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Pattern formation in quantum ferrofluids: From supersolids to superglasses
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Pattern formation is a ubiquitous phenomenon observed in nonlinear and out-of-equilibrium systems. In
equilibrium, quantum ferrofluids formed from ultracold atoms were recently shown to spontaneously develop
coherent density patterns, manifesting a supersolid. We theoretically investigate the phase diagram of such
quantum ferrofluids in oblate trap geometries and find an even wider range of exotic states of matter. Two-
dimensional supersolid crystals formed from individual ferrofluid quantum droplets dominate the phase diagram
at low densities. For higher densities we find honeycomb and labyrinthine states, as well as a pumpkin phase.
We discuss scaling relations which allow us to find these phases for a wide variety of trap geometries, interaction
strengths, and atom numbers. Our study illuminates the origin of the various possible patterns of quantum
ferrofluids and shows that their occurrence is generic of strongly dipolar interacting systems stabilized by beyond
mean-field effects.
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I. INTRODUCTION

Classical ferrofluids, which are colloidal suspensions of
fine magnetic particles in a fluid, are a model system for
self-organized equilibrium [1–4]. The long-range nature of
the magnetic dipolar interaction between their constituent
particles allows them to develop macroscopic patterns or tex-
tures in equilibrium. These patterns—also commonly referred
to as morphologies—emerge in a large variety of physical
systems irrespective of their microscopic structure and in-
teractions [1,3]. The morphologies notably include droplet
(“bubble”), honeycomb (“foam”), and labyrinthine (“stripe”)
phases [1–10]. These can be found in equilibrium in systems
as diverse as quantum ferrofluids [11–13], superfluid helium
[14–16], the intermediate phase of type-I superconductors
[17–20], optically nonlinear media [21–32], biological matter
[33–36], nuclear pasta in ultradense neutron stars and white
dwarfs [37–39] as well as in out-of-equilibrium systems [40]
in convection patterns arising from the Rayleigh-Bénard in-
stability [41–43], and in a plenitude of chemical mixtures
displaying reaction-diffusion (“Turing”) patterns [44,45].

Quantum ferrofluids can be made from strongly dipolar
Bose-Einstein condensates (BECs) [11,46,47], which are su-
perfluids in contrast to their classical counterparts [48,49].
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Atoms in these BECs interact with the same dipolar interac-
tion that has proven to be archetypical of structure formation
in equilibrium. The great tunability of interaction strengths
in atomic systems [50], the presence of a crystalline droplet
phase in classical ferrofluids, and the superfluid nature of
quantum ferrofluids have motivated the search for the elusive
supersolid phase in dipolar BECs, where crystalline order
coexists with global superfluidity [51–54]. Consequently,
much attention has been given to the droplet morpholo-
gies of quantum ferrofluids [13,47,55–70]. Understanding
that these morphologies are stabilized by repulsive quantum
fluctuations [58,60,71–73] was crucial for the experimental
discovery of elongated dipolar supersolids in cigar-shaped
traps [74–78]. Despite rapid developments in this field, the
dipolar supersolids have been experimentally limited to the
droplet morphology and mostly one-dimensional (1D) crystal
structures [13,69,74–87], although first steps toward two-
dimensional (2D) supersolid droplets have recently been made
[88–92]. In an infinite system, the ground-state phase diagram
of 2D arrangements of dipolar supersolids showed honey-
comb supersolid structures [93]. Earlier studies investigating
the potential 2D honeycomb and labyrinthine phases in BECs
considered more complex multicomponent systems [94–97]
and their dynamical (Rayleigh-Taylor) instabilities [98–100]
or 2D geometries with three-body interactions instead of
quantum fluctuations as well as strictly 2D dipole-dipole in-
teractions [101].

Here, we study single-component quantum ferrofluids con-
fined in cylindrically symmetric geometries, including beyond
mean-field quantum fluctuations. We find that extending the
geometry from 1D to 2D in a trapped system extends not
only the crystal structure of the droplet phase to the second
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dimension, but also gives rise to new morphologies. We show
that dipolar BECs have a remarkably rich phase diagram as
we find quantum liquid states of matter, including supersolid
honeycomb and superglass labyrinthine morphologies beyond
the supersolid droplet morphology.

In Sec. II, we briefly review our methodology and give
an overview of the interactions in quantum ferrofluids. We
present the ground-state phase diagram of quantum ferrofluids
for an oblate trap geometry in Sec. III and discuss the types
of morphologies, their location in the phase diagram, and the
origin of the pattern formation (morphogenesis). In Sec. IV,
we show that dimensionless units reveal scaling properties of
quantum ferrofluids in the presence of quantum fluctuations
and discuss the geometry dependence of the patterns. The
scaling relations generalize the phase diagram discussed in
Sec. III to a wide range of trap geometries and allow one
to tune the strength of the stabilization mechanism of the
morphologies. Furthermore we show that, by simply adjusting
the trapping confinement, geometric transitions between BEC,
honeycomb, labyrinthine, and droplet states are possible. The
characteristic length scale of the patterns follows the same
scaling with trapping geometry that is known from the roton
momentum of dipolar BECs and extends it to new and unex-
pected regimes. Finally, we conclude in Sec. V and provide an
outlook of our study.

II. METHODOLOGY

A dilute dipolar BEC at zero temperature is described
within an effective mean-field theory, provided by the ex-
tended Gross-Pitaevskii equation (eGPE)

ih̄∂tψ = (
Ĥ0 + gs|ψ |2 + gdd(Udd ∗ |ψ |2) + gqf |ψ |3)ψ, (1)

where the wave function ψ is normalized to the atom
number N = ∫

d3r|ψ (r, t )|2 and Ĥ0 = −h̄2∇2/2M + Vext (r)
[83,102–104]. We consider a cylindrically symmetric har-
monic trap Vext (r) = Mω2

r (x2 + y2 + λ2z2)/2 with aspect
ratio λ = ωz/ωr and the mass M of the atomic species.
The contact and dipolar interaction strengths gs = 4π h̄2as/M
and gdd = 4π h̄2add/M. These quantities are determined
by the scattering length as and the dipolar length
add = μ0μ

2
mM/12π h̄2 with the magnetic moment μm. The

long-range and anisotropic dipolar interaction with the
dipoles aligned by a magnetic field along the ẑ di-
rection is given by Udd(r) = (3/4π )(1 − 3z2/r2)/r3 [11].
The dipolar mean-field potential is given by the convolu-
tion (Udd ∗ |ψ |2)(r, t ) = ∫

d3r′Udd(r − r′)|ψ (r′, t )|2. Beyond
mean-field quantum fluctuations are taken into account
within the local density approximation for dipolar sys-
tems [58,60,71–73] by the Lee-Huang-Yang (LHY) cor-
rection gqf |ψ |3 with gqf � (32/3

