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Two-photon resonance fluorescence of two interacting nonidentical quantum emitters
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We study a system of two interacting, nonidentical quantum emitters driven by a coherent field. We focus on
the particular condition of two-photon resonance and obtain analytical expressions for the stationary density
matrix of the system and observables of the fluorescent emission. Importantly, our expressions are valid
for the general situation of nonidentical emitters with different transition energies. Our results allow us to
determine the regime of parameters in which coherent two-photon excitation, enabled by the coherent coupling
between emitters, is dominant over competing, first-order processes. Using the formalism of quantum parameter
estimation, we show that the features imprinted by the two-photon dynamics into the spectrum of resonance
fluorescence are particularly sensitive to changes in the distance between emitters, making two-photon excitation
the optimal driving regime for the estimation of interemitter distance. This can be exploited for applications such
as super-resolution imaging of pointlike sources.
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I. INTRODUCTION

The cooperative phenomena emerging from the interaction
between multiple quantum emitters and a common electro-
magnetic mode are one of the central topics in quantum optics
[1–4]. The minimal implementation of this paradigm—two
quantum emitters—already features the most relevant of these
collective effects, e.g., super-radiant emission and dark states
[2,5]. Minimal models of two and three quantum emitters
have been studied extensively in the literature [5–20], and
examples of emergent phenomenology include super-radiance
[21,22], generation of qubit entanglement [12,23,24] and spin
and light squeezing [25–27], nonclassical photon correlations
[11,17–19], emission of entangled photons [20], and potential
for molecule localization with nanometer resolution [28,29].
The insights provided by these minimal theoretical models
apply to a large variety of physical systems, including coupled
quantum dots [30–33], trapped ions [21,34], Rydberg atoms
[35–37], molecular systems [28,29], and superconducting
qubits [22,38,39]. Interest in the quantum optical properties of
systems of few interacting emitters has been further propelled
by the development of photonic nanostructures that mediate
and enhance emitter-emitter interactions [22,23,27,31,32,39–
41].

Here, we focus on a particularly relevant effect that arises
when interacting emitters are driven by a classical field:
the coherent, nonlinear excitation of the transition from the
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ground state to a doubly excited state via a two-photon reso-
nance, enabled by the emitter-emitter interaction [10,28]. This
mechanism of two-photon excitation, which lies at the heart
of important technological applications such as two-photon
microscopy [42], has attracted great interest for the generation
of squeezing [26], steady-state atomic entanglement [27,43],
and emission of entangled photons [20]. The emergence of an
extra peak in the excitation spectrum due to this two-photon
resonance has been demonstrated experimentally [28] and
used as a method to quantify dipole coupling and, indirectly,
estimate the distance between quantum emitters with nanome-
ter resolution.

Despite the high fundamental and technological relevance
of this mechanism, and the apparent simplicity of the model
that describes it, most theoretical studies have focused on
the particular case of identical emitters, where one can find
analytical expressions for the stationary density matrix of
the quantum emitters by direct diagonalization [7,8,43]. A
straightforward analytical solution cannot be obtained in the
more complicated case of two nonidentical emitters (e.g., with
different transition frequencies), where only approximated
solutions for steady-state populations, limited to the case of
very weak coupling and driving strength, have been reported
[10,27]. The case of nonidentical emitters is the common
situation in solid-state emitters [27,28,33], and it is a relevant
situation for related models describing, e.g., light harvesting
[44] and energy transfer [29,45]. Given its importance, a full
theoretical description of interacting nonidentical quantum
emitters under coherent driving is desirable.

In this paper, we obtain general analytical expressions for
the stationary density matrix of two interacting nonidentical
quantum emitters under coherent driving at the two-photon
resonance. Our expressions are valid for an ample regime of
parameters, under the only condition that the energy splitting
between one-excitation eigenstates must be the largest energy
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FIG. 1. (a) Sketch of the studied system: two interacting nonidentical dipoles under coherent driving. (b) Bare basis of the system
of quantum emitters. The two states of the one-photon subspace are detuned by an energy 2δ and coupled with a coupling strength J .
(c) Eigenstates of the Hamiltonian of coupled emitters. (d) Dependence of the mixing angle β = arctan(δ/J ) on the normalized separation
between emitters, kr12. Dashed lines are obtained via the approximated equation (6), which assumes kr12 � 1. From bottom to top the curves
correspond to increasing detunings, δ/γ = 0.1, 1, 10, 100, 105.

scale in the system. This allows us to provide closed-form
expressions in regimes that could not be described by previous
analytical results [10], such as large driving strengths that
saturate the two-photon transition and large coupling between
quantum emitters. Furthermore, motivated by previous ex-
perimental and theoretical efforts based on the use of Rabi
oscillation and resonance fluorescence measurements to break
the diffraction limit [28,46–50], we establish the potential of
resonance fluorescence measurements to estimate the distance
between dipoles below Abbe’s limit of diffraction using the
framework of quantum parameter estimation [51–58]. We find
that the maximum precision is obtained by driving the sys-
tem at the two-photon transition in the onset of saturation.
Our results can push forward experimental efforts towards
subwavelength imaging of quantum emitters using resonance
fluorescence.

This paper is organized as follows. In Sec. II, we describe
the model of the system and then introduce two effective
models that account for second-order and first-order processes
independently. In Sec. III, we apply the results of the previous
section to analyze the steady-state observables of the light
radiated by the quantum emitters. In Sec. IV, we describe
the spectrum of two-photon resonance fluorescence. Finally,
in Sec. V, we use quantum parameter estimation theory to
analyze the potential of spectrum measurements for the es-
timation of the interemitter distance.

II. MODEL

A. General model

Our system is composed of two quantum emitters, each of
them described as a two-level system (TLS) placed at position
ri (i ∈ 1, 2), with natural frequency ωi and dipole moment
μi. The system and energy levels are sketched in Figs. 1(a)–
1(c): Each TLS spans a basis {|gi〉, |ei〉}, where we define the
lowering operator σ̂i = |gi〉〈ei|. The total basis of the compos-
ite system is {|gg〉, |ge〉, |eg〉, |ee〉}, where |gg〉 ≡ |g1〉 ⊗ |g2〉,
and similarly for the other states. We consider a coherent
coupling between both TLSs with a coupling rate J . In this
paper, J will be determined by the dipole-dipole interaction
between the emitters, although the same model and analysis
can be applied in situations in which the interaction between
quantum emitters is modified by the mediation of a photonic
structure [22,23,27,31,32,39–41]. We also include a coherent

laser field of frequency ωL driving both emitters with a Rabi
frequency �. In the rotating frame of the laser, the resulting
time-independent Hamiltonian is Ĥ = Ĥ0 + Ĥd, where Ĥ0 is
the bare Hamiltonian of the interacting quantum emitters,

Ĥ0 = (� − δ)σ̂+
1 σ̂1 + (� + δ)σ̂+

2 σ̂2 + J (σ̂+
1 σ̂2 + H.c.),

(1)
and Ĥd is the Hamiltonian of the coherent driving,

Ĥd = �(σ̂1 + σ̂2 + H.c.), (2)

having defined � ≡ (ω1 + ω2)/2 − ωL and δ ≡ (ω2 − ω1)/2
and set h̄ = 1. Both quantum emitters interact with the elec-
tromagnetic field continuum that surrounds them. This field
is responsible for mediating the coherent interaction between
emitters in Eq. (1) and also provides a decay mechanism that
de-excites the quantum emitters by spontaneous emission to
free space. In the reduced Hilbert space of the emitters, this
dissipative dynamics is modeled by a master equation for the
density matrix [2,59,60],

d ρ̂

dt
= −i[Ĥ, ρ̂] +

2∑
i, j=1

γi j

2
L[σ̂i, σ̂ j]{ρ̂}, (3)

where L[Ôi, Ô j]{ρ̂} ≡ 2Ôiρ̂Ô+
j − {Ô j

+
Ôi, ρ̂}, γii is the local

decay rate of spontaneous emission of the ith emitter, and
γ12 = γ21 is the dissipative coupling rate between emitters
that emerges as a consequence of collective decay. We assume
optical transitions and therefore neglect the incoherent excita-
tion by thermal photons. The local decay rates depend on each
emitter’s natural frequency and dipole moment,

