
PHYSICAL REVIEW RESEARCH 3, 033134 (2021)

Wigner negativity in spin- j systems
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The nonclassicality of simple spin systems as measured by Wigner negativity is studied on a spherical phase
space. Several SU(2)-covariant states with common qubit representations are analyzed: spin coherent states, spin
cat (Greenberger-Horne-Zeilinger or N00N) states, and Dicke (W) states. We derive a bound on the Wigner
negativity of spin cat states that rapidly approaches the true value as spin increases beyond j � 5. We find that
spin cat states are not significantly Wigner negative relative to their Dicke state counterparts of equal dimension.
We also find, in contrast to several entanglement measures, that the most Wigner-negative Dicke basis element is
spin dependent, and not the equatorial state | j, 0〉 (or | j, ±1/2〉 for half-integer spins). These results underscore
the influence that dynamical symmetry has on nonclassicality and suggest a guiding perspective for finding novel
quantum computational applications.
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I. INTRODUCTION

The phase space formulation of quantum mechanics allows
the representation of states and operators as scalar functions
on classical phase space. This is useful for distinguishing
between classical and quantum behaviors as well as for ex-
perimental state tomography. Initiated in 1932 by Wigner and
expanded upon by many others, the phase space formulation
is now widely used in quantum optics and quantum informa-
tion [1]. The Stratonovich-Weyl correspondence is a unified
phase space framework that focuses on a system’s dynamical
symmetry [2]. It allows us to canonically define families of
quasiprobability distributions (QPDs) on many classical phase
spaces. These include the plane and the sphere, as generated
by Heisenberg-Weyl and SU(2) symmetries respectively [3].

Due to the quantum nature of states in Hilbert space, any
QPD will in general fail to be a true probability distribution
in the sense of classical statistical mechanics [4]. This failure
can manifest in different ways depending on how the QPD
is defined [5]. This has led to the idea of quantifying the
nonclassicality of a quantum state by measuring the difference
between a QPD representation of the state and a true proba-
bility distribution over the same phase space. For the case of
QPDs on a plane, the most widely used is the Wigner function
[6]. The failure of such a Wigner function QPD to be a true
probability distribution is seen in the presence of negative
values. In this case, it is common to use the total negative

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

volume as a quantification of the failure and interpret this
Wigner negativity as a measure of nonclassicality [7]. In this
paper, we explore the nonclassicality of quantum spin states
using Wigner negativity.

In previous studies, Wigner negativity has been linked to
other notions of nonclassicality such as entanglement [8,9].
The use of phase space methods in quantum computation has
also led to additional such connections. For example, Wigner
negativity and quantum contextuality have been shown to be
equivalent notions of nonclassicality in multiqudit systems
with odd local dimension [10]. Furthermore, in odd dimen-
sions, the stabilizer states have non-negative Wigner functions
[11]. This draws a connection to the Gottesman-Knill theo-
rem, which demonstrates the efficient classical simulation of
stabilizer circuits [12]. This result has been extended to the
continuous variable setting where it was shown that Gaus-
sian Wigner functions on the plane may also be simulated
efficiently on a classical computer [13]. Hudson’s theorem
established the equivalence between Gaussianity and non-
negativity, and so this result is also a statement about Wigner
non-negative states [14]. Very recently, a resource theory of
non-Gaussianity was proposed to explore how to harness
quantum advantages [15]. Experimental procedures in phase
space are also well established for continuous variable sys-
tems [16–19] as well as spin systems [20]. These studies show
the utility of Wigner negativity for analyzing the quantum
nature of states and for quantifying resources required for a
quantum computing speedup [21].

Previous work has mainly focused on Heisenberg-Weyl
symmetry where the associated phase space is either the
plane or the toroidal lattice, corresponding to the continu-
ous and discrete variants respectively [22–25]. Spin systems
correspond to a different symmetry group, SU(2). Hence,
they are represented on a different phase space through the

2643-1564/2021/3(3)/033134(11) 033134-1 Published by the American Physical Society

https://orcid.org/0000-0003-1705-1798
https://orcid.org/0000-0003-0949-3844
https://orcid.org/0000-0002-5859-2227
https://orcid.org/0000-0001-6214-4518
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.033134&domain=pdf&date_stamp=2021-08-09
https://doi.org/10.1103/PhysRevResearch.3.033134
https://creativecommons.org/licenses/by/4.0/


DAVIS, KUMARI, MANN, AND GHOSE PHYSICAL REVIEW RESEARCH 3, 033134 (2021)

Stratonovich-Weyl correspondence: the sphere. QPDs are
well defined on the sphere [26–31] but unlike their planar
analogs there has been comparatively less focus on a system-
atic understanding of their negativity properties, particularly
with respect to the spherical Wigner function [32]. Spin sys-
tems (qubits and qudits) are central to quantum computation.
Given the potential utility of Wigner negativity for analyzing
and quantifying quantum computational performance, it is
thus natural to explore Wigner negativity in multiqubit spin
states. Many important multiqubit states used in information
processing obey SU(2) symmetry but have not been analyzed
with their associated SU(2)-covariant Wigner function. This
approach not only allows an exploration of the structure of
multiqubit states for information processing but also offers
insight into the effect that a spherical phase space has on non-
classicality, particularly in comparison to the planar situation.