√
π )gsa3/2

s (1 + 3ε2
dd/2) and

εdd = add/as is the relative dipolar strength.
In the following, we are most interested in the ground

states of the system for parameters where structured forms of
matter arise. To understand structure formation as a result of
competing interactions [1], we consider the underlying energy
contributions of a state described by the eGPE in the context
of a density functional theory [15,105–108]. The eGPE can be
formulated as ih̄∂tψ = δE/δψ∗ [109], where the right-hand

side is the functional derivative of the energy functional

E =
∫

d3r

(
h̄2

2M
|∇ψ |2 + Vext|ψ |2

+ 1

2
gs|ψ |4 + 1

2
gdd|ψ |2(Udd ∗ |ψ |2) + 2

5
gqf |ψ |5

)
(2)

with respect to ψ∗. We find ground states by a direct min-
imization of Eq. (2) using conjugate gradient techniques
[102,107,110,111].

We denote the density n = |ψ |2 and the integrands of
Eq. (2) as an energy density E . Equation (2) contains the
repulsive contributions by the contact interaction Econ ∝ gsn2

and quantum fluctuations Eqf ∝ gqf n5/2, which importantly
have a distinct scaling with the density [13,55,58,101,112].
The dipolar interaction is long range and anisotropic and
can give an attractive contribution Edd < 0 for particles that
arrange in a head-to-tail configuration. The competition be-
tween the attractive dipolar and repulsive contact interaction
can therefore lead to mean-field instabilities that are stabilized
by the stronger density scaling of the quantum fluctuations.
Repulsive and attractive interactions at different length and
density scales are the key components in Eq. (2) that lead
to structure formation and are also present in other systems
such as optically coupled cold atoms [30–32,93,113], nuclear
matter [38,112], helium droplets [15,16], and colloidal sys-
tems [1,3,106,114,115]. In the context of cold atomic physics,
strongly dipolar BECs represent a realistic system holding
the potential for complex pattern formation in equilibrium
[12,13,93,101].

III. PATTERNS IN QUANTUM FERROFLUIDS

Here we first discuss the various morphologies that can be
found in the phase diagram of quantum ferrofluids in oblate
traps. Second, we turn to the origin of the pattern formation,
the morphogenesis.

We consider a strongly dipolar BEC of 162Dy atoms
(add � 130a0) confined in a cylindrically symmetric oblate
trap with trapping frequencies ω/2π = (125, 125, 250) Hz,
aspect ratio λ = 2, and a magnetic field along ẑ. The phase
diagram for the chosen parameters is connected by scaling
relations to similar phase diagrams in other trap geometries
or with other atomic species as we show in Sec. IV.

In order to gain insight into the pattern formation of quan-
tum ferrofluids we map out the ground-state phase diagram
in a wide range of interaction strengths and atom numbers
around the instability boundary from a BEC to structured
states of matter, as shown in Fig. 1. We search for the ground
state at every scattering length and atom number by setting a
random initial wave function, allowing us to avoid hysteresis
effects when crossing phase boundaries in parameter space
[75].

The boundary below which the BEC transitions to struc-
tured phases is described by a critical scattering length as,c.
The structured states have a reduced symmetry compared
to the rotationally symmetric BEC state, as the continuous
rotational symmetry is spontaneously broken for scattering
lengths below as,c. The spontaneous rotational symme-
try breaking characterizes the appearance of supersolid or
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FIG. 1. Phase diagram and morphologies beyond the supersolid
droplet regime. (a) The left-hand side shows the N-as phase diagram
for trap frequencies ω/2π = (125, 125, 250) Hz. The right-hand
side shows 2D density cuts n(x, y, 0) at relevant points in the phase
diagram, shown by the corresponding markers. The density distribu-
tions for a specific marker are ordered in atom number from left to
right. The BEC at high atom numbers has a ring of depleted density
near its boundary (circles) and forms honeycomb structures toward
smaller scattering lengths (diamonds). The honeycomb structures
persist to higher atom numbers (squares) and move outwards to the
rim of the density distributions, while the core of the BEC spatially
saturates in density. An example of the pumpkin state can be seen in
Fig. 2. Dashed lines indicate crossovers between different regions.
(b) The transition between droplets and honeycombs occurs via
stripes (b2) that break up into droplets at small scattering lengths (b1).
At high atom numbers and low scattering lengths (b3–b6), labyrinth
structures form that are almost degenerate with many other mor-
phologically different labyrinth structures. The supersolid droplets
form density connections toward higher atom numbers and transition
to labyrinthine structures. The field of view for the 2D densities in
(a) and (b) is 14×14 μm2.

superglass phases, where crystalline or amorphous spatial
structure coexists with superfluid flow [53]. We find that the
BEC can transition to a variety of patterns, namely, supersolid
droplet (SSD), honeycomb, and stripe or labyrinth phases
[12,13,93,116]. The phase diagram is shown in Fig. 1(a) on
the left-hand side and examples of patterns for the different
phases are shown on the right-hand side and in Fig. 1(b).

As shown in Fig. 1(a) (circles), the BEC states near as,c

develop a radial substructure such that they differ from a
Thomas-Fermi density distribution. The BEC states in the
range N � (60–200)×103 near as,c show a ring of depleted
density near their boundary in addition to the maximum den-
sity in the center of the trap [Fig. 1(a), circles, left column]. At
intermediate atom numbers [N � (200–400)×103] a second
minimum in the center of the trap can occur and toward higher
atom numbers, the trap center is filled with atoms and only
the depleted density ring near the boundary remains [Fig. 1(a),
circles, right column]. A special case of the BEC shape occurs

toward lower atom numbers (N � 50×103), where the maxi-
mum density in the center of the trap vanishes, leaving only
the density ring away from the trap center. These states are
known as biconcave or blood cell states [90,95,102,117–126]
due to the similarity to the shape of a red blood cell. Indi-
rect experimental evidence of these shapes has recently been
found [90] and a theoretical study explained their connection
to supersolid droplets by investigating elementary excitations
across the transition [92].