γii ≡ γi = ω3
i |μi|2

3πε0 h̄c3
. (4)

For the sake of simplicity and without loss of generality,
we will assume that both dipole moments are equal, μ1 = μ2.
This implies γii ≈ γ (assuming ω1, ω2 	 δ) and justifies our
choice of the same Rabi frequency � for the driving of both
emitters, since, besides having the same dipole moment, their
separation will be considered to be smaller than the resonant
wavelength, kr12, and therefore both emitters are driven with
the same amplitude, �(r1) ≈ �(r2) ≈ �. Nevertheless, all
the results that we obtain can be easily generalized to the case
of γ1 
= γ2, �(r1) 
= �(r2). We emphasize that, even if we
assume equal dipole moments, we still consider the general
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case of nonidentical emitters that may have different natural
frequencies, i.e., δ 
= 0. This can occur, for instance, when
quantum emitters with similar dipolar moment (e.g., identical
atoms or molecules) have their properties modified by differ-
ent local environments or inhomogeneous electric fields, such
as the one created by local scanning electrodes used to obtain
Stark-shift maps [28].

The fact that our results apply to this general case is one of
the main achievements of this paper.

The coherent and dissipative coupling rates depend on the
dipole moments and also on the relative separation between
emitters, r12 = r1 − r2 [2],

J = 3

4
√

γ1γ2

{
−[1 − (μ · r12)2]

cos (kr12)

kr12

+ [1 − 3(μ · r12)2]

[
sin (kr12)

(kr12)2
+ cos (kr12)

(kr12)3

]}
, (5a)

γ12 = 3

2
√

γ1γ2

{
[1 − (μ · r12)2]

sin (kr12)

kr12

+ [1 − 3(μ · r12)2]

[
cos (kr12)

(kr12)2
− sin (kr12)

(kr12)3

]}
, (5b)

where r12 = |r12|, k = ω0/c, and ω0 = (ω1 + ω2)/2, having
assumed ω0 	 (ω2 − ω1). We are interested in the case of two
very close TLSs, i.e., kr12 � 1. In this regime, the collective
parameters reach their maximal values

J ≈ 3
√

γ1γ2

4(kr12)3
[1 − 3(μ · r12)2], (6)

γ12 ≈√
γ1γ2. (7)

Henceforth, we adopt Eqs. (6) and (7) in all our calculations
and also assume that the dipole moments are perpendicular to
r12, so μ · r12 = 0.

The Hamiltonian of the undriven emitters (1) can be easily
diagonalized, yielding a new basis {|gg〉, |A〉, |S〉, |ee〉}, where
the eigenstates in single-photon subspace are given by

|S〉 = 1√
2

(
√

1 + sin β|ge〉 +
√

1 − sin β|eg〉), (8a)

|A〉 = 1√
2

(−
√

1 − sin β|ge〉 +
√

1 + sin β|eg〉), (8b)

with β being a mixing angle defined as

β ≡ arctan(δ/J ). (9)

This diagonal basis is depicted in Fig. 1(c). In the case of
identical emitters usually discussed in the literature, δ = 0
and therefore β = 0, so that |S〉 and |A〉 are, respectively,
purely symmetrical and antisymmetrical superpositions of the
states |ge〉 and |eg〉 (hence the notation used). In this paper,
we will consider the more general case where β ∈ [0, π/2],
which includes the possibility of nonidentical emitters, δ 
=
0. The corresponding energies of these two eigenstates are
ES/A = � ± R, where we have defined the Rabi frequency of
the dipole-dipole coupling as

R =
√

J2 + δ2. (10)

In this paper, we will be particularly interested in the case in
which R is the largest energy scale in the system, so that Ĥd

can be treated perturbatively with respect to R. This approach
is different to the one taken, for instance, in Ref. [10], where
J was taken as a perturbative parameter. Our approach will al-
low us to derive analytical expressions valid in more regimes,
such as the one of high dipole-dipole coupling J 	 δ that can
be relevant for closely spaced emitters. This will also imply
that we focus on a regime where the two resonances � = ±R
are well resolved, R 	 γ , and are therefore visible as two dis-
tinct peaks in measurements such as resonance fluorescence
excitation spectra [28].

Since we are interested in using R as our energy reference
[44], we will reformulate the Hamiltonian parameters in terms
of R and β as

J = R cos β, δ = R sin β. (11)

When J is given by the dipole-dipole coupling, as we con-
sider in this paper, β will depend on both δ and the distance
between emitters, kr12. This makes β range from 0, at short
distances, to π/2, at long distances, as we show in Fig. 1(d).
In this figure, one can see that, as the detuning δ is decreased,
the distance required to reach β = π/2 increases, until one
reaches the limiting case δ = 0, where β = 0 for any value of
the distance kr12. The distance kr12 has thus a strong impact
on the structure of the eigenstates (8a) and (8b), which, as
we shall see, will affect the quantum optical properties of
the emitted light and the response to coherent, two-photon
driving. Figure 1(d) also shows that Eq. (6) provides a good
approximation for J even for values kr12 ∼ 1.

B. Effective models

The full master equation in Eq. (3) does not yield analytical
expressions in the general case of δ 
= 0, which explains why
the majority of the literature has focused on the case δ = 0. In
order to obtain analytical expressions for the system density
matrix, we will make the assumption that the dynamics is
governed by two different types of processes that take place
independently and that can be described by two different
effective models. The first process is the resonant, two-photon
excitation that drives the |gg〉 → |ee〉 transition via a second-
order process, and the subsequent incoherent decay towards
|gg〉, passing through the single-photon subspace. This is de-
scribed by an effective three-level cascade model, which we
denote “model 2P” [see Fig. 2(a)].

The second mechanism is the excitation of the one-photon
subspace {|S〉, |A〉} via first-order processes. This is described
by a three-level V-type model, which we denote “model 1P”
[see Fig. 2(b)], that excludes the doubly excited state |ee〉.

Our key assumption will be to consider either that both
types of process take place independently and very scarcely or
that the dynamics is completely dominated by one of the pro-
cesses (e.g., at the two-photon resonance condition � = 0 for
the second-order processes or the one-photon resonance con-
ditions � = ±R for the first-order processes). In both cases,
this means that the probabilities of occupation of excited
states and coherences computed from each of these models
contribute additively to the total density matrix. Adopting the
notation ρi j ≡ 〈i|ρ̂| j〉, we express this as

ρi j = ρ
(1)
i j + ρ

(2)
i j , (12)
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FIG. 2. (a) and (b) Diagrams of the two effective models used
in this paper. Red arrows denote coherent coupling between energy
levels enabled by the external drive. Black arrows denote channels
of irreversible decay. γA, γS , and γC describe channels of incoherent
decay and incoherent coupling in the diagonal basis.

where ρ
(2)
i j and ρ

(1)
i j denote matrix elements computed from

second-order processes (model 2P) and first-order processes
(model 1P), respectively. In the following, we detail how
these matrix elements are computed from each of these two
approximated models.

