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Spin effects on neutron star fundamental-mode dynamical tides: Phenomenology and comparison
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Gravitational waves from neutron star binary inspirals contain information on strongly interacting matter in
unexplored, extreme regimes. Extracting this requires robust theoretical models of the signatures of matter in the
gravitational-wave signals due to spin and tidal effects. In fact, spins can have a significant impact on the tidal
excitation of the quasinormal modes of a neutron star, which is not included in current state-of-the-art waveform
models. We develop a simple approximate description that accounts for the Coriolis effect of spin on the tidal
excitation of the neutron star’s quadrupolar and octupolar fundamental quasinormal modes and incorporate it in
the SEOBNRv4T waveform model. We show that the Coriolis effect introduces only one new interaction term
in an effective action in the corotating frame of the star, and fix the coefficient by considering the spin-induced
shift in the resonance frequencies that has been computed numerically for the mode frequencies of rotating
neutron stars in the literature. We investigate the impact of relativistic corrections due to the gravitational redshift
and frame-dragging effects, and identify important directions where more detailed theoretical developments are
needed in the future. Comparisons of our model to numerical-relativity simulations of double neutron star and
neutron star black-hole binaries show improved consistency in the agreement compared to current models used
in data analysis.
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I. INTRODUCTION

The gravitational waves (GWs) from inspiraling binary
systems encode detailed information about the nature and
internal structure of the compact objects. These signatures
arise from spin and tidal effects, including dynamical tides
associated with the excitation of the objects’ characteris-
tic quasinormal modes. This is particularly interesting for
neutron stars (NSs), where gravity compresses matter up to
several times the normal nuclear density [1,2], making NSs
unique laboratories for the ground state of strongly interact-
ing matter at the highest physically possible densities. The
new opportunities for characterizing such matter with GWs
were demonstrated with the first binary NS merger event
GW170817 [3–23]. In the future, higher-precision GW mea-
surements for populations of NS have the potential to advance
our understanding of the fundamental physics of strong in-
teractions as well as the emergent multibody phenomena in
subatomic matter. Extracting the information on matter from
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GW signals from binaries is critically predicated on highly
accurate theoretical waveform models that link between fea-
tures in GWs and source parameters [24–26]. In particular, the
waveform models must include all relevant physical effects.
This requires a detailed understanding of the behavior of mat-
ter in spinning, relativistic objects under nonlinear, dynamical
gravity, which is a challenging task.

A significant research effort in the last decades has fo-
cused on developing GW models for binary black holes
(BHs), which involve only vacuum gravity and are charac-
terized by only their masses and spins [27–29]. There has
also been much recent progress on describing the effects of
matter in binary inspirals. A number of studies have focused
on GW signatures of dynamical tides associated with dif-
ferent NS modes within different approximations [30–62],
rotational multipole moments [63–73], gravitomagnetic tidal
interactions [74–83], eccentricity [84–87], nonlinear mode
couplings [78,88,89], spin-tidal couplings in the adiabatic
limit [72,90–98], and the effects of spins on the tidal response
of black holes [99–102] as well as on dynamical tides in
NSs in the Newtonian limit [103–109]. Recently, effective-
field-theory calculations of tidal effects in scattering events
have also come into focus [110,111] (see also Ref. [112],
and Refs. [113–116] for analogous work based on massive
quantum fields or scattering amplitudes).

Substantial further effort has gone into devel-
oping state-of-the-art waveform models for data
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analysis within the so-called phenomenological IM-
RPhenom [117–131] and effective-one-body (EOB)
SEOBNR/TEOBResumS families [132–164] (see
also [165–171]). These models all include the effects of
spin-induced multipole moments and the dominant tidal
effects characterized by equation-of-state-dependent tidal
deformability (or Love number) coefficients. In previous
work, we calculated the effects of dynamical tides from
the fundamental ( f ) modes and incorporated them in
the SEOBNR models [172,173], leading, e.g., to the
SEOBNRv4T model. However, our model of dynamical tides
had several limitations. For instance, we did not consider the
effects of spin on the tidal response of the NS, which is the
most prominent effect of spin-matter interactions.

In this paper, we extend the parameter space of waveform
models by accounting for these spin effects in an approximate
way, and investigate their role in NSNS and NSBH binaries.
As expected on physical grounds and confirmed in previous
work, e.g., [103,104,174], the effect of spins on dynamical
f -mode tides can significantly enhance the matter signatures
in GWs in the late inspiral for antialigned spins, depending
also on the parameters. We show in this paper that this can
lead to non-negligible dephasings with current data analysis
models which neglect this effect. It is therefore urgent to
model dynamical tides of rotating NS to enable the robust-
ness of using GWs as probes for subatomic physics as the
LIGO [175], Virgo [176], and KAGRA [177] GW detectors
are improving in sensitivity and new, third-generation facil-
ities are being envisioned. We study three main effects that
influence the orbital frequency in a binary in which a rotating
NS’s f mode is resonantly excited by the tidal field of the
companion: (i) the gravitational redshift of the NS, (ii) the
relativistic dragging of the NS’s inertial frame, including also
the additional effects of the orbiting companion, and (iii) the
Coriolis effect due to the NS’s spin. We derive an estimate
for the resonant orbital frequency which approximately takes
into account all of these effects and demonstrate that the most
important effect is due to the NS’s spin because of near cancel-
lations between the redshift and frame-dragging effects. We
develop a simple modification of the existing f -mode EOB
waveform model which includes the Coriolis effect and is
based on introducing spin-dependent shifts in the f -mode fre-
quency and tidal deformability coefficients. We test our model
against results from numerical-relativity simulations both for
aligned and antialigned spins and find improved consistency
compared to current models used in data analysis. Our simple
model can readily be used to improve GW measurements. A
more detailed theoretical study and model development which
also overcomes other limitations and includes dynamical tides
in the odd-parity sector will be the subject of forthcoming
works.

The organization of this paper is as follows. We begin
in Sec. II by deriving a Newtonian action for quadrupolar,
parity-even dynamical tides in rotating stars. We start from
a description in terms of the normal modes for the fluid dis-
placement due to the perturbations and convert to a basis of
symmetric trace-free tensors. That basis is more convenient
for identifying selection rules, and for generalizing to rela-
tivistic stars. Such a generalization is worked out in Sec. III
in the corotating frame where the background (unperturbed)

fluid is at rest, provided we allow for general coupling coeffi-
cients not restricted to their Newtonian values. We specialize
to the case of f modes, which have the largest tidal couplings,
and work to linear order in the rotation frequency. This leads
to an effective action with one as yet undetermined coefficient
characterizing the Coriolis interaction between the star’s spin
and its tidal spin, i.e., the angular momentum associated with
the dynamical quadrupole. In Sec. IV we extend the action to a
binary system and derive explicit equations of motion within
the post-Newtonian approximation for the orbital dynamics.
From the solutions for the quadrupole we obtain the response
function whose features we analyze in Sec. V. We discuss how
to determine the spin-tidal Coriolis coefficient by matching to
results for the f -mode frequencies of rotating neutron stars
from the literature and obtain a quasiuniversal relation for
this shift. Next, we consider the impact of relativistic effects
(gravitational redshift and frame dragging) on the dynamical
tides and quantify their importance. In Sec. VI we derive a
simple phenomenological model that accounts for the Cori-
olis effect by applying spin-dependent shifts of the f -mode
frequency and tidal deformability parameter in the existing
SEOBNRv4T waveform model. We test this model against
numerical-relativity simulations of spinning binary neutron
star and neutron star: black-hole binaries from the BAM and
SXS codes in Sec. VII. Section VIII contains our conclusions,
and the Appendix contains a brief discussion of the relation of
this paper to Ref. [104].

The notation here follows that in Ref. [173]. We use geo-
metric units with G = c = 1 throughout. Capitalized indices
A, B, ... on tensors denote the representation in the spatial
corotating frame and take values 1, 2, 3. Greek letters μ,
ν, ... denote space-time coordinate indices and run through
0, 1, 2, 3. Lower-case indices i, j, ... run through 1, 2, 3
and denote either spatial coordinate indices when used on
position variables or indices in a local Euclidean frame co-
moving with the center of the star for other tensors (spin,
quadrupole) [66,173]. Boldface notation for vectors with such
indices is also used. Round brackets around indices denote
the symmetrization, square brackets denote the corresponding
antisymmetric combination, and angle brackets denote sym-
metric trace-free projection. Our convention for the Riemann
tensor is

Rμ
ναβ = �μ

νβ,α − �μ
να,β + �ρ

νβ�μ
ρα − �ρ

να�μ
ρβ, (1.1)

where �μ
νβ is the Christoffel symbol. In the derivations we

consider the case with only one extended body, which we
label as body 1 with mass m1. Since we work in the regime
of linearized tides, the case of two stars can be obtained by
adding the same contribution with the body labels exchanged.
For a binary system, we define the total mass M = m1 + m2,
the reduced mass μ = m1m2/M, and the symmetric mass ratio
ν = μ/M.

II. NEWTONIAN DYNAMICAL TIDES OF
ROTATING STARS

In this section we recapitulate Newtonian tides as lin-
ear perturbations of a background solution for a star in
equilibrium following Refs. [42,49,83,173,178] (see also,
e.g., Refs. [46,179,180]). The perturbation is described by a
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displacement vector field of the fluid elements ξ(x, t ) away
from their background position. It is useful to consider the
function space of all displacements as a complex Hilbert space
with an inner product

〈ξ, ξ′〉 =
∫

d3x ρ0 ξ∗ · ξ′, (2.1)

where ρ0 is the unperturbed mass density of the background
configuration.

