the different universality
classes. For γ > 0 the parent distribution is given by

μ(u) ≈ 1 − Au−1/γ , u � 1, (20)

and represents the Fréchet universality class. For γ = 0 the
asymptotic approach of the cumulative parent distribution is
faster than a power and represents the Gumbel universality
class. Finally, for γ < 0 the asymptotic maximum value of the
integrated parent distribution is approached at a finite upper
bound with a power −1/γ and the limit distribution is given
by the Weibull distribution.

B. Finite-size corrections

To obtain the finite-size corrections in the RG treatment
one should consider a perturbation at the fixed point having
a small parameter ε and introduce the perturbed distribution
function

M(v; γ , ε) = M(v; γ ) + εM1(v; γ )

= M(v; γ ) + εP(v; γ )ψ (v). (21)

Here, the correction function ψ (v) satisfies the first standard-
ization condition as

ψ (0) = 0, ψ ′(0) = 0, ψ ′′(0) = −1, (22)

where the third condition sets the sign and scale of ε. The
perturbed distribution function should satisfy the RG equation

[R̂pM(ε)](v) = M p[a(ε)v + b(ε); ε] = M(v; ε′). (23)

Here, we expand M(ε), a(ε), and b(ε) in linear order in ε and
use the scaling law of the perturbation

ε′/ε = pγ ′
, (24)

which defines the correction to scaling exponent γ ′. The cor-
rection to the scaling function ψ (v; γ , γ ′) depends also on γ ′
and is given in the first standardization condition as

ψ (v; γ , γ ′) = (1 + γ v) + γ ′v − (1 + γ v)γ
′/γ+1

γ ′(γ ′ + γ )
. (25)

In a similar fashion, the probability density in Eq. (10) is
extended by the perturbation

P(v; γ , ε) = P(v; γ ) + εP1(v; γ , γ ′), (26)

and P1(v; γ , γ ′) = dM1(v; γ , γ ′)/dv depends on the decay
exponent of the parent distribution γ , as well as the correction
exponent γ ′.

C. Connection to the parent distribution

In a practical calculation one starts with the parent distri-
bution and calculates the effective decay exponent, which can
be obtained as

γN = daN

dbN
, (27)

where aN and bN are defined in the transformation law in
Eq. (9). The leading correction term is given by

εN = γ − γN ∝ Nγ ′
. (28)

which is just the finite-size correction to the parameter γ .
Regarding the Fréchet distribution, generally the parent dis-
tribution has a nonanalytical correction term

μ(u) ≈ 1 − Au−1/γ (1 + Bu−ω ), u � 1, (29)

and the finite-size corrections to γN are of two types. There is
an analytical correction with γ ′

analytic = −1 and a nonanalytic
correction with γ ′

nonanalytic = −ωγ . Thus, the leading correc-
tion exponent is given by

γ ′ = −min(1, ωγ ). (30)

D. Exponential distribution

In practical analysis of the data with a parent distribution in
Eq. (20), it is convenient to use logarithmic variables x = ln u,
so that ex−x0 = 1 + γ v. In this case, the parent distribution of
x is exponential and the extreme distribution is given by the
Gumbel form

MG(x, γ ) = exp

[
− exp

(−x + x0

γ

)]
, (31)
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FIG. 1. Finite-size corrections to the distributions of the log
extremes for a pure power parent distribution with the second stan-
dardization condition, see text.

and similarly for the probability density

PG(x, γ ) = 1

γ
exp

(−x + x0

γ

)
exp

[
− exp

(−x + x0

γ

)]
,

(32)
so that MG(x0, γ ) = 1/e and PG(x0, γ ) = 1/(eγ ). For the
Gumbel distribution, the finite-size correction term is given
by P1(x; 0, γ ′), see Eq. (26), and in the numerical examples
the correction exponent is γ ′ = −1. In this representation it
is convenient to use the second standardization condition, in
which case the correction terms are transformed [21]. For
γ = 0 and γ ′ = −1 the correction to the probability density
in the second standardization condition is given by [33]