1. Model 2P: Second-order processes

Model 2P describes the nonlinear process of coherent, two-
photon excitation by the driving laser. Therefore it will predict
sizable probabilities for the excited states only around the
two-photon resonance, � ∼ 0. For values of � close to zero,
|gg〉 and |ee〉 form a quasidegenerate subspace in the rotating
frame of the laser, split from the states, |S〉 and |A〉, by an
energy difference ±R, where we assume R to be the largest
energy scale in our system, so R 	 �. The states |gg〉 and
|ee〉 are not coupled to first order, 〈ee|Ĥ |gg〉 = 0, but they are
coupled through second-order processes mediated by |S〉 and
|A〉, which couple to both |gg〉 and |ee〉 through the driving
laser. We will assume � � R so that we can describe the ef-
fective two-photon coupling rate �2p between |gg〉 and |ee〉 by
second-order perturbation theory, with Ĥd as the perturbation:

�2p = −
∑
i=S,A

〈ee|Ĥd|i〉〈i|Ĥd|gg〉
Ei

= −2�2

R
cos β. (13)

�2p can be understood as a two-photon Rabi frequency, fea-
turing a quadratic scaling with � and a strong dependence on
β, or equivalently, the ratio J/δ. One obvious consequence of
Eq. (13) is that, for J = 0, there is no two-photon coupling
between |gg〉 and |ee〉 due to destructive interference between
the two possible pathways that mediate the interaction. This
reflects the obvious fact that, for J = 0, the emitters are
uncoupled and completely independent of each other. This
explains why the emergence of optical features related to
the two-photon process stands as clear evidence of coherent
coupling between quantum emitters [10,28]. The states |ee〉
and |gg〉 also experience an effective Lamb shift λ which,

notably, is the same for both of them and equal to

λ = λ j = −
∑
i=S,A

〈 j|Ĥd|i〉〈i|Ĥd| j〉
Ei

= �2p, (14)

with j = gg, ee.
Beyond the coherent two-photon driving, the remaining

ingredient of the dynamics is the incoherent decay from |ee〉
to |gg〉, passing through one of the single-photon states, |S〉
or |A〉. Since this is an incoherent process that populates in
an equal manner both single-photon states, we simplify our
description by considering a single intermediate single-photon
state |1〉, whose steady-state population gives us the sum of
the populations of |S〉 and |A〉; see Fig. 2(a). The energy of
this state is irrelevant in this picture since it is incoherently
populated, and thus we set it to zero.

The state of the reduced subsystem {|gg〉, |ee〉, |1〉} is
described by a 3 × 3 density matrix χ̂2p. Its dynamics is
governed by the following master equation:

dχ̂2p

dt
= −i[Ĥ2p, χ̂

2p] + 2γ

2
L|1〉〈ee|χ̂2p + γ

2
L|gg〉〈1|χ̂2p,

(15)
where Ĥ2p is the effective two-photon Hamiltonian

Ĥ2p = (2� + �2p)|ee〉〈ee| + �2p|gg〉〈gg|
+ �2p(|ee〉〈gg| + |gg〉〈ee|). (16)

From this, we can obtain the second-order contributions to
the excited-state components of the total ρ̂ [see Eq. (12)],
establishing the following relations:

ρ (2)
ee,ee ≡ χ2p

ee,ee, (17a)

ρ
(2)
S,S = ρ

(2)
A,A ≡ χ

2p
1,1/2, (17b)

ρ
(2)
A,S = 0. (17c)

Solving for the steady state of Eq. (15) gives direct analytical
expressions for the elements of χ̂2p, and therefore for ρ̂ (2).
These read

ρ (2)
ee,ee = 4�4 cos2 β

16�4 cos2 β + R2γ 2 + 4R2�2
, (18a)

ρ
(2)
S,S = ρ

(2)
A,A = ρ (2)

ee,ee. (18b)

2. Model 1P: First-order processes

Our second model describes dynamics in which the single-
photon states |S〉 and |A〉 are directly excited by the driving
field through a first-order process. In essence, model 1P con-
sists in removing the state |ee〉 from our description, thus
neglecting the two-photon excitation mechanisms that are de-
scribed by model 2P, and thus allowing only for first-order
processes to occur. The result is a three-level V-type system
comprising the basis states {|gg〉, |A〉, |S〉}. The Hamiltonian
in this reduced model reads

Ĥ1p = (�+R)|S〉〈S|+(�−R)|A〉〈A|
+ �A(|A〉〈gg|+H.c.) + �S (|S〉〈gg| + H.c.). (19)

The driving rates �S and �A are simply given by 〈S|Ĥd|gg〉
and 〈A|Ĥd|gg〉, respectively, and are obtained directly from
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Eqs. (2), (8a), and (8b),

�S/A = �
√

1 ± cos β. (20)

In the usually considered situation of identical emitters,
β = 0, one finds that �S = √

2� and �A = 0, so that the
antisymmetric state is dark and decoupled from the driving
field. Considering now spontaneous emission in the basis of
|S〉 and |A〉, we find the following master equation for the
3 × 3 density matrix χ̂1p of model 1P:

dχ̂1p

dt
= −i[Ĥ1p, χ̂

1p] +
∑
i=S,A

γi

2
L|g〉〈i|χ̂1p

+ γC

2
(2|g〉〈A|χ̂1p|S〉〈g| − {|S〉〈A|, χ̂1p} + H.c.),

(21)

where we have defined the following decay rates:

γS/A = γ ± γ12 cos β, (22)

γC = γ12 sin β. (23)

The rates γS/A describe the standard decay of |S/A〉 towards
|gg〉, while γC is the rate of incoherent coupling between |S〉

and |A〉 that originates from their collective decay. Describing
the one-photon dynamics in this basis allows us to easily dis-
tinguish between enhanced and suppressed channels of decay.
For instance, focusing on γA, one can see that γA = 0 for
two close, identical emitters (β = 0, γ12 = γ ), meaning that
the antisymmetric state |A〉 gets completely decoupled from
the dynamics and turns into a dark state whose population
gets trapped [61–64]. Similarly, in that situation one finds
γS = 2γ , which clearly shows the super-radiant nature of the
symmetric state |S〉.

The master equation (21) also yields analytical solutions
for the stationary state. Once the master equation (21) is
solved, we map the elements of the reduced density matrix χ̂1p

to the first-order contributions to the total ρ̂, which we denote
ρ̂ (1). For elements of the one-photon subspace {|S〉, |A〉}, this
map is simply given by

ρ
(1)
i, j = χ

1p
i, j , i, j ∈ {S, A}. (24)

The resulting first-order contributions to the total steady-state
density matrix are thus given by

ρ
(1)
S,S/A,A ≈ 4�2(1 ± cos β )

γ 2
S/A + 4(� ± R)2 + 8�2(1 ± cos β )

(25)

and

ρ
(1)
S,A = 2�2 sin β(�2 − R2 − 2�2)

2[γ 2�2 + (�2 + 2�2)2] + γ 2R2 cos(2β ) + R2(γ 2 − 4�2 + 8�2) + 2R4 − 4�R cos β(γ 2 + 4�2)
. (26)

The expression provided in Eq. (25) is an approximation that
we obtained by eliminating |A〉 from model 1P when calcu-
lating ρ

(1)
S,S , and vice versa (effectively working with two-level

systems {|g〉, |S/A〉} instead of the three-level system of model
1P). This approximation is not necessary to obtain an analyt-
ical expression from the master equation for the three-level
system in Eq. (21); however, the full analytical expression
of ρ

(1)
S,A is long and cumbersome to write, and it is very well

matched by the more compact and tractable expressions in
Eq. (25).

In principle, model 1P ignores the excitation of the two-
photon subspace |ee〉 via successive, first-order excitation
processes. This is justified since, focusing around the region
we are most interested in, the two-photon resonance � ≈ 0,
the contribution of this mechanism to ρee is rather small com-
pared with that of second-order processes. However, when
one approaches the limit β ≈ π/2, the two-photon population
originated by second-order processes, ρ (2)

ee,ee, tends to zero,
as can be seen from Eq. (18a), and the small contribution
from first-order processes may dominate and become rele-
vant. In that particular regime, we can infer the value of
the first-order contribution ρ (1)

ee,ee even if the state |ee〉 is not
included in model 1P. This can be done by noting that, for
β ∼ π/2, the two quantum emitters are essentially decoupled,
and the population ρee,ee stems from the simultaneous but
independent excitation of both emitters. This yields factoriz-
able correlations of the type 〈σ̂+

1 σ̂+
2 σ̂1σ̂2〉 = 〈σ̂+

1 σ̂1〉〈σ̂+
2 σ̂2〉.