The honeycomb phase [Fig. 1(a), diamonds and squares]
forms for sufficiently high atom numbers with as < as,c,
where density bridges connect the central maximum and the
outer ring. When another density minimum is present in the
center of the trap, multiple rings with connecting density
bridges and honeycomb patterns with six, seven, or more
density minima form. These structures feature strong density
connections, facilitating superfluid flow along the honeycomb
pattern [12,75,80,93,127]. In combination with the crystalline
structure that develops, these states form a supersolid phase
[29,101]. Comparing the three-, four-, and six-droplet states
(stars) with the three-, four-, and six-minima honeycomb
states (diamonds) shown in Fig. 1(a) suggests that there is
a symmetry between positive droplets and negative droplets
on top of a background density distribution. In the infinite
quasi-2D system [93], it was shown that this is indeed a sym-
metry where the honeycomb structure becomes energetically
favorable over the hexagonal droplet crystal beyond a critical
density. We find that a similar symmetry exists in the harmon-
ically trapped finite size system we consider here [Fig. 1(a),
stars and diamonds]. The region in which the change from
droplet to honeycomb occurs is determined by an interplay
between the overall density and the quantum fluctuation
strength [93].

In a window of atom numbers where the BEC-SSD bound-
ary changes to the BEC-honeycomb boundary, the transition
below as,c can occur via stripes [Fig. 1(b), b2] or honeycomb
patterns deforming into stripes toward smaller as. The emer-
gence of the stripe phase between supersolid droplets and
honeycomb phases has been observed with quantum Monte
Carlo simulations [12] and in a mean-field theory in a scenario
where three-body interactions ∝n3 [101] take the stabilizing
role instead of quantum fluctuations ∝n5/2 [55,58,60]. We
have confirmed that toward larger aspect ratios, yielding larger
samples (toward the thermodynamic limit), the intermediate
stripe phase is enlarged in the phase diagram. When as is
further reduced, these stripes break up their connections and
reenter the supersolid droplet phase (b1). However, toward
higher N and smaller as, these stripes can curve and form
overlap with neighboring stripes, representing a small region
in the larger labyrinthine phase [Figs. 1(a) and 1(b), b3–b6].

This labyrinthine phase consists of elongated and curved
density stripes. The amorphous spatial structure together with
the strong density connections, supporting superfluid flow
along the labyrinthine stripes, classify the labyrinth as a su-
perglass [53]. In the labyrinthine regime [Fig. 1(b), b3–b6]
we cannot unequivocally determine the true ground state
by a random initial wave function or by choosing a previ-
ously found low-energy state, since we find for fixed N and
as many morphologically distinct labyrinthine patterns that
are almost degenerate [5,6,8,94,95,97,101], with total energy
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FIG. 2. Morphogenesis. Shown are density distributions of the ground state with N = 1000×103 atoms. At such high atom numbers,
the BEC features a density saturated core and develops a density depleted ring in its crust when the scattering length as is reduced to its
first boundary (as = 88.7a0). For smaller as, the outer high-density ring becomes unstable and breaks in, yielding the pumpkinlike state
(as = 88.6a0). As as is reduced further, the depleted density wanders closer to the core and is closed off by an outer shell of density, yielding a
dense core surrounded by a honeycomb structure (as = 88.0a0). When the depleted density has expanded yet closer to the core a new depleted
density ring forms (as = 86.2a0) which again forms honeycomb structures (as = 86.0a0). As the stabilizing repulsion becomes insufficient to
uphold the fine density bridges of the honeycomb pattern, some of the connections break up and yield a labyrinthine pattern (as = 84.0a0).
The top and bottom rows show 3D density distributions and 2D density cuts n(x, y, 0), respectively.

differences of a few single hertz per atom. The introduction
of an additional length scale in the trapped system, namely,
the harmonic oscillator length, creates competitions between
different configurations and therefore leads to metastability.
However, we find the labyrinth states to be robust against
small perturbations [6,8,94,97], be it in changes of scattering
length or trap deformations.

With these observations about the morphologies, we now
turn to the important change occurring in the phase diagram
of Fig. 1(a), namely, that the critical scattering length as,c

changes from rising to falling with increasing atom number.
Qualitatively, the shape of the phase boundaries in Fig. 1(a)
can be understood by noting that Eq. (2) contains the three
distinct scalings ∝n (single-particle), ∝n2 (mean-field), and
∝ n5/2 (quantum fluctuations) [13,58,60]. While the phase
diagram for low atom numbers is dominated by stabiliza-
tion due to quantum pressure (kinetic energy) [109,128], the
interplay between mean-field interactions and quantum fluctu-
ations determines where as,c rises quickly with atom number
[Fig. 1(a)]. For a high density, the stabilizing quantum fluc-
tuations dominate and allow for a smaller contact repulsion
with the same effective stabilization, hence the phase bound-
aries (including as,c) decrease with atom number [93]. This
change of as,c coincides with a peak density saturation in the
ground-state distributions as the honeycomb and labyrinthine
phases appear for as < as,c. A saturating density is a defin-
ing feature of self-bound and isolated quantum droplets
[13,58–63,67–70], which develop a flat-top (spatially satu-
rated) density distribution toward high atom numbers. The
saturation signals an increasingly quantum liquidlike behavior
and reduced compressibility compared to the BEC state, like
for a liquid compared to a gas. Similarly for the honeycomb
and labyrinthine phases, the observation of a saturating den-
sity leads to an intuitive understanding of the morphogenesis.

The effect of a saturated density in the ground-state distri-
butions for the morphogensis is best understood by following
a BEC state at a high atom number through the various in-
stability boundaries toward smaller as, as shown in Fig. 2.
Toward the atom number shown in Fig. 2, the BEC close

to as,c grows and develops a shell structure reminiscent of
ultradense neutron stars [37–39,129]. In the study of neutron
stars, the occurrence of stable and nonuniform states of matter
below the saturation density in the crust of the stars is known
as nuclear pasta [37,39]. Analogously as seen in Fig. 2, the
dense “core” of the BEC is saturated and the density varies
spatially mostly in the “crust” of the BEC. Quantum fluc-
tuations stabilize the core and prevent crystallization by an
increasing density. Instead the system minimizes its energy
by depleting density toward smaller as. The first stage of this
behavior is presented by the depleted density ring occurring
in the crust of the BEC due to the inward pressure provided
by the external harmonic trap (Fig. 2, as = 88.7a0). The atom
number determines how close to the boundary of the BEC this
depletion occurs. Toward higher N , the core region of the BEC
grows and the depleted density ring shifts outwards. While the
BEC-honeycomb transition is crossed toward smaller as up to
around N � 700×103 [cf. Fig. 1(a)], for N � 700×103 the
depleted ring is located so close to the boundary (cf. Fig. 2),
that an instability similar to the fingering instability known
from classical ferrofluids occurs at as,c [2,3,5–7,9,10]. The
BEC at these high atom numbers passes through an intermedi-
ate state when as is reduced, which we call the pumpkin state
(Fig. 2, as = 88.6a0). Toward smaller as the repulsive con-
tact interaction and quantum fluctuations become weaker and
destabilize the core region as transitions through honeycomb
to labyrinthine states occur, as detailed in Fig. 2, by a cascade
of depleted density rings that form holes and wander closer to
the core region.

