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Instantaneous equilibrium transition for Brownian systems under time-dependent temperature
and potential variations: Reversibility, heat and work relations, and fast isentropic process
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The theory of constructing instantaneous equilibrium (ieq) transition under arbitrary time-dependent temper-
ature and potential variation for a Brownian particle is developed. It is shown that it is essential to consider the
underdamped dynamics for temperature-changing transitions. The ieq is maintained by a time-dependent auxil-
iary position and momentum potential, which can be calculated for given time-dependent transition protocols.
Explicit analytic results are derived for the work and heat statistics, energy, and entropy changes for harmonic and
non-harmonic trapping potential with arbitrary time-dependent potential parameters and temperature protocols.
Numerical solutions of the corresponding Langevin dynamics are computed to confirm the theoretical results.
Although ieq transition of the reverse process is not the time-reversal of the ieq transition of the forward process
due to the odd-parity of controlling parameters, their phase-space distribution functions restore the time-reversal
symmetry, and hence the energy and entropy changes of the ieq of the reverse process are simply the negative
of that of the forward process. Furthermore, it is shown that it is possible to construct an ieq transition that
has zero entropy change at a finite transition rate, i.e., a fast ieq isentropic process, and is further demonstrated
by explicit Langevin dynamics simulations. Our theory provides fundamental building blocks for designing
controlled microscopic heat engine cycles. Implications for constructing an efficient Brownian heat engine are
also discussed.
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I. INTRODUCTION

The second law of thermodynamics, which states that a
non-equilibrium process is irreversible with a positive total
entropy production, has been a foundation concept in classical
thermodynamics for the past two centuries [1]. Breakthroughs
in theoretical non-equilibrium statistical physics for the last
three decades, such as fluctuation theorems [2,3] and stochas-
tic energetics [4,5], proved to be very successful in a broad
range of non-equilibrium processes in small systems in which
thermal fluctuations dominate. These theories have been
demonstrated to be quantitatively accurate in various exper-
imental systems such as colloidal systems [6], Brownian heat
engines [7,8], biological systems [9,10], and quantum systems
[11,12]. Due to the advances of stochastic thermodynam-
ics, we are now at a stage prepared for the applications of
stochastic energetics in microscopic thermodynamics such
as manipulating or designing transition paths with special
properties. One manifested example is the microscopic heat
engines of a colloidal particle [7,8,13] and a single atom
[14], which has been intensively studied to understand the
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efficiency at the maximum power [15,16], efficiency fluctu-
ations [17–19], and the thermodynamic uncertainty relation
between fluctuating current and entropy production [20–22].
For the adiabatic process in a Carnot cycle, the positive en-
tropy production in the transition between two equilibrium
states implies the process is in general irreversible unless the
transition path is quasistatic, i.e., reversible and zero entropy
production process can only be achieved infinitely slow such
that equilibrium is kept at every moment during the transition.
Speeding up the transition from one equilibrium state to an-
other in a time much shorter than the intrinsic relaxation time
but still can reproduce the same output as a quasistatic pro-
cess, has been a challenging issue, which requires nontrivial
control protocols of one or more parameters [23].

For the past decade, this idea of designed accelerated tran-
sition has attracted attention in quantum systems [24–26],
known as the shortcuts-to-adiabaticity. For stochastic systems,
it is possible to achieve a finite-rate transition between two
designated equilibrium states [27–29] via a non-equilibrium
path, and also to reduce the dissipated work [30]. Another
recent advance is the shortcut-to-isothermality (ScI) transition
[31,32] in which instantaneous equilibrium (ieq) at a fixed
temperature is maintained at all moments during the finite
speed transition, which was demonstrated experimentally in a
Brownian particle under a moving harmonic potential [33] and
trapping potentials of varying stiffness [34,35]. The ScI tran-
sition manifests the idea of instantaneous equilibrium, which
generalizes the notion of equilibrium, and a work relation for
the symmetry of the ScI of forward and reverse processes was
established [13].
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The novel process of ScI protocol can achieve a finite-rate
isothermal process while keeping the system at a fixed tem-
perature during the transition for time-dependent protocols
to vary the parameter(s) in a potential. However, in many
theoretical and practical situations, one would like to heat
up or cool down the system by varying the temperature in
time. The role of a temperature change protocol is funda-
mentally different from the potential-parameter protocol and
calls for the need to reformulating the ieq process to exam-
ine its possibility and derive a new recipe. For instance, as
demonstrated recently in the quasistatic adiabatic process in a
trapped Brownian particle [8], underdamped dynamics must
be considered with time-dependent temperature protocol. In
this paper, we will theoretically formulate and derive the
conditions for ieq under both time-dependent temperature and
potential-parameter protocols for an underdamped Brownian
particle under harmonic and non-harmonic trapping poten-
tials. Simulations are then carried out to verify the theoretical
results. This paper is organized as follows. In Sec. II, we
define and develop the instantaneous equilibrium protocols
for time-varying potential and temperature. Then the position,
momentum, and stochastic energetics of the ieq process are
calculated in Sec. III. Section IV introduces the ieq isentropic
and zero entropy change processes, which are not adiabatic in
contrast to the corresponding processes under the quasistatic
condition. In Sec. V, we generalize the work relation and de-
rive a new heat relation for the ieq protocols of the forward and
reverse processes. We conclude and discuss the implications
on micro heat engines and relevant experimental outlook in
Sec. VI.

II. UNDERDAMPED IEQ DYNAMICS UNDER
TIME-DEPENDENT POTENTIAL AND TEMPERATURE
PROTOCOLS: THE AUXILIARY ESCORT POTENTIAL

We consider an underdamped Brownian particle of mass m
and damping coefficient γ moving in one dimension under the
potential U0(x, λ(t )), where λ(t ) is the time-dependent proto-
col that drives the potential. The time-dependent Hamiltonian
of the system is given by

H0(x, p, λ(t )) = p2

2m
+ U0(x, λ(t )), (1)

where p is the momentum of the particle. At the same time the
temperature of the system is also changing whose protocol
is given by the inverse temperature β(t ) = 1/T (the Boltz-
mann constant is set to unity for simplicity). Similar to the
ScI recipe [31] to achieve instantaneous equilibrium (ieq),
the Ramp potential U0(x, λ(t )) is escorted by a position and
momentum-dependent auxiliary potential U1(x, p, t ) so that
the particle experiences a total Hamiltonian

H = H0(x, p, λ(t )) + U1(x, p, t ), (2)

such that the underdamped Brownian particle will be
in an ieq state obeying the Boltzmann distribution
ρieq(x, p, t ) = e−β(t )(F (λ,β )−H0(x,p,λ(t )), where F (λ, β ) =
− 1

β(t ) ln
∫

d p
∫

dxe−β(t )H0 (x,p,λ(t )) is the free energy of the
Ramp(original) system at ieq for some instantaneous value
of λ and β during the transition process. The auxiliary
potential U1(x, p, t ) can be determined for a given Ramp

potential U0(x, λ(t )) with the protocols λ(t ) and β(t ) from
the following linear partial differential equation (see details
of the derivations in Appendix A),

β̇(F − H0) + β

(
Ḟ − λ̇

∂U0

∂λ

)
= γ

∂2U1

∂ p2
+

(
∂U0

∂x
− γ

m
p

)

× β
∂U1

∂ p
− β

p

m

∂U1

∂x
, (3)

where˙denotes the derivative with respect to time. It is easy to
see the U1(x, p, t ) can be put into the form

U1(x, p, t ) = λ̇(t ) f (x, p, λ(t ), β(t ))+β̇(t )g(x, p, λ(t ), β(t )).