We restrict the discussion here to an ideal fluid with
barotropic equation of state ρ(p) relating the mass density
ρ and the isotropic pressure p. That is, we neglect effects
from, e.g., temperature, viscosity, and buoyancy, which play a
subdominant role for the fundamental modes in neutron stars.
We will first briefly recall the nonrotating case and obtain the
Lagrangian describing the dynamics of the tidal perturbations,
then generalize to include effects of spin to linear order in the
rotation frequency, and finally transform to a description in
terms of symmetric trace-free tensors.

A. Nonrotating stars

We first consider a nonrotating, hence spherically symmet-
ric, star in equilibrium with density ρ0(r). The star is then
placed in an external gravitational potential �, which induces
dynamical perturbations to the fluid. We will consider the per-
turbations only to linear order. For instance, the mass density
perturbation is δρ = −∇(ρ0ξ), where ξ = ξ∗ is the physical
fluid displacement. The equations of motion for the dynamical
tidal perturbations can be derived from a Lagrangian for the
fluid displacement given by

LDT = 1
2 〈ξ̇, ξ̇〉 − 1

2 〈ξ,Dξ〉 + 〈 f ext, ξ〉. (2.2)

The first term in Eq. (2.2) is the kinetic energy of the per-
turbation, the second term specifies the energies associated
with the internal restoring forces, while the last term is the
potential energy in the external field. For the case considered
in this paper, the external force1 is f ext = −∇� where � is
the gravitational potential of a binary companion orbiting at a
distance r(t ) and given by

� = − m2

|x − r(t )| . (2.3)

The linear operator D is defined by

Dξ = −∇
{[

c2
s

ρ0
+ 4π
−1

]
∇ · (ρ0ξ)

}
, (2.4)

where cs = √
(∂ p0/∂ρ0) is the speed of sound of the back-

ground fluid configuration with pressure p0. The first term in
Eq. (2.4) comes from the perturbation of the internal energy,
and the second (nonlocal) term describes the gravitational
self-energy of the perturbation.

The operator D is Hermitian with respect to the inner
product (2.1). Thus, its eigenvectors ξn�m are an orthonormal
basis of the normal modes labeled by the type of mode n,

1We disregard here the fictitious force arising from the center-of-
mass acceleration of the star (see, e.g., [173]), which effectively just
cancels f ext in the dipolar sector (equivalence principle).

the multipolar order �, and an angular-momentum number
m associated with a decomposition into (vector) spherical
harmonics. The real eigenvalues ω2

n�, where ωn� is the mode
frequency, are determined from

Dξn�m = ω2
n�ξn�m, 〈ξn�m, ξn′�′m′ 〉 = δnn′δ��′δmm′ . (2.5)

The mode frequencies ωn� are degenerate over m because
the operator D is rotation symmetric. Similarly, due to parity
invariance of D, the modes can be categorized as even parity
(electric type) or odd parity (magnetic type). As the integra-
tion measure ρ0d3x of the inner product (2.1) has compact
support, the normal modes ξn�m are countable and are enu-
merated by the number n (aside from � and m). We restrict
our attention to pressure modes in this paper and take n to be
the number of radial nodes. The fundamental pressure mode
or f mode is then labeled by n = 0.

We can decompose any fluid displacement ξ into the or-
thonormal basis of the normal modes,

ξ =
∑
n�m

qn�m(t )ξn�m(x), qn�m = 〈ξn�m, ξ〉, (2.6)

with time-dependent amplitudes qn�m(t ). The reality condition
ξ = ξ∗ implies that q∗

n�m = (−1)mqn� −m, which follows from
the analogous relation for the spherical harmonics. The gen-
eral Lagrangian then reads as

LDT =
∑
n�m

[
1

2
|q̇n�m|2 − 1

2
ω2

n�|qn�m|2 + 〈 f ext, ξn�m〉 qn�m

]
.

(2.7)
To compute the coefficients for the overlap between the ex-
ternal field and the mode functions, and to identify the modes
giving the most important contributions to LDT, it is useful to
express the potential from Eq. (2.3) as a Taylor series expan-
sion around the center of the star. Choosing coordinates such
that the center of the star is located at x = 0, the expansion of
the potential is

�(t, x) = �(t, 0) + x j∂ j�(t, x)|x=0 +
∞∑

�=2

1

�!
xLEL, (2.8)

where the �th tidal moments EL for � � 2 are defined by
(following the conventions in [173])

EL = ∂L� |x=0, (2.9)

and L = A, B,C, . . . denotes a string of � indices. Note that EL

is symmetric and trace free, which follows from 
� |x=0= 0.
The tidal potential can equivalently be written as a spherical
harmonic multipolar expansion given by

� = −m2

∑
�,m

4π

2� + 1

|x|�
r(t )�+1

Y�m

(
π

2
, φ

)
Y ∗

�m(θ, ϕ), (2.10)

where x and (θ, ϕ) are associated with a comoving coordinate
system centered on the star, and r, φ characterize the orbital
coordinates in the equatorial plane. We define the overlap
integral In� by

In� = 〈∇|x|�Y�m(θ, ϕ), ξn�m〉. (2.11)

The term 〈 f ext, ξn�m〉 in the Lagrangian can then be written as

〈 f ext, ξn�m〉 = −N�

�!
In�E∗

�m, (2.12)
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where

E�m = N�Y∗�m
L EL = −(2� − 1)!! N�Y

∗
�m

(π

2
, φ
) m2

r�+1
.

(2.13)

This can be either obtained from Eq. (2.9) or its spherical-
harmonic analog (2.10). Recall that one can convert between
spherical harmonics and unit vectors using the identity Y�m =
Y�m

L n〈L〉 and defining the coefficient N� = √
4π�!/(2� + 1)!!

that arises when applying the inverse conversion to change
from n〈AnB〉 to Y�m; see, e.g., Ref. [83] for useful formulas.

The modes with the largest contributions to LDT can be
identified by the following considerations. First, we note that
the �th multipole of the external tidal field associated with � �
2 derivatives of � is increasingly suppressed for increasing
multipole orders �. We thus expect the dominant contributions
to come from the low-� modes. However, the � = 0, 1, as
well as all magnetic-type modes do not couple linearly to the
external gravitational field in the Newtonian case. The � = 0
interaction is forbidden due to the conservation of mass, while
the � = 1 interaction leads to an overall motion of the star,
which has no gauge-invariant physical meaning according to
the weak equivalence principle (universality of free fall). The
magnetic modes couple linearly to gravitomagnetic tidal fields
which is a relativistic phenomenon that is absent in Newtonian
gravity. Hence, to leading order, the external field drives the
electric quadrupolar (� = 2) modes, so we restrict our atten-
tion to them in the following.

Transformation to the basis of symmetric trace-free
Cartesian tensors

We can equivalently express the Lagrangian in terms of
symmetric trace-free tensors using the conversion between
spherical harmonics and unit vectors provided by the symmet-
ric trace-free tensors Y�m

L . The mode amplitudes qn�m can then
be directly translated to Cartesian tensors. For the quadrupole
� = 2, we adopt the normalization

QAB
n =

√
2λnωnN2

∑
m

Y2m
AB qn2m, (2.14)

where N2 = √
8π/15, ωn = ωn2 is the mode frequency, and

λn is the tidal deformability of the mode, related here to the
overlap integral by2

λn = N2
2 I2

n2

2ω2
n

= 4π I2
n2

15ω2
n

. (2.15)

The total quadrupole is given by summing over all overtones

QAB =
∞∑

n=0

QAB
n . (2.16)

We also define the Newtonian quadrupolar tidal tensor

EAB = ∂A∂B�(x) |x=0 . (2.17)

2Our convention for In� differs from Refs. [49,173] by a factor of
N� [see Eq. (2.2) in Ref. [173]].

The Lagrangian (2.7) can then be written as

LDT =
∑

n

[
1

4λnω2
n

(
Q̇AB

n Q̇AB
n − ω2

nQAB
n QAB

n

)− 1

2
EABQAB

n

]
.

(2.18)
We remind the reader that QAB

n is the contribution of the n
mode to the (symmetric trace-free) quadrupole of the star, and
EAB is the external tidal field evaluated at the center of the
star. A key point to note is that because we work in a three-
dimensional rest frame of the star labeled by A, B = 1, 2, 3
(or the corotating frame below), the structure of the couplings
for the internal dynamics of the quadrupole is the same for
Newtonian and relativistic stars [cf. Eq. (1.4) in [173]]; the
distinction between them is only through the coefficients (λn,
ωn). We will exploit this fact for rotating stars below since we
are interested here in fully relativistic NSs, where ωn and λn

are computed in general relativity.

B. Rotating stars

It is straightforward to extend the discussion from the last
section to stars that are rotating uniformly with an angular
velocity of the star � as observed in the inertial frame. It is
convenient to describe the star in the corotating frame, where
the background fluid elements are at rest. At linear order in �,
the only new interaction with dynamical multipoles is due to
the Coriolis force

LDT = 1
2 〈ξ̇, ξ̇〉 − 〈ξ,� × ξ̇〉 − 1

2 〈ξ,Dξ〉 + 〈 f ext, ξ〉. (2.19)

The background star gets deformed away from spherical sym-
metry only at quadratic order in �, so that the eigenvectors
and eigenvalues of D are approximately the same as for a
spherically symmetric nonrotating star. Since we treat the spin
as (infinitesimally) small, we decompose the displacement in
terms of the nonrotating modes (2.6) and, working to lin-
ear order in spin, the perturbing interaction is given by the
Coriolis force only. A detailed discussion of the more general
finite-spin case can be found in Ref. [179].