Since ρee,ee = 〈σ̂+
1 σ̂+

2 σ̂1σ̂2〉, this factorization allows us to
use the expressions of the populations obtained from model

1P, 〈σ̂+
i σ̂i〉(1), to estimate first-order contributions to the oc-

cupation ρ (1)
ee,ee = 〈σ̂+

2 σ̂2〉(1)〈σ̂+
1 σ̂1〉(1), even if |ee〉 was not

explicitly included in the model. For β ∼ π/2, we have that
〈σ̂+

2 σ̂2〉〈σ̂+
1 σ̂1〉 ≈ ρS,SρA,A. Therefore we will define

ρ (1)
ee,ee ≡ ρ (1)

ee,ee(� ∼ 0, β ∼ π/2) = ρ
(1)
S,Sρ

(1)
A,A. (27)

This expression is necessary to regularize the expected two-
photon population ρee,ee in the limit of uncoupled emitters,
β = π/2, and basically unimportant in any other case.

III. STEADY-STATE OBSERVABLES
OF THE EMITTED LIGHT

Following the scheme of Eq. (12), we can now combine
the results provided by the effective models just discussed
and obtain an estimate of the total steady-state density matrix
ρ̂. The approximations used are expected to hold particularly
well around the region of interest � ∼ 0, i.e., the two-photon
resonance. In particular, the most relevant density matrix ele-
ments for subsequent calculations read

ρee,ee ≈ ρ (1)
ee,ee + ρ (2)

ee,ee, (28a)

ρS,S = ρ
(1)
S,S + ρ

(2)
S,S, (28b)

ρA,A = ρ
(1)
A,A + ρ

(2)
A,A, (28c)

ρS,A = ρ
(1)
S,A. (28d)

These density matrix elements allow us to obtain steady-state
observables of the fluorescent light emitted by the system,
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FIG. 3. Steady-state observables of the emitted light. In all panels, dashed lines represent analytical results, and solid lines are exact,
numerical results. (a) and (b) Intensity vs laser detuning (a) and both laser detuning and mixing angle β (b). We observe a very good agreement
between analytical and numerical results. (c) and (d) Second-order correlation function at zero delay vs laser detuning (c) and both laser
detuning and mixing angle β (d). Best agreement between analytical and numerical results is found around � ∼ 0. (e) and (f) Zoom of (a) and
(c), respectively, around � ∼ 0. This zoom highlights the good agreement between numerical and analytical results. Parameters: γ /R = 10−3,
γ12 = 0.999γ . In (a), (c), (e), and (f), β = π/4. In panels (b) and (d), �/R = 0.1.

which is done by establishing a connection between the ra-
diated electric field operator and the annihilation operators of
the quantum emitters. For instance, if we consider the emitters
to be located at the origin and to have the same dipole moment
μ (as we do throughout this paper), the positive frequency
part of the far-zone electric field operator radiated by the two
quantum emitters is given by Ê(+)(r, t ) = Ê (+)(r, t )ux, where
ux is a unit vector perpendicular to r and contained within the
plane spanned by μ and r [65], and

Ê (+)(r, t ) = ω2
0

4πε0c2|r|2 |μ × r|(σ̂1 + σ̂2)(t ). (29)

Other detection schemes can give a different spatial distribu-
tion of the field; for example, imaging by focusing the field
with a lens yields a distribution given by its point spread
function. Nevertheless, the relationship

Ê (+)(r, t ) ∝ (σ̂1 + σ̂2)(t ) (30)

will hold provided the dipole moments are equal and their
separation is small compared with the resonant wavelength of
the field kr12 � 1 [66]. This regime is of particular interest for
our work, since a good understanding of the system dynam-
ics and quantum optical properties of the emission becomes
essential to infer interemitter distances below the diffraction
limit [28], which has important applications for microscopy
and super-resolution imaging [67]. Therefore we will assume
the proportionality relation (30) throughout this paper.

The two main observables of the fluorescent emission that
we will analyze here are mean intensity and the second-order
correlation function.

A. Mean intensity

From relation (30), we see that the mean intensity of the
signal is given by 〈Ê (−)Ê (+)〉 ∝ 〈Î〉, where we have defined
the intensity operator

Î ≡ (σ̂+
1 + σ̂+

2 )(σ̂1 + σ̂2). (31)

The steady-state mean value of the intensity operator I ≡ 〈Î〉
can be expressed in terms of the density matrix elements as

I = 2ρee,ee + ρS,S + ρA,A + cos β(ρS,S − ρA,A)

+ 2 sin βRe[ρS,A]. (32)

Equation (32), together with Eqs. (18a), (18b), (25)–(27), and
(28a)–(28d), provides a direct analytical expression for I .

Our analytical results are shown in comparison with nu-
merical results in Fig. 3. Figure 3(a) depicts the intensity I
versus the laser detuning �; Fig. 3(b) shows I versus both �

and β, and Fig. 3(e) represents a zoom of Fig. 3(a) around the
two-photon excitation regime, � ∼ 0. There are three charac-
teristic high-intensity peaks corresponding to the values � =
{−R, 0, R}. The two peaks at ±R correspond to the resonant
excitation of the states |A/S〉 and have therefore a first-order
origin described by model 1P. Their relative height depends
strongly on β (i.e., on the ratio between the dipole-dipole
coupling and the relative detuning between the emitters), as
clearly seen in Fig. 3(b). Model 1P provides a good match
with the exact, numerical calculation provided that the oc-
cupation probabilities are small enough for the simultaneous
excitation probability to be negligible. When β = 0, i.e., the
usually considered situation of resonant (identical) emitters,
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only the symmetric state |S〉 gets significantly populated at
� = −R, while the resonance with the |A〉 state at � = R
is suppressed. The reverse situation is found for β = π/2,
where both emitters are uncoupled and thus only classical
correlations between them can exist. In this situation, the
curve is symmetric around � = 0, and the two peaks at � =
±R, which in this case correspond to the resonant driving of
each of the independent quantum emitters (QEs), have similar
values.

The central peak at � = 0 is arguably the most relevant
feature given its implications for microscopy and imaging
[28]. This peak emerges from the resonant two-photon exci-
tation enabled by the coherent coupling between emitters and
thus is fully described by the contributions of second-order
processes from model 2P, Eqs. (18a) and (18b). Our analytical
solution allows us to establish that both the height and width
of this peak scale as �4 cos2 β. As expected, the peak vanishes
for uncoupled emitters (β = π/2) as a consequence of the
destructive interference of the two-excitation pathways, which
yield �2p = 0. Our analytical expression of ρee,ee (18a) gives
us the possibility to use the intensity of the two-photon peak
at � = 0 to infer the value of β. On the other hand, R can
also be easily estimated from the position of the one-photon
peaks. The knowledge of these two magnitudes can then be
combined to obtain information about the internal structure
of the quantum emitters, i.e., their natural energy detuning 2δ

and coherent coupling rate J . In turn, this allows one to infer
quantities such as the interemitter distance kr12, highly rel-
evant for technological applications such as super-resolution
imaging [28].