(4)

For a smooth switching on and off of the auxiliary potential,
one usually imposes the conditions

λ̇(0) = λ̇(τ ) = β̇(0) = β̇(τ ) = 0, (5)

which, however, are not required for the derivation of U1.
Here, τ is the duration of the transition process. Since Eq.(3)
is linear in U1 for general U0(x, λ(t )), one can employ the
power series expansion method to solve for U1. Under the
ieq protocol, the Brownian particle will experience the poten-
tial Uieq(x, p, t ) ≡ U0(x, λ(t )) + U1(x, p, t ) and will be at ieq
and obey the Boltzmann distribution ρieq(x, p, t ) at any time
(0 � t � τ ) during the transition process. In this paper, we
focus on harmonic and non-harmonic trapping potentials of
the form

U0 = 1
2λ(t )xn, n = 2, 4, 6, · · · , (6)

for explicit analytic calculations and numerical solutions of
the corresponding underdamped Langevin dynamics. The
time-dependent protocols

λ(t ) = λ(0) + �λ

2

(
1 − cos

πt

τ

)
, �λ ≡ λ(τ ) − λ(0) (7)

T (t ) = T (0) + �T

2

(
1 − cos

πt

τ

)
, �T ≡ T (τ ) − T (0)

(8)

will be employed in the simulations of the Langevin
dynamics.

A. The ieq auxiliary potential for U0 = 1
2 λ(t )xn, n = 2, 4, 6 · · · .

For the Ramp potential given by (6), the Hamiltonian of
the underdamped particle of mass m is given by

H0(x, p, λ(t )) = p2

2m
+ 1

2
λ(t )xn, n = 2, 4, 6 · · · . (9)

Here the expression for the auxiliary potential U1 under time-
dependent drivings of λ(t ) and β(t ) is given by (see detail
derivations in Appendix A)

U1(x, p, t ) = τmλ̇(t )

nλ(t )
H0(x, p − γ x, λ(t )) + τmβ̇(t )

β(t )

×
[

1

2
H0(x, p, λ(t )) + 1

n
H0(x, p − γ x, λ(t ))

]
,

(10)
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where τm ≡ m/γ is the inertia memory time of the under-
damped particle. The underdamped particle experiences the
total potential

Uieq = 1
2λ(t )xn + U1(x, p, t ) (11)

and follows the ieq Boltzmann distribution with the instanta-
neous free energy, given respectively by

ρieq(x, p, t ) = eβ(t )[F (λ(t ),β(t ))− p2

2m − λ(t )
2 xn] (12)

β(t )F (λ(t ), β(t )) = ln

[
n

2
( 1
n )

(
β(t )λ(t )

2

) 1
n
√

β(t )

2πm

]
(13)

= 1

n
ln λ(t ) + (

1

2
+ 1

n
) ln β(t ) + constant,

(14)

where 
(x) is the Gamma function. Denote the
(time-dependent) ensemble average at ieq by 〈· · · 〉 ≡∫

dx
∫

d p · · · ρieq(x, p, t ), direct calculations give

〈p2(t )〉 = m

β(t )
; 〈xn(t )〉 = 2

nβ(t )λ(t )
;

〈x2(t )〉 =
(

2

β(t )λ(t )

) 2
n 
( 3

n )


( 1
n )

. (15)

One can write the potential protocol in terms of the dimen-
sionless function �(t ) as λ(t ) = λ(0)�(t ), and express all
energy scales in terms of the initial inverse temperature β0 ≡
β(0). For U0 of the form (6), one can express all lengths in
terms of the natural spatial scale σ ≡ (β0λ(0))−

1
n , and express

time in unit of the relaxation time τR ≡ β0γ

(β0λ(0))
2
n

. Then the

Hamiltonian and potentials can be written using the dimen-
sionless space, time, and momentum [x̃ ≡ x/σ, t̃ ≡ t/τR, p̃ ≡
pτR/(mσ )] variables. Hereafter, with the understanding that
all space, time, and momentum variables are expressed in their
dimensionless form, the superscript ˜ will be dropped for no-
tation convenience. In terms of these dimensionless variables,
the time-dependent Hamiltonian consists of kinetic (K) and
potential energies, which are given by

H = H0 + U1, H0 = K + U0, β0K = α

2
p2;

α ≡ τm

τR
(16)

β0U0 = 1
2�(t )xn (17)

β0U1 = ν(t )

2n
[(αp − x)2+ α�(t )xn]

+ β̇(t )

4β(t )
[(αp)2 + α�(t )xn];

ν(t ) ≡ �̇(t )

�(t )
+ β̇(t )

β(t )
, (18)

and Eq. (15) reads

α〈p2(t )〉 = β0

β(t )
;

〈xn(t )〉 = 2β0

nβ(t )�(t )
;

〈x2(t )〉 =
(

2β0

β(t )�(t )

) 2
n 
( 3

n )


( 1
n )

. (19)

In these dimensionless units, the behavior of the underdamped
Brownian particle depends only on the parameter α (the ratio
of inertia memory and relaxation times), the potential param-
eter n, the normalized protocol �(t ), and the relative inverse
temperature protocol β(t )/β0.

B. Stochastic energetics and thermodynamics of the ieq process

The infinitesimal work (dW ) for the ieq trajectory from
time t to t + dt can be calculated directly from (17) and (18)
to give

β0dW = β0
∂ (U0 + U1)

∂t
dt (20)

=
{[

1

2

(
1 + α

n
ν(t ) + α

2

β̇(t )

β(t )

)
�̇(t )

+ α

2
�(t )

[
ν̇(t )

n
+ 1

2

d

dt

(
β̇(t )

β(t )

)]]
xn

+ ν̇(t )

2n
(αp − x)2 + 1

4

d

dt

(
β̇(t )

β(t )

)
(αp)2

}
dt . (21)

The energy change along the ieq trajectory from t to t + dt is
given by energy conservation as

β0dEieq = α

2
d p2 + β0(dU0 + dU1). (22)

The heat can then be computed using the first law of thermo-
dynamics, dQ = dEieq − dW , but may be more intuitive to
derive it from the definition of stochastic heat (see Appendix
B for details) to give

β0dQ = α

2
d p2 + β0

∂ (U0 + U1)

∂x
◦ dx + β0

∂U1

∂ p
◦ d p, (23)

where ◦ denotes the Stratonovich calculus convention. Equa-
tion (23) is more convenient for measuring the heat in
simulations or experiments, which record the stochastic tra-
jectories.