Here we begin this line of research with a study of Wigner
negativity for several common spin states. We first consider
spin coherent states, which are the spin analogs of coherent
states on the plane. While spin coherent states are considered
the most classical spin states, their Wigner functions still take
negative values and exhibit oscillations around zero, unlike
planar coherent states. The differences perhaps arise from
the compact spherical phase space for finite spin values; the
Wigner negativity of these states decreases with increasing
spin as they approach the planar coherent states in the limit
of infinite spin.

We next consider GHZ and N00N states; both are ubiq-
uitous resources for quantum information processing and
quantum metrological applications [33–35]. While these
states, particularly the GHZ state, are usually described in
terms of qubits (spin-1/2 systems), they can be equivalently
represented using the collective spin of the qubits as superpo-
sitions of spin coherent states. We derive an exact expression
for the Wigner function of such superposition states as well
as a bound on their Wigner negativity. Our analysis shows
that GHZ states and N00N states of equal spin have the same
Wigner negativity, and the negativity increases with increas-
ing spin (more qubits).

However, for a given collective spin quantum number j,
they are not the states that maximize the Wigner negativity.
We show this by calculating the Wigner negativity of Dicke
states, that are the eigenstates | j, m〉 of the Jz spin operator.
The spin coherent states are a special case | j,± j〉 of the Dicke
states. We show that most Dicke states | j, m〉 have greater
Wigner negativity than GHZ states with the same value of j.
We also disprove a conjecture [26] that the Wigner function of
the state | j, m〉 has 2 j roots by providing a counterexample.
Furthermore, we identify which Dicke states have maximal
Wigner negativity as the spin j is increased. While the ex-
tremal Dicke states | j, j〉 have the least Wigner negativity,
surprisingly the states | j, 0〉 are not always the most negative.
We explore this behavior by considering how the Dicke states
approach the harmonic oscillator number states in the large
spin limit. Our results show that the negativity depends on
the nonclassical nature of the states as well as the underlying
structure of the classical phase space.

In Sec. II, we review the Stratonovich-Weyl framework
for constructing Wigner functions in the cases of continuous
Heisenberg-Weyl symmetry and SU(2) symmetry. In Sec. III,

we analyze three classes of common spin states: spin coherent,
spin cat, and Dicke states. We compute either numerically
or analytically their Wigner functions and Wigner negativ-
ities, focusing on changes with respect to increasing spin,
and how this compares to the planar scenario. We end with a
discussion, and comment on the differences between Wigner
negativity and entanglement, as seen through entanglement
entropy and the geometric measure.

II. STRATONOVICH-WEYL CORRESPONDENCE

In this section, we review the Stratonovich-Weyl corre-
spondence and its associated Wigner functions. More detail
may be found in Refs. [3,26,32,36,37].

A. Continuous Heisenberg-Weyl

Specific to a system’s dynamical symmetry group, the
Stratonovich-Weyl correspondence is realized by an operator-
valued distribution over the associated phase space [2,3].
These phase-point operators, collectively called the kernel
�(�), define the Wigner function of a quantum state ρ by
the expectation values

Wρ (�) = Tr[ρ�(�)], (1)

where � is a point in phase space. The operators �(�) obey
several reasonable constraints. The most important one gives
the group equivariance condition, ensuring the equivalence
between transformations in Hilbert space and phase space:

WπgAπ
†
g
(�) = (gWA)(�). (2)

Here π is an irreducible unitary representation of the sym-
metry group G, and the action on phase space functions is
induced by the action on phase space itself, (gWA)(�) :=
WA(g−1�) [32], where g is an element of G.

In the case of continuous Heisenberg-Weyl symmetry in
one spatial dimension, i.e., [x, p] = iI, the phase space is the
complex plane [3]. This noncompact phase space describes
many physical scenarios, including a bosonic field mode and a
nonrelativistic spinless particle confined to a harmonic poten-
tial. Defining parity and displacement operators through their
action on the annihilation operator

�a� = −a, D(α)aD(α)† = a − α, (3)

the H1(R) kernel takes the form of a family of displaced parity
operators

�(α) = 2D(α)�D(α)†, (4)

where α = (q + ip)/
√

2 is a point in phase space [38]. The
parity operator can also be seen as a phase-shifting operator
� = eiπN by a rotation π about the origin, where N is the
number operator [39]. The above definition reduces to the
more familiar equation for an H1(R)-covariant Wigner func-
tion [38]

Wψ (r, p) = 2
∫ ∞

−∞
ds e−2ips/h̄ψ (r − s)ψ∗(r + s) (5)

for conjugate position and momentum variables (r, p).
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In general, the Wigner negativity δ(ρ) of a quantum state
ρ is

δ(ρ) = 1

2

∫



|Wρ (�)|dμ(�) − 1

2
� 0, (6)

where dμ(�) is the invariant measure on phase space.
Throughout this paper, the phrase “Wigner negativity” shall
refer to an integrated volume and is given by a non-negative
real number.