One can connect the decrease in as,c and the associated
morphologies for as < as,c to the infinite system case [93].
In the infinite system, the decrease happens roughly above a
critical density at which the three phases of BEC, droplet, and
honeycomb are connected by a second-order phase transition
[130]. Generically below or above this critical density, the
BEC is connected by a first-order transition to the honeycomb
or droplet patterns in the infinite 2D system [93]. Consistent
with the observations in the infinite system, here in the finite
size system we find that the transition from BEC to the stripe
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states around the turning point of as,c occurs more smoothly
with no clear jump in peak density between N � 60×103 and
N � 110×103 compared to the transition from BEC to the
supersolid droplet or honeycomb phase at lower or higher
atom numbers, respectively. Additionally, in narrow regions
around the phase boundaries indicated in Fig. 1(a), neighbor-
ing phases can coexist in different parts of the condensate,
depending on the local chemical potential [101].

The morphogenesis of supersolid droplets for as < as,c at
low atom numbers [cf. Fig. 1(a)] is a special case as the system
can minimize its energy by locally increasing density with the
crystallization of supersolid droplets, which are not density
saturated. Studied in detail recently [90,92], their morphogen-
esis is explained by the softening of elementary excitations
called angular roton modes near as � as,c, which provide an
angular instability and split the rotationally symmetric BEC
structure into droplets.

IV. SCALING PROPERTIES OF QUANTUM FERROFLUIDS

The pattern formation studied above is by no means the
outcome of fine-tuning of system parameters. Indeed, here we
show that they are generic features of a phase diagram for
dipolar quantum gases that can be discussed using dimension-
less parameters and scaling laws.

We note that the ground-state solution of Eq. (2) is
uniquely specified by the external potential parameters {ωi}
and the interaction parameters (as, add, N ). In our present
case, the external potential parameters correspond to the trap
frequencies of the harmonic confinement, but may be left
general in case of other external potentials.

We nondimensionalize Eq. (2) by introducing the
rescaled variables [92,93,123,131] t̃ = tω0, r̃ = r/xs, and
ψ̃ = ψ

√
x3

s /N , with an arbitrary unit of length xs on which
we base the unit of time ω−1

0 = Mx2
s /h̄ and energy ε = h̄ω0

and define the dimensionless energy functional per parti-
cle Ẽ = E/Nε. After omitting the tildes the wave function
is normalized to unity and we obtain E = ∫

d3r(E0 + Enl )
with E0 = |∇ψ |2/2 + Vext|ψ |2, Vext (r) = ∑

α γ 2
α α2/2 for

α ∈ {x, y, z}, where γα = ωα/ω0, and the nonlinear and non-
local dimensionless energy density

Enl(C, D, Q) = 1
2C|ψ |4 + 1

2 D|ψ |2(Udd ∗ |ψ |2) + 2
5 Q|ψ |5.

(3)
The dimensionless interaction strengths are given by

C = 4πasN/xs, (4)

D = 4πaddN/xs, (5)

Q = 4

3π2

C5/2

N

(
1 + 3

2
ε2

dd

)
, (6)

where εdd = D/C. In this formulation, the dimensionless
numbers (C, D, Q), or equivalently (C, D, N ), in addition to
the external trapping parameters {γα} uniquely specify the
ground state.

Since Q only explicitly depends on C, N , and on the ra-
tio D/C through εdd, a generalization of the phase diagram
[Fig. 1(a)] to different atomic species is straightforward. For
a fixed trap geometry, we base the length unit on the dipo-

lar length xs = 4πadd and obtain (C, D) = (ε−1
dd N, N ) [69].

Therefore Q is only a function of εdd and N . Consequently
in a fixed trap, the only parameters determining the type of
morphology are the atom number N and the relative dipolar
strength εdd and, for the trap discussed in Sec. III, the phase
diagram generalizes to different atomic species by replacing
the as axis with ε−1

dd for any given add.
For a fixed atomic species in varying cylindrically sym-

metric traps, choosing xs = √
h̄/Mωr (therefore ω0 = ωr) is

useful as this choice leaves only the aspect ratio λ = ωz/ω0 as
an independent parameter for the external trapping potential
Vext (r) = (x2 + y2 + λ2z2)/2. In this formulation, Eqs. (4) and
(5) reveal that the contact and dipolar interaction strengths
C ∝ D ∝ N

√
ω0 follow the same scaling with atom number

and trap frequency. Therefore Enl(C, D, 0) is scale invariant
when N

√
ω0 is kept constant [132] and quantum ferrofluids

in the absence of quantum fluctuations obey an important
scaling property. Once a solution for a certain (C, D) is
known, an entire family of solutions with higher atom num-
bers and smaller trapping frequencies or vice versa has been
found [102,123,124,132]. In the presence of quantum fluc-
tuations (Q > 0), the scale invariance is broken due to the
explicit atom number dependence of Q ∝ C5/2/N . Therefore
the strength of the stabilizing quantum fluctuations can ef-
fectively be tuned along the contours N

√
ω0 = const. Such

scaling properties have also proven useful for BECs in-
teracting with an induced gravitylike interaction [133,134]
and one-dimensional systems [135,136], where they enabled
the reduction of the parameter space dimension by one.
In our case, the scaling behavior of Q along the contours
N

√
ω0 = const allows one to tune the strength of the stabi-

lization mechanism of the structured quantum ferrofluid states
of matter, as we show in the following.

In Fig. 3(a), we illustrate the utility of tuning the quantum
fluctuations in a quantum ferrofluid for the example of a hon-
eycomb state. We take a four-minimum honeycomb ground
state [cf. Fig. 1(a)] and vary the parameter Q by a few percent
to understand the effect of this scaling on the ground states.
We see that changes in Q and as are similar since both provide
a repulsive and stabilizing effect, only with a different density
scaling. To this end one may note that Cn2 + Qn5/2 = C(r)n2

acts as an effective contact interaction, with a spatially depen-
dent scattering length whose spatial dependence is given by
C(r) = C + Qn(r)1/2.