One can define the instantaneous entropy of the system,
S(t ) ≡ ∂F

∂T = β2(t ) ∂F
∂β

. Thus during the ieq transition, the in-
stantaneous free energy, entropy, total energy, and potential
energy (F (t ), S(t ), 〈E0(t )〉, 〈U0(t )〉) are well-defined state
functions (functions that depend only on the state parameters
λ and β at time t). It is easy to show that

〈E0(t )〉 ≡ 〈H0(t )〉 = F (t ) + T (t )S(t ), (24)

manifesting the ieq properties. Furthermore, 〈Eieq(t )〉 =
〈E0(t )〉 + 〈U1(t )〉, revealing that additional energy input,
〈U1(t )〉, is required to maintain the ieq.
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It is worth noting that for smooth protocols satis-
fying Eq. (5), �U1 ≡ 〈U1(τ )〉 − 〈U1(0)〉 = 0, and hence
�Eieq = �E0 = �F + �(T S). Invoking the first law of
thermodynamics, �Eieq = 〈Q〉 + 〈W 〉, and using �(T S) =∫ τ

0 T (t )Ṡ(t )dt + ∫ τ

0 S(t )Ṫ (t )dt , one gets

〈W 〉 −
(

�F +
∫ τ

0
S(t )Ṫ (t )dt

)
=

∫ τ

0
T (t )Ṡ(t )dt − 〈Q〉.

(25)
One can easily show that the quantity

�� ≡ �F +
∫ τ

0
S(t )Ṫ (t )dt =

∫ τ

0
dt λ̇

∂F

∂λ
=

∫ τ

0
dt

〈
∂H0

∂t

〉
,

(26)

which can be interpreted as the mean work in the correspond-
ing Ramp process in the quasistatic limit (reversible). Hence
the difference 〈W 〉 − �� ≡ Wdiss is the dissipated (or irre-
versible) work of the ieq process. In a similar spirit, T Ṡdt is
the instantaneous heat (the reversible part) production for the
Ramp process in the quasistatic limit. Thus,

∫ τ

0 T (t )Ṡ(t )dt −
〈Q〉 ≡ −Qdiss in the RHS (25) can be interpreted as the dissi-
pated heat that flows out of the system for the ieq transition.
Equation (25) implies that dissipated work on the system
equals the dissipated heat that flows out of the system for
the ieq process, i.e., Wdiss = −Qdiss, which can be viewed as a
generalization of the equilibrium process in which both Wdiss

and Qdiss vanish.

III. POSITION, MOMENTUM, AND ENERGETIC
STATISTICS OF IEQ PROCESS UNDER TIME-DEPENDENT

TEMPERATURE AND STIFFNESS CHANGES

Under ieq, the system will obey Boltzmann distribution of
the Hamiltonian (9) with the distribution ρieq(x, p, t ) factor-
ized into the position distribution and a Gaussian momentum
distribution:

ρieq(x, p, t ) = P(x, t )PG(p, β(t )) (27)

PG(p, β(t )) ≡
√

αβ(t )

2πβ0
e− αβ(t )

2β0
p2

. (28)

Remarkably, the momentum distribution takes a rather uni-
versal Gaussian form that is independent of U0 [and hence
independent of the potential protocol λ(t )]. Furthermore,
since the mean kinetic energy β0〈K〉 = α〈p2〉/2 and 〈p2〉 is
given by the variance of PG(p, β ) in (28), one has the general
universal result for the mean instantaneous kinetic energy
under ieq:

〈K (t )〉 = 1
2 T (t ), (29)

which depends only on the temperature protocol and is
independent of α, i.e., even in the over-damped limit of
α → 0. There are always kinetic energy changes associated
with temperature variations. Equation (29) can be viewed
as an instantaneous thermal energy partition principle for
the Brownian particle under instantaneous temperature T (t ),
manifesting the nature of the ieq process.

Here we derive analytic results for the ieq process under
the Ramp potential of the form (17). Direct calculation gives

the ieq position distribution,

P(x, t ) = n

2
( 1
n )

(
β(t )�(t )

2β0

) 1
n

e− β(t )�(t )
2β0

xn

. (30)

The position and momentum distributions of an underdamped
Brownian particle under harmonic and non-harmonic Ramp
potentials with various protocols at different times measured
from Langevin dynamics simulations are shown in Fig. 1. The
momentum distributions [Figs. 1(b), 1(e), and 1(h)] are indeed
zero-mean Gaussian with a time-dependent variance that fol-
lows the instantaneous temperature T (t ) but independent of
λ(t ) and U0, as given by (28) (curves). On the other hand,
the position distributions [Figs. 1(a), 1(d), and 1(g)] faithfully
follow the Boltzmann form of e−β(t )U0(x,λ(t )) at all times for
the harmonic and non-harmonic U0 as given by (30). The time
evolution of the variances of position and momentum during
the entire ieq transition are also shown [Figs. 1(c), 1(f), and
1(i)], indicating that both variances are determined by the
instantaneous values of β and λ that agree perfectly with the
theoretical results in (19). The instantaneous position and mo-
mentum variances under the corresponding Ramp protocols
are also displayed for comparison. Under the Ramp protocols,
the position and momentum of the Brownian particle respond
much slower than the relatively fast transition rate due to both
the inertia (τm) and viscous (τR) effects, and will relax to the
final equilibrium state at a time much later than τ .

To further verify that the position and momentum are in-
deed distributed independently, the cross-correlations of x and
p are measured in the simulations for harmonic [Fig. 2(a)]
and non-harmonic [n = 4, Fig. 2(b)] potentials under different
protocols. The results indeed show clearly that 〈x2(t )p2(t )〉 =
〈x2(t )〉〈p2(t )〉 and 〈x(t )p(t )〉 = 〈x(t )〉〈p(t )〉 = 0, confirming
the x and p are independently distributed under ieq processes.
In addition, 〈x2(t )〉〈p2(t )〉 shows perfect agreement with the
analytic results (solid curve) in Eq. (19).

With Eq. (19), the instantaneous mean energies and entropy
along the ieq path can be easily calculated to give

〈K (t )〉 = 1

2β(t )
,

〈U0(t )〉 = 1

nβ(t )
,

〈E0(t )〉 ≡ 〈H0(t )〉 =
(

1

2
+ 1

n

)
1

β(t )
(31)

〈Eieq(t )〉 ≡ 〈H (t )〉 =
(

1

2
+ 1

n

)
1

β(t )
+ 〈U1(t )〉 (32)

〈U1(t )〉 = α(α + 2
n )

2β(t )

(
ν(t )

n
+ β̇(t )

2β(t )

)

+ 

(

3
n

)



(
1
n

) ν(t )

2nβ0

(
2β0

β(t )�(t )

) 2
n

(33)

S(t ) = −1

n
ln �(t ) −

(
1

2
+ 1

n

)
ln

β(t )

β0
+ const. (34)

F (t ) = 〈E0(t )〉 − T (t )S(t ). (35)