Inserting the decomposition for ξ [Eq. (2.6)] leads to

LDT =
∑
n�m

[
1

2
|q̇n�m|2 − 1

2
ω2

n�|qn�m|2 + 1

�!
In�E�m qn�m

−
∑
n′�′m′

q∗
n�mq̇n′�′m′ 〈ξn�m,� × ξn′�′m′ 〉

]
. (2.20)

The last term here represents a linear mode coupling
(quadratic in the action) due to the rotation. These mode
couplings are subject to selection rules. The selection rules
are most readily identified in the symmetric trace-free basis
where they are automatically implemented when imposing
symmetry requirements. Specifically, the allowed couplings
are all parity-invariant contractions between the symmetric
trace-free tensors of the modes with either the parity-odd
angular velocity vector � or its associated antisymmetric
parity-even tensor

�AB = εABC�C . (2.21)
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We focus here on the electric quadrupolar (� = 2) modes QAB
n .

All possible spin-mode couplings involving QAB
n read as

QAB
n Q̇BC

n′ �AC, QAB
n Q̇B

n′�
A, QAB

n Q̇ABC
n′ �C . (2.22)

Hence, couplings to magnetic modes are possible to a dipole
QB

n′ and to an octupole QABC
n′ , which we neglect since these

magnetic modes are not externally driven in the Newtonian
limit. We then arrive at the Lagrangian

LDT ≈
∑

n

[
Lo − 1

2
EABQAB

n + LSQ

]
, (2.23)

where the oscillator and spin-mode contributions are given by

Lo = 1

4λnω2
n

(
Q̇AB

n Q̇AB
n − ω2

nQAB
n QAB

n

)
, (2.24)

LSQ =
∑

n′
C�nn′�ABQAC

n Q̇CB
n′ . (2.25)

The effect of rotation is explicit here via the term LSQ de-
scribing a rotation-induced coupling between different modes
of the same multipolar order due to the Coriolis force. We
have inserted the as-yet-undetermined coefficients C�nn′ . It is
possible to write an explicit formula for C�nn′ , analogous to
Eq. (2.11) for In�, that is valid in Newtonian gravity. However,
we do not need this here since we are ultimately interested
in the fully relativistic value of this coefficient. We will fo-
cus here on the fundamental f modes with n = n′ = 0 and
determine all coefficients λ0, ω0, C�00 by matching to rela-
tivistic results for the effect of spin on the mode frequencies
in Sec. V B below. We will drop the label n on Q from
now on.

III. RELATIVISTIC DYNAMICAL TIDES OF
ROTATING STARS

In this section, we upgrade the Newtonian action to a
relativistic one, following the nonrotating case in Ref. [173].
For the treatment of the star’s spin or angular momentum,
we draw from Refs. [66,94,181–183]. The resulting action
is an effective one, where length scales below the bodies’
size are integrated out, and could also be constructed from
an effective-field-theory approach [184–189]. However, we
do not attempt here a rigorous construction of such an action
based on symmetries and power-counting arguments. Instead,
we only include terms in the relativistic action that are already
present in the Newtonian case above, but with undetermined
coefficients. We expect terms that are absent in the Newtonian
limit to be suppressed for relativistic electric tides, which is
also justified from numerical studies of the relativistic tidal
response [190]. We note, however, that in the case of magnetic
tides, such an approach would crucially miss important terms
in the relativistic effective action, as discussed in [83]. The
explicit results of calculations in the post-Newtonian approxi-
mation for the binary dynamics based on effective actions can
be found, e.g., in Refs. [191–194].

A. Upgrading the Newtonian action

A relativistic rotating star can be represented by
a world line yμ(τ ) with dynamical tidal and spin

degrees of freedom propagating along it. Here τ

is the proper time and the tangent 4-velocity is
given by U μ = dyμ(τ )/dτ such that UμU μ = −1.
The rotation of the star can be encoded by an orthonormal
corotating, body-fixed frame �I

μ(τ ) on the world line
(with I, J, · · · = 1, 2, 3 and �I

μ�Jμ = δIJ ) describing the
orientation of the star. This frame is taken to be comoving
such that �I

μUμ = 0. Based on this frame, we can define the
relativistic angular velocity in the corotating frame as

�I = εIJK�JK , �JK = D�I
μ

dτ
�Jμ, (3.1)

where D is the covariant differential. The external tidal field
is given by the electric part of the Weyl tensor as EIJ =
�I

μU α�J
νU βCμανβ in the relativistic case, where Cμανβ is

the Weyl curvature tensor. The relativistic f -mode amplitude
QAB(τ ) ≡ QAB

0 (τ ) is written in the corotating frame along the
world line. Time derivatives are taken with respect to proper
time and denoted by an overdot ˙ = d/dτ .

It is now straightforward to upgrade the above Newtonian
Lagrangian (2.23) to the relativistic case: the structure remains
the same but all the quantities must be computed from the
appropriate relativistic definitions discussed above. For the
description of a binary, one needs to supplement the action
S by a nontidal (NT) part,

S =
∫

dτ (LNT + LDT︸ ︷︷ ︸
L

), (3.2)

LNT = −m0 + I

2
�I�

I + · · · , (3.3)

with the irreducible (rotation-independent) mass m0, the mo-
ment of inertia I , and the dots representing further terms not
relevant here (e.g., from the spin-induced quadrupole mo-
ment [195–197]).

B. Legendre transformation

The spin-tidal interaction due to the Coriolis force spe-
cialized to n = n′ = 0 can also be expressed as a coupling
between the star’s spin and the tidal spin associated with the f
modes as we will show next. This highlights the connection to
spin or frame-dragging effects in general relativity. Following
Ref. [173], we define a tidal spin tensor and vector associated
with the quadrupolar f modes by

SA
Q = 1

2εA
BCSBC

Q , SAB
Q = 4QC[APB]

C, (3.4)

where

PAB = ∂L

∂Q̇AB
(3.5)

is the conjugate momentum to Q̇AB. We also introduce the total
spin SI

t conjugate to the rotation frequency

SI
t = ∂L

∂�I
, (3.6)

and the associated spin tensor SIJ
t = εIJ

K SK
t . To zeroth order

in the tidal contributions SJ
t ≈ I�J .
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We perform a Legendre transformation of the Lagrangian
to PAB and SA

t , which leads to the action

S =
∫

dτ
(
SA

t �A + PABQ̇AB + R
)
, (3.7)

R ≈ −m0 − 1

2I
StASA

t + CSQStASA
Q − 1

2
EABQAB

− 1

4λ0ω
2
0

(
4λ2

0ω
4
0PABPAB + ω2

0QABQAB
)
, (3.8)

where we neglected terms beyond quadratic order in the tidal
variables and defined

CSQ = C�00
λ0ω

2
0

I
. (3.9)

We see that the leading-order spin-tidal interaction can be
understood as a spin-spin interaction between the ordinary
and tidal spins StASA

Q. We note that due to the dynamical tidal

interactions, the spin length St =
√

StASA
t is not constant.

C. Coordinate-frame action

Let us now connect the relativistic action (3.7) to that of the
nonspinning case discussed in Ref. [173], which is formulated
in the coordinate frame instead of the corotating frame. The
transformation of the above results to the coordinate frame
is simply given by QAB = �Aμ�BνQμν , and similarly for the
other tensors. This leads to the relation

PABQ̇AB = Pμν

DQμν

dτ
− �μSμ

Q. (3.10)

It is convenient to absorb the second term by splitting the total
spin Sμ

t into a “rotational-only” spin Sμ and the tidal part Sμ
Q:

Sμ
t = Sμ + Sμ

Q. (3.11)

The coordinate-frame action then reads as

S =
∫

dτ

[
Sμ�μ + Pμν

DQμν

dτ
+ R

]
, (3.12)

R ≈ −m(S2) + C̄SQSμSμ
Q − 1

2
EμνQμν

− 1

4λ0ω
2
0

(
4λ2

0ω
4
0PμνPμν + ω2

0QμνQμν
)
, (3.13)

where the coordinate-frame coefficient associated with the
spin-tidal interaction is given by

C̄SQ = CSQ − 1

I
. (3.14)

We are going to find below that this equation just encodes the
difference of the f -mode frequency between corotating and
inertial frames. We have introduced the constant Arnowitt-
Deser-Misner mass (not to be confused with the magnetic
number m)

m(S2) = m0 + 1

2I
S2 + O(S4). (3.15)

Note that the spin length is now constant, S2 = SμSμ = const.
Furthermore, since �I

μUμ = 0, all coordinate-frame tensors

are orthogonal to the 4-velocity:

�μU μ = 0, QμνUν = 0,

SμUμ = 0, PμνU ν = 0. (3.16)

These constraints have to be fulfilled alongside the variational
principle for the action.