P2nd

1 (x; 0,−1) = ae−x̃−e−x̃
[(e−x̃ − 1)(1 − x/a − e−x̃ )

−a−2 + e−x̃], (33)

with x̃ = ax + b, a = π/
√

6 and b = γE = 0.5772156649
being the Euler-Mascheroni constant. As an illustration,
we consider a pure power parent distribution μ(u) = 1 −
u−1/γ , u � 1 and in Fig. 1 show the numerically calculated
finite-size corrections to the distributions of the log extremes,
denoted by ln(τ ), for L = 16, 24, 32, 48, and 64 with γ =
z(h0 = 3), see Eq. (36), in the second standardization condi-
tion. These are to be compared with the analytical result in
Eq. (33), as in this case γ ′ = −1. The agreement is next to
perfect.

IV. NUMERICAL RESULTS

In the numerical calculation the parameters of the Hamil-
tonian Jj and h j are taken from boxlike distributions

π1(J ) =
{

1 for 0 < J � J0,

0 otherwise,

π2(h) =
{

1/h0 for 0 < h � h0,

0 otherwise,

(34)

and we set the energy scale with J0 = 1. In this case, the
critical point of the RTIM is located at h0 = 1, and in the
disordered phase (h0 > 1), the dynamical exponent satisfies

TABLE I. Finite-size estimates of the dynamical exponent zL at
h0 = 4 calculated by the SDRG algorithm from the best fit of the
Fréchet form in Eq. (32) and its difference from the asymptotically
exact value z = 1.2112288988. Exponent of a power-law fit a and
that of the logarithmic correction ω. (See text.) In parentheses, the
results obtained by free-fermion calculation are presented.

L zL z − zL a ω

32 1.102788 0.108441
(32) (1.119570) (0.091659)
64 1.142667 0.068562 0.6614 1.4081
(64) (1.152473) (0.058756) (0.6415) (1.3627)
128 1.169523 0.041706 0.7172 1.3724
256 1.186572 0.024657 0.7583 1.3405
512 1.196923 0.014306 0.7854 1.3388

the equation

(1 − z−2)h1/z
0 = 1, (35)

see Eq. (5). In the vicinity of the critical point z diverges as
z ≈ 1

ln h0
, h0 → 1+, whereas for large h0 it approaches 1 as

z ≈ 1 + 1
2h0

, h0 → ∞.
We considered three specific points of the paramagnetic

phase, having the dynamical exponents

z =
⎧⎨
⎩

1.7476551, h0 = 2,

1.3354200, h0 = 3,

1.2112289, h0 = 4.

(36)

In the free-fermion calculation of the gaps, the lengths of the
systems were L = 16, 24, 32, 48, and 64, whereas with the
SDRG method larger systems up to L = 512 are treated. In all
cases 1010 independent samples are investigated.

A. SDRG gaps and the Fréchet distribution

We start by analyzing the data generated by the SDRG
method and presenting the distributions of the log gaps in
Fig. 2, for different sizes. To test their relation with the Fréchet
distribution, we calculated in each case the best fit of the
analytical function in Eq. (32), having the dynamical exponent
zL ≡ γL and the position of the maximum x0 = x0(L) as fitting
parameters. The resulting best fits are also shown in Fig. 2.

As seen in Fig. 2, the Fréchet distribution describes the
numerical data well and the difference between the numeri-
cal points and the fitting curve is decreasing for increasing
values of L. At a given value of h0 the fitted value of the
dynamical exponent zL has a small variation with the size, and
approaches the exact asymptotic value, as given in Eq. (35).
At the value h0 = 4, this is illustrated in Table I, where the
second column shows the fitted, finite size values of zL, while
the third column shows the difference from the exact value.
As a first step, we used a power-law form z − zL ∼ L−a to fit
the finite-size corrections, and estimates for the exponent a are
calculated through two-point fit. These are listed in the fourth
column of the table and have a slow convergence, which
generally indicates a strong correction to scaling term. Having
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FIG. 2. Distribution of the log energy gaps, calculated by the
SDRG algorithm in the Griffiths phase with h0 = 4 (a), h0 = 3 (b),
and h0 = 2 (c), for finite chains of lengths L = 32, 64, 128, 256,
and 512, from left to right. The best fit of the Fréchet distribution is
indicated by full lines.

this possibility in mind, we have used another functional form

z − zL ∼ lnω L

L
. (37)

In this case, the effective exponents for ω are also calculated
through two-point fit and are presented in the fifth column of
the table. This type of fitting turned out to be more stable, the
effective exponents seem to converge to ω ≈ 1.33.