It is worth noting that (31) can be interpreted as an instanta-
neous “ equi-partition” energy principle (the energy 〈E0〉 is
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FIG. 1. Position and momentum statistics of an underdamped Brownian particle under ieq protocol for the potential U0(x, λ(t )) = 1
2 λ(t )xn

for n = 2 and n = 4, under protocols (7) and (8). (a) Time-dependent position distributions P(x, t ) for three different times during the transition
for the case of pure heating with T (τ )/T (0) = 6 while the stiffness is kept constant at unity. The solid curves are the corresponding Boltzmann
distributions verifying the ieq nature. (b) Time-dependent momentum distributions P(p, t ) for three different times in (a). (c) The position and
momentum variances for the case in (a) plotted against the transition period τ for the ieq process. The variances for the Ramp process are also
shown for comparison. The curves show the respective theoretical results. (d) Similar to (a) for T (τ )/T (0) = 1

3 and the stiffness increases as
λ(τ )/λ(0) = 3. (e) Similar to (b) for the case in (d). (f) Similar to (c) for the protocols in (d). (g) Position distributions with the same protocols
as in (a) but for n = 4 non-harmonic potential. (h) Momentum distributions for the case in (g). (i) The position and momentum variances for
the case in (g) plotted against the transition period τ for the ieq process for the non-harmonic potential.

equally partitioned into kinetic and potential energies only
for the harmonic potential case) for the particle under H0,
echoing the nature of the ieq process. Figure 3 shows the
instantaneous mean kinetic and potential energies in the ieq
processes measured in Langevin simulations (symbols) for
harmonic [Fig. 3(a)] and non-harmonic [n = 4, Fig. 3(b)]
potentials under different protocols. The corresponding the-
oretical results from (31) are also displayed (curves), showing
very good agreement.

We further consider the change of energies for the whole
ieq process from t = 0 to t = τ . For smooth switching of
the time-dependent protocols, the boundary conditions (5)
hold and the auxiliary potential vanishes at t = 0 and t = τ .

The change in the kinetic and auxiliary potential energies are
universally (i.e., independent of U0) given by

〈�K〉 = 1
2�T, 〈�U1〉 = 0; �T ≡ T (τ ) − T (0). (36)

And for U0 of the form (6), the energy change is easily com-
puted to give

〈�Eieq〉 = 〈�E0〉 =
(

1

2
+ 1

n

)
�T, 〈�U0〉 = 1

n
�T . (37)

Notice that the above energies depend only on the final and
initial temperature difference and are independent of α, τ , and
the protocols λ(t ) and β(t ).
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FIG. 2. Equal-time cross-correlations of the position and momentum plotted as a function of time during the ieq process to illustrate
that the position and momentum distributions are independent. (a) Harmonic potential with the protocols as in Fig. 1(d). The solid curve,
T 2(t )/λ(t ) is the theoretical result of 〈x2(t )〉〈p2(t )〉. (b) n = 4 non-harmonic potential with the protocols as in Fig. 1(g). The theoretical result
of 〈x2(t )〉〈p2(t )〉 given by (19) is shown by the solid curve.

The effect of inertia is revealed as the parameter α is
varied. Figure 4(a) shows the energy change and heat into
the system for the protocol of pure heating under ieq and
Ramp transitions. Since λ does not change in this case and
there is no work for the Ramp protocol, hence 〈�E〉 = Q
for the Ramp case. For the corresponding ieq process, 〈�E〉
is independent of α with a value in good agreement with
Eq. (36) (dashed horizontal line) for given initial and final
temperatures. However, extra work is needed to maintain ieq,
resulting in heat dissipation whose magnitude increases with
α (more work is required to maintain a more massive Brow-
nian particle to stay at ieq). The mean kinetic energy change
is also independent of α with the same values for both har-
monic and non-harmonic potentials, which agrees perfectly
with Eq. (36). In particular, even for the over-damped limit of
α → 0, there is a significant kinetic energy contribution for
both the Ramp and ieq processes, exemplifying the fact that
the momentum degree of freedom (underdamped dynamics)
is essential for any temperature changing protocol [8].

Furthermore, the fractions of kinetic and potential energy
contributions in the ieq process,

〈�K〉
〈�Eieq〉 = n

n + 2
,

〈�Uieq〉
〈�Eieq〉 = 2

n + 2
(38)

are constants and independent of the initial and final tem-
peratures. Figure 4(b) shows the fraction of kinetic energy
contribution to the total energy change with the time-
dependent protocols of both λ and β. For ieq processes, the
ratio is a constant and independent of α, and agrees well
with (38) (horizontal dot-dashed lines). On the other hand, for
the Ramp process, the kinetic and potential energy changes
depend on the protocols, the duration τ , and α. 〈�K〉/〈�E〉
remains a finite fraction for α → 0 indicating the necessity
of underdamped dynamics even for the over-damped case in
both ieq and Ramp processes with temperature changes.

The entropy change of the system for the ieq process can
be easily calculated to give

�S = −1

n
ln �(τ ) +

(
1

2
+ 1

n

)
ln

T (τ )

T (0)
. (39)

For pure heating under ieq, �S > 0 as expected, but the
entropy change can be negative upon simultaneous strong
compression. More details on the properties of entropy under
the ieq process will be investigated in the next section.

The stochastic work and heat in an ieq trajectory can be
measured using Eqs. (21) and (23), and their distributions are
shown in Fig. 5 for harmonic U0 under two sets of protocols.

FIG. 3. Time variation of the mean potential and kinetic energies of an underdamped Brownian particle under ieq protocol for the potential
U0(x, λ(t )) = 1

2 λ(t )xn under protocols (7) and (8) with T (τ )/T (0) = 1
3 and the λ(τ )/λ(0) = 3. (a) For the harmonic potential n = 2. The solid

curve shows the theoretical result of T (t )/2 for both 〈U0(t )〉 and 〈K (t )〉. (b) For the non-harmonic potential n = 4. The solid and dashed curves
show the theoretical results of T (t )/4 and T (t )/2 for 〈U0(t )〉 and 〈K (t )〉, respectively.
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FIG. 4. (a) Mean energy and heat change plotted as a function of α ≡ τm/τR of an underdamped Brownian particle under ieq and Ramp
protocols with τ = τR, for the harmonic potential U0(x, λ(t )) = 1

2 λ(t )x2 under protocols (7) and (8) with T (τ )/T (0) = 6 and λ kept constant.
(b) Mean fraction of kinetic energy plotted as a function of τm/τR of an underdamped Brownian particle under ieq and Ramp protocols for the
harmonic and non-harmonic (n = 4) potentials. The protocols are the same as in (a).