Given its importance, it is desirable to determine the set of
conditions under which the two-photon peak will be visible.
Following our approach of separating contributions from first-
and second-order processes, the total intensity can be writ-
ten as I = I (1) + I (2). The two-photon peak arises from the
resonant contribution I (2), while the off-resonant, first-order
contribution I (1) gives a featureless background at � = 0
which, under certain conditions, can be brighter than the two-
photon peak and hide it. In particular, since the population
of second-order origin ρ (2)

ee,ee responsible for the two-photon
peak has quartic scaling with �, while first-order processes
yield populations that scale quadratically with �, there must
be a value �v below which first-order processes dominate;
see Fig. 4(a). To determine �v, we can define a two-photon
visibility V2p as the ratio V2p = I (2)/I (1), such that the two-
photon peak will be visible when V2p > 1. I (2) and I (1) can
be computed from the first- and second-order contributions
to ρee,ee, ρS,S , ρA,A, and ρS,A, using Eqs. (18a) and (18b) and
(25)–(27), respectively. Introducing these into the equation
V2p = 1 and solving it, we obtain a value for the minimum
necessary driving amplitude �v that guarantees two-photon
visibility. The equation is greatly simplified in the regime that
we consider in this paper, �, γ � R, yielding

�v ≈ R

√
2

tan2 β + 8R2/γ 2
≈ γ

2
, (33)

where the last approximation applies provided γ � R tan β.
These results are summarized and confirmed by exact numer-
ical calculations in Fig. 4. In Fig. 4(a), we show that the sum

FIG. 4. Regimes of visibility of two-photon physics. (a) Inten-
sity of emission I computed numerically vs driving amplitude at
the two-photon resonance � = 0, together with first- and second-
order contributions, I (1) and I (2), obtained analytically. Their sum
recovers the exact, numerical value of I . �v marks the two-photon
visibility crossover, where second-order contributions are larger than
first-order ones, I (2) > I (1). γ /R = 10−2. (b) Two photon visibility
V2p = I (2)/I (1) vs γ and �. The dashed red line marks the analytical
value of �v given by Eq. (33), matching perfectly the contour line
V2p = 1. Parameters: β = π/4, γ12 = 0.999γ .

of our analytical estimations of I (1) and I (2) recovers the exact
value of I computed numerically, which, as discussed above,
features a transition from a ∝ �2 to a ∝ �4 scaling at �v,
which marks the onset of visibility of the two-photon peak,
i.e., the emergence of features characteristic of the two-photon
dynamics. The two-photon visibility V2p is shown in the full
(γ ,�) space in Fig. 4(b), where the approximated expression
for �v provided in Eq. (33) is shown to match perfectly the
condition V2p = 1.

To end our discussion on the mean intensity of the radiated
field, we observe that a destructive interference also appears
for values β 
= π/2. This can be seen in Fig. 3(b), where a
destructive interference dip manifests when the laser detuning
is � = R cos β. However, unlike the particular case β = π/2,
this is not a destructive quantum interference between ex-
citation pathways in the internal system dynamics, but an
optical one, taking place in the radiated electric field and well
described by the interference terms appearing in Eq. (32).
Indeed, using our model 1P, we find that the dip is given by the
point where all the one-photon subspace terms proportional to
ρS,S , ρA,A, and ρS,A in Eq. (32) add up to zero. As we discuss
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below, the small amount of remaining light retains a very
strong two-photon character.

B. Second-order correlation function

The zero-delay second-order correlation function is de-
fined as g(2)(0) = 〈Ê (−)Ê (−)Ê (+)Ê (+)〉/〈Ê (−)Ê (+)〉2, and thus
it can be written as

g(2)(0) = 〈(σ̂+
1 + σ̂+

2 )2(σ̂1 + σ̂2)2〉
〈(σ̂+

1 + σ̂+
2 )(σ̂1 + σ̂2)〉2

= 4ρee,ee

I2
. (34)

This value quantifies the probability of detecting two photons
simultaneously, normalized by the probability of doing so
in a classical coherent field of similar intensity. As seen in
Eq. (34), in our case this is directly related to the probability
of occupying the doubly excited state |ee〉. The numerical
and analytical results are summarized in Figs. 3(c) and 3(d).
Our approximated analytical methods are able to describe
accurately the population of the two-photon subspace—and
therefore g(2)(0)—around the two-photon resonance � ∼ 0,
provided � � R. This can be seen more clearly in the zoom
around the two-photon resonance depicted in Fig. 3(f). Away
from the two-photon resonance, the population of the doubly
excited state becomes much smaller, and it is established by
a more complicated mixture of one-photon and two-photon
processes that our approximated models fail to capture. These
small occupations of |ee〉, nevertheless, contribute very little
to the actual intensity of radiation emitted, which away from
� ∼ 0 is dominated by the one-photon subspace and thus
is well described by our models; cf. Fig. 3(b). Interestingly,
the maximum values of g(2)(0) are found at the dip of de-
structive interference discussed before, where the first-order
contributions to the total emission interfere destructively and
thus the small amount of remaining emission stems mainly
from second-order processes, yielding a strong probability of
detecting two photons.

At the two-photon resonance � = 0, the value of g(2)(0) is
sharply reduced and tends to 1 from above as � increases; cf.
Fig. 3(f). The reason for this is that, as � increases, the light
emitted is less coherent (〈σ̂i〉 → 0), and thus the emission
converges to that of two incoherent quantum emitters [44].
The dip in g(2) precisely at � = 0 is a typical feature of
multiphoton processes at resonance [68], and it is simply a
consequence of the increased intensity of emission.

IV. SPECTRUM OF TWO-PHOTON RESONANCE
FLUORESCENCE

The fluorescence spectrum of the emitted radiation yields
useful information about the energy transitions that can take
place among the dressed states of the hybridized light-matter
system. The most celebrated example of the revealing charac-
ter of this type of measurement is the Mollow triplet spectrum
in the emission from a two-level atom [69]. Its characteristic
line shape with three peaks provides key information about
the structure of dressed energy levels [70], and it serves as a
source of strongly correlated nonclassical light [71–76].

The resonance fluorescence spectrum of two interacting
quantum emitters displays a more complex structure than the
Mollow triplet, which has been reported for the case of identi-

cal emitters [8,18] and for the analogous case of a coherently
driven three-level system at the two-photon resonance [77].
The resulting spectrum has a seven-peaked structure with a
central peak and six sidebands. Here, we recover this same
result for the case of identical emitters [β = 0; see Fig. 5(a)]
but extend it for nonidentical emitters (β > 0), where we
show that the spectrum develops an even more complicated
structure with up to 13 peaks [see Fig. 5(b)], which end
up converging to the three peaks characteristic of the Mol-
low triplet for completely uncoupled emitters, β = π/2 [see
Fig. 5(c)]. In the perturbative regime � � R, we are able to
describe the position of these peaks from the hybridization be-
tween the quantum emitters and photon pairs using the dressed
energy levels described by model 2P. The understanding and
effective Hamiltonian obtained from this effective model al-
low one to describe analytically the location and origin of
the spectral resonances in the perturbative regime � � R and
also to obtain insights about this structure beyond that regime,
when � > R, which we explore numerically.

The spectrum of emission is given by the Fourier transform
of the two-time correlation function of the radiated electric
field 〈Ê (−)(t )Ê (+)(t + τ )〉. For convenience, we will define a
general spectral function

S(ω; Â, B̂) = lim
t→∞

1

π
Re

∫ ∞

0
dτ eiωτ 〈Â(t ) B̂(t + τ )〉. (35)

By using the quantum regression theorem to express the
two-time correlation function [78] and formally integrating
Eq. (35), we can write S(ω; Â, B̂) in a computationally con-
venient form [79],

S(ω; Â, B̂) = 1

π
ReTr

{
−B̂

1

L + iω
[ρ̂(Â − Tr[ρ̂Â])]

}
, (36)

where ρ̂ is the steady-state density matrix and L is the Li-
ouvillian superoperator that represents the master equation
[59], where ρ̂ has a vectorial form, ∂t |ρ̂〉 = L|ρ̂〉. Considering
relation (30) between the radiated field and the raising or
lowering operators of the quantum emitters, and disregarding
global factors, we can express the spectrum of resonance
fluorescence as

S(ω) = S(ω; σ̂+
1 + σ̂+

2 , σ̂1 + σ̂2). (37)

The spectra computed as a function of � for different values
of β are shown in Fig. 5, for a laser detuning at the two-photon
resonance, � = 0.