Figure 3(b) shows how this scaling can be realized by
reducing the trapping frequencies by a factor of 2 while
keeping the aspect ratio λ = 2 constant. Due to the reduction
of the stabilizing quantum fluctuations in lower confine-
ments the BEC-honeycomb transition has shifted to higher
as. Therefore at the same scattering length as in the higher
confinement, the state in the lower confinement is already in
the droplet regime with as = 89.5a0. Toward this scattering
length, the ground state in lower confinement has transitioned
from the honeycomb phase through a stripe phase and finally
to the supersolid droplet regime. Intuitively, Q (and similarly
as) controls the tendency of the density in the ground state to
bond with nearby density structures. Therefore the reduced Q
leads to structures that bond less, the droplet state being the
result of a labyrinthine state losing its tendency to bond.
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(a)

(b)

2.70

1.35

0

FIG. 3. Tunability of quantum fluctuations. (a) Behavior of
the ground state by varying Q, while keeping C and D con-
stant. This can be realized by a scaling s along contours
N

√
ω0 = const for different atom numbers

√
sN and trap ge-

ometries ω0/s. The ground state for 1.00 × Q was chosen with
(N, ω0/2π, as ) = (180×103, 125 Hz, 89.5a0 ). (b) Shows how the
broken scale invariance can be used to relate similarities between
different parameter regimes as an example for a trap frequency mod-
ified by a factor of 2. The transition from BEC to honeycomb for a
scaled atom number and correspondingly scaled trapping frequency
(
√

2N, ω0/2) occurs at higher scattering lengths due to the effective
reduction in Q, which is compensated by larger as. The dimension-
less density ñ = nx3

s /N at z = 0 is shown in (a) and (b) to compare
the ground-state density in both trap geometries. The field of view in
(a) and (b) is 14×14 μm.

Generally, similar (C, D, Q) provide an efficient way
to locate similar phases in the parameter space of the
energy functional parametrized by the physical quantities
(as, add, N ). In particular, the scaling between atom number
and trap frequencies suggests that the quantum liquid states
of matter shown in Figs. 1 and 2 might be observable in more
tightly confined traps at experimentally accessible atom num-
bers [92,137], provided that loss mechanisms are negligible
and a high optical resolution is available to resolve these fine
structures. With higher trap frequencies (smaller xs) one may
trade off the benefit of well-separated structures (larger xs)
for similar ones with enhanced quantum fluctuations at
smaller atom numbers. While here we only considered trap
aspect ratios of two, these arguments are also valid for dif-
ferent cylindrically symmetric traps [138], as we show in the
following.

An interesting property of quantum ferrofluids derives
from the anisotropy of the dipolar interaction, which is their
geometry-dependent stability [122,138–141]. The tunability
of the trapping frequencies allows one to investigate this
geometry-dependent stability continuously both theoretically
and experimentally. Above, we showed that an overall scaling
of trapping frequencies can be absorbed into the dimension-
less interaction strengths. In the following we investigate how
the morphologies are influenced by the only independent ge-
ometric parameter in the system—the aspect ratio λ = ωz/ωr .
There is a difference between changing the aspect ratio by
modifying ωz with constant ωr and vice versa since the mag-
netic field along ẑ breaks the symmetry between the radial
and axial directions. Two cases arise, namely, either a change

FIG. 4. Vertical confinement influence on morphologies. (a) In-
creasing ωz with constant ωr/2π = 125 Hz yields trap geometry
change induced transitions through ring, labyrinthine, honeycomb,
pumpkin, and BEC states. Atom number and scattering length are
fixed to (N, as ) = (500×103, 85a0). The insets in the lower right
corners show the spatial power spectrum (PS) Sn(kx, ky ) in arbi-
trary units. The crystallinity can be seen from the diffuseness of
the PS along the ring with radius |k| = k∗. Labyrinthine states
have a powdered (diffuse) PS at k∗, reflecting the amorphous or
glassy density distribution [116,142]. Toward honeycomb states, the
PS concentrates in a triangular pattern indicating the increasing
crystallinity. The pumpkin state (λ � 3.8) PS shows more angular
peaks at k∗ corresponding to its higher discrete rotational symmetry.
(b) The characteristic momentum at radial wave vector |k| = k∗

scales as k∗ ∝ 1/lz ∝ √
ωz and defines the characteristic spacing of

the morphologies 2π/k∗ ∝ lz, where lz = √
h̄/Mωz is the harmonic

oscillator length along the magnetic field direction (vertical direc-
tion). A least-squares fit to k∗/2π = c/lz as a function of vertical
confinement yields c = 0.206(2) (lr = √

h̄/Mωr � 0.71 μm). Dou-
bling N or changing as by 1a0 yields a similar behavior with a
deviation of c by less than 2% (see main text).

in vertical confinement or radial confinement, as we show in
Figs. 4 and 5, respectively.

Figure 4(a) shows that the ring state in a nearly spher-
ical trap transitions to the BEC purely by a geometric
change of the trapping confinement. The state transitions
through the labyrinthine phase, an increasingly macroscop-
ically developed honeycomb phase and finally a pumpkin
state. The patterns become finer as the vertical confinement
increases [Fig. 4(a)]. Analogous to the situation in clas-
sical ferrofluids confined between two plates [1,6–8], the
higher vertical confinement frustrates the morphologies more
strongly and leads to their thinning. The spatial power spec-
trum (PS) Sn(kx, ky) = |F[n(x, y, 0)](kx, ky)|2, shown in the
insets of Fig. 4(a), reveals information about how many length
scales are involved in the morphologies, the crystallinity, and
the spacing (fineness) of the structures. We have denoted
F[g](k) = ∫

g(r)eik·rd2r as the Fourier transform of a function
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FIG. 5. Radial confinement influence on morphologies. Re-
ducing the radial confinement ωr with fixed vertical con-
finement ωz/2π = 250 Hz causes the labyrinth to transition
to the crystal phase. Atom number and scattering length
(N, as ) = (500×103, 85a0 ) are fixed as in Fig. 4. Across the
labyrinthine to supersolid droplet transition, the characteristic mo-
mentum k∗/2π � 0.43 μm−1 defining the length scale of the phases
stays roughly constant up to λ = 5. Toward higher λ, k∗ weakly
increases. The most significant change is that the weight of the PS
(insets) concentrates into a triangular pattern, presenting the emerg-
ing multiple Brillouin zones of the macroscopic crystalline pattern
with a lattice constant 2π/k∗ formed by the droplets seen in position
space. As the labyrinthine patterns lose some density connections,
they transition first to slightly noncylindrical droplets (λ � 3.1) for
which the PS still is slightly diffuse on the ring with |k| = k∗ toward
the pristine crystal at larger aspect ratios (λ � 5). Reducing the radial
confinement or increasing the vertical confinement (see Fig. 4) both
increase the aspect ratio, but the effective change in the morphologies
is drastically different between the two cases.

g. Since the states have no modulation along z the PS of the
cut suffices to analyze the structures. The PS is concentrated
radially around a single characteristic momentum |k| = k∗.
This single radial concentration shows that there is only a
single characteristic length scale in the morphologies, corre-
sponding to 2π/k∗. The spacing (fineness) of the structures
can be seen in the absolute value of k∗ as a function of vertical
confinement. Figure 4(b) reveals that the spacing scales as
2π/k∗ ∝ lz, where lz = √

h̄/Mωz is the harmonic oscillator
length along the magnetic field direction.