The work and heat distributions for the corresponding Ramp
processes are also measured for comparison. In general, the
distribution of ieq work is much broader than that of the
Ramp case due to the extra work done on the system by the
auxiliary potential U1 to maintain ieq. For example, there is
no work in the Ramp transition for the case of pure heating
up [Fig. 5(a)], but the distribution is broad and has a long tail
for the corresponding ieq transition. The ieq heat distribution
is also very broad and skewed strongly to the negative values,
indicating large heat flow (dissipated) out of the system. The
mean work in the ieq process can be computed theoretically
by taking the ensemble average of (21) and using (15) to give

β0〈W 〉 =
∫ τ

0
dt

〈
∂β0(U0 + U1)

∂t

〉

=
∫ τ

0
dt

β0

β(t )

[
1

n

(
1 + αν(t )

n
+ α

2

β̇(t )

β(t )

)
�̇(t )

�(t )

+α

(
1

2
+ 1

n

)(
ν̇(t )

n
+

(
β̇(t )

β(t )

)2
)]

+ 

(

3
n

)
n2


(
1
n

) ∫ τ

0
ν2(t )

(
2β0

β(t )�(t )

) 2
n

dt, (40)

in which the integrals can be evaluated numerically. From (37)
and (40), the theoretical mean heat can be obtained from the
first law of thermodynamics

〈Q〉 =
(

1

2
+ 1

n

)
�T − 〈W 〉. (41)

Figure 6 shows the mean heat and work for the ieq transition
as a function of the transition duration τ . The results for the
corresponding Ramp transition are also displayed for compar-
ison. For fast transitions (small τ ), much more work is done on
the system under ieq, and at the same time a large amount of
heat is dissipated (flow out). As τ becomes large, the mean
heat and mean work of both the Ramp and ieq processes
approach their quasistatic values. The mean work and heat
under ieq agree well with the theoretical values given by (40)
(solid curve) and (41) (dashed curve), respectively.

IV. INSTANTANEOUS EQUILIBRIUM ISENTROPIC
AND ZERO ENTROPY-CHANGE PROCESSES

Because of the ieq nature of the Brownian particle un-
der the action of U0 + U1, the particle obeys Boltzmann
statistics with the instantaneous free energy F (λ(t ), β(t )).
The instantaneous entropy of the system is given by

FIG. 5. Work and heat distributions of an underdamped Brownian particle under ieq and Ramp protocols for the harmonic potential
U0(x, λ(t )) = 1

2 λ(t )x2 under protocols (7) and (8). W and Q are in units of T (0). (a) The protocol of pure heating with T (τ )/T (0) = 6 and
λ kept constant. There is no work for the Ramp case and the distribution is a δ−function represented by the vertical straight line at W = 0.
(b) For protocols with T (τ )/T (0) = 1

3 and λ(τ )/λ(0) = 3.
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FIG. 6. Mean work and heat plotted as a function of the transition period τ of an underdamped Brownian particle under ieq and Ramp
protocols for the harmonic potential U0(x, λ(t )) = 1

2 λ(t )x2. (a) The case of pure heating with T (τ )/T (0) = 6 with λ kept constant. There
is no work for the Ramp case. The curves show the respective theoretical results. (b) Similar to (a) but for the case of T (τ )/T (0) = 1

3 and
λ(τ )/λ(0) = 3.

S(t ) = β2(t )φ(λ(t ), β(t )), where φ(λ, β ) ≡ ∂F
∂β

. Since we
have the time-dependent protocols for λ(t ) and β(t ), for given
β(t ) one can adjust λ(t ) (and vice versa) to achieve S to
be a constant independent of time, i.e., to achieve an isen-
tropic and ieq process. λ(t ) can be determined simply by
solving β2(t )φ(λ(t ), β(t )) =constant= β2

0φ(λ(0), β0). Such
a process has the unique properties of ieq and no entropy
change, but can be achieved in a finite (short) duration τ . This
is in marked distinction from the usual isentropic scenario
that can only be achieved in the reversible process under the
quasistatic limit(infinitely slow).

For U0 = 1
2λ(t )xn considered here, one can easily derive

the condition for the isentropic ieq process using (34) to give

λ(t )[β(t )]1+ n
2 = constant, (42)

with the corresponding auxiliary potential is then given by

β0U1 = 1

2(n + 2)

�̇(t )

�(t )
(x2 − 2αxp). (43)

The momentum variance is universally given by (19) and the
position variance can be calculated to give

α〈pisen
2(t )〉 = T (t )

T (0)
= [�(t )]

2
n+2 ,

〈xisen
2(t )〉 = 2

2
n 
( 3

n )


( 1
n )

β(t )

β0
= 
( 3

n )


( 1
n )

2
2
n

[�(t )]
2

n+2

. (44)

The corresponding work for the ieq isentropic process is

β0〈Wisen〉 = n + 2

2n
�T + 2

2
n

n + 2


( 3
n )


( 1
n )

∫ τ

0

�̇2

�
2(n+3)

n+2

dt . (45)

The associated heat can be calculated using the first law
〈Qisen〉 = 〈�E〉 − 〈Wisen〉 together with (36) to give

β0〈Qisen〉 = − n + 2

β022(1− 1
n )


( 3
n )


( 1
n )

∫ τ

0

β̇2(t )

β(t )
dt . (46)

Contrary to the case of the quasistatic process, the ieq isen-
tropic process is not adiabatic with 〈Qisen〉 < 0, i.e., heat

always flows out (dissipated) of the system. Figure 7(a)
shows the instantaneous Shannon (Gibbs) entropy, S(t ) ≡
− ∫

dxd pρieq(x, p, t ) ln ρieq(x, p, t ), during the ieq transition
under the isentropic conditions (42) measured from the
stochastic trajectories for harmonic and non-harmonic U0.
It clearly shows that the entropy indeed is maintained at a
constant value. The heat, work, and total entropy change for
the ieq isentropic transition with a temperature increased by a
factor of 2 are shown in Fig. 7(b), together with the results for
the Ramp and ieq of only the same temperature increase (pure
heating with λ fixed). For fast transition rates, the magnitude
of the heat flowing out under the isentropic ieq condition is
much less than that of the ieq pure heating transition, indicat-
ing that isentropic ieq transition is also a good choice for low
heat dissipation.

Furthermore, one can construct an ieq process with zero
entropy change but a time-vary instantaneous S(t ), i.e., �S =
0 and Ṡ �= 0. The protocol of λ(t ) can be arbitrary, using (39)
one just need to impose the condition for the final value of
λ(τ ) as

�(τ ) =
[

T (τ )

T (0)

] n+2
2

. (47)

Figure 7(c) shows the simulation results of the mean instan-
taneous entropy of such a protocol with the time-varying
heating protocol (8) and harmonic potential protocol (7), but
with the final value of λ chosen according to (47). As an-
ticipated, �S(0) = S(τ ) but S(t ) varies during the transition
resulting in a zero entropy change process. The mean heat,
work, and entropy change for the zero entropy change ieq
process are plotted as a function of the transition period τ

in Fig. 7(d), manifesting that indeed �S vanishes within the
uncertainties. The mean heat, work, and entropy change for
the corresponding Ramp process with pure heating of the
same protocol are also shown for comparison. The entropy
change of the system for the Ramp process is always positive,
and the associated mean heat dissipated and mean work are
considerably larger than that of the zero entropy change ieq
process.
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FIG. 7. (a) Mean instantaneous entropy of an underdamped Brownian particle under ieq and isentropic protocols for the potential
U0(x, λ(t )) = 1