Perturbative regime. The position of all the peaks in the
spectra can be obtained from the possible transitions among
energy levels in the system Hamiltonian. Within the perturba-
tive regime � � R, at � = 0 the ground and excited states
|gg〉 and |ee〉 are resonantly coupled by the two-photon exci-
tation described by the Hamiltonian in Eq. (16): These two
states then hybridize into symmetric and antisymmetric states
that we denote |S2〉 and |A2〉, defined as

|S2/A2〉 ≡ 1√
2

(|gg〉 ± |ee〉). (38)

The resulting set of eigenstates is given by
{|S〉, |A2〉, |S2〉, |A〉}, ordered by decreasing energy, and
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FIG. 5. Resonance fluorescence spectrum at the two-photon resonance � = 0, for β = 0 (a), β = π/4 (b), and β = π/2 (c). In (a)–(c),
the upper plots depict the spectrum at �/R = 1 (solid blue lines) and the different contributions in its expansion in Eq. (50) (solid purple and
dashed red lines), allowing us to see cases in which peaks are not visible due to destructive interference, but are visible if only the emission
from a single emitter is collected. The lower panels in (a)–(c) show the emergence of sidebands as �/R increases; in the perturbative regime
� � R, these correspond to transitions between two-photon dressed states. Positive-frequency peaks are marked with dashed lines, which
are identified with the corresponding transition between the dressed-atom ladder of eigenstates in (d), (f), and (h). (e), (g), and (i) depict the
structure of the eigenstates at �/R = 1, in the basis {|S〉, |A2〉, |S2〉, |A〉}. Parameters: in the upper plots of (a)–(c), γ /R = 0.1.; in the lower
panels of (a)–(c), γ /R = 10−3, γ12 = 0.999γ .

their correspondent eigenenergies in the rotating frame of the
laser are

E1 = ES = R + 2(cos β + 1)�2/R, (39)

E2 = EA2 = 0, (40)

E3 = ES2 = −4�2 cos β/R, (41)

E4 = EA = −R + 2(cos β − 1)�2/R. (42)

In the same way that the eigenenergies of A2 and S2 take into
account the Lamb shifts induced by the coupling to |A〉 and
|S〉 [see Eq. (14)], EA and ES also include the Lamb shifts of
states |S〉 and |A〉 due to their coupling to |ee〉 and |gg〉, given
by

λ j = −
∑

i=ee,gg

〈 j|Ĥd|i〉〈|iĤd| j〉
Ei − Ej

(43)

with j = S, A. This gives λS/A = 2(cos β ± 1)�2/R.
The energy differences between these eigenvalues give

us the transition frequencies that can be observed as dis-
tinct peaks in the spectrum. Defining the transition energies
ωi→ j ≡ Ei − Ej , the position of the six positive-frequency

sidebands with respect to the laser frequency is defined, in
the perturbative regime, by the following equations:

ω1 = ω1→4 = 2R + 4�2

R
, (44)

ω2 = ω1→3 = R + 2�2(3 cos β + 1)

R
, (45)

ω3 = ω1→2 = R + 2�2(cos β + 1)

R
, (46)

ω4 = ω2→4 = R − 2�2(cos β − 1)

R
, (47)

ω5 = ω3→4 = R − 2�2(3 cos β − 1)

R
, (48)

ω6 = ω2→3 = 4�2 cos β

R
. (49)

The sidebands at negative frequencies come from the reversed
processes outlined above, ωi→ j = −ω j→i. The central peak at
ω0 = 0 is given by transitions between similar states, ωi→i.
These equations provide the position of all 13 possible peaks
that can be observed in the fluorescence spectrum within the
perturbative regime � � R.
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The six positive sidebands in Eqs. (44)–(49), however, are
not visible for all values of β. The case of coupled identical
emitters β = 0 features only three positive sidebands, yielding
a total of seven peaks as has been noted before [8,18]. In
particular, the peaks that are not visible are those that involve
transitions that start or end at the one-photon antisymmetric
state |A〉, which for the perturbative regime correspond to
the peaks ω2, ω5, and ω6 in Eqs. (44)–(49). The reason why
these peaks are not visible is due to the destructive interfer-
ence phenomena that take place from the equal contribution
from both quantum emitters to the radiated electric field; cf.
Eq. (30). This can be seen in Fig. 5(a). Indeed, expanding
the expression of the total spectrum of emission, Eq. (37), we
obtain

S(ω) = S1(ω) + S2(ω) + S12(ω) + S21(ω), (50)

where Si j (ω) ≡ S(ω; σ̂+
i , σ̂ j ) and Si(ω) ≡ Sii(ω). S1(ω) and

S2(ω) describe the spectrum of emission that would be ob-
tained by detecting only the radiation emitted by QE 1 and
2, respectively. On the other hand, S12(ω) and S21(ω) are in-
terference terms arising from the superposition of both fields.
In Fig. 5(a), we show that the missing peaks for β = 0 (all
involving state |A〉) are indeed visible if S1(ω) or S2(ω) are
measured independently (e.g., if their emission is collected
locally), but they interfere destructively if the fields emitted by
both QEs are superimposed, explaining the absence of these
peaks in the total spectrum. For β > 0, this perfect destruc-
tive interference does not occur, and all of the 13 possible
peaks are visible in the spectrum of emission. Finally, the
opposite limit of completely decoupled nonidentical emitters,
β = π/2, yields a three-peaked structure which corresponds
to the Mollow triplet of emission from the two independent
emitters. In this limit, many of the transitions in Eqs. (44)–(49)
become degenerate, so that only three peaks can be seen. The
reason for having fewer peaks here is obviously different from
the destructive interference seen at β = 0, since it responds to
the internal structure of transition energies available within the
dressed energy levels.

Away from β = π/2, the frequencies in Eqs. (44)–(49) de-
scribe transitions between dressed light-matter states in which
the emitters are hybridized with photon pairs. This strong
two-photon character is evidenced by the quadratic scaling of
these frequencies with �, instead of the linear scaling with
� that one finds, e.g., for the position of the sidebands in the
standard Mollow triplet. For this reason, we refer to the side-
bands described by Eqs. (44)–(49) as two-photon sidebands.
In order to be able to observe two-photon sidebands, we need
the energy separation �E = ω2 − ω3 = ω4 − ω5 = 2�2p to
be larger than the decay rate of spontaneous emission γ .
The condition 2�2p > γ yields the following equation for the
two-photon saturation amplitude �2PS that marks the onset of
the resolved two-photon sideband regime:

�2PS = 1

2

√
Rγ

cos β
. (51)

The previous expression tells us that �2PS � R, meaning
that the two-photon sidebands can be developed within the
perturbative regime, provided that the Rabi splitting is large
so that R 	 γ , and that β is not too close to π/2. As β

approaches π/2, larger values of � are necessary to re-
solve the two-photon sidebands. When values �2PS ∼ R are
reached, the perturbative approach used below does not apply,
meaning that sidebands developed purely from two-photon
hybridization are no longer observable since first-order pro-
cesses dominate before the former are visible. Setting the
condition �2PS ≈ R, we find that this would occur approxi-
mately at a mixing angle βmax ≈ arccos(γ /4R). One can see,
however, that for the typical values considered in this text,
i.e., γ = 10−3R, βmax ≈ 0.9998π/2, two-photon sidebands
should be visible for most of the range β ∈ [0, π/2]. As we
will see, the two-photon saturation amplitude �2PS has a great
importance for metrological applications, since the onset of
the resolved two-photon sidebands regime marks the point of
maximum sensitivity for optical estimations of the interemit-
ter distance.

