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Orbital and electronic entanglement in quantum teleportation schemes

Anna Galler 1 and Patrik Thunström 2

1Centre de Physique Théorique, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
2Department of Physics and Astronomy, Materials Theory, Uppsala University, 75120 Uppsala, Sweden

(Received 29 November 2020; accepted 6 July 2021; published 6 August 2021)

With progress toward more compact quantum computing architectures, fundamental questions regarding the
entanglement of indistinguishable particles need to be addressed. In a solid state device, this quest is naturally
connected to the quantum correlations of electrons. Here, we analyze the formation of orbital (mode) and particle
entanglement in strongly correlated materials due to the Coulomb interaction between the electrons. We extend
the analysis to include spectroscopic measurements of the electronic structure, with a particular focus on the
photoemission process. To study the role of the different forms of electronic entanglement, including the effect
of particle-number superselection rules, we propose and analyze three different electronic teleportation schemes:
quantum teleportation within (i) a molecule on graphene, (ii) a nitrogen-vacancy center, and (iii) a quantum dot
array.
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I. INTRODUCTION

Entanglement lies at the heart of quantum mechanics
and has been investigated extensively during the past few
decades mainly due to its importance in quantum information,
cryptography and teleportation [1]. The vast majority of stud-
ies focuses on the entanglement of distinguishable particles,
while the entanglement of identical particles such as electrons
has received much less attention so far. The experimental
realizations of these quantum information processes consist,
nevertheless, mainly of identical particles like photons [2,3],
ultracold atoms in an optical trap [4,5], or electrons in a
quantum dot [6,7]. The particles are instead made distinguish-
able by restricting their states to nonoverlapping sections of
the Hilbert space, for example by a macroscopical separation
of their positions. However, if one aims at building a com-
pact quantum computer, then entanglement between identical
particles in overlapping orbitals can no longer be neglected.
There are in addition several outstanding questions regarding
the entanglement between electrons in strongly correlated
materials. For example, how is entanglement between the
electrons formed within a material, and how does it affect the
properties of the material? The purpose of the present study is
to investigate the entanglement of electrons in a material and
in electronic quantum information processes. To this aim we
will propose and analyze three solid-state quantum teleporta-
tion protocols.

In contrast to the single definition of entanglement be-
tween distinguishable particles, there are two complementary
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forms of entanglement for electrons; orbital (mode) entan-
glement [8–18] and particle entanglement [17–24]. The first
form is based on a bipartition of the orbitals in the system,
much like the bipartition used for distinguishable states, and
quantifies the quantum correlations between the two sets of
orbitals. It can be seen as a resource for sending quantum
information between the orbital partitions. The definition of
particle entanglement focuses instead directly on the quantum
correlations between the electrons, i.e., how far the state of
the system is from a statistical mixture of Fock states (single
Slater determinants). As detailed in Sec. II, particle entangle-
ment arises exclusively from particle interactions, including
the interaction with a detector, while mode entanglement is
generated by both nonlocal interactions and the kinetic energy
term in the Hamiltonian.

The definition of mode entanglement can be supplemented
with system and quantum protocol-dependent superselection
rules [13–16,25]. In the context of quantum teleportation
protocols, which transfer the state of an electron in a local
orbital partition to a remote orbital partition, it is natural to
impose that only operations that conserve the local particle
number (N-SSR) are allowed. The N-SSR restricted mode
entanglement measure of Wiseman and Vaccaro in Ref. [14]
models the effect of this restriction by first measuring the local
particle number of the state before its mode entanglement is
measured. In the following we will therefore analyze both
the standard definition of mode entanglement, and the N-SSR
restricted mode entanglement.

The paper is organized as follows. An in-depth introduc-
tion of mode entanglement, particle entanglement, and N-SSR
restricted mode entanglement in the second quantization for-
malism is provided in Appendixes A and B. In Sec. II of the
main article we study of the intrinsic processes that generate
mode and particle entanglement in materials. We use the de-
rived theory to analyze how a spectroscopic measurement of
the electronic structure affects the particle entanglement, with
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a particular focus on the photoemission process. In Sec. III
we analyze the role of the different forms of entanglement in
three different quantum teleportation schemes for electrons.
We find that N-SSR restricted mode entanglement is a key re-
source for the quantum teleportation of electrons, in line with
Refs. [26–28], but only under the condition that the teleported
state is not affected by a local particle number measurement at
the end of the teleportation protocol. Our work provides a new
perspective to the investigation of electronic entanglement
in materials and teleportation schemes (for related work see
Refs. [16,26–30]), giving concrete solid-state examples and
highlighting the connection between particle entanglement
and N-SSR restricted mode entanglement.