B. Spin systems

Quantum spin systems are described by a quantized angu-
lar momentum vector J = (Jx, Jy, Jz ) of fixed length |J| = j,
where j > 0 is an integer or a half-integer. States living in a
(2 j + 1)-dimensional Hilbert space are acted upon with irre-
ducible unitary representations of SU(2), with size indexed by
j. The SU(2) generators Ji satisfy [Ji, Jj] = iεi jkJk and yield
rotation unitaries through their exponentiation. The eigen-
states of any convex combination nxJx + nyJy + nzJz = n · J
form a basis with respect to the axis n, denoted {| j, m; n〉}.
These basis vectors are called Dicke states and the whole basis
is called a Dicke basis, where the projection eigenvalue m runs
from − j to j in integer steps [40]. In spherical coordinates,
the vector n = (sin θ cos φ, sin θ sin φ, cos θ ) points to (θ, φ)
on the sphere S2; this is the phase space generated by SU(2)
symmetry [32]. It is common to work entirely in the nz Dicke
basis, denoted {| j, m〉}.

The SU(2) kernel at the point (θ, φ) is diagonal in the
Dicke projector basis along n [37],

� j (θ, φ) =
j∑

m=− j

� j,m| j, m; n〉〈 j, m; n|, (7)

with eigenvalues

� j,m =
2 j∑

l=0

εl
2l + 1

2 j + 1

〈
j l j

m 0 m

〉
. (8)

Here ε0 = 1, εl = ±1, and 〈 j1 j2 J
m1 m2 M

〉 are Clebsch-

Gordan coefficients. See also Refs. [26,30,32] for different yet
equivalent characterizations of the SU(2) kernel.

There are 22 j choices of εl leading to different eigenvalue
distributions, indicative of the nonuniqueness of valid SU(2)
kernels [26]. In the limit of infinite spin, however, only one
such choice leads to a natural contraction from the spherical
kernel to the planar kernel, namely εl = 1 for all l [39].
Intuitively seen as a tangent plane to a sphere of increasing
radius, this choice naturally connects the two types of parities
and displacements defined by their symmetry (e.g., rotations
become translations) [39]. As discussed in Sec. III C, this
contraction also sees the number state as a limit of the Dicke
state:

lim
j→∞

| j, j − n〉 = |n〉 (9)

for fixed n [36].
We therefore pick this choice of εl and emphasize that the

corresponding Wigner function is the unique canonical defini-
tion that both satisfies the Stratonovich axioms and naturally

limits to its optical analog [39,41]. Similar to the Heisenberg-
Weyl kernel (4), the SU(2) kernel is explicitly realized as a
family of displaced parity operators,

� j (θ, φ) = Uk� j (0, 0)U †
k , (10)

where (0,0) is the north pole and Uk = e−iθ k·J is the uni-
tary taking the north pole to (θ, φ) by a rotation about
k = (− sin φ, cos φ, 0). The corresponding SU(2)-covariant
Wigner function of a quantum state ρ is

Wρ (θ, φ) := Tr[ρ� j (θ, φ)], (11)

where j matches the representation size.
This spherical Wigner function and the associated Wigner

negativity of a given quantum state is applicable to any
physical system characterized by SU(2) dynamical symmetry,
including trapped ions [42] and fixed-number bosonic collec-
tions of photons [43]. See Ref. [30] and references therein
for information regarding state tomography via measurement
statistics of spin observables n · J.

III. SPIN STATES

In this section, we analyze the Wigner functions and
Wigner negativities of spin coherent states, spin cat states, and
Dicke states. We compare our findings with the Heisenberg-
Weyl analogs on the plane.

But before doing so, we briefly give a simple and motivat-
ing example of how the planar and spherical Wigner functions
have different global properties. In particular, their pointwise
upper and lower bounds are distinct. We have plotted in Fig. 1
the spectrum of the SU(2) kernel (8) for low and high spins.
This and related spectra of SU(2)-covariant QDPs have also
been plotted in Ref. [30]. For spherical Wigner functions,
the maximum eigenvalue of the kernel in Eq. (7) gives the
pointwise upper bound while the minimum eigenvalue gives
the pointwise lower bound. Since the eigenvalues � j,m are
independent of the quantization axis n, we see from Fig. 1
that the pointwise upper bound is attained by the eigenstate
m = j along n, corresponding to a spin coherent state cen-
tered at (θ, φ). The pointwise lower bound corresponds to
the eigenstate | j, j − 1; n〉〈 j, j − 1; n|, which as discussed in
Sec. III C is incidentally the W state centered at (θ, φ). We
see that the pointwise upper bound of the spherical Wigner
function is larger in absolute value than its pointwise lower
bound. In contrast, the pointwise upper and lower bounds of
the planar Wigner function have the same absolute value of 2;
see Eq. (4). In the case of single-qubit states (i.e., j = 1/2),
the pointwise bounds are

max[Wqubit(θ, φ)] = 1
2 (1 +

√
3) ≈ 1.37,

min[Wqubit(θ, φ)] = 1
2 (1 −

√
3) ≈ −0.37. (12)

In the limit of infinite spin, these converge to ±2, matching
those of the planar Wigner function [30,39].