We have repeated the same analysis at the other two points
of the Griffiths phase. In both cases, the log-correction form

is found to provide a better fit, with the correction exponents
ω ≈ 1.83 at h0 = 2 and ω ≈ 1.50 at h0 = 3.

Most importantly, at a given value of h0 in Fig. 2, the
distributions are shifted with increasing size, and according
to Eq. (4) the position of the maximum is expected to follow
the rule: x0(L) ≈ const. + zL ln L. Comparing the position of
the maximum of the distribution at two sizes one can obtain
estimates for the dynamical exponent as z(L, 2L) = [x0(2L) −
x0(L)]/ ln 2. We have checked that generally zL < z(L, 2L) <

z2L and these estimates approach the asymptotic exact value
with the same type of corrections as noticed for the case of zL

in the previous paragraph.
We note that the analysis of the data obtained by free-

fermion calculation of the gap gives similar results. In Table I
we have included the numerical results in parentheses for the
two smallest sizes, but in this case the asymptotic region of
the effective exponents zL is more remote. The logarithmic
correction of scaling in Eq. (37) is quite unusual, so some
words about its possible origin will be in order. First, we
mention that at this point the analytical and the nonanalytical
corrections have the same 1/L dependence, see Eq. (29), and
this type of interplay could result in a logarithmic correction,
cf. Ref. [34]. A second argument is related to the fact that
the linear extension of regions with a large size l scales as
l ∼ ln L. Even if the dominant rare regions had a finite extent,
as considered in Ref. [35], their possible positions in the
chain are constrained by the other more extended clusters,
potentially resulting in a logarithmic multiplicative factor in
Eq. (37).

B. Finite-size corrections to the gap distributions

We considered the gaps calculated by SDRG iteration for
L = 24, 32, 48, 64, 96, and 128 and for comparison we cal-
culated those by free-fermion techniques as well, for shorter
chains with L = 16, 24, 32, 48, and 64, except for h0 = 4,
where the corrections are the smallest and we went up to
L = 48. We analyzed the finite-size scaling of distributions
in two different ways. First, we used the first standardization
condition in Eq. (11) and calculated the difference with the
Fréchet extreme distribution, with an effective zL, calculated
from the relations below Eq. (32). This difference is then
rescaled by a factor �z = z − zL, and the results for h0 = 2,
3, and 4 are drawn in Fig. 3. In these figures the analytical
results calculated for iid random numbers in Eq. (25) with
γ = z and γ ′ = −1 are also presented. Here, the correction to
scaling exponent γ ′ = −1 corresponds to the expected scaling
form in Eq. (37), which is obtained through numerical analysis
of the data in Table I. According to Fig. 3, we can draw the
following conclusions. (i) The scaled finite-size difference of
the distribution function seems to approach a limiting curve
for large L, which depends on z(h0). (ii) At a given z(h0) the
limiting curves are similar (if not identical) for the SDRG and
the free-fermion data. (iii) The convergence to this limit curve
is slow, much slower than that of the iid random numbers, see
later in Sec. IV C and the figures in the third column of Fig. 3.
This slow convergence is probably related to the logarithmic
correction to the scaling of the dynamical exponent. (iv) Fi-
nally, the expected limit curve of the numerical distribution
of the finite-size correction differs from that of the analytical
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FIG. 3. Finite-size corrections to the Fréchet distribution for the inverse gaps τ = 1/ε in the RTIM at different sizes L calculated through
SDRG iterations [left panels (a), (b), and (c)], and by the free-fermion method [middle panels (d), (e), and (f)] with the first standardization in
Eq. (11) and compared with the analytical results with γ = z(h0) and γ ′ = −1 (dashed lines). In the right panels [(g), (h), and (i)] the maximum
of uncorrelated Kesten random variables are shown, having the same scaling exponents, see text. The scaling exponents z(h0) correspond to
h0 = 4 [first row (a), (d), and (g)], h0 = 3 [second row (b), (e), and (h)], and h0 = 2 [third row (c), (f), and (i)], see Eq. (35). Note that by
requesting the first standardization condition in Eq. (22) the numerical curves are shifted to the same reference point and scaled to a master
curve by dividing with �z = z − zL .