2 λ(t )xn with λ(t ) = λ(0) + �λ

2 (1 − cos πt
τ

), and T (t )/T (0) = [λ(t )/λ(0)]
2

n+2 . λ(t )/λ(0) = 3. The corresponding protocols for
T (t ) and λ(t ) are also shown (curves). (b) Mean heat, work, and entropy changes plotted as a function of the ieq transition period τ . The
underdamped Brownian is heated up with a temperature increase by a factor of two under ieq processes. For the ieq and isentropic process, the
stiffness is varied according to (42). Results for the case of pure heating with the same temperature protocol are also shown for comparison.
(c) Mean instantaneous entropy of an underdamped Brownian particle under ieq and protocols designed to have zero entropy change but Ṡ �= 0.
T (t )/T (0) = 1 + 1

2 ( T (τ )
T (0) − 1)(1 − cos πt

τ
) and �(t ) = 1 + 1

2 ([ T (τ )
T (0) ]

n+2
2 − 1)(1 − cos πt

τ
). T (τ )

T (0) = 6. The instantaneous entropy S(t ) changes
with t during the ieq transition. The corresponding scaled protocols for T (t ) and �(t ) are also shown (curves). (d) Mean heat, work, and
entropy change plotted as a function of the ieq transition period τ for the case in (c). The entropy change for the ieq process is zero (horizontal
dashed line) within the uncertainties. The mean heat, work, and entropy change for the corresponding Ramp process are also shown for
comparison.

V. TIME-REVERSED PROTOCOLS: WORK AND HEAT
RELATIONS FOR IEQ PROCESSES

Here we consider the time-reversed protocols, λR(t ) =
λ(τ − t ) and βR(t ) = β(τ − t ). In general, the ieq path of the
reversed protocols will be different from the time-reversed
trajectory of the ieq forward process due to the odd-parity
nature of λ̇ and β̇ in the auxiliary potential U1 in (4). The
subscript ieqf (ieq forward) is used to differentiate it from
the ieqr (ieq reverse) protocol. The properties of the position
and momentum distribution ρieq(x, p, t ) and the energetics of
the ieq of the forward and reversed protocols are examined as
follows. Due to the ieq nature of the position and momentum
statistics, the time dependence of the distribution ρieq(x, p, t )
is through the instantaneous values of λ(t ) and β(t ), and hence
the distribution function of the ieq paths of the time-reverse
protocols is the same as the time-reversal of the ieq forward
distribution function:

ρieqr (x, p, t ) = ρieqf (x, p, τ − t ), (48)

i.e., the path ensembles cancel out the odd-parity in U1 and
restore the time-reversal symmetry of the ieq distribution. In

addition, since the 〈E0〉, 〈U0〉, and S(t ) are state functions,
one can easily see that the energy and entropy changes of
the ieqf and ieqr processes obey the following time-reversal
symmetry:

〈�Eieqr〉 = −〈�Eieqf〉, 〈�Kieqr〉 = −〈�Kieqf〉,
〈�Uieqr〉 = −〈�Uieqf〉, �Sieqr = −�Sieqf , (49)

which can be directly verified using (36). On the other hand,
although Q + W = 〈�Eieq〉, which is similar to 〈�Kieq〉 +
〈�Uieq〉 = 〈�Eieq〉, the work and heat for the ieq process
do not obey similar time-reversal relations as in Eq. (49).
However, remarkably one can show in the next section that
the mean dissipated work and heat are the same for ieqf and
ieqr:

Qdiss
ieqr = Qdiss

ieqf , W diss
ieqr = W diss

ieqf . (50)

Figures 8(a) and 8(b), respectively, plot the position and mo-
mentum distributions for ieqf and ieqr processes at t and
τ − t for t = τ/4 and t = 3τ/4, verifying the time-reversal
symmetry of the distributions: Pieqf (x, t ) = Pieqr (x, τ − t ) and
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FIG. 8. (a) Position distributions of the ieqf and ieqr at times t = 0.25τ and 0.75τ . U0 is harmonic under protocols (7) and (8) with
T (τ )/T (0) = 1

3 and λ(τ )/λ(0) = 3. The theoretical distributions given by (30) are also shown (curves). (b) Momentum distributions of the
ieqf and ieqr as in (a). (c) Time dependence of position and momentum the variances of the ieqf and ieqr processes. The vertical dashed
line marks t = τ/2 is a guide to the eye for the time-reversal symmetry. (d) The mean kinetic and total energy changes for the ieqf and ieqr
processes plotted as a function of τ , verifying Eq. (49). The horizontal lines are the theoretical values given by (37).

PGieqf (p, t ) = PGieqr (p, τ − t ). The entire time evolution of the
position and momentum variances for ieqf and ieqr are shown
in Fig. 8(c), clearly showing that 〈x2

ieqf (t )〉 = 〈x2
ieqr (τ − t )〉

and 〈p2
ieqf (t )〉 = 〈p2

ieqr (τ − t )〉. The kinetic and total energy
changes for the ieqf and ieqr (times a factor of –1) processes
are plotted as a function of τ in Fig. 8(d), verifying that the
time-reversal properties as given by (49) for energy changes
indeed holds for ieq processes.

The ieq work and heat relations for forward and reverse
processes are related for general protocols, and the proof of
the work and heat relations is outlined here. Under the ieq
protocol, the Ramp potential U0(x, λ(t )) is escorted by an
auxiliary potential given by (4) so that the particle experiences
a total potential of Uieqf = U0 + U1. Since the work rate under
the ieqf protocol is Ẇ = ∂Uieqf/∂t , the mean work under ieqf
is given by

〈Wieqf〉 =
∫ τ

0
dt

〈
∂Uieqf

∂t

〉

=
∫ τ

0
dt

{
λ̇

〈
∂U0

∂λ

〉
+ λ̈〈 f 〉 + λ̇2

〈
∂ f

∂λ

〉

+ β̈〈g〉 + β̇2

〈
∂g

∂β

〉
+ β̇λ̇

(〈
∂g

∂λ

〉
+

〈
∂ f

∂β

〉)}
, (51)

where 〈· · · 〉 is the average over the ieq Boltzmann distribution
eβ(t )[F (λ)−H0(x,p,λ(t ))] due to the nature of ieq. Under the ieq of

the reverse protocol, λR(t ) = λ(τ − t ) and βR(t ) = β(τ − t ),
the particle will experience a total potential similar to (4) as

Uieqr = U0(x, λR(t )) + λ̇R(t ) f (x, p, λR(t ), βR(t ))

+ β̇R(t )g(x, p, λR(t ), βR(t )). (52)

Under the ieq of the reverse process, the work rate is Ẇieqr =
∂Uieqr/∂t . Then, the mean work is calculated in a similar way,
but the average is over the ieq Boltzmann distribution of the
reverse protocol eβR (t )[F (λR,βR )−H0(x,λR (t ))] denoted by 〈· · · 〉R:

〈Wieqr〉R =
∫ τ

0
dt

〈
∂Uieqr

∂t

〉
R

=
∫ τ

0
dt

{
−λ̇

〈
∂U0

∂λ

〉
+ λ̈〈 f 〉 + λ̇2

〈
∂ f

∂λ

〉

+ β̈〈g〉 + β̇2

〈
∂g

∂β

〉
+ β̇λ̇

(〈
∂g

∂λ

〉
+

〈
∂ f

∂β

〉)}
. (53)

Subtracting (51) from (53) gives the work relation

〈Wieqf〉 = 〈Wieqr〉 + 2��, (54)

where �� is given by (26). Since Wdiss ≡ 〈W 〉 − ��, thus
the dissipated work for ieqf and ieqr are the same. The sub-
script of the average of the ieq of the reverse process, 〈· · · 〉R,
can be dropped if no confusion arises.
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FIG. 9. Work and heat in the ieq of the forward and reverse processes of a Brownian particle under harmonic potential for (a) protocols as
in Figs. 6(a), and (b) for protocols as in Fig. 6(b). (c) Normalized 〈Wieqf〉 vs 〈Wieqr〉 verifying the work relation. The dashed line is the theoretical
result. (i) denotes the protocols as in Fig. 6(b), (ii) denotes the protocol of pure compression of � changes from 1 to 3. (iv) denotes the same
protocols as (i) but for a non-harmonic (n = 4) potential. (d) Normalized 〈Qieqf〉 vs 〈Qieqr〉 verifying the heat relation. Another protocol (iii)
[protocols as in Fig. 6(a)] is also included.