A. Spin coherent states

Like the planar coherent states, spin coherent states may be
defined as the displacement of some reference state. A com-
monly chosen reference state is | j, j〉, whose Wigner function
is centered at the north pole of the sphere. The spin coherent
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(a)

(b)

FIG. 1. Spectrum of the SU(2) kernel in Eq. (8) at any point � ∈
S2 for spins (a) j = 3 and (b) j = 20. For low spin, the maximum
and minimum eigenvalues are not equal in absolute magnitude but
approach ±2 as spin increases, matching the planar Wigner function
bounds.

state after the displacement (i.e., rotation) can be written as

|θ, φ〉 = Uk| j, j〉 = e−iθ kJ | j, j〉 = e− θ
2 (J+e−iφ−J−eiφ )| j, j〉

(13)

where J± are the spherical ladder operators [32] and k =
(− sin φ, cos φ, 0) is the axis of rotation with 0 � θ � π ,
0 � φ < 2π .

The Wigner negativity of a spin coherent state, and for
spin states in general, can be calculated using Eq. (6) where
dμ(�) = 2 j+1

4π
sin θdθdφ:

δ(ρ) = 1

2

(
2 j + 1

4π

∫ π

θ=0

∫ 2π

φ=0
|Wρ (θ, φ)| sin θdθdφ − 1

)
(14)

[44]. Since this measure is invariant under global rotations,
states connected through global rotations will have the same
Wigner negativity. Spin coherent states are intrinsically de-
fined this way and so we focus on the state | j, j〉 as a
representative:

W| j, j〉(θ, φ)

= (2 j)!√
2 j + 1

2 j∑
l=0

(2l + 1)√
(2 j − l )!(2 j + 1 + l )!

Pl (cos θ ), (15)

where Pl (·) is the lth Legendre polynomial [26].
The Wigner function of optical coherent states is Gaussian

in the field quadratures and so may only take positive values.

FIG. 2. Wigner function of the spin coherent state | j, j〉 =
|θ0 = 0〉 associated with a spin of (a) j = 1/2 (single qubit) and
(b) j = 6 (12 qubits). Panel (c) shows the polar cross section of the
j = 6 spin coherent state where the inset illustrates the roots of the
associated Wigner function. Dashed lines in panels (a) and (b) are
along roots.

In contrast, the Wigner function of spin coherent states has
nonzero Wigner negativity (Fig. 2). For example, a single
spin-1/2 system prepared in the computational state |0〉 =
|1/2, 1/2〉 has the Wigner function

W| 1
2 , 1

2 〉(θ, φ) = 1

2
+

√
3

2
cos θ. (16)

Analyzing Eq. (16), we find the negativity of this state to be
1√
3

− 1
2 ≈ 0.077, matching the results from Ref. [9]. It follows

that all pure single-qubit states share this value. As discussed
in Ref. [26], qubit states must be sufficiently mixed in order
for their Wigner function to be non-negative. In particular,
their Bloch vector must have magnitude less than 1/

√
3 ≈

0.58, defining an inner Bloch ball of Wigner-positive states.
As the spin j is increased, we have numerically confirmed

that the Wigner negativity of a spin coherent state rapidly
approaches zero, although it does not vanish for the finite j
considered ( j < 30). All of the negativity contributions come
from small oscillations in the Wigner function, generally
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present in the hemisphere opposite the centroid (θ, φ); see
Fig. 2. In planar phase space, such oscillations are usually
associated with a superposition of distinct macroscopic states
(e.g., a planar cat state), which is highly nonclassical. How-
ever, the spin coherent state is typically considered the most
classical-like spin state because of its analogy to Gaussian co-
herent states on the plane. Thus, Wigner negativity helps iden-
tify the important differences between planar and spin coher-
ent states that exist despite their similarities. The nonvanishing
negativity for finite spin seems to result from the compact
spherical phase space compared to the infinite planar phase
space of Gaussian coherent states. To our knowledge, it is not
known if there exists a class of pure spin states with vanishing
Wigner negativity. We believe there does not, and we conjec-
ture that the spin coherent state minimizes Wigner negativity
over pure states. This would therefore place a nonzero lower
bound on the classicality of SU(2)-symmetric pure states.

We also find a surprising result that refutes a conjecture in
Ref. [26] proposing that all spin- j Dicke state Wigner func-
tions (including spin coherent states) have 2 j distinct roots.
We numerically give a counterexample: The spin coherent
state of 12 qubits has only eight distinct roots, as illustrated
in Fig. 2.

In the limit of infinite spin, the tangent plane to a sphere
SU(2)-kernel contraction implies that the spin coherent state
approaches the planar coherent state. Indeed, this is the spe-
cial case of Eq. (9) for n = 0, demonstrating that, up to
displacements, the state | j, j〉 approaches the harmonic oscil-
lator vacuum, and so the corresponding Wigner negativities
approach zero (as seen in the n = 0 case in Fig. 7).