IV. POST-NEWTONIAN APPROXIMATION

The action above (3.12) models a single neutron star
interacting with an external gravitational field as a world-
line (point-particle) effective action with spin and dynamical
quadrupole moment. Based on this building block, the ac-
tion of a binary system can be constructed as two copies of
Eq. (3.12) together with the Einstein-Hilbert action for the
gravitational field. One can further eliminate (integrate out)
the orbital-scale field within the post-Newtonian approxima-
tion, which is a weak-field and slow-motion approximation
around the Newtonian limit. This can be understood as a
formal expansion in the inverse speed of light. We discuss this
post-Newtonian approximate action for a binary system in this
section.

A. Post-Newtonian action and Hamiltonian

Instead of performing the post-Newtonian calculation in
detail, we can take a shortcut by building on previous re-
sults. Indeed, the world-line action (3.12) is a sum of the
nonspinning dynamical tidal action from Ref. [173] and the
spin action from, e.g., Ref. [66], plus the simple spin-tidal
correction C̄SQSμSμ

Q. Since we work to linear order in spin
and tidal interactions, the result for the Lagrangian of a binary
system in the post-Newtonian approximation can be taken
from these references and by adding the spin-tidal interaction
for each body. This leads to

SSQ =
∫

dτ C̄SQSQ · S =
∫

dt z C̄SQSQ · S, (4.1)

where z = dτ/dt = √gμν ẏμẏν is the redshift variable. In this
section, the meaning of an overdot changes compared to
Sec. III and now denotes a derivative with respect to co-
ordinate time ˙ = d/dt . In the post-Newtonian results, the
temporal components of spin and tidal variables are elimi-
nated by writing them in a comoving local Euclidean frame
and using Eq. (3.16) (see Refs. [66,173] for details). The
spatial components in this frame are simply denoted as, e.g.,
Qi j where i, j = 1, 2, 3.

We assume that only one of the objects has a finite size
and label it as body 1. Within our approximations, the case of
two extended objects can readily be obtained by adding the
same tidal contributions with the appropriate parameters for
the other object. The action for the binary in the center-of-
mass frame in Hamiltonian form has the structure

SPN =
∫

dt (p · r + S1 · �1 + S2 · �2 + Pi jQ̇i j − HPN).

(4.2)
Here, p is the relative linear momentum and r is the separa-
tion vector. The post-Newtonian Hamiltonian splits as HPN =
HNT + HDT into a nontidal HNT and a dynamical-tidal HDT
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part with [173]

HDT = zHo + �FD · SQ − zC̄SQS1 · SQ + z

2
Ei jQ

i j . (4.3)

Different versions of the nontidal Hamiltonian HNT =
HNT(r, p, S1, S2; m1, m2,CW ) exist in the literature, e.g., in
Refs. [198,199]; the precise version will not be important
here. Here CW collectively denotes several Wilson coefficients
in the original world-line effective action that describes, e.g.,
spin-induced multipole moments. Furthermore, the redshift z
and frame-dragging and spin-precession frequency �FD in the
Hamiltonian (4.3) are given by

z = ∂HNT

∂m1
, �FD = ∂HNT

∂S1

∣∣∣∣
CW =0

, (4.4)

and the oscillator-part Hamiltonian reads as

Ho = 1

4λ0ω
2
0

(
4λ2

0ω
4
0Pi jPi j + ω2

0Qi jQi j
)
. (4.5)

Finally, the post-Newtonian tidal field Ei j = Ei j (r, p; m1, m2)
in the comoving local Euclidean frame [173] can be found
in Refs. [173,191] in different gauges. To leading Newtonian
order, the tidal field follows from Eq. (2.9):

Ei j = −3m2

r3
n〈in j〉 + · · · , (4.6)

where r = |r| and n = r/r; the explicit form of higher-order
corrections will be irrelevant for our studies below.

B. Circular-orbit tidal equations of motion

From now on, we assume that the binary is on a circular
orbit and that the spins are not precessing, i.e., they are aligned
or antialigned with the orbital angular momentum. For generic
orbits, different gauge choices for HNT lead to different ex-
pressions for z and �FD. For circular orbits and nonprecessing
spins, however, they are universally given by

z = 1 + x

2
(ν − 3X2)

+ x2

24
(5ν2 − 9ν − 6νX2 − 27X2) + O(x5/2), (4.7)

�FD

ωorb
= x

2
(ν + 3X2) − x3/2X 2

2 χ2

− x2

24
(ν2 − 45ν + 30νX2 − 27X2) + O(x5/2), (4.8)

where �FD = |�FD|. We have also defined the spin magnitude
χ2 = ±|S2|/m2

2 and the mass ratio X2 = m2/M for the com-
panion, and introduced the frequency variable x = (Mωorb)2/3

where ωorb is the orbital frequency. For aligned companion
spin, χ2 > 0, while for antialigned spin it is χ2 < 0. Here the
power on x corresponds to the post-Newtonian order. Note
that for circular orbits, the binary is in equilibrium, so that
ωorb, z, and �FD are constant.

An interesting observation here is that the frame dragging
due to the orbital angular momentum given by the first term in
(4.8) and that resulting from the companion spin, given by
the second term in (4.8), have opposite signs. This can be
understood by visualizing the directed gravitomagnetic field
lines analogous to a bar magnet (see, e.g., the discussion in

Ref. [200]). The neutron star experiences the gravitomagnetic
field from the orbital motion at its source (“inside the grav-
itomagnet”), where the field lines point in the same direction
as the orbital angular momentum. Conversely, the field of the
companion felt by the star is outside its source, where the
gravitomagnetic field lines point in the opposite direction of
S2. This implies that for aligned companion spins, the net
frame-dragging effects are smaller than for antialigned spins
of the companion.

Hamilton’s equations of motion follow from varying the
tidal variables in the action (4.2),

Q̇i j = ∂HDT

∂Pi j
, Ṗi j = −∂HDT

∂Qi j
(4.9)

or, more explicitly,

Q̇i j = 2zλ0ω
2
0Pi j + 2�

k(i
FDQ j)k − 2zC̄SQSk(i

1 Q j)k, (4.10)

Ṗi j = − z

2λ0
Qi j + 2�

k(i
FDP j)k − 2zC̄SQSk(i

1 P j)k − z

2
Ei j .

(4.11)

These equations can be decoupled by transforming to the
spherical-harmonic (�, m) basis. For this purpose, we ex-
press the relativistic quadrupole due to the f modes as Qi j =
N2
∑

k Y2m
AB Qm, and similar for Pi j and Ei j , analogous to the

transformation in the Newtonian case discussed in Sec. II A.
The reality condition implies that Q∗

m = (−1)mQ−m. Further-
more, we choose to align the z axis with the spin so that
(Si

1) = S1(0, 0, 1). Since we also assume that the spins are
collinear with the orbital angular momentum, this means that
�FD is along the z axis as well. This leads us to the equations
of motion

Q̇m = 2zλ0ω
2
0Pm − im(�FD − zC̄SQS1)Qm, (4.12)

Ṗm = − z

2λ0
Qm − im(�FD − zC̄SQS1)Pm − z

2
Em. (4.13)

These equations can be combined into a single second-order
differential equation describing the f -mode oscillations

[∂t + im(�FD − zC̄SQS1)]2Qm + z2ω2
0Qm = −z2ω2

0λ0Em.

(4.14)
For the driving force at Newtonian order it holds Em =
Eme−imωorbt with

E±2 = −
√

3

2
E0 = − 3m2

2M3
x3, E±1 = 0. (4.15)

Note that in the Newtonian limit x ≈ M/r. This can be ob-
tained from Eq. (2.13) noting that Em = E2m and φ = ωorbt .
The latter relation is consistent with our assumption of an
equilibrium solution, but only holds approximately for an
inspiral and breaks down close to the resonance, where ωorb

changes in time. This will be discussed further below in con-
nection with the effective Love number.

V. EXPLORING THE TIDAL RESPONSE

In this section, we derive the frequency-domain response
of the quadrupole Qi j to the tidal field Ei j in a binary system
described by the post-Newtonian Hamiltonian HDT. We em-
phasize again that we are treating Qi j as fully relativistic, and
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only use the post-Newtonian approximation for quantities re-
lated to the orbital dynamics. We assume again a circular-orbit
nonprecessing binary. Our goal is to investigate the impact
of the redshift, frame-dragging, and spin-tidal coupling on
the resonance frequency. We accomplish these aims by con-
sidering the response function, the frequency-dependent ratio
of the induced quadrupole to the tidal field, which encodes
these effects. Having calculated the response function, we first
match the spin-tidal coupling constant to numerical results for
the f -mode frequency of isolated spinning neutron stars. We
then find a quasiuniversal relation for this coupling, i.e., a rela-
tion that is approximately independent of the equation of state
for the nuclear matter. Subsequently, we identify relativistic
effects due to redshift and frame dragging on the resonance
frequency in a binary and quantify their importance.

A. Tidal response function

To compute the response function, it is easiest to work in
the Fourier domain. We take the Fourier transform, denoted
by a tilde, of the dynamical tidal variables according to the
conventions

Qm(t ) =
∫

dω

2π
Q̃m(ω)e−iωt , (5.1)

and similarly for Em. It is now straightforward to solve the
equation of motion in spherical-harmonic basis (4.14) for
Q̃m(ω),

Q̃m = −F̃mẼm, (5.2)

with Ẽm = 2πEmδ(ω − mωorb). We find that the gravitoelec-
tric quadrupolar frequency-domain tidal response is given by

F̃m = z2ω2
0λ0

z2ω2
0 − [ω − m�FD + mzC̄SQS1]2

. (5.3)

For the limiting case of adiabatic tides ω ∼ mωorb → 0 the
response function reduces to the tidal deformability F̃m(ω =
0) = λ0, noticing that �FD(x = 0) = 0 and that we neglect
terms quadratic in S1. Hence, the response function is a
generalization of the Love number λ0 to dynamical frequency-
dependent tides. The poles of the response correspond to a
resonant excitation of the f mode. We will exploit this fact in
our analyses below.