This scaling behavior is known from the roton momentum
krot, defining the characteristic momentum at which the disper-
sion relation of a dipolar BEC shows a distinct roton minimum
[56,57,143]. The collective excitations associated to this min-
imum, the roton modes, are precursors to a structural phase
transition when the roton minimum softens near zero excita-
tion energy. Representing the dominant fluctuations driving
this transition [82,90,92], the roton modes carry their length
scale, the roton wavelength λrot = 2π/krot, over into the newly
emerging ground-state structure and provide its characteristic
structural length scale 2π/k∗. The fact that the characteristic
length scale across a structural phase transition can be inter-
preted to originate from softening or energetically low-lying
excitations on the higher-symmetry side of the transition is a
generic result of linear stability analysis in nonlinearly inter-
acting systems, such as classical ferrofluids [5,6] or nonlinear
optics [26,27,29–31] and is therefore general beyond the sit-
uation in quantum ferrofluids [106,108]. In the supersolid
droplet regime, this behavior has been thoroughly studied
recently [79,80,82,83,92]. Figure 4 shows that this scaling
behavior persists from the BEC state to the honeycomb phase,
throughout the multistable labyrinthine phase to the ring state.

Relating the domain spacing to the roton momentum sug-
gests that the coefficient c = 0.206(2) for the characteristic
momentum k∗/2π = c/lz mostly depends on chemical poten-
tial and maximum density in the system [56,57,143,144]. As
the density is saturated for the labyrinthine and honeycomb
phases, the chemical potential varies weakly with atom num-
ber in these regimes. Therefore, c varies weakly with atom
number and yields a robust characterization of the fineness
of the structures for a given interaction strength and trap
geometry. We have repeated the analysis shown in Fig. 4
with a different scattering length as = 84a0 and atom numbers
N = {700, 1000}×103 and find that c varies by less than than
2% at these different parameters. Toward lower atom num-
bers, the peak density and chemical potential become more
sensitive to interaction parameters and trapping frequencies
and c is generally a function of these parameters. However,
the scaling k∗ ∝ 1/lz remains.

Figure 5 shows the behavior of the morphologies with de-
creasing radial confinement with a fixed vertical confinement
ωz/2π = 250 Hz for the same as and N as in Fig. 4. Instead of
a transition from labyrinthine phase through honeycomb and
pumpkin states toward the BEC (Fig. 4), one finds in Fig. 5
that the labyrinthine phase loses its density connections and
transitions into the crystalline droplet phase. The PS (insets
in Fig. 5) shows that the characteristic momentum k∗ does
not change during the transition. These observations can be
understood as follows.

Equations (4)–(6) with xs = √
h̄/Mωr show that a de-

creasing radial confinement leads to a reduction in the
dimensionless interaction strengths similar to a decreasing
atom number. In the phase diagram (Fig. 1) this decrease
corresponds to a crossing of the labyrinthine-SSD bound-
ary at constant as, explaining the labyrinthine to supersolid
droplet transition seen in Fig. 5. Since decreasing ωr ad-
ditionally leads to an increase of the natural length scale
xs ∝ 1/

√
ωr and aspect ratio

√
λ ∝ xs, the transition is not

exactly equivalent to a change in atom number but corre-
sponds to a trajectory through four-dimensional parameter
space (C, D, Q, λ). As the spacing of the structures at con-
stant (C, D, Q) decreases as 2π/k∗ ∝ 1/

√
λ (Fig. 4), but for

the case of decreasing ωr the natural length scale xs ∝ √
λ

expands at the same rate, these two effects roughly balance
and lead to a constant k∗.

Finally, we note that a change in the aspect ratio com-
bined with a change in atom number according to λ → ∞,

N → ∞, n0 = const corresponds to systems approaching the
thermodynamic limit [56,57,143,145–148]. Accordingly one
expects quantum ferrofluids to form more macroscopic struc-
tures toward larger aspect ratios. Repeating the calculation
for the phase diagram toward larger aspect ratios, we indeed
find that the structures become more macroscopic and that the
morphologies discussed in Sec. III prevail.

V. CONCLUSION AND OUTLOOK

In conclusion we identify new quantum liquid forms of
matter in quantum ferrofluids beyond the supersolid droplet
regime. We have shown a general phase diagram of quantum
ferrofluids in an oblate trap, which features supersolid droplets
at low densities and labyrinthine, honeycomb, and pumpkin
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states toward higher densities. The emergence of these mor-
phologies can be traced back to the increasingly dominant role
of quantum fluctuations toward higher densities, providing
the underlying stabilizing mechanism. The strength of this
stabilization can be tuned by adjusting the overall trapping
confinement. Due to the anisotropy of the dipolar interaction,
the morphologies can be transformed into one another by
a simple adjustment of the trap aspect ratio. Squeezing the
quantum ferrofluid morphologies along the magnetic field
direction reveals that the characteristic length scale of the
morphologies follows the same scaling behavior as the roton
wavelength known from ordinary BEC states.

The labyrinthine states hint at a large degeneracy of the
ground state within the framework of an effective mean-field
description. This calls for a more elaborate theory beyond the
effective description in this labyrinth phase, which however is
beyond the scope of the current work. In particular, an inter-
esting possibility is that the various labyrinthine morphologies
we find to be degenerate in our effective description might
actually be selected by quantum fluctuations [149].

Another direction worth investigating is to obtain further
insight into the dominant collective excitations giving rise
to the honeycomb and labyrinthine morphologies. A linear
stability analysis similar to studies on the BEC to supersolid
droplet transition [79,80,83,92] may allow identification of
modes characteristic of the supersolid or superglass nature
of these patterns. Investigating the superfluid fraction in the
honeycomb and labyrinthine regimes will be the subject of
future work.

We anticipate that an extension of our study to molecules
[137,150] with tunable electric dipole moments could reveal
further interesting phases in regimes where strong correla-
tions and the granular nature of matter play an important role
[106,115,151].