result calculated for iid random numbers (having identical
parameter z). Even though the overall shapes of the curves
are similar, there are noticeable differences. In particular, the
low-energy part is more strongly represented in the numerical
curves, which can be interpreted as the reduction of the value
of the gap due to small, but relevant correlations between rare
regions.

We have repeated the analysis with the distribution of
the log gaps and using the second standardization condition
in Eq. (12). The resulting finite-size corrections of the dis-
tributions are shown in Fig. 4 together with the analytical
curves for iid random numbers. In Fig. 4 the distributions
of the log gaps have a faster finite-size convergence, than
those of the gaps in Fig. 2. The curves in Fig. 4 are almost
indistinguishable for larger sizes. In addition, we notice a
difference between the shape of the numerical curves and the
analytical results, the former being somewhat shifted to the
right around zero. This shift indicates a reduction of the value

of the gap due to small, but relevant correlations between the
rare regions.

C. Numerical test for uncorrelated Kesten variables

To test the possible convergence of the finite-size correc-
tions for uncorrelated variables we have repeated the analysis
in the previous subsection for a parent distribution generated
by Kesten random numbers. Kesten-type random variables are
defined as [29]

um = 1 +
m∑

i=1

i∏
j=1

s j + · · · , (38)

where the s j’s are iid random numbers. It is known that in the
limit of m → ∞ there is a limit distribution ρ∞(u), provided
[ln s]av < 0. This limit distribution has a power-law tail

ρ∞(u) ∼ u−(1+α), u � 1, (39)
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FIG. 4. The same as in Fig. 3 for the log variable and using the second standardization condition in Eq. (12).

where the exponent is the positive root α > 0 of the equation

[sα]av = 1. (40)

Note that the relation for α is analogous to the equation for
the dynamical exponent z of the RTIM, see Eq. (5), and so
we have the relation α = 1/z. To have a direct relation with
the RTIM calculations we set s j = Jj/h j where Jj and h j

are taken from the distributions in Eq. (34). In the numerical
calculation we have m = 64, and considered the maximum of
a set of L = 16, 24, 32, 48, and 64 Kesten numbers, denoted
by τ , so that we have m � L in each case. We have checked
that at such a value of m the truncation of the series in Eq. (38)
has negligible error.

We have analyzed the distribution of the maximum values
at the three points h0 = 2, h0 = 3, and h0 = 4 as done previ-
ously for the gaps of the RTIM. Using the first standardization
condition in Eq. (11) the finite-size corrections are shown in
the third column of Fig. 3. Here, the analytical results are
obtained with the exponents γ = z(h0) and γ ′ = −1, the latter
following from the analytical results in Ref. [36]. It is seen in
Fig. 3 that there is an overall good agreement between the
numerical and analytical results. There is some size depen-
dence of the corrections, which changes sign between h0 = 2
and h0 = 3. In comparison to the distribution of the gaps in

the RTIM, the agreement with the analytical results is much
better and the finite-size corrections are smaller.

We have repeated the analyses of the data by considering
log variables, as given in Eqs. (31) and (32) and using the
second standardization condition in Eq. (12). Results of the
numerical analysis in this case are given in the third column
of Fig. 4. As seen in this figure, there is some finite-size
dependence in the scaled numerical data, but the expected
asymptotic curves agree well with the analytical results. We
note that practically no finite-size dependence of the correc-
tion term is observed for a pure power parent distribution in
Fig. 1. This indicates that further correction to scaling terms
in Eq. (29) could be responsible for the slower convergence in
the case of Kesten variables.