B. Spin cat states

The Greenberger-Horne-Zeilinger (GHZ) state was first
introduced to generalize Bell’s theorem on quantum nonlo-
cality to a multipartite setting [45]. A closely related set of
states called N00N states were introduced in the same year
for their use in understanding decoherence of catlike states
[46]. Both of these have since been intensively studied within
quantum information, quantum optics, and quantum metrol-
ogy [33–35].

The GHZ and N00N states, together with their higher
multipartite generalizations, can be naturally viewed as ele-
ments of a spin system, with both taking the general form
α| j, j; n〉 + β| j,− j; n〉. The GHZ state is typically defined
within the symmetric qubit realization of spin systems,

Ji = 1

2

2 j∑
l=1

σ
(l )
i , (17)

where σ
(l )
i denotes the ith Pauli operator of the lth qubit.

In this qubit representation, the computational states |0〉⊗N

and |1〉⊗N are identified with the north and south pole spin
coherent states | j,± j〉 respectively. With this, the N-qubit
GHZ state is given by

|GHZ(N=2 j)〉 = 1√
2

(|0〉⊗N + |1〉⊗N )

= 1√
2

(| j, j〉 + | j,− j〉). (18)

But the su(2) algebra can also be realized optically using
a fixed number of 2 j photons distributed over two distinct
modes, sometimes referred to as the Schwinger realization:

J+ = a†b, J− = b†a, Jz = 1
2 (a†a − b†b), (19)

where a (a†) and b (b†) are the annihilation (creation) opera-
tors of the respective a and b modes [47]. With the two modes
playing the roles of collective spin up and spin down, optical
Dicke states are

| j, m〉 = | j + m〉a| j − m〉b. (20)

The N00N state is defined similarly to the GHZ state but with
an additional spin-dependent relative phase:

|N00N(N=2 j)〉 = 1√
2

(|N〉|0〉 + eiNθ |0〉|N〉)

= 1√
2

(| j, j〉 + ei2 jθ | j,− j〉). (21)

From the phase space perspective, the Schwinger realization
stems from placing a restriction on the tensor product of
two previously existing Heisenberg-Weyl systems, while the
symmetric qubit realization comes directly from the induced
irreducible representations over the symmetric tensor power
of a single-qubit Hilbert space.

Here, we consider the general spin cat state

| j, ϑ, ϕ〉 = cos

(
ϑ

2

)
| j, j〉 + eiϕ sin

(
ϑ

2

)
| j,− j〉, (22)

where 0 � ϑ � π and 0 � ϕ � 2π .
We derive the exact Wigner function of this state to be

W| j,ϑ,ϕ〉(θ, φ) = cos2 ϑ

2
W| j, j〉(θ, φ)

+ sin2 ϑ

2
W| j,− j〉(θ, φ)

+ sin ϑ Nj sin2 j (θ ) cos(2 jφ − ϕ), (23)

where

Nj = 1

22 j (2 j)!

√
(4 j + 1)!

2 j + 1
. (24)

See the Appendix for details. The first two terms of Eq. (23)
correspond to the weighted Wigner function of two antipodal
spin coherent states. The interference pattern from the third
term is expressed throughout phase space as a band of fringes
along the equator, with the number of negative islands equal
to the 2 j number of qubits. As spin increases, the interference
pattern becomes more concentrated along the equator, while
the spatial extent of the positive polar regions shrinks. This is
a consequence of the polar regions locally approaching that
of a planar coherent state. This, in addition to the sin2 j (θ )
factor in the interference term, highly suppresses the Wigner
function in the regions between the equator and the two poles;
see Fig. 3 for j = 3 and j = 10 in the GHZ case of (ϑ, ϕ) =
(π/2, 0).

The interference term is the primary contribution to the
Wigner negativity of the state due to the rapidly vanishing
contributions from the spin coherent components. By focusing
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FIG. 3. Wigner function of the GHZ state corresponding to (a) 6
qubits ( j = 3) and (b) 20 qubits ( j = 10).

exclusively on the interference fringes, we derive the upper
bound on the Wigner negativity of these states as

sin ϑNj
σ ( j)

π

(2 j)!!

(2 j − 1)!!
, (25)

where σ ( j) = 1 for integer spin and σ ( j) = π/2 for half-
integer spin; see the Appendix for details. The explicit Wigner
negativity δ(·) for these two cases are

δ(int) � 1

π
sin ϑ

√
(4 j + 1)!

2 j + 1

(
j!

(2 j)!

)2

,

δ(half-int) � sin ϑ

√
(4 j + 1)!

2 j + 1

1

24 j

1(
j − 1

2

)
!2

. (26)

In Fig. 4, we have plotted the exact Wigner negativity together
with the bound as a function of j. This bound provides a good
estimate of the Wigner negativity for j � 5.