Regime of strong driving. Beyond the perturbative regime,
the states {|A〉, |S2〉, |A2〉, |S〉} are mixed by the driving and no
longer represent the eigenstates of the system. In this situation,
tractable analytical expressions for the eigenstates can only be
obtained for limiting cases, e.g., β = 0 or β = π/2.

Figures 5(e), 5(g) and 5(i) show the eigenstates computed
numerically for � = R; the eigenstates are labeled |Ui〉, with
i = 1 · · · 4, in order of decreasing energy. The composition of
the eigenstates depends on β, and for the particular cases β =
{0, π/4, π/2}, it can be written as follows:

(i) (β = 0,� = 0). In this case, only the one-photon and
two-photon symmetric states |S〉 and |S2〉 hybridize due to
the strong coherent drive. In this case, the eigenstates can be
obtained analytically. To make the resulting expressions more
readable, we write them here in non-normalized form:

|U 1〉 ∝ R + √
R2 + 16�2

4�
|S〉 + |S2〉, (52)

|U 2〉 = |A2〉, (53)

|U 3〉 = |A〉, (54)

|U 4〉 ∝ R − √
R2 + 16�2

4�
|S〉 + |S2〉. (55)

One can see that, in the limit � � R, these equations tend
to the perturbative basis used above, for β = 0. These eigen-
states have the following eigenvalues:

E1 = 1

2
(R +

√
R2 + 16�2), (56)

E2 = 0, (57)

E3 = −R, (58)

E4 = 1

2
(R −

√
R2 + 16�2), (59)

which, in principle, would yield six sidebands. As discussed in
the perturbative analysis, destructive interference between the
emissions from both emitters make all the transitions involv-
ing the antisymmetric state |A〉 invisible. These expressions
for the eigenvalues also show that the eigenstates E3 and E4

cross in energy when � = R/
√

2.
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FIG. 6. Spectrum of resonance fluorescence vs β (upper panels) and � (lower panels). Upper panels: from left to right, � = {−R, 0, R}.
Lower panels: from left to right, β = {0, π/4, π/2}. Parameters: γ /R = 10−2, �/R = 1, γ12 = 0.999γ .

(ii) (β = π/4,� = 0). This limit is not easily tractable
analytically, so we limit our discussion to a description of
the results from numerical calculations. As β increases, |U1〉
remains mostly a superposition of the two symmetric states,
with a very small component of |A〉, and |U3〉 and |U4〉 mix,
meaning that |A〉 is no longer an eigenstate of the system. This
is an important observation, since it explains why the perfect
destructive interference occurring for β = 0 for transitions
involving |A〉 no longer take place, and 13 peaks are visible.
The eigenstates have the following structure:

|U 1〉 ≈ C1,S|S〉 + C1,S2 |S2〉, (60)

|U 2〉 = |A2〉, (61)

|U 3〉 = C3,S|S〉 + C3,A|A〉 + C3,S2 |S2〉, (62)

|U 4〉 = C4,S|S〉 + C4,A|A〉 + C4,S2 |S2〉, (63)

where the Ci, j (i = 1, 3, 4, j = S, A, S2) represent generic am-
plitudes whose numerically computed values can be seen in
Fig. 5(g).

(iii) (β = π/2,� = 0). This is the limit of detuned, uncou-
pled emitters, which recovers the physics of two independent,
detuned Mollow triplets. The eigenstates have the following
analytical form:

|U 1〉 ∝ C+|S〉 + 1

2C+
|A〉 + |S2〉, (64)

|U 2〉 = |A2〉, (65)

|U 3〉 ∝ −
√

2�

R
|S〉 +

√
2�

R
|A〉 + |S2〉, (66)

|U 4〉 ∝ C−|S〉 + 1

2C−
|A〉 + |S2〉, (67)

with

C± ≡ R ± √
R2 + 4�2

2
√

2�
(68)

and eigenvalues

E1 =
√

R2 + 4�2, (69)

E2 = 0, (70)

E3 = 0, (71)

E4 = −
√

R2 + 4�2. (72)

A clear conclusion of this analysis is that the spectrum
resonance fluorescence is strongly sensitive to the ratio J/δ
(expressed here in terms of the mixing angle β), and therefore
it can serve as a valuable source of information about the
parameters that characterize the system of quantum emitters,
such as the interemitter distance. The continuous variation of
the spectral features with β is depicted in Fig. 6 for different
values of �. These plots reproduce the emergence and disap-
pearance of peaks with β described above and furthermore
show that similarly complex structures emerge outside the
two-photon resonance, i.e., for � 
= 0, giving distinct patterns
on the excitation-emission spectra that also depend strongly
on β.

V. QUANTUM PARAMETER ESTIMATION OF
INTEREMITTER DISTANCES

The results just discussed suggest that the measurement of
excitation-emission spectra could provide valuable informa-
tion for the estimation of internal parameters such as the value
of the coherent coupling between emitters or, equivalently,
their distance in real space. In this section, we address this
question by establishing the metrological potential of these
measurements within the formalism of quantum parameter
estimation [51–58]. To do this, we consider the precision
achievable in the estimation of an unknown parameter, X ,
from the outcome of a positive operator-valued measurement
(POVM) �, consisting of a set of operators {�̂μ}, where
the index μ ∈ {1, 2, . . . , M} denotes different possible mea-
surement outcomes. The elements of the POVM add up to
the identity

∑
μ �μ = 1. The probability for each of the
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FIG. 7. Fisher information of resonance fluorescence measurements for the estimation of kr12. (a) Fisher information in terms of �/γ

and �, for kr12 = 0.17. The three rightmost panels depict a zoom around � = {−R, 0, R}, with a zoom range of ε = 0.02R. We observe that
the region of two-photon excitation � ≈ 0 features the higher Fisher information. (b) Fisher information vs � and kr12 at � = 0. The white
dashed line represents the value of two-photon saturation amplitude �2PS, which serves as a good indicator of the optimum driving amplitude
that maximizes the Fisher information. Parameters: δ = 50γ , � = γ , γ12 = 0.999γ .

different measurement outcomes follows a distribution
P(μ|X ) = Tr[ρX �μ], where ρX is the X -dependent density
matrix of the system at the time of the measurement. When
one infers X from P(μ|X ), the best attainable sensitivity �2X
that can be achieved is given by the classical Fisher informa-
tion of the probability distribution,

F = E

[(
d ln P(μ|X )

dX

)2]
. (73)

The Cramér-Rao bound then establishes that the minimum
possible variance �2X in the estimation of X is given by the
inverse of F [53],

�2X � 1/F. (74)

Here, we will focus on the particular example of the es-
timation of the interemitter distance kr12 by measuring the
fluorescence spectrum described in the previous section. In
order to do this, we will make a series of assumptions.
First, we will assume that the value of the spectrum at a
frequency ω is obtained by performing a photon-counting
measurement in a bosonic sensor resonant at that frequency
and weakly coupled to the quantum emitters. For instance,
this sensor can be understood as a tunable Fabry-Perot cav-
ity used as a frequency filter. We assume that a discrete
set of N frequencies ωn are measured. The corresponding
POVM is given by the tensor product of photon-number
operators of the different sensors, n̂1 ⊗ n̂2 · · · ⊗ n̂N , and the
probability distribution that describes the measurement out-
comes is of the form P(n1, n2, . . . , nN |kr12), representing
the joint photon-counting probability in each of the sensors.
We then assume that the measurements done at different
sensors are uncorrelated, so that P(n1, n2, . . . , nN |kr12) =
P(n1|kr12)P(n2|kr12) · · · P(nN |kr12). This ignores the possible
contribution to the Fisher information of the correlations be-
tween photons emitted at different frequencies [71,73,76,80].
This assumption is justified if the lifetime of photons within
the sensor is very long, so that temporal correlations are
lost, or if different frequencies are measured sequentially
in independent experiments, e.g., tuning the frequency of a
Fabry-Perot filter. Following the same approach that is used
in the theory of quantum image processing [81], we assume
that the resulting state of the sensor is a coherent state, so that

the corresponding measured photocurrent displays Poissonian
fluctuations. This means that the photon-counting distribution
associated with the sensor of frequency ω is given by