V. DISCUSSION

In this paper, we have considered a paradigmatic model
of random quantum magnets, the random transverse Ising
model in 1D, and studied the distribution of low-energy ex-
citations in the paramagnetic Griffiths phase, with extensive
numerical methods. We have considered a large set of ran-
dom samples (1010) and the calculation is performed by the
approximate, but asymptotically correct SDRG method (up to
L = 512) and for comparison we also used the free-fermion
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method for shorter chains (up to a size L = 64). Analyzing
the distribution of the gaps, we have demonstrated with high
precision that—in agreement with previous expectations—the
limit distribution in the thermodynamic limit is in the Fréchet
form. The Fréchet distribution depends on the value of the
dynamical exponent z and we have shown that a powerful
method of calculation is through fitting a Fréchet curve to the
numerical gap distributions. In this way, effective, finite-size
estimates are obtained for the dynamical exponent zL, which
then are extrapolated to L → ∞. According to the numerical
data this convergence is in the form z − zL ∼ lnω L/L, where
the exponent of the logarithm ω depends on the distance from
the critical point.

More interestingly, we have systematically studied the
finite-size corrections to the limit law and showed that the dif-
ference between the numerical distribution and the asymptotic
Fréchet form scales with z − zL, and this scaled difference
P1(ε; z) is a unique function of the value of the gap ε. We
have performed this type of analysis for the gap, using the first
standardization condition in Eq. (11), as well as for the log
gap, where the second standardization condition in Eq. (12)
was used. In both cases, the asymptotic form of the scaled
finite-size correction function are found similar (if not iden-
tical) for the data with the free-fermion calculation and that
from the SDRG iteration.

We can thus conclude that the SDRG method provides
realistic results about the gap probability distribution function
in the Griffiths phase of the RTIM, which is manifested in
the following observations. (i) The dynamical exponent in
Eq. (5) is exactly given by SDRG, from the comparison of the
exact treatment in Ref. [10] with those in Refs. [8,9]. (ii) The
probability density of the gap is given in the Frechét form by
analytic calculation of the SDRG in the vicinity of the critical
point in the thermodynamic limit [32]. The validity of this
result has been extended to the complete Griffiths phase by our
numerical SDRG calculations. (iii) We have also calculated
numerically by SDRG the finite-size corrections to the proba-
bility distribution function and demonstrated that they satisfy
finite-size scaling properties. (iv) The numerical calculations
are repeated through the free-fermion method and the scaled
finite-size corrections are found very similar in the two cases.
We have observed that the finite-size corrections represent a
very sensitive test, so we propose that this perturbation term
is correctly described by the SDRG method.

The measured finite-size correction functions are also com-
pared with the analytical results of iid random numbers,
having the same decay exponent (γ = z for the gaps and
γ = 0 for the log gaps) and correction to scaling exponent
γ ′ = −1. The two curves are found to have similar shape,
but there are also differences in the asymptotic forms. We
have checked that the observed differences are larger than
the statistical error of the calculation. For this purpose we
have analyzed with identical methods the same set of uncorre-
lated Kesten random variables having the same characteristic
exponent z. For these iid random numbers the asymptotic
finite-size corrections are found to be well described by the
analytical results.

The observed difference in the finite-size corrections be-
tween the numerical curves and the analytical iid results
indicates that the weak correlations between low-energy

excitations in the RTIM are relevant. This is likely related to
the fact that the linear extension of regions with a large size
l scales as l ∼ ln L. Even if the dominant rare regions had a
finite extent, as considered in Ref. [35], their possible posi-
tions in the chain are constrained by the other more extended
clusters, potentially resulting in a logarithmic multiplicative
factor in Eq. (37).