In the N00N states, a relative phase eiϕ between the two
spin coherent states amounts to a global rotation about the
quantization axis connecting them; the fringes along the equa-
tor are shifted by an amount ϕ, implying that the GHZ and
N00N states have the same Wigner negativity. If there is an
asymmetric weighting in the superposition (22) parameterized
by ϑ , the interference fringes, and consequently our lower
bound, is suppressed by a factor of sin ϑ for all spin.

C. Dicke states

Having analyzed spin coherent states | j,± j〉 and superpo-
sitions of spin coherent states, we now turn our attention to
the more general set of Dicke states | j, m〉. Like the GHZ and

FIG. 4. Comparison between our spin cat state Wigner negativity
bound (25) and the exact Wigner negativity.

N00N states, these also have a multiqubit representation. The
| j, m〉 states are generalized W-like states, first introduced in
the classification of multipartite entanglement with respect to
stochastic local operations and classical communication [48].
The multipartite W-like state of weight k ∈ {0, . . . , N} is the
symmetrized superposition of N = 2 j qubits where k out of
N of them are in the excited state |1〉:
∣∣D(k)

N

〉 =
(

N

k

)− 1
2 ∑

τi∈Sn

|τi(1 . . . 1︸ ︷︷ ︸
k

0 . . . 0︸ ︷︷ ︸
N−k

)〉 ↔ | j, j − k〉, (27)

where Sn is the symmetric group of order n. The case k = 1
is the standard W state, while the two extremal cases | j,± j〉
correspond to antipodal spin coherent states. A collective
spin-flip of a Dicke state, σ⊗N

x |D(k)
N 〉, is its conjugate state∣∣D(k)

N

〉
:= ∣∣D(2 j−k)

N

〉 ↔ | j,− j + k〉. (28)

As the m eigenvalue in | j, m〉 approaches either ± j, the
equivalent W-like state has an increasingly asymmetric ratio
of ground to excited qubits—i.e., mostly 0s or mostly 1s,
corresponding here to the northern and southern hemispheres
of phase space.
The spherical Wigner function of the Dicke state | j, m〉 is
given by

W| j,m〉(θ, φ) = 〈 j, m|� j (θ, φ)| j, m〉

=
2 j∑

l=0

2l + 1

2 j + 1

〈
j l j

m 0 m

〉
Pl (cos θ ) (29)

[26,32]. We plot this function for two different Dicke states in
Fig. 5. They are characterized by a principal band of positive
values around a circle of constant latitude (corresponding
to the m projection eigenvalue), with additional alternating
bands along the sphere. If the principle band is distinctly
in one hemisphere, the fringes in the opposing hemisphere
are reduced in amplitude; see Figs. 2 and 5. As mentioned
earlier, the number of roots for all m values is in general not
equal to 2 j.

The Wigner negativity of Dicke states reveals a surpris-
ingly rich structure, dependent on the radius of phase space
through the spin j. We first focus on how the Wigner nega-
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FIG. 5. Wigner functions of the Dicke states (a) |6, 0〉 and
(b) |6, 2〉. Dashed lines mark difficult to see roots of the Wigner func-
tion. The nonequatorial state in panel (b) displays reduced amplitude
in the southern hemisphere region.

tivity of the entire Dicke basis changes with increasing spin.
See Fig. 6 for a few numerical examples of Dicke basis neg-
ativities. We briefly note that conjugate Dicke states within a
given Dicke basis have the same negativity; this is because
they are related by a global π rotation about any axis in the
equatorial plane. The least negative states of a Dicke basis
are always the | j,± j〉 spin coherent states as expected. We
also observe that for fixed j, the negativity generally increases
as m moves away from the poles, ± j. For low spins j � 30,
this pattern of increasing Wigner negativity with decreasing
|m| value culminates with the maximally negative Dicke state
lying on the equator: | j, 0〉 for integer spin and | j,±1/2〉 for
half-integer spin. Surprisingly, this pattern changes for Dicke
bases with j � 30, where the maximally negative state bifur-
cates away from the equator into a spin-dependent conjugate
pair | j,±m′

j〉 with m′
j > 1/2 (Fig. 6). For example, the max-

imally Wigner-negative Dicke state for j = 80 happens to be
|80,±16〉 rather than |80, 0〉 as shown in Fig. 6. The projec-
tion eigenvalue m′

j corresponding to the maximally negative
state does not settle to a fixed value for the spins considered
(up to j = 80, or 160 qubits).