P(nω|kr12) = 〈nω〉e−〈nω〉

nω!
, (75)

where 〈nω〉 = ηS(ω), with η being a global constant that de-
pends on the particular details of the detection scheme (e.g.,
detection efficiency). We set η = 1 for simplicity, since it
only yields an overall factor. Given that the spectrum S(ω) is
strongly dependent on the value of β, it will also vary strongly
with the the interemitter distance kr12, which we emphasize
by writing S(ω) = S(ω, kr12). Since different sensors are un-
correlated and probability distributions factorize, the Fisher
information associated with the measurement of the spectrum
S(ω, kr12) is given by the sum

F =
∑

ω

E

[(
∂ ln P(nω|kr12)

∂kr12

)2]

=
∑

ω

1

S(ω, kr12)

[
∂S(ω, kr12)

∂kr12

]2

, (76)

where we used Eq. (75). This quantity allows us to evaluate
the metrological potential of fluorescence spectrum measure-
ments. For this calculation, we take into account a finite
detector linewidth � = γ in the spectrum [80], done by the
replacement ω → ω + i� in Eq. (36). Our results are sum-
marized in Fig. 7. Figure 7(a) depicts the Fisher information
versus the optically tunable parameters � and �, showing that
the optimal regime of operation is at the two-photon reso-
nance, � ≈ 0, where F is found to be larger. This is explained
by the fact that the mechanism of two-photon excitation is
strongly dependent on the coherent coupling between emit-
ters, as we have seen in previous sections, and this is strongly
modified by the interemitter distance kr12. At � = 0, we find
that there is an optimum value of the driving amplitude � that
maximizes F and consequently the precision in the estimation
of kr12. As we show in Fig. 7(b), this maximum varies with
the actual value of kr12, and it is well approximated by the
driving amplitude of two-photon saturation �2PS, which we
obtained in Eq. (51), at which the two-photon sidebands begin
to be resolved in the spectrum. This establishes the onset
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of the two-photon saturation regime as the most sensitive
point of operation for the estimation of the distance between
interacting quantum emitters. We note that the results shown
here as a function of the optically tunable parameters � and �

represent different, independent experiments. Thus a series of
measurements over the (�,�) parameter space could provide
a higher precision of estimation, with Fisher information that
would be given by the sum F = ∑

�,� F (�,�). Changes in
some of the assumptions considered in this paper (e.g., that
the dipole moments are perpendicular to r12) do not modify
these results significantly.

VI. CONCLUSIONS

In this paper, we have studied a system of two interact-
ing, nonidentical quantum emitters under coherent driving,
focusing particularly on the regime of two-photon excitation.
We have provided, for nonidentical emitters, analytic approx-
imations of the stationary density matrix and of steady-state
observables such as the intensity of fluorescent emission.
These calculations provide valuable insights into how the
properties of the light emitted depend on the degree of the
coherent coupling and the detuning between emitters and al-

low us to establish the regime of parameters in which specific
features of two-photon excitation, such as the characteris-
tic two-photon resonance peak in the excitation spectrum or
two-photon sidebands in resonance fluorescence, are visible.
Given that these features are strongly dependent on the cou-
pling strength between emitters, and thus on their relative
distance, we have explored the potential of these optical mea-
surements for the estimation of the interemitter distance in
terms of their Fisher information. We have established that
the onset of two-photon effects at the two-photon resonance is
the most sensitive point of operation for the estimation of the
interemitter distance, a result that can be of great relevance for
the problem of imaging beyond Abbe’s resolution limit [28].
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[12] R. Tanaś and Z. Ficek, Stationary two-atom entanglement
induced by nonclassical two-photon correlations, J. Opt. B:
Quantum Semiclass. Opt. 6, S610 (2004).

[13] A. Beige and G. C. Hegerfeldt, Transition from antibunching
to bunching for two dipole-interacting atoms, Phys. Rev. A 58,
4133 (1998).

[14] V. E. Lembessis, A. A. Rsheed, O. M. Aldossary, and Z. Ficek,
Two-atom system as a nanoantenna for mode switching and
light routing, Phys. Rev. A 88, 053814 (2013).

[15] P. A. Lakshmi, A. Vudayagiri, and S. Ahmed, Effect of pairwise
dipole-dipole interaction among three-atom systems, Pramana
83, 167 (2014).

[16] S. Ahmed, Competition effects in presence of dipole-dipole
interaction in two atom systems: A steady state analysis, Phys.
Sci. Int. J. 4, 591 (2014).

[17] Z.-a. Peng, G.-q. Yang, Q.-l. Wu, and G.-x. Li, Filtered strong
quantum correlation of resonance fluorescence from a two-atom
radiating system with interatomic coherence, Phys. Rev. A 99,
033819 (2019).

[18] E. Darsheshdar, M. Hugbart, R. Bachelard, and C. J. Villas-
Boas, Photon-photon correlations from a pair of strongly
coupled two-level emitters, Phys. Rev. A 103, 053702 (2021).

[19] Z.-a. Peng, G.-q. Yang, G.-m. Huang, and G.-x. Li, Directional
nonclassicality of resonance fluorescence from a three-body
quantum antenna via geometry-dependent frequency engineer-
ing, Phys. Rev. A 102, 053715 (2020).

[20] D. S. Wang, T. Neuman, and P. Narang, Dipole-coupled emitters
as deterministic entangled photon-pair sources, Phys. Rev. Res.
2, 043328 (2020).

[21] R. G. DeVoe and R. G. Brewer, Observation of Superradiant and
Subradiant Spontaneous Emission of Two Trapped Ions, Phys.
Rev. Lett. 76, 2049 (1996).

033136-13

https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1098/rsta.2010.0333
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1103/PhysRevA.2.889
https://doi.org/10.1016/0009-2614(80)85205-5
https://doi.org/10.1080/713820845
https://doi.org/10.1080/713821280
https://doi.org/10.1103/PhysRevA.39.1962
https://doi.org/10.1103/PhysRevA.45.6721
https://doi.org/10.1103/PhysRevA.38.559
https://doi.org/10.1088/1464-4266/6/6/022
https://doi.org/10.1103/PhysRevA.58.4133
https://doi.org/10.1103/PhysRevA.88.053814
https://doi.org/10.1007/s12043-014-0787-5
https://doi.org/10.9734/PSIJ/2014/7448
https://doi.org/10.1103/PhysRevA.99.033819
https://doi.org/10.1103/PhysRevA.103.053702
https://doi.org/10.1103/PhysRevA.102.053715
https://doi.org/10.1103/PhysRevResearch.2.043328
https://doi.org/10.1103/PhysRevLett.76.2049


VIVAS-VIAÑA AND SÁNCHEZ MUÑOZ PHYSICAL REVIEW RESEARCH 3, 033136 (2021)

[22] J. A. Mlynek, A. A. Abdumalikov, C. Eichler, and A. Wallraff,
Observation of Dicke superradiance for two artificial atoms in a
cavity with high decay rate, Nat. Commun. 5, 5186 (2014).

[23] A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-
Moreno, C. Tejedor, and F. J. Garcia-Vidal, Entanglement of
Two Qubits Mediated by One-Dimensional Plasmonic Waveg-
uides, Phys. Rev. Lett. 106, 020501 (2011).

[24] A. F. Alharbi and Z. Ficek, Deterministic creation of stationary
entangled states by dissipation, Phys. Rev. A 82, 054103 (2010).
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