II. ENTANGLEMENT IN A MATERIAL

A. The Hamiltonian

The evolution of the electrons within a material is governed
by the Schrödinger equation and a many-body Hamiltonian
composed of a one-particle term (Ĥ (1)) and the two-particle
Coulomb interaction (Û ). The one-particle term Ĥ (1) can in
general be written

Ĥ (1) =
∑
mn

H (1)
mn ĉ†

mĉn, (1)

where H (1)
mn = 〈0| ĉmĤ (1)ĉ†

n |0〉 is the matrix representation of
Ĥ (1) evaluated in the one-particle Slater determinant basis
ĉ†

n |0〉. The unscreened two-particle Coulomb interaction is
given by

Û =
∑
σσ ′

∫∫
ĉ†

r,σ ĉ†
r′,σ ′

1

|r − r′| ĉr′,σ ′ ĉr,σ drdr′, (2)

where r and σ are the position and the spin of the electron,
respectively.

All materials, except solid hydrogen, have some contracted
atomic-like (core) orbitals that are always completely filled
with electrons due to their large attractive interaction with
the nucleus. The electrons in these core orbitals can therefore
be traced out of the system. The interaction term between
these core electrons and the remaining (valence) electrons
is then reduced to an additional effective one-particle poten-
tial term in Ĥ (1). The kinetic energy term in Ĥ (1) cause the
remaining atomic orbitals to hybridize with the orbitals of
the neighboring atoms, but the strength of the hybridization
depends strongly on the overlap between the orbitals. The 3d
orbitals of first row transition metal atoms and the f orbitals
of the lanthanides and actinides are particularly contracted
compared to the more extended valence s- and p orbitals.
The weaker hybridization increase the relative importance
of the Û term within these contracted orbitals. The strongly
hybridizing valence s and p orbitals are, on the other hand,
often well described by mean-field-like approximations that
reduce the Û term to an effective potential in Ĥ (1) [31–33].
Strongly correlated materials, i.e., materials that can not even
qualitatively be described by only an effective Ĥ (1), have
therefore in general partially filled localized d or f orbitals.

The two terms of the Hamiltonian, Ĥ (1) and Û , do not
in general commute, but the Trotter decomposition of the

resulting evolution operator

eiĤt = lim
M→∞

[eiĤ (1)t/MeiÛt/M]M, (3)

allows us to consider the effect of the one-particle unitary
operator Ŵ (1) = eiĤ (1)t/M and the two-particle unitary operator
Ŵ (2) = eiÛt/M separately.

B. The one-particle evolution operator

It is well known that the evolution given by Ŵ (1) simply
causes a unitary transformation of the orbitals,

Ŵ (1)ĉ†
i1

ĉ†
i2

· · · ĉ†
iN

|0〉 = ĉ′′†
i1

ĉ′′†
i2

· · · ĉ′′†
iN

|0〉, (4)

with ĉ′′†
n =∑m c†

mW (1)
mn . This implies, by definition, that Ŵ (1)

does not affect the particle entanglement in the system. The
orbital transformation can nevertheless affect the mode en-
tanglement between two orbital partitions A and B, unless
H (1) and thus Ŵ (1) is purely local in A and B. Local orbital
transformations do not affect the mode entanglement since ρ̂A

is invariant under any local unitary orbital transformation in B,
and S[ρ̂A] is independent of the unitary orbital transformations
in A. A nonzero off-diagonal element in W (1) between A and
B can, on the other hand, easily affect the mode entanglement
since it induces coherent transport of electrons between the
two partitions. If the orbital partitions are chosen to be local
and nonoverlapping in space, then it is the kinetic energy
term in Ĥ (1) that generate these off-diagonal element as the
effective one-particle potential energy term in Ĥ (1) is local in
space.

In the next section we will analyze how Ŵ (2) affects the
mode and particle entanglement. Let us therefore, as a starting
point, derive Eq. (4) for Ŵ (1) and then in the next section
generalize it to Ŵ (2).

The unitary operator Ŵ (1) can be written as

Ŵ (1) = exp

[
i
∑
mn

H (1)
mn t

M
ĉ†

mĉn

]
. (5)

The exponent can be brought to a diagonal form by diagonal-
izing H (1) using the eigenvectors vm j and the eigenvalues E (1)

j ,

Ŵ (1) = exp

[
i
∑

j

E (1)
j t

M
ĉ′†

j ĉ′
j

]
, (6)

where ĉ′†
j =∑m c†

mvm j . Since the diagonal terms in the expo-

nent commute, and ĉ′†
j ĉ′

j = ĉ′†
j ĉ′

j ĉ
′†
j ĉ′

j , we can Taylor expand

Ŵ (1) as

Ŵ (1) =
∏

j

[
1 − ĉ′†

j ĉ′
j + eiE (1)

j t/Mĉ′†
j ĉ′

j

]
. (7)

Given Eq. (7) and that ĉ′†
j ĉ′†

j = 0, it follows that

Ŵ (1)ĉ′†
j = ĉ′†

j e
iE (1)

j t

M Ŵ (1). (8)
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Hence, if Ŵ (1) acts on a creation operator ĉ†
n =∑ j c′†

j v∗
n j from

the left, then we get

Ŵ (1)ĉ†
n = Ŵ (1)