Another way to explore the negativity of Dicke states
is to consider their high spin limit where they approach
harmonic oscillator number states |n〉 [30,36]. To that end,
we numerically confirmed Eq. (9), | j, j − n〉 → |n〉 as j →
∞, by computing the Wigner negativity of state sequences
{| j, j − n〉} j for a handful of fixed n. Figure 7 shows a collec-
tion of plots illustrating this behavior. To help read this figure,
we first point out three features common to each sequence
corresponding to a fixed n value. The first feature is that they

(a)

(b)

(c)

FIG. 6. The blue dots are Wigner negativities of the Dicke basis
{| j, ±m〉} corresponding to (a) j = 10, (b) j = 30, and (c) j = 80.
The solid vertical line in panel (c) denotes the maximally Wigner-
negative Dicke state. The red dashed line corresponds to the GHZ
states of equal dimension.

all begin at some point along the {| j, j〉} j curve (i.e., when
n = 0). This is because the starting state for any given n,
with n = 2 j, is always a spin coherent state on the south pole
| j,− j〉, which has the same negativity as | j, j〉. The second
is that when j = n or j = n ± 0.5, each sequence is respec-
tively at | j, 0〉 or |n ± 0.5,±0.5〉. This means that each curve
will meet the included equatorial curve {| j, m = 0,±0.5〉} j ,
shown as a dashed curve with triangular markers, three times
in a row. The third is that when j is large compared to n, each
curve asymptotically approaches the negativity of its limiting
number state |n〉 (see the visible flat-line values).

Despite these common properties, there is clearly non-
trivial behavior occurring as n changes. For example, low-n
sequences (n � 8) contain states that are more Wigner-
negative than their number state limit. For n � 8, this is no
longer true. There is also an emergent behavior as n � 30.
In particular, sequences with n � 30 cross over the equatorial
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FIG. 7. Wigner negativity of sequences of states | j, j − n〉 as j
increases for various fixed values of n. The asymptotic flat lines of
a given sequence match the number state negativity |n〉 as expected.
The dashed curve with triangular markers corresponds to the equato-
rial states | j, 0〉 and | j, ±0.5〉. Around j � 30 (vertical dashed line)
there is emergent behavior, in which sequences cross over the black
equatorial curve.

curve. This correlates with the aforementioned bifurcation of
the most Wigner-negative Dicke state around j ≈ 30. Con-
sider a vertical cross section in Fig. 7; this corresponds to
Dicke basis of fixed j. For vertical cross sections correspond-
ing to j � 30, all spin- j Dicke states lie below the spin- j
equatorial state. On the other hand, for vertical cross sections
corresponding to j � 30, there are states above the equatorial
state, with this effect increasingly exaggerated as j increases.

Overall, these two related results of the maximally negative
Dicke state being spin dependent, together with the number
state limit display an intriguing and unexpected structure to
the nonclassicality of Dicke states. Furthermore, the geomet-
ric significance of spin suggests a nontrivial effect of the size
(or other properties such as curvature) of phase space on state
nonclassicality. Indeed, the negativity behavior investigated
here is a result of the interplay between the geometry of the
phase space and the structure of the Wigner function, Eq. (29),
which both change with the size of the spin, j. This is different
from the planar case except in the large spin limit, which
approaches the planar geometry as shown above.

IV. SUMMARY AND DISCUSSION

We have investigated the nonclassicality of common spin
states as quantified by their Wigner negativity. We compared
our results to the planar scenario and explored the dependence

on spin. Our analysis was based on the Stratonovich-Weyl
phase space framework, using the SU(2) kernel to reproduce
Wigner functions of spin states. We analyzed spin coherent
states and derived an exact expression for the Wigner func-
tion for arbitrary spin- j cat states. From this, we obtained
a bound on the Wigner negativity of spin cat states. Using
the connection between spin states and symmetric ensembles
of qubits, we quantified the Wigner negativity of important
qubit states such as the GHZ states and N00N states. We
showed that GHZ and N00N states with the same number
of qubits have identical Wigner negativities, but counterintu-
itively, they may have lower negativities than W-like states of
equal dimension. We also showed that the Wigner function of
spin- j Dicke states do not always have 2 j roots as was pre-
viously conjectured [26]. Another surprising result is that the
most Wigner-negative Dicke state is not always the equatorial
| j, m = 0,±1/2〉 state, and that this stems from a nontrivial
dependence on spin itself.

It is interesting to compare Wigner negativity and entangle-
ment as measures of nonclassicality. It is known that within a
Dicke basis of arbitrary spin j, the equatorial states are max-
imally entangled as seen by the entanglement entropy across
arbitrary bipartitions of 2 j qubits [49]. The geometric measure
of entanglement similarly witnesses the equatorial Dicke state
as having the most entanglement within the Dicke basis for
arbitrary j [50]. These are in contrast with Wigner negativ-
ity, where the most Wigner-negative Dicke state bifurcates
from | j, 0〉 to | j,± m′

j〉 around j � 30. On the other hand,
the entanglement entropy of sequences {| j, j − n〉} j across
specifically half-bipartitions (i.e., an even j : j splitting of 2 j
qubits for integer spin) seem to approach a constant value
for any fixed n [51,52]. In a similar fashion as established
here, the Wigner negativity of {| j, j − n〉} j also approaches
a constant value, i.e., that of the number state |n〉 for any
fixed n.

Thus, the behavior of spherical Wigner negativity quali-
tatively agrees with entanglement entropy when considering
half-bipartitions of sequences {| j, j − n〉} j but disagrees on
which Dicke basis element is the most nonclassical. Further-
more, the GHZ state is relatively less Wigner negative than
most Dicke states with the same spin value as seen in Fig. 6.
This suggests that Wigner negativity and entanglement cap-
ture different aspects of the nonclassicality of states.