At this point it is convenient to pick a sign convention for
the frequencies. For our purpose, it is most useful to assume
a fixed sign of the orbital driving frequency as ωorb > 0 and
allow for both signs for the spin S1 encoding its orientation
(aligned S1 > 0 or antialigned S1 < 0). Since ω = mωorb it
follows that ω ≶ 0 for m ≶ 0, or |ω| = sgn(m)ω. Prograde
and retrograde motion of the tidal bulge (relative to the neu-
tron star spin) corresponds to sgn(m) = ±sgn(S1).

B. Matching the spin-tidal coupling

To determine the spin-tidal coupling coefficient C̄SQ, it
is sufficient to consider an isolated neutron star without a
companion. For such a star the redshift reduces to z = 1
and the frame dragging vanishes �FD = 0. The poles of
the response (5.3) are located at frequencies ω equal to the

inertial-frame f -mode frequency ω f > 0 of the spinning neu-
tron star, i.e., at |ω| = ω f . This leads us to the identification
of the spin-induced shift of the f -mode frequency


ω0 ≡ ω f − ω0 = −|m|C̄SQS1, (5.4)

recalling that ω0 is the f -mode frequency (or pole of the
response) of a nonspinning star. In terms of the constant CSQ

in Eq. (3.14) it holds 
ω0 − |m|�1 = −|m|CSQS1, which is
the corotating-frame frequency shift; the corotating-frame f -
mode frequency reads as ω̃ f = ω f − |m|�1 and S1 = I�1. In
the remainder of this section we will drop the label 1 on �;
the meaning that it is the rotation frequency of the extended
body will be implied.

To fix the relativistic value of the spin-tidal coupling C̄SQ,
we compare the effective frequency shift from Eq. (5.4)
to results for the f -mode frequencies of rotating relativis-
tic NSs in the Cowling approximation from Ref. [201] (see
also [202,203]), specializing to the slow-rotation regime.
Specifically, in Ref. [201], Doneva et al. provide quadratic
ploynomial fits for the |m| = � f -mode frequencies in the
corotating frame for the stable (s) and unstable (u) branches
of the form

ω̃�

ω0
= 1 + as/u

�

∣∣∣∣ �

�K

∣∣∣∣− bs/u
�

∣∣∣∣ �

�K

∣∣∣∣2. (5.5)

Note that the ω̃� are defined to be positive, just like our ω f .
In our convention, the stable (prograde) branch corresponds
to � > 0 and the unstable (retrograde) one to � < 0. The
coefficients were determined in Eqs. (21)–(24) of Ref. [201]
to be au

2 = 0.402, bu
2 = −0.406, au

3 = 0.373, bu
2 = −0.485,

and as = −0.235, bs = −0.358 for both � = 2, 3. The pa-
rameter �K , the Kepler frequency, was found to be well
approximated by �K [kHz] = 2π [1.716

√
ρ̄0 − 0.189], where

ρ̄0 = (m1/1.4M�)/(R/10 km)3 is the scaled mean density of
the nonrotating background solution with mass m1 and ra-
dius R. Using the transformation to inertial-frame frequencies
ω� = ω̃� + |m|� (which actually flips the sign of the fre-
quency shift), we find the spin-induced shift of the frequency

ω0 = ω�=2 − ω0 and hence a matching for the spin-tidal
coupling (recalling |m| = � = 2):

C̄SQ = ω0 − ω̃�=2 − 2�

2I�
. (5.6)

To find a constant value for C̄SQ, one should take here the limit
of small rotation frequency �1 ≡ � → 0. We note that we
obtain ω0 using our own code in this paper, solving the linear
perturbation equations of nonrotating neutron stars (without
making use of the Cowling approximation). A quasiuniversal
fit for 
ω0 is also given in Eq. (4) of Ref. [204], which does
not make use of the Cowling approximation, but is restricted
so far to � = 2.

C. Universality of the coupling

We find that the spin-tidal coupling fulfills a quasiuniversal
relation that is approximately independent of the (realistic)
neutron star equation of state and given by

C̄SQ ≈ − 3

4I
or 
ω0 ≈ 3

2
�. (5.7)
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For the purpose of checking this relation, we calculate �K

using the RNS code [205,206] and ω0 from the perturbation
equations of nonrotating NSs (specifically the version given
in Ref. [190]) for the MS1b and SLy equations of state and
neutron star masses ranging between 1.1–2.0M�. Inserting
these values for �K and ω0 into above fit (5.5) leads to C̄SQ

via Eq. (5.6). Note that the stable and unstable branches are
described by different signs of � here and are averaged over
to arrive at Eq. (5.7). This symmetry between stable and
unstable branches in the linear regime, which can be inferred
from Eq. (5.4) here, is not manifest in the fit (5.5), which is
based on data points that are mostly in the regime nonlinear
in �. Clearly, it would be desirable to check Eq. (5.7), which
describes the linear regime, within a slow rotation approxi-
mation in the future (and without making use of the Cowling
approximation). Note that also the assumption of linear tides
could bias the predicted f -mode frequency in a similar man-
ner as the Cowling approximation and should be investigated
further in the future; see, e.g., Ref. [207] for a recent study.

Note that Eq. (5.7) is consistent with the Newtonian case
considered in Ref. [208]. We also checked our relation against
the updated fit in Eq. (4) of Ref. [204], which leads to

ω0 ≈ 2π |as/u

1 |� and it holds 2π |as/u
1 | = 1.2 . . . 1.4 which

is about 10% lower than our rough estimate of 3
2 . But still

the fit in Ref. [204] might not be optimal in the slow-rotation
regime (i.e., most data points are for fast rotation). However,
Ref. [204] provides an optimal extension of the quasiuniversal
relation above to fast rotation for � = 2.

Finally, we also consider the shift in the octopole (� = 3)
sector, which we estimate through a similar procedure as for
the quadrupole explained above. We find that the octopole f -
mode frequency ω03 is effectively shifted by


ω03 ≈ 5

2
�. (5.8)

In order to obtain definite values for the frequency shift given
the spin S = I�, we also need to know the moment of inertia
I . For neutron stars, the moment of inertia is related to the
dimensionless Love numbers � = λ0/m5

1 through a nearly
universal relation (that holds over a wide range of equations
of state) of the form

ln(I ) ≈
4∑

i=0

ci(ln �)i, (5.9)

where the coefficients are given in Table I of Ref. [209]
as c0 = 1.496, c1 = 0.05951, c2 = 0.02238, c3 = −6.953 ×
10−4, and c4 = 8.345 × 10−6.

D. Relativistic effects on the resonance frequency

Let us now investigate the f -mode resonances in a binary
system. As for the spin effects, we will use the poles in ω

of the response function (5.3) to determine these effects. The
driving force Ẽm can only excite a resonance for |m| = 2.
Using ω = mωorb, this leads to the resonance condition

ωorb − �FD = z
ω f

2
(at resonance). (5.10)

We can interpret this in the following way: The frame-
dragging frequency effectively shifts the orbital frequency

FIG. 1. Relativistic effects on the resonance frequency (5.11) for
mass ratio q = m2/m1 = 2. The red curve shows only the redshift
effect, the blue curve neglects the companion spin, and the green
curve is with “maximal” aligned spin on the companion. The effect
of the black-hole spin becomes larger with increasing mass ratio, and
is opposite for antialigned spin.

that the neutron star experiences, while the redshift factor
effectively reduces the mode frequency.

In the absence of relativistic redshift and frame-dragging
effects, the resonance happens at an orbital frequency of ω f /2.
Thus, it makes sense to normalize the relativistic resonant
frequency ωorb = ωres

orb from Eq. (5.10) as


rel ≡ 2ωres
orb

ω f
= z

1 − �FD/ωorb
(5.11)

= 1 + νx − χ2X 2
2 x3/2 + 9 + 4ν

6
νx2 + O(x5/2), (5.12)

such that 
rel ≈ 1 at the resonance in the absence of rel-
ativistic effects. The result for the relativistic shifts of the
resonance in terms of 
rel are displayed in Fig. 1; see Sec.
I.B of Ref. [173] for a detailed interpretation.

We see in Fig. 1 that the redshift (red curve) and frame-
dragging effects almost cancel out (blue curve almost at

rel ≈ 1) for comparable-mass binaries. This was already
noted qualitatively in Ref. [173], and is now quantified by
Eq. (5.11). We note that numerical simulations of eccentric
binaries, e.g., [210], found that the radiation emanating from
the neutron star oscillations shows only the redshift but no
noticeable frame-dragging effects. This is not immediately
in conflict with our observation, which considers the orbital
frequency (and radiation produced by the orbital motion), but
it would be desirable to investigate relativistic effects on the
radiation emanating from the neutron star oscillations analyt-
ically in future work.