Using the first law of thermodynamics, �Eieq = 〈Q〉 +
〈W 〉, for ieqf and ieqr, it is easy to show by similar calculations

〈Qieqf〉 = 〈Qieqr〉 + 2
∫ τ

0
T (t )Ṡ(t )dt, (55)

i.e., the dissipated heat (defined as Qdiss ≡ 〈Q〉 −∫ τ

0 T (t )Ṡ(t )dt) is the same for ieqf and ieqr processes.
Furthermore, from (54) and (55), it is easy to see that Eq. (50)
holds.

For U0 = 1
2λ(t )xn, the direct calculation gives

�� = 1
n

∫ τ

0 dt �̇(t )
β(t )�(t ) and

∫ τ

0 T (t )Ṡ(t )dt = ( 1
2 + 1

n )�T −
1
n

∫ τ

0 dt �̇(t )
β(t )�(t ) = 〈Eieq〉 − ��. Adding up (54) and (55)

gives 〈Wieqf〉 + 〈Qieqf〉 − 〈Eieqf〉 = 〈Wieqr〉 + 〈Qieqr〉 − 〈Eieqr〉,
which is consistent with the first law of thermodynamics for
the ieqf and ieqr processes. Figure 9(a) and 9(b) show that
the mean work and heat of the ieqf and ieqr processes do
not obey time-reversal symmetry, contrary to the energy and
entropy changes. For the case of pure heating [Fig. 9(a)] the
mean works for ieqf and ieqr are the same, but are different
if λ̇ �= 0 [Fig. 9(b)]. Moreover, the mean heats for ieqf and

ieqr are different if there is a temperature-changing protocol.
Figure 9(c) plots the normalized ieqf mean work against
that of ieqr for two different protocols for harmonic and
non-harmonic potentials, showing that the work relation (54)
(dashed straight line) is well satisfied. The heat relation (55)
is illustrated to hold perfectly in Fig. 9(d) similarly.

VI. CONCLUSION AND OUTLOOK

We have theoretically derived and numerically con-
firmed the instantaneous equilibrium transition under arbitrary
time-dependent temperature and potential variations for an
underdamped Brownian particle. The ieq protocols allow the-
oretical derivations of various physical quantities of interest
relatively easily, and can manipulate λ(t ) and β(t ) for special
purposes, such as the ieq protocols of isentropic and zero
entropy change processes. Such a process with no (net) en-
tropy change can be viewed as a reversible process but can
be carried out at a finite rate (not quasistatic). We found that
the ieq isentropic process is not adiabatic with 〈Qisen〉 < 0,
i.e., heat always flows out (dissipated) of the system contrary
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to that of the quasistatic process. We also derived the work
relation and heat relation for the ieq process, proving that the
mean dissipated work and heat for the ieq protocols of the
forward process are the same as those of the reverse process.

The instantaneous entropy S(t ) defined in Sec. III and the
entropy change calculated in Sec. IV are the entropy of the
system, i.e., the Brownian particle under ieq. To achieve ieq,
the system is coupled to the external driving via the auxiliary
potential, which has both energy and entropy costs. Of course,
the total entropy production (entropy change of the system +
environment) is positive. Indeed, under ieq and isentropic con-
ditions, the system has no change in its entropy and behaves
as if it is reversible. But the system is only “3endo-reversible”
and is coupled dissipatively to the external driving and envi-
ronment.

In deriving the auxiliary potential U1 to achieve ieq, the
stochastic force acting on the underdamped Brownian par-
ticle is a Gaussian white noise whose variance is taken
to be 2γ T (t ) (see Appendix A), i.e., the Einstein relation
is assumed to hold instantaneously and thus one expects
Fluctuation-dissipation theorem to hold instantaneously under
ieq. This also is consistent with the instantaneous equi-
partition result derived in (29), which holds universally. Of
course, it will be instructive to calculate the correlation func-
tions or instantaneous diffusion coefficient explicitly and also
derive the response function under ieq, which will be carried
in our future work.

One possible application of the ieq process of the under-
damped Brownian particle is the construction of a finite-rate
colloidal heat engine, which consists of the ieq protocols
of two isothermal plus heating and cooling processes. Since
fluctuations in micro-scales cannot be ignored, a deep under-
standing of their physical properties is vital to the working
principles and efficiencies of these micro-engines. To realize
the finite-time heat engine, independent control of tempera-
ture and potential is essential for constructing transition paths
in engine cycles. The ieq of the isothermal process has al-
ready been implemented [34,35] in colloid experiments while
realizing ieq protocols involving heating and cooling is chal-
lenging. With the protocols of time-dependent potential and
temperature considered in this paper, it is possible to realize
an ieq of isentropic or zero entropy change process. However,
we anticipate several experimental barriers to be overcome as
one tries to realize the heating and cooling protocols in an
underdamped colloidal system. For example, the time scale
related to inertial force is about 10−3 ∼ 10−4 smaller than that
of the position acquisition time in the experiment, indicating
that the colloidal system is the overdamped one. On the other
hand, the RLC electric circuit system (under Johnson-Nyquist
noise) has the same form of Langevin equations analogous to
confined Brownian particles, with the charge on the capacitor
corresponds to the position variable [36,37]. Experiments with
the driven RLC electric circuit influenced by thermal noise
should be more feasible [38,39] because one can adjust the
time scale related to inertial force in the circuit to be longer
than the measurement time, resulting in an underdamped sys-
tem, thanks to the wide range of the resistance of the resistors
and the inductance of the inductors. Nevertheless, achieving
these experimental goals successfully will open up the broad
avenue of designing microscopic heat engine cycles that can

run in a much faster cycle time due to the nature of the ieq
processes. In these cycles, the distribution function of the
system is well determined at any time, which might overcome
the shortage of traditional models of finite-rate heat engines.
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APPENDIX A: DERIVATION OF THE AUXILIARY
POTENTIAL U1(x, p, t )

In order to achieve instantaneous equilibrium (ieq) under
the Ramp potential U0(x, λ(t )), a position and momentum
dependent auxiliary potential U1(x, p, t ) is introduced in such
a way that the particle experiences a total Hamiltonian