The nontrivial and spin-dependent behavior of SU(2)-
covariant Wigner negativity suggests a complex structure to
the nonclassicality of symmetric qubit ensembles as their sys-
tem size grows. This highlights the influence that geometric
properties of a classical phase space, and so more importantly
the associated dynamical symmetry, has on the nonclassicality
of quantum states. Furthermore, with negativity viewed as a
computational resource, a full understanding of this general
relationship can conceivably be utilized within future infor-
mation protocols to maximize the quantum-assisted speedup.
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APPENDIX: LOWER BOUND ON SPIN CAT STATES

Here, we briefly expand on the steps taken to obtain the
lower bound on the GHZ and N00N state negativity. We pre-
sented the SU(2) kernel as derived by Heiss and Weigert [37]
in Eq. (7) due to their emphasis on the rotation independence
of the eigenvalues along any quantization axis n. However,
for calculations along specifically the north-south axis, we
used an equivalent form of the kernel derived in Ref. [26] and
presented in Ref. [32]:

�(�) =
√

4π

2 j + 1

2 j∑
l=0

l∑
k=−l

Y ∗
lk (�)T ( j)

lk , (A1)

where

T ( j)
lk =

√
2l + 1

2 j + 1

j∑
n,n′=− j

〈
j l j
n k n′

〉
| j, n′〉〈 j, n| (A2)

are spherical tensor operators and Y ∗
jm(�) is the complex con-

jugate of the standard spherical harmonics. One may readily
verify that a Dicke state expectation of this kernel (A1) re-
duces to the Dicke state Wigner function of Eq. (29), with
the m = j case corresponding to the north-pole spin coherent
state representative discussed in Sec. III A.

The Wigner function of the spin cat state

|ψ〉 = cos

(
ϑ

2

)
| j, j〉 + eiϕ sin

(
ϑ

2

)
| j,− j〉 (A3)

is split into two antipodal spin coherent state contributions and
two cross-term contributions 〈 j,± j|�(�)| j,∓ j〉, with the
latter pair containing the characteristic interference pattern.
The first cross term evaluates to

〈 j, j|�(�)| j,− j〉

=
√

4π

2 j + 1

2 j∑
l=0

l∑
k=−l

Y ∗
lk (�)

[√
2l + 1

2 j + 1

〈
j l j

− j k j

〉
δk,2 j

]
,

(A4)

which is nontrivial for simultaneous l = 2 j and k = 2 j,
giving

〈 j, j|�(�)| j,− j〉 =
√

4π

2 j + 1
(−1)2 jY ∗

2 j,2 j (A5)

because 〈 j 2 j j
− j 2 j j〉 = (−1)2 j

√
2 j+1
4 j+1 . The entire interference

contribution becomes

sin ϑ

√
2 j + 1

4 j + 1
Re[eiϕ (−1)2 jY ∗

2 j,2 j (�)] (A6)

= sin ϑNj sin2 j (θ ) cos(2 jφ − ϕ), (A7)
where Nj = 1

22 j (2 j)!

√
(4 j + 1)!/(2 j + 1) and we have used the

relation Yl,l (θ, φ) = (−1)l

2l l!

√
(2l+1)!

4π
sinl (θ )eilφ . We note that an

asymptotic form of the GHZ state, valid only for integer spin,
has been given in Ref. [53].

The lower bound on the Wigner negativity is obtained by
ignoring the interaction between the equatorial fringes and
the antipodal spin coherent contributions. Restricting to the
interference term (A7), we see that the non-negative sine
function over the polar angle θ ∈ [0, π ] is symmetric about
the equator, while the cosine function periodically splits the
azimuthal dependence into 2 j identical regions (we also set
ϕ = 0). Focusing on where the cosine becomes negative, we
integrate (A7) over the region [0, π

2 ] ∪ 1
2 j [

π
2 , 3π

2 ], and then
multiply the result by 2 × 2 j = 4 j:

4 j sin ϑNj
2 j + 1

4π

∫ π/2

0
sin2 j (θ ) sin θdθ

∫ 3π/4 j

π/4 j
cos(2 jφ)dφ.

(A8)
The azimuthal component integrates to −1/ j. The polar com-
ponent must employ the recursive relation∫ π/2

0
sinn(θ )dθ = n − 1

n

∫ π/2

0
sinn−2(θ )dθ (A9)

for integer n, which leads to the known identity∫ π/2

0
sinn(θ )dθ = σ̃ (n)

(n − 1)!!

n!!
, (A10)

where σ̃ (n) = π/2 for even n and σ̃ (n) = 1 for odd n. The
upper bound then becomes

sin ϑNj
σ ( j)

π

(2 j)!!

(2 j − 1)!!
, (A11)

where σ ( j) = 1 for integer spin, σ ( j) = π/2 for half-integer
spin, and the result has been multiplied by −1 to yield a
positive number. The explicit special cases are obtained from
the identities n!! = 2kk! for even integer n = 2k and n!! =
(2k)!/(2kk!) for odd integer n = 2k − 1.
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