The frame dragging generated by the companion spin also
shifts the resonance frequency, but this effect is small for
comparable-mass binaries (see the discussion above regarding
the sign of this dragging). This changes with increasing mass
of the companion, such that the companion spin can dominate
over the orbital angular momentum. For larger mass black-
hole companions, however, the net effect of tidal interactions
decreases and becomes more difficult to discern. To conclude,
for a large part of the binary parameter space relevant for
neutron stars, we can approximately neglect the relativistic
effects on the resonance 
rel ≈ 1. They would be important
for broader applications to black-hole mimickers and wave-
form models for third-generation detectors, which is outside
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the scope of this paper. For neutron star binaries, the dominant
effect on the resonance is due to the spin-tidal coupling (5.4).
We hence proceed in the next section with a Newtonian ap-
proximation and incorporate the spin-tidal interaction in the
effective Love number introduced in Refs. [172,173].

VI. ADAPTING THE SEOBNRv4T MODEL

In the preceding section, we identified the spin-tidal cou-
pling and the corresponding shift of the tidal-resonance
frequency as the most important spin effect on dynamical
tides. In this section, we incorporate this spin-tidal coupling
in the SEOBNRv4T model. We have implemented these
modifications in the LIGO Algorithms Library LALSuite.3

In this model, the dynamical f -mode tidal effects are in-
cluded through an effective Love number, calculated in the
Newtonian limit, that approximately captures the frequency
dependence of the response [172,173]. The model is still
relativistic since it utilizes post-Newtonian results for the
tidal interaction ∼EμνEμν , currently to next-to-next-to lead-
ing order [191–194]. The effective Love number is calculated
from an analysis of the solution for the oscillator amplitudes
Qm before and during the f -mode resonance. Below, we
discuss the main modifications to this due to the Coriolis
effect. A comparison to related work in Ref. [104] is given in
Appendix A.

We first consider the solutions for Qm before the res-
onance.4 We note that the m = 0 mode has a vanishing
frequency at linear order in spin and cannot be resonantly
excited. Furthermore, for |m| = 1 the driving force (4.15)
vanishes. Thus, the only contributions to the resonance are
associated with |m| = 2. Gathering the preresonance solution
(where ωorb ≈ const) for Q2 = Q∗

−2 from Eqs. (5.2), (4.15),
and (5.3), neglecting relativistic effects from redshift z ≈ 1
and frame dragging �FD ≈ 0 (as justified in the previous
section), and transforming back to the time domain leads to

Q2 = −λ0ω
2
0E2e−2iωorbt

ω2
0 − (2ωorb − 
ω0)2

, (6.1)

with 
ω0 = −2C̄SQS1 [see Eq. (5.4)]. Note that although we
are assuming that 
ω/ω0 is small, we do not expand the
denominator in the solution. This is important to preserve the
underlying physics of the resonance shift, and is a common
approach for oscillators with small perturbations to their equa-
tions of motion (e.g., for an anharmonic oscillator [211]).

3https://github.com/jsteinhoff/lalsuite/tree/tidal_resonance_
NSspin.

4Our previous work [172,173] used a different notation for
quadrupole components, given by

(Qi j ) =
⎛
⎝α + b c 0

c α − b 0
0 0 −2α

⎞
⎠.

These variables are related to the (2, m) degrees of freedom by α =
−Q0/

√
6, b = (Q2 + Q−2 )/2 = Re(Q2), and c = i(Q2 − Q−2)/2 =

−Im(Q2).

Near the resonance, the denominator of the solutions (6.1)
vanishes and the dynamics requires a local analysis that ac-
counts for the evolution of ωorb due to gravitational radiation.
This was discussed for the nonspinning case in [172,173] in
terms of two-timescale expansions that exploit the hierarchy
between the timescales in the system associated with the or-
bital motion ∼ω−1

orb, the f -mode oscillations ∼ω−1
0 , and the

gravitational radiation reaction t̃ = εφ, where φ = ∫ ωorbdt
and ε = 256μM2/3(ω f /2)5/3/5 is a small dimensionless pa-
rameter; the temporal width of the resonance is intermediate
between the orbital and radiation reaction timescales. Here,
we promote these nonspinning results to the spinning case
with minor but important modifications. We will obtain ap-
proximate results of the dominant effect without redoing the
entire calculations by using different physical perspectives of
the Coriolis effect for the analysis away from and near the
resonance, as we now discuss. The asymptotic behavior of the
solution (6.1) near the resonance is

lim
ωorb→ ω0+
ω0

2

Q2 = −λ0Ēe2i(t̃res/ε+t̂/
√

ε)

2
√

ε t̂ |�̄′| + O(t̂−3, ε0). (6.2)

Here, t̂ = √
ε(φ − φres) is a rescaled shifted phase variable

and “res” denotes evaluation at the resonance. The quantity
Ē = −E2ω

2
0/(2ωorb − 
ω0)2 is a rescaled tidal amplitude.

The function �̄ is the frequency ratio between the f -mode
and tidal driving frequencies. Its rescaled derivative evaluated
at the resonance is given by

�̄′ = d

dt̃

( ω0

2ωorb − 
ω0

)∣∣∣∣
res

= ω̇orb

εωorb

∂

∂ωorb

[
ω0

2ωorb − 
ω0

]∣∣∣∣∣
ωorb=(ω0+
ω0 )/2

. (6.3)

In the nonspinning case when 
ω0 = 0, this expression
evaluates to be �̄′ = − 3

8 using the leading-order frequency
evolution due to gravitational radiation reaction ω̇orb =
96/5μM2/3ω

11/3
orb . In the spinning case, however, there is an

extra contribution that depends on the frequency shift and we
obtain

�̄′ = −3

8

ω0 + 
ω0

ω0
. (6.4)

Next, we consider the solutions in the resonance region. In
this regime, the Coriolis effect can be viewed as an effective
shift in the f -mode frequency. This means that all the results
from [173] carry over in a straightforward manner with the
only change being a shift in ω f . The inner solutions are thus
given by

Qres
2 = λ0Ēe2iφ

√
ε

[
cos(|�̃′|t̂2)

∫ t̂

−∞
sin(|�̃′|s2)ds

− sin(|�̃′|t̂2)
∫ t̂

−∞
cos(|�̃′|s2)ds

]
. (6.5)

The ratio of mode and tidal forcing frequencies in the near-
resonance region is

�̃ = ω0 + 
ω0

2ωorb
(6.6)
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and thus �̃′ = − 3
8 as in the nonspinning case since a modi-

fication of ω0 does not affect the derivatives. The asymptotic
behavior of this solution away from the resonance is

lim
ωorb→ ω0+
ω0

2

Qres
2 = −λ0Ēe2i(t̃res/ε+t̂/

√
ε)

2
√

ε t̂ |�̃′| + O(t̂−3, ε0). (6.7)

We see from the expansions (6.2) and (6.7) that the outer (6.1)
and inner (6.5) solutions match provided that we also intro-
duce a shift in λ0 in the near-resonance solutions given by

λnear-res
0 = λ0

1 + 
ω0/ω0
. (6.8)

Note that as above we did not expand the denominator in

ω0 in Eq. (6.8) to guarantee the matching. Finally, we can
write the composite solution for the quadrupole by combining
the preresonance and near-resonance solutions with the above
modifications in each regime and subtracting their common
singularity, as explained in Ref. [173]. The last step is to
ensure the correct limit at low frequencies ωorb/
ω0 
 1 by
including an overall factor of (1 − 
ω2

0/ω
2
0 ). We then com-

pute the effective Love number �� = λ0�k̂eff
� /m5

1 used in the
EOB code from

k̂eff = − Qi jEi j

λ0EklEkl
= −

∑
m QmEm

λ0
∑

m EmEm
. (6.9)

We display the results here with the convention that the sign of

ω0� depends on the spin orientation and that it is a function
of the EOB coordinate r through ωorb = M1/2r−3/2. The dy-
namical tidal enhancement factor including the shifts is then
given by

k̂eff
� = a� + b�

(
1 − (
ω0�)2

ω2
0�

)⎧⎨
⎩ ω2

0�

ω2
0� − (�ωorb − 
ω0�)2

+
[

ω2
f ,�

2
√

ε� t̂ |�̃′|(1 + 
ω0�

ω0�

)
(�ωorb)2

]
ω f ,�=ω0�+
ω0�

+
[

ω2
f ,�√

ε�(�ωorb)2
(
1 + 
ω0�

ω0�

)Q��(t̂ )

]
ω f ,�=ω0�+
ω0�

⎫⎬
⎭,

(6.10)

where

Q��(t̂ ) = cos(|�̃′|t̂2)
∫ t̂

−∞
sin(|�̃′|s2)ds

− sin(|�̃′|t̂2)
∫ t̂

−∞
cos(|�̃′|s2)ds. (6.11)

The quantities t̂ (ω f ) and the dimensionless parameter ε�(ω f )
are given as explicit functions of r by

t̂ = 8

5
√

ε�

(
1 − r5/2ω

5/3
f ,�

�5/3M5/6

)
, ε� = 256μM2/3ω

5/3
f ,�

5�5/3
. (6.12)

In Eq. (6.10) a body label on the quantities ω0�, t̂ , ε�, and
Q�� is implied. For each � multipole only |m| = � contributes
in Eq. (6.10) because the effect of modes with |m| �= � has

FIG. 2. Matter density in the late inspiral for the nonspinning
q = 1 NSBH simulation (top left), and for the simulation with a
spinning neutron star (top right), as well as the corresponding GW
signal. We show the density in the equatorial plane at a time when
the binary separation is ∼35 km (cf. markers in the bottom panel).
The differences in the amount of distortion in the matter distributions
(larger for the spinning NS) and onset of tidal disruption (earlier
for the spinning NS), while being purely gauge dependent, can be
considered as a visualization of the enhancement of nonequilibrium
tides. The waveforms are aligned at the tidal disruption as determined
from the peak GW amplitude.

already been taken into account as adiabatic contributions. For
the quadrupole and octupole multipole moments the coeffi-
cients are given by (a2, a3) = ( 1

4 , 3
8 ) and (b2, b3) = ( 3

4 , 5
8 ).