Note added in proof. Upon submission of our manuscript,
we became aware of a related and very recent work [152].
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APPENDIX A: PHASE DIAGRAM

We find ground states using conjugate gradient techniques
[102,107,110,111]. When searching the ground state from a
random initial wave function for the phase diagram shown in
Fig. 1, we use gradient noise [153]. We typically find a faster
convergence with gradient noise compared to white noise or

20

10

0

FIG. 6. Morphologies in a trap with trapping frequencies
ω/2π = (83.3, 83.3, 250) Hz (λ = 3). Shown are 2D density cuts
n(x, y, 0) in a field of view of 30×30 μm2. The phases do not
require a specific trap geometry and can be found at different in-
teraction strengths and atom numbers for different trap geometries.
Macrosopic structures form toward higher aspect ratios.

Gaussian states. The mean-field dipolar potential is effectively
calculated using Fourier transforms, where we use a spherical
cutoff for the dipolar potential. The cutoff radius is set to the
size of the simulation space such that there is no spurious
interaction between periodic images [102,123,154].

In order to understand the behavior of the morphologies
towards the thermodynamic limit, we recalculate the phase
diagram [see Fig. 1(a)] for an aspect ratio of λ = 3 by keeping
ωz/2π = 250 Hz constant and reducing the radial trapping
frequencies to ωr/2π = 83.3 Hz. The droplet, labyrinth, hon-
eycomb, and pumpkin phases can be found in the new phase
diagram as well and the relative location of the phase bound-
aries is similar to Fig. 1(a). Examples of the droplet, stripe,
honeycomb, and pumpkin states for an aspect ratio of λ = 3
are shown in Fig. 6. Compared to smaller aspect ratios, the
morphologies have expanded and become more macroscopic,
as expected. More droplets, stripes, honeycomb minima, and
fingers of the pumpkin state form. The boundary described by
as,c has shifted to higher atom numbers and scattering lengths,
and the rate is smaller with which as,c decreases toward higher
atom numbers above the critical atom number N � 200×103.
The shift of the boundaries in lower radial confinements can
be intuitively understood by considering that quantum fluctua-
tions are reduced (see Sec. IV), and therefore higher scattering
lengths and atom numbers are required to reach similar pat-
terns. The fact that in different trap geometries the overall
structure of the phase diagram is similar, in particular that
the superglass and supersolid states of matter prevail, shows
that no fine-tuning of the trap geometry or atom numbers is
necessary to observe these structures. The morphologies are
not fine-tuned states but rather phases of matter in the com-
plex phase diagram of quantum ferrofluids. Furthermore, the
scaling relation provided in Sec. IV provides an intuitive un-
derstanding of the changes induced on the boundaries between
these phases by an overall change in trapping frequencies or
the atom number.

For completeness of the discussion regarding the peak
density in the main text, we show the peak density n0 along
vertical and horizontal cuts of the phase diagram in the main
text [Fig. 1(a)] in Fig. 7. Figure 7(a) shows that the peak den-
sity has a jump at small atom numbers, when the supersolid
droplet regime is entered and that the discontinuity becomes
smaller toward higher atom numbers. Above N � 120×103,
where the honeycomb phase separates the BEC phase from
the labyrinth, the critical scattering length as,c decreases with
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FIG. 7. Peak density in the phase diagram shown in Fig. 1 as
a function of scattering length at fixed atom numbers (a) and as a
function of atom number for fixed scattering lengths (b).

increasing atom number. In the labyrinthine phase, there are
fluctuations in peak density as the scatttering length is var-
ied since labyrinths with different forms can have slightly
different peak densities. However, toward smaller scatter-
ing lengths they follow the same general functional form
n0(as) regardless of the atom number, which indicates that
the peak density is saturated in the labyrinthine phase. The
saturation can also be seen in Fig. 7(b) as a function of
atom number for fixed scattering lengths. In the BEC regime
(as = {90, 90.5}a0) the peak density rises relatively quickly
up to N � 120×103, where the behavior of the critical scatter-
ing length as,c changes, as described in the main text. Slightly
below this atom number, the stripe phase appears as an inter-
mediate region between the honeycomb and the SSD phase
(see Fig. 1). Above N � 120×103 in the BEC regime, the
peak density grows significantly slower compared to the initial
increase and only weakly depends on the scattering length
[cf. Fig. 7(a)]. Spatially, the core region of the BEC close
to the honeycomb transition is roughly density saturated (see
Fig. 2) and grows slowly when the atom number is increased
as shown in Fig. 7(b). One can see from the peak density with
as = 89a0, where the honeycomb phase is entered and exited
as a function of atom number, that in the honeycomb phase
the peak density is saturated and when it is exited, follows the
same behavior of the BEC. At smaller scattering lengths, one
can see that the peak density still grows in the droplet regime
when the atom number is increased, but is saturated in the
stripe and labyrinthine phases.

A change of the peak density behavior can be seen in the
BEC phase close to the instability boundary where the atom
number is high enough to support a density maximum in the
center of the trap, surrounded by a ring of depleted density
near the boundary [Fig. 1(a), circles]. Increasing the atom
number from there on mainly leads to an overall growth of
the BEC structure while maintaining the depleted density ring
near its boundary. The overall peak density in the BEC still
grows for higher atom numbers, but at a smaller rate.

Towards smaller scattering lengths in the honeycomb and
labyrinthine phases, the depleted density needs to redistribute
itself among the remaining density connections, leading to a
moderate increase of density in these structures. This process
leads to the transition from honeycomb to labyrinthine states,

as some density connections weaken sufficiently toward low
scattering lengths to break up. The states in the honeycomb
and labyrinthine phases do not increase their peak density
toward higher atom numbers but only grow in size and change
their morphology. Along the density lines in the honeycomb
and labyrinthine phases, the density remains spatially almost
flat.

Honeycomb and labyrinthine phases with their macro-
scopically saturated density distribution realize a quantum
liquid that is even further extended in space than the pre-
viously studied isolated and self-bound quantum droplets
[13,47,55,58–64,66–70]. Despite their saturated density n0,
these phases are still ultradilute compared to strongly inter-
acting or ordinary liquids [64,66] as the gas parameter in the
entire phase diagram of Fig. 1(a) stays below n0a3

s � 3×10−4.
There is an analogy to the situation of elongated super-

solids, where a decrease in critical scattering length beyond
a critical density has also been noticed when quantum fluctu-
ations are included in the description [76,81,85]. In elongated
geometries, the transition from BEC to droplets is smooth
in an intermediate density regime [81] and the decrease in
critical scattering length is only observed when the LHY
correction is included [85]. Beyond the intermediate atom
number regime, it is seen that the density modulation forms
first around the outer boundary and moves inwards for de-
creasing as [76]. Analogously in the oblate trap, we find that
the density modulation at low atom numbers occurs in the cen-
ter of the trap (blood cell and subsequent droplet formation)
and at higher atom numbers the density minimum of the blood
cell moves outwards and bridges form between the central
maximum and the outer ring, yielding the honeycomb phase,
as shown in Fig. 1. The smooth transition in an intermediate
atom number regime can also be seen in the round trap as we
discussed in the main text, as well as the infinite system [93].