H = H0(x, p, t ) + U1(x, p, t )

= p2

2m
+ U0(x, λ(t )) + U1(x, p, t ), (A1)

and the underdamped Brownian particle will be at ieq that
follows the Boltzmann distribution,

ρieq(x, p, t ) = e−β(t )(F (λ,β )−H0(x,p,λ(t )), (A2)

where F (λ, β ) = − 1
β(t ) ln

∫
d p

∫
dxe−β(t )H0(x,p,λ(t )) is the free

energy of the Ramp(original) system at ieq for some instan-
taneous value of λ and β during the transition process. The
canonical (Langevin) equations for general position and mo-
mentum dependent potential reads

ẋ = ∂H

∂ p
= p

m
+ ∂U1

∂ p
(A3)

ṗ = −∂H

∂x
− γ ẋ + ξ (t )

= −∂U0

∂x
− ∂U1

∂x
− γ

(
p

m
+ ∂U1

∂ p

)
+ ξ (t ), (A4)

where derivative with respect to t is denoted by ,̇ and ξ (t )
is the random (Gaussian white) force with 〈ξ (t )〉 = 0 and
〈ξ (t )ξ (t ′)〉 = 2γ

β(t )δ(t − t ′)
U1 can be determined for a given Ramp potential

U0(x, λ(t )) with the protocols λ(t ) and β(t ). Here we
shall derive the equation to determine U1 for any given
time-dependent potential parameter and inverse temperature
protocols λ(t ) and β(t ). And for the Ramp potential of the
form U0(x, λ(t )) = 1

2λ(t )xn, expression for U1 is derived ex-
plicitly.

U1 is determined by the requirement that ρieq(x, t ) must
satisfy the Kramers equation

∂ρieq

∂t
= − ∂

∂x

[
ρieq

(
p

m
+ ∂U1

∂ p

)]
+ ∂

∂ p

[
ρieq

(
∂U0

∂x
+ ∂U1

∂x

+ γ p

m
+ γ

∂U1

∂ p
+ γ

β(t )ρieq

∂ρieq

∂ p

)]
. (A5)
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Upon substituting (A2) into (A5), one obtains

γ

β

∂2U1

∂ p2
+

(
∂U0

∂x
− γ p

m

)
∂U1

∂ p
− p

m

∂U1

∂x

= β̇

β
(F − H0) + β̇

∂F

∂β
+

(
∂F

∂λ
− ∂U0

∂λ

)
λ̇, (A6)

which is a linear PDE for U1(x, p, t ). Because of the linear
dependence of λ̇ and β̇ in the RHS of (A6), it is easy to see
that U1 is of the form given by (4) with the f and g determined
from the decoupled linear PDEs

γ

β

∂2 f

∂ p2
+

(
∂U0

∂x
− γ p

m

)
∂ f

∂ p
− p

m

∂ f

∂x
= ∂F

∂λ
− ∂U0

∂λ
(A7)

γ

β

∂2g

∂ p2
+

(
∂U0

∂x
− γ p

m

)
∂g

∂ p
− p

m

∂g

∂x
= 1

β
(F − H0) + ∂F

∂β
,

(A8)

which can be solved separately (say using the power-series
expansion method). We now solve f and g for the case of
U0(x, λ) = 1

2λxn. In this case ∂U0
∂x = n

2λxn−1, F (λ, β ) is given
by (13) and hence ∂F

∂λ
= 1

nβλ
, ∂F

∂β
= 1

β2 ( 1
2 + 1

n ) − F
β

. Thus the

RHS of (A7) and (A8) are 1
nβλ

− 1
2 xn and 1

β2 ( 1
2 + 1

n ) − p2

2mβ
−

λxn

2mβ
, respectively. g can be solved by the trial form of g =

a1 p2 + a2xp + a3x2 + a4xn (a’s are constants). Upon substi-
tution into (A8) and matching the coefficients of p2, xp, xn,
and xn−1 p, one gets a1 = 1

γ β
( 1

2 + 1
n ), a2 = − 1

nβ
, a3 = γ

2nβ
,

a4 = mλ
2γ β

( 1
2 + 1

n ). f can be determined in a similar way, sum-
marizing, the solutions for f and g are

f = m

2nγ λ

[
(p − γ x)2

m
+ λxn

]
(A9)

g = 1

2γ β

(
1

2
+ 1

n

)
(p2 + mλxn) − 1

nβ
x
(

p − γ

2
x
)
. (A10)

Then U1 = λ̇ f (x, p, λ) + β̇g(x, p, λ, β ), which can be ex-
pressed as (10) or (18). Notice that U1 = λ̇ f (x, p, λ) is the
auxiliary potential for an underdamped Brownian particle
at the fixed temperature, which agrees with the result in
Ref. [31].

APPENDIX B: SIMULATION DETAILS
OF THE UNDERDAMPED LANGEVIN SYSTEMS

In terms of the dimensionless position and momentum,
with U0 and U1 given by (17) and (18), the direct calculation

gives

β0
∂U1

∂ p
= α

n
ν(t )(αp − x) + α2

2

β̇(t )

β(t )
p (B1)

β0
∂ (U0 + U1)

∂x
=

[
n

2
+ nα

4

β̇(t )

β(t )
+ α

2
ν(t )

]
�(t )xn−1

− ν(t )

n
(αp − x). (B2)

From the canonical equations of motion (A3) and (A4), the
Langevin equations of the ieq process under U0 of the form
(6), read

dx

dt
= p +

[
ν(t )

n
+ β̇(t )

2β0

]
αp − ν(t )

n
x (B3)

d p

dt
= −

[
1

α
+ β̇

2β0

]
p −

[
ν(t )

2
+ nβ̇(t )

4β0
+ n

2α

]

×�(t )xn−1 + ξ (t ) (B4)

〈ξ (t )ξ (t ′)〉 = 2β0

α2β(t )
δ(t − t ′). (B5)

According to the original idea of Langevin [40], heat trans-
fer is due to the collision around the Brownian particle by
the viscous and random forces given by −γ ẋ + ξ (t ) and the
stochastic heat is given by dQ = ( − γ ẋ + ξ (t )) ◦ dx, where
◦ denotes the Stratonovich notation. Then using (A4), one
gets the ieq stochastic heat dQ = ( p

m + ∂pU1) ◦ d p + ∂x(U0 +
U1) ◦ dx, or in terms of the dimensionless variables, the ieq
heat is given by

β0dQ = α

2
d p2 + β0

∂ (U0 + U1)

∂x
◦ dx + β0

∂U1

∂ p
◦ d p. (B6)

The change in total energy in an infinitesimal ieq path is
simply

dEieq = α

2β0
d p2 + dU0 + dU1 (B7)

and together with (B6) one gets

dEieq − dQ = ∂ (U0 + U1)

∂t
≡ dW (B8)

verifying the first law of thermodynamics.
The Langevin equations (B3) and (B4) are solved numer-

ically using the Euler-Maruyama scheme with a time step of
δt = 10−4, and ensemble averages are computed using 5000
to 20 000 stochastic trajectories.
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