VII. COMPARISONS TO NUMERICAL-RELATIVITY
SIMULATIONS

In this section, we compare the performance of our ex-
tension of the SEOBNRv4T approximant derived in Sec. VI
with numerical-relativity waveforms. We will focus on
black-hole–neutron star (NSBH) systems simulated with the
SPECcode [212–214] and on binary neutron star (NSNS) sim-
ulations with the BAM code [215–217].

In addition to the quantitative comparison that we will
show in the next subsections, numerical-relativity simulations
provide also a qualitative indication for the importance of
nonequilibrium tides. Figure 2 shows a NSBH system with
mass ratio q = m2/m1 = 1 and an antialigned neutron star
spin, which enhances the excitation of nonequilibrium tides
as discussed in Sec. V and can be seen from Eq. (6.10) with
a negative 
ω0�. While it is difficult to directly quantify these
dynamical tides in a gauge-independent manner, the visual
difference in Fig. 2 between the spinning and nonspinning
matter distributions of the neutron star, which have no invari-
ant meaning, provide an illustration of measurable differences
in waveforms that we will analyze below.

A. Comparison to NSBH SXS waveforms

For an initial comparison to numerical-relativity simula-
tions and a validation of our model, we consider two NSBH
setups presented in Ref. [174] and simulated with the SPEC

code [212–214]. The two configurations represent an equal-
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FIG. 3. Comparisons of various models to the NR waveforms for
NSBH considered in this work (top, equal mass; bottom, mass ratio
q = 2). The TEOBResumS waveforms are tapered to zero after the
NSNS merger frequency, and the SEOBNR waveforms are tapered
either at the NSNS merger or the f -mode resonance, whichever oc-
curs first. Remarkably, the f -mode resonance in our model including
the spin shifts matches quite well with the tidal disruption frequency
in the NR data, while the models that do not include the spin shifts
predict a merger at a later time.

mass q = 1 and an unequal-mass q = 2 setup employing a
single polytropic equation of state P = κρ2, with κ chosen
so that m1/R1 = 0.144 (e.g.. R1 = 13.8 km if m1 = 1.35M�).
Each mass ratio is simulated twice: with a nonspinning neu-
tron star and with an antialigned dimensionless spin χ1 =
−0.2 on the neutron star. In both cases the black hole remains
nonspinning. The neutron star spins and mass ratios were
chosen as examples of a large expected impact of nonequilib-
rium tides. The numerical-relativity data are publicly available
in the SXS catalog [218], where we use the simulations
SXS:BHNS:0004 and SXS:BHNS:0005 for the q = 1 and
SXS:BHNS:0002 and SXS:BHNS:0007 for the q = 2, non-
spinning and spinning cases, respectively.

The evolutions start 10–13 orbits before merger and use
eccentricity-reduced (e < 0.002), constraint satisfying initial
conditions [219,220]. Each case is simulated at three resolu-
tions, and a detailed discussion of the estimated numerical
error in these simulations can be found in Ref. [174]. The
same error estimates are used in this work. We typically find
phase errors of less than 0.1 rad for most of the inspiral and
rising to (0.1–0.2) rad at merger for the q = 1 cases and to
(0.5–1.0) rad for q = 2.

We show in Fig. 3 the real part of the GW for the dominant
(2,2) mode for the two different mass ratios and different

spin. The parameters that we use in the EOB models were
not obtained from quasiuniversal relations [except for the fit
in Eq. (5.5)] and read as

λ0

m5
1

= 799.3, m1ω0 = 0.067 46, (7.1)


ω0

ω0
= −0.325,

λ03

m7
1

= 2246, (7.2)

m1ω03 = 0.088 05,

ω03

ω03
= −0.4, (7.3)

CES2 = 7.14,
I

m3
1

= 15.5, (7.4)

recalling that these are the (quadrupolar, � = 2) Love num-
ber λ0, nonspinning f -mode frequency ω0, the mode shift

ω0 due to spin, the corresponding octupolar (� = 3) values
λ03, ω03, 
ω03, the dimensionless spin-induced quadrupole-
moment constant CES2 (normalized to 1 for black holes), and
the moment of inertia I . We see from these plots that for
the nonspinning cases, existing waveform models predict the
length of the waveforms and decrease of the GW amplitude
due to the tidal disruption of the neutron star to a good ap-
proximation. However, for systems with antialigned spins, all
existing models, including those specialized for NSBH sys-
tems, predict longer waveforms, while our modification with
spin effects (red curve) continues to yield a good prediction
for the length of the signal. This is because in our model, as
also in the nonspinning SEOBNRv4T model, the GW signal
is tapered to zero once the system reaches the f -mode res-
onance, if it occurs before the NSNS merger frequency. The
fact that for our SEOBNRv4T model the tapering occurs at
the f -mode resonance for these cases can be seen by com-
paring to the TEOBResumS results, which are always tapered
at the NSNS merger frequency. These findings highlight an
interesting point, namely, that there seems to be a direct re-
lation between the f -mode resonance and the tidal disruption
frequency.

Focusing on the q = 1 setup, we next show the phase
difference between the old (without the Coriolis effect)
and our SEOBNRv4T model, as well as results for TEO-
BResumS [147] and SEOBNSBH [221] in Fig. 4. For the
nonspinning case (top panel) all models describe the GW
phase accurately up to about one orbit before merger and stay
within the estimated uncertainty of the numerical-relativity
simulation (shown as the gray shaded region) [174]. Consid-
ering the middle panel of Fig. 4, the antialigned spin of the
neutron star enhances the dynamical tidal effects. We find
that for this setup, the discrepancy in phasing between our
SEOBNRv4T model and the numerical-relativity results is
significantly less than for the other approximants. Therefore,
we find a significantly better performance if nonequilibrium
tidal effects are included. Although our version of SEOB-
NRv4T is outside the estimated numerical uncertainty band
close to the tidal disruption, other approximants show a no-
ticeable dephasing even a few orbits before the disruption of
the star, and it is this earlier-time regime where we expect to
have more analytical control over the physics of the model.

An even more important diagnostic of the robustness of our
model, beyond a reduced phase difference in a few example
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FIG. 4. Phase differences in the NSBH case for different ap-
proximants and the numerical-relativity simulations. We consider the
difference of the phase difference in the spinning minus the nonspin-
ning case for the q = 1 NSBH simulation described in the main text
to quantify systematic dependencies on the spin. The top panel shows
phase difference between the numerical-relativity simulation (and its
uncertainty shown as a gray band) with the TEOBResumS, SEOB-
NRv4T, and SEOBNSBH models. The middle panel shows a similar
comparison for an antialigned neutron star spin, where we also add
our SEOBNRv4T model described in this paper. In the bottom panel,
we highlight again the phase difference between the approximants
and the simulation results in the spinning and nonspinning cases. The
difference between the phase difference, i.e., 
(
φ), is for the our
implemented model smallest.

cases, is that the phase differences to the numerical-relativity
simulations are consistent between the spinning and nonspin-
ning setups. To test the performance of our model with regards
to this criterion we introduce the quantity 
(
)φ, which
measures the phase difference for the case with spin minus
the phase difference in the corresponding nonspinning case.
A small 
(
)φ indicates that the physics of the dynamical
tidal effects and impact of the Coriolis effect are well captured
by the model, up to other physical effects with a different
origin that are common among all cases. The definition of

(
)φ is illustrated in the bottom panel of Fig. 4 showing
the phase difference between the EOB model and the SPEC

data in the spinning case minus the phase difference for the
nonspinning setup, i.e., the smaller the difference the bet-
ter the consistency between the nonspinning and spinning
data.

For a more quantitative presentation, we present 
(
φ)
for our and the old SEOBNRv4T models in the top panel of
Fig. 5 for the q = 1 and 2 setups. This clearly shows that
for both configurations our model outperforms the previous
implementation. Similarly, the bottom panel shows also our
model in comparison to other NSBH approximants, where
the disagreement between phase difference for spinning and
nonspinning with respect to the corresponding numerical-
relativity simulations is larger than for the model developed
in this paper.

FIG. 5. Phase differences compared to the phase differences in
the nonspinning case for the NSBH configurations. Top panel: solid
curves are the model developed in this paper, dashed curves are
the existing SEOBNRv4T model, which does not account for spin
effects on the mode resonances and exhibits a wider spread in phase
differences between spinning and nonspinning configurations. Bot-
tom panel: comparison with other waveform models which do not
incorporate the spin-induced shift of the f mode. We see that our
model has a consistently smaller spread. In each case, t0 is the time
at which the first merger occurs (i.e., for aligned spins it is the
nonspinning merger, and otherwise the merger of the antialigned
configuration).