We point out a similarity to self-assembling collodial sys-
tems with competing interactions [106,115]. In these systems,
the phase diagram has a similar basic structure as shown in
Fig. 1 [106], and minimum-energy configurations can show
the formation of shell structures [115], in which multiple
depleted density regions form in a honeycomb pattern.

We conclude with final remarks regarding the phase
diagram on the transition between the honeycomb and
labyrinthine phases.

When setting a previously found ground state across
the honeycomb-labyrinthine transition, we find that the dis-
crete rotational symmetry of the honeycomb state persists to
smaller scattering lengths compared to the state one finds
when searching from a random initial state. In some cases,
honeycomb structures can lose their outer connections toward
smaller scattering length which yields droplets that surround
circularly symmetric density rings. When comparing these
states with stripe and labyrinth states that we obtain by search-
ing for the ground state from a random initial wave function,
we find that the ring states are typically a few hertz up to 10 Hz
higher in total energy per atom, which indicates that these are
metastable states originating from a hysteresis. Nonetheless
we find that these states may be relevant for future work, as
we performed real-time simulations where we slowly ramp
the scattering length across the transition and find that these
metastable ring states can be long-lived (we have evolved
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these states up to 120 ms after the ramp is complete and
find them to be stable) and might therefore be experimentally
observable.

APPENDIX B: REDUCED UNITS
AND SCALING PROPERTIES

As described in the main text, we define the dimensionless
variables t̃ = tω0, r̃ = r/xs, and ψ̃ = ψ

√
x3

s /N to nondimen-
sionalize the energy functional [69,92,93,123,124,131]. Here,
ω−1

0 and xs can at first be taken as arbitrary quantities with
units of time and length, respectively. For Schrödinger-like
equations it is convenient to define the energy and time
units as ε = h̄2/Mx2

s and ω−1
0 = Mx2

s /h̄ based on the unit of
length xs.

A significant consequence is that the contact and dipolar
interaction terms [Eqs. (4) and (5)] for a given atomic species
are only ever modified by the product N

√
ω0. This is a result

of the contact and dipolar interaction both being quadratic
in ψ and since the three-dimensional convolution (∝d3r) of
the dipolar interaction (Udd ∝ 1/r3) stays invariant when scal-
ing space by a factor of xs. With other nonlocal interactions
following different power-law behaviors, for instance in sys-
tems with an induced gravitylike interaction [∝ (1/r) ∗ |ψ |2],
different scaling properties with the atom number can be ex-
ploited [133,134]. In the main text we focused on the behavior
C ∝ D ∝ N

√
ω0 in order to describe the change of the ground

state when different atom numbers and trapping frequencies
are considered. However, the reduced units are also generally
useful to discuss the behavior of different atomic or molecular
species for fixed trapping frequencies by considering the full
dependence C ∝ asN/xs, D ∝ addN/xs. These expressions in-
clude the scattering and dipolar lengths, as well as the mass M
that influences xs ∝ 1/

√
M and add ∝ μ2

mM.
Let us consider systems with higher masses or stronger

magnetic dipole moments compared to 162Dy, yielding larger
D ∝ μ2

mM3/2N . Scaling for s < 1 the atom number and mass
N → sN , M → M/s2 increases D → D/s2, Q → Q/s and
leaves C unchanged. To obtain the same εdd, higher scattering
lengths are required, which leads to enhanced quantum fluc-
tuations. Similar to the scaling N

√
ω0 = const we discussed

previously, the quantum fluctuations Q are enhanced along the
contours μ2

mM3/2N = const for larger μm or M at smaller N .
Another use of the dimensionless interaction strengths

is to obtain an intuitive understanding of the geometry de-

pendence of dipolar BECs discussed in Figs. 4 and 5 of
the main text. The fact that the labyrinthine-SSD transi-
tion for smaller ωr at constant ωz occurs (cf. Fig. 5 in
the main text), can be understood by considering (C, D, Q)
as a coordinate system on which geometric transformations
are performed as ωr or N is changed. While Fig. 4 shows
the behavior of the system in the full parameter space
[C, D, Q, λ(ωz )] along the fourth and independent dimension
λ = ωz/ωr , Fig. 5 shows the behavior along a trajectory
ωr �→ T (ωr ) = [C(ωr ), D(ωr ), Q(ωr ), λ(ωr )] through four-
dimensional parameter space.

As for the scaling properties discussed, it is useful to
consider the change on the coordinate system (C, D, Q) in-
duced by the transformation ωr → ωr/s and one obtains
(C, D, Q) → (C, D, Q/s3/4)/

√
s. Interpreting this change as

a geometric transformation [155,156], it is a contraction
combined with a squeeze mapping that squeezes the quan-
tum fluctuations. For s > 1, the overall interaction strengths
decrease, the quantum fluctuations are additionally reduced
(“squeezed” closer to zero), and the natural length scale
increases xs → √

sxs. We compare to the transformation
N → N/

√
s, yielding (C, D, Q) → (C, D, Q/s1/4)/

√
s and

see that it is the same contraction combined with a weaker
squeeze mapping.

From this comparison, we see that a decrease in atom
number corresponds to a similar change in the interaction
parameters (C, D, Q) compared to a change in the radial trap-
ping confinement, except that in addition λ changes. This
observation provides an intuitive understanding of the state
changing from labyrinthine to droplets. During this transfor-
mation T (ωr ) is a path similar to moving toward smaller atom
numbers at constant εdd in the phase diagram of Fig. 1(a),
exiting the labyrinthine phase and entering the droplet phase.
Since the natural length scale increases xs → √

sxs, one
can consider the change in radial confinement as effectively
moving toward smaller atom numbers and simultaneously
evaluating the ground state on rescaled spatial coordi-
nates, that increase as ∝√

s. Were all interaction parameters
(C, D, Q) kept constant during the change of λ, the situation
shown in Fig. 4(a) would occur and the characteristic length
scale of the morphologies would change as ∝λ ∝ 1/

√
s.

Therefore, these two effects roughly balance and one observes
a transition from labyrinth to droplet state, where the droplets
keep their lattice spacing roughly constant and merely grow
radially outwards toward a macroscopic droplet crystal.
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