Our investigations have concluded on the RTIM in 1D,
but the observed results are possibly valid for other random
quantum systems as well with localized excitations. For exam-
ple, we can mention the RTIM in higher dimensions [37–39],
the random quantum Potts [40] and Ashkin-Teller models
[41], and generally random quantum magnets with short range
interactions and with discrete symmetry. Similar conclusions
should apply to some nonequilibrium processes, such as to the
random asymmetric exclusion process [42] and the random
contact process [43] as well.
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APPENDIX A: METHODS TO CALCULATE THE GAP
IN THE RTIM

The energy scale of the model is given by the lowest exci-
tation energy of the Hamiltonian in Eq. (1). This is calculated
for finite chains by the asymptotically exact SDRG method
through iteration and for shorter chains by free-fermion tech-
niques.

1. The SDRG method

In the SDRG procedure [4] we perform consecutive deci-
mation steps, each time considering the local excitations, say
at position i. These excitations correspond to either couplings
or sites, having the value of the associated gaps 2Ji and 2hi, re-
spectively. These gaps are sorted in descending order and the
largest one, denoted by �, which sets the energy scale in the
problem, is eliminated. Then, between remaining degrees of
freedom, new terms in the Hamiltonian are generated through
perturbation calculation. This procedure is successively iter-
ated, during which � monotonously decreases. At the fixed
point, with �∗ = 0, one makes an analysis of the distribution
of the different parameters and calculates the scaling proper-
ties. In the following we describe the elementary decimation
steps.

a. Strong-coupling decimation

In this case, the largest local term in the Hamiltonian is
a coupling, say � = Ji, connecting sites i and i + 1 and the
two-site Hamiltonian is given by

Ĥcp = −Jiσ
z
i σ z

i+1 − hiσ
x
i − hi+1σ

x
i+1. (A1)
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The spectrum of Ĥcp contains four levels, the lower two being
separated from higher two by a gap of ∼2Ji. We omit the
higher two levels, corresponding to merging the two strongly
coupled sites into a spin cluster in the presence of a (renor-
malized) transverse field h̃, the value of which is given by
second-order perturbation calculation

h̃ = hihi+1

Ji
. (A2)

b. Strong-transverse-field decimation

In this case, the largest local term is a transverse field, say
hi, and due to its large value this site does not contribute to the
longitudinal magnetization and therefore it is eliminated. The
renormalized coupling between the remaining sites is given
by

J̃ = Ji−1Ji

hi
, (A3)

which is calculated by second order perturbation method.
To calculate the smallest gap of a given sample ε, we

perform (L − 1) decimation steps up to the last spin cluster
having an effective transverse field h̃ = ε/2.

2. Free-fermion technique

In this method Ĥ is expressed in terms of spin-
less free fermions [26–28]. In the first step, the spin
operators σ

x,y,z
i are mapped to fermion creation (anni-

hilation) operators c†
i (ci) by using the Jordan-Wigner

transformation [26] c†
i = a+

i exp[π ı
∑i−1

j=1 a+
j a−

j ] and ci =
exp[π ı

∑i−1
j=1 a+

j a−
j ]a−

i , where a±
j = (σ x

j ± ıσ
y
j )/2, and the

Ising Hamiltonian in Eq. (1) is written in a quadratic form

Ĥ = −
L∑

i=1

hi
(
2c†

i ci − 1
) −

L−1∑
i=1

Ji(c
†
i − ci )(c

†
i+1 + ci+1).

(A4)

In the second step, the Hamiltonian in Eq. (A4) is diagonal-
ized through a canonical transformation [27], in terms of the
new fermion creation (annihilation) operators η

†
k (ηk),

Ĥ =
L∑

k=1

εk

(
η

†
kηk − 1

2

)
. (A5)

The energies of free fermionic modes εk are given by the
eigenvalues of a 2L × 2L tridiagonal matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 h1

h1 0 J1

0 J1 0 h2

h2 0 . . .
. . .

. . . JL−1

JL−1 0 hL

hL 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A6)

and we consider only the εk � 0 part of the spectrum [44].
The smallest gap of Ĥ in Eq. (1) is given by ε = min|εk|.
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