B. NSNS BAM waveforms

We continue our tests of our model by comparing against
numerical-relativity waveforms of NSNS systems computed
with the BAM code [98,128,223,224], which include cases
with both aligned and antialigned spins. In total, we consider
three different equations of state: SLy, H4, MS1b. For all
these equations of state, we consider one nonspinning con-
figuration and one to three spinning setups; cf. Table I for
further details and for the parameters used in the EOB models.
The waveforms from Ref. [223] show a clean second-order
convergence, which allows using Richardson extrapolation to
obtain a better guess for the true waveform, as discussed in
Ref. [225]. We use the Richardson-extrapolated data from
Ref. [223] for our comparisons.

For all the cases, we follow a similar procedure as
for the NSBH setups by focusing on the difference of
the phase difference between the spinning EOB and the
numerical-relativity waveforms with respect to their nonspin-
ning counterparts. This way, we explicitly test the imprint of
spin on the dynamical tides. Our results are summarized in
Fig. 6, where in the top panel the dashed lines refer to the old
SEOBNRv4T model without the spin effects on the dynamical
tides, and the solid lines show results for our model. We find
that for these cases, our model shows a smaller phase differ-
ence between the numerical-relativity and the EOB data as the
old model. We emphasize that this does not necessarily mean
that the total phase difference with respect to the numerical-
relativity data decreased in all cases, but rather that the phase
difference for the nonspinning and spinning configurations
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TABLE I. NSNS-BAM configurations. The first column defines the name of the configuration with the notation EOSχA

mA . The subsequent
columns describe the EOS [222], the NS’ individual masses mA,B, the stars’ dimensionless spins χA,B, the Love number λ0, the nonspinning
f -mode frequency ω0, the mode shift 
ω0 due to spin, the corresponding octupolar (� = 3) values λ03, ω03, 
ω03, the dimensionless spin-
induced quadrupole-moment constant CES2 (normalized to 1 for black holes), and the moment of inertia I . The values here were not obtained
from quasiuniversal relations, except for the fit in Eq. (5.5).

Name EOS m1,2/M� χ1,2 λ0/m5
1 m1ω0 
ω0/ω0 λ03/m7

1 m1ω03 
ω03/ω03 CES2 I/m3
1

MS1b−0.10
1.35 MS1b 1.3504 −0.099 1528 0.05836 −0.137 4488 0.07973 −0.162 8.74 18.05

MS1b0.00
1.35 MS1b 1.3500 +0.000 1528 0.05836 +0.000 4488 0.07973 +0.000

MS1b0.10
1.35 MS1b 1.3504 +0.099 1528 0.05836 +0.145 4488 0.07973 +0.164 8.74 18.05

MS1b0.15
1.35 MS1b 1.3509 +0.149 1525 0.05837 +0.210 4474 0.07977 +0.238 8.54 18.17

H40.00
1.37 H4 1.3717 +0.000 1003 0.06435 +0.000 2605 0.08702 +0.000

H40.14
1.37 H4 1.3726 +0.141 1003 0.06435 +0.202 2605 0.08702 +0.232 7.32 16.11

SLy0.00
1.35 SLy 1.3500 +0.000 389.6 0.07934 +0.000 705.2 0.1067 +0.000

SLy0.05
1.35 SLy 1.3502 +0.052 389.6 0.07934 +0.084 705.2 0.1067 +0.096 6.18 12.34

SLy0.11
1.35 SLy 1.3506 +0.106 388.8 0.07936 +0.164 703.4 0.1068 +0.189 5.59 12.41

becomes almost identical, indicating that the dependence on
parameters is captured well.

The bottom panel of Fig. 6 compares the consistency of
various GW models [98,147] between the spinning and the
nonspinning configurations for the NSNS binaries. We find
that for all the setups our SEOBNRv4T implementation has
the smallest 
(
φ), which means that the phase difference
between the EOB model and the NR simulation is similar
for the spinning and nonspinning cases. These results indicate
that (i) the inclusion of spin effects is consistent and (ii) fur-

FIG. 6. Phase differences compared to the phase differences in
the nonspinning case for the NSNS configurations. Top panel: solid
curves are the model developed in this paper, dashed curves are
the existing SEOBNRv4T model, which does not account for spin
effects on the mode resonances and exhibits a wider spread in phase
differences between spinning and nonspinning configurations. Bot-
tom panel: comparison with other waveform models which do not
incorporate the spin-induced shift of the f mode. We see that our
model has a consistently smaller spread. In each case, t0 is the time
at which the first merger occurs (i.e., for aligned spins it is the
nonspinning merger, and otherwise the merger of the antialigned
configuration).

ther improvements of the nonspinning sector will likely also
improve the agreement between EOB and numerical-relativity
predictions for spinning configurations.

VIII. CONCLUSIONS

In this paper, we developed a ready-to-use waveform
model that approximately captures the effects of spin on the
f -mode dynamical tidal response of a neutron star. This model
is based on the leading-order terms in a relativistic effective
action describing a spinning neutron star in a binary system,
which we derived.

We found that within our approximation, a nonvanishing
spin gives rise to a Coriolis interaction term in the action.
We determined the coupling coefficient for this term from
the spin-induced shift of the f -mode frequencies in slowly
rotating relativistic neutron stars. A quasiuniversal relation for
this coupling coefficient was found as well, which is important
for reducing the number of parameters to be inferred from
GW observations. Further, using explicit post-Newtonian re-
sults we also analyzed relativistic effects (redshift and frame
dragging) on the dynamical tidal response and found that they
are subdominant compared to the spin effects.

FIG. 7. Analytical approximations for a nonspinning equal-mass
binary (H4 EoS, m = 1.4M�)with one extended body. Here, MYC20
is from Eq. (54) with the higher-order matching from Eq. (55) in
Ref. [104].
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We then developed a simple model that captures the main
Coriolis effects on dynamical tides and incorporated it into a
state-of-the-art EOB model. To test this model, we performed
comparisons to results from numerical-relativity simulations
of binary neutron star and neutron star–black-hole binaries.
Our model showed improved behavior over the parameter
space compared to existing models that neglect the Coriolis
effect. Moreover, we found that it predicted the tidal dis-
ruption frequency in mixed binaries significantly better than
models without this spin-tidal effect. Our model is imple-
mented in the LIGO Algorithms library.

This work also identified important directions for future
work. Moreover, the results from this paper provide a useful
foundation for including these spin-tidal effects also in other
waveform models. Improving the physics content of models
is important for accurate measurements and robustness over
a wider range in parameter space. We have also derived the
relativistic effects on the response which can be included in
future models, when we will also work out the effective Love
number based on the spin-dependent response, allow for mis-
aligned spins and other effects of the companion’s spin, and
also include other relativistic effects in a binary system. Last
but not least, the imprint of the microphysics, in particular of
superfluidity [226], on dynamical tides is of high interest for
gravitational-wave astronomy.
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APPENDIX: CONNECTION TO MA, YU, AND CHEN [104]

Here, we briefly outline similarities and differences with
the work of Ma, Yu, and Chen (hereafter MYC20) in
Ref. [104], which considered the effect of spin on the f
mode in a Newtonian context. The effect of spins on the tidal
response in Ref. [104] is interconnected with the orbital dy-
namics obtained from numerical integrations of the equations
of motion for the coupled system of dynamical quadrupoles,
orbital variables, and gravitational radiation reaction. For ease
of comparing to our results here, we apply the same procedure
as for obtaining the effective Love number k̂eff

2 oulined in

FIG. 8. Comparison between the model developed in this paper
with {
ω0, 
λ} and MYC20 for a spin frequency � = 2π × 550 Hz
(H4 EoS, m = 1.4M�, χ = 0.37). For reference, the gray curve
indicates the nonspinning result.

Sec. VI to write the formulas in MYC20 explicitly as func-
tions of the orbital separation r. The choice of this variable is
motivated by the fact that the canonical coordinate r plays a
key role for the EOB dynamics, which are the basis of EOB
waveforms. The formulas in Ref. [104] are similar to our
results, with slight differences in the definitions of variables
such as t̂ leading to small differences in the response near the
resonance, as illustrated in Fig. 7. For instance, in our work, t̂
is based on the phase and the parameter ε, while in MYC20 t̂Y

is based on coordinate time and ω̇ at the resonance time and
given explicitly by

t̂Y =
√

15

16 22/3M1/3√μ w
−

√
15r4 w

128 21/3M5/3√μ
, (A1)

where

w =
√

−ω−ω+ + �2 − �. (A2)

Here, |ω±| are the frequencies of the two branches of m modes
whose frequencies coincide for � = 0.

MYC20 compute the f -mode frequencies for Newtonian
Maclaurin spheroids. In the nonspinning case, this yields
frequencies that are ∼320 Hz smaller than the relativistic
values. MYC20 account for this by rescaling the density so
as to match the relativistic frequencies. In this paper, we
have used the fully relativistic results for the frequencies and
their shifts, albeit only within the linear approximation for
small �. The variables of MYC20 are approximately related
to these shifts by |ω±| ≈ ω0 ∓ 
ω. These different approx-
imations and prescriptions also affect the orbital frequency
at resonance. For instance, for the case of � = 2π550 Hz
considered in MYC20, which is already outside of the linear
regime, the resonance occurs at ∼300 Hz for MTY20 but not
until ∼350 Hz for the parameters used here. The resulting
predictions for the effective Love number are illustrated in
Fig. 8.
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