∑
j

c′†
j v∗

n j

=
[∑

j

ĉ′†
j eiE (1)

j t/Mv∗
n j

]
Ŵ (1)

=
∑
jkm

ĉ′†
k v∗

mkvm je
iE (1)

j t/Mv∗
n jŴ

(1)

=
∑

m

ĉ†
mW (1)

mn Ŵ (1), (9)

where we in the third line used the Kronecker delta δk j =∑
m v∗

mkvm j and that

W (1)
mn = (eiH (1)t/M )mn =

∑
j

vm je
iE (1)

j t/Mv∗
n j . (10)

Equation (4) follows immediately from Eq. (9) and that
Ŵ (1) |0〉 = |0〉.

C. The two-particle evolution operator

The Coulomb interaction Û in Eq. (2) is diagonal in the
position and spin basis (r, σ, r′, σ ′). We can therefore also
write Ŵ (2) in a diagonal form, cf. Eq. (6),

Ŵ (2) = exp

[
it

M

∑
σσ ′

∫∫
t/N

|r − r′| ĉ†
rσ ĉ†

r′σ ′ ĉr′σ ′ ĉrσ dr′dr

]
,

≡ exp

[
i
∑
r∈S2

Ert

M
Ŝ†

r Ŝr

]
, (11)

where the two-particle Slater determinant index r contains
both position and spin, i.e., Ŝr = ĉrσ ĉr′σ ′ . The Taylor expan-
sion of Ŵ (2) becomes

Ŵ (2) =
∏
r∈S2

(
1 − Ŝ†

r Ŝr + e
itEr
M Ŝ†

r Ŝr
)
, (12)

which after some algebra yields

Ŵ (2)ĉ†
rσ = ĉ†

rσ

∏
(rσ r′σ ′ )∈S2

[
1− ĉ†

r′σ ′ ĉr′σ ′ + e
itE(rσ r′σ ′ )

M ĉ†
r′σ ′ ĉr′σ ′

]
Ŵ (2)

= ĉ†
rσ exp

[
it/M

∑
(rσ r′σ ′ )∈S2

E(rσ r′σ ′ )ĉ
†
r′σ ′ ĉr′σ ′

]
Ŵ (2)

≡ ĉ†
rσŴ (1)

rσ Ŵ (2), (13)

where (rσ r′σ ′) denotes the Slater determinant index for which
the electrons occupy r and r′ with spin σ and σ ′, respectively.
Ŵ (1)

rσ is a one-particle unitary operator that describes the
Coulomb potential due to the electron at position r. It has the
same form as Ŵ (1) in Eq. (6) except that it also depends on
the position and spin of the creation operator Ŵ (2) acted on. It
is straightforward to generalize Eq. (13) to treat an effective
N-body density-density interaction by replacing r′ and ĉ†

r′ ĉr′

with an N − 1 electron Slater determinant index r′ and the
corresponding product of creation and annihilation operators
Ŝ†

r′ Ŝr′ , respectively.

The main difference between Eq. (8) and Eq. (13) is that
the unitary operator Ŵ (1)

rσ can not be absorbed by an orbital
transformation. Instead, Ŵ (1)

rσ will act on the next creation
operator ĉ†

r′σ ′ in line giving

Ŵ (1)
rσ ĉ†

r′σ ′ = ĉ†
r′σ ′eiE(rσ r′σ ′ )t/MŴ (1)

rσ . (14)

Equations (13) and (14) fully determine the evolution given
by Ŵ (2),

Ŵ (2)ĉ†
r1

ĉ†
r2

· · · ĉ†
rN

|0〉 = ĉ†
r1

Ŵ (1)
r1

ĉ†
r2

Ŵ (1)
r2

· · · ĉ†
rN

|0〉

=
N∏

j=1

ĉ†
r j

e
it

2M

∑N
n 
= j E(rnri ) |0〉. (15)

The phase factors induced by Ŵ (2) in the second line of
Eq. (15) depend nonlinearly on the orbital occupations. It is
therefore not possible to assign to each orbital a fixed phase
shift as in Eq. (8), unless the many-body state is an eigenstate
of Û . Hence, in contrast to one-particle term Ĥ (1) in the
Hamiltonian, the evolution given by the Coulomb interaction
will in general modify the particle entanglement. The mode
entanglement between two orbital partitions A and B is also
in general affected by Ŵ (2). However, just as for Ŵ (1), it
requires a state-dependent shift of the relative phases between
the electrons in A and B in Eq. (15), i.e., that the electrons in
A and B interact with each other.

These effects can be illustrated with a minimal model; a
system with two orbitals 1 and 2 and two electrons, with
H (1) = 0 and an on-site effective Coulomb interaction of the
form

Û = Uĉ†
1↑ĉ†

1↓ĉ1,↓ĉ1↑ + Uĉ†
2↑ĉ†

2↓ĉ2↓ĉ2↑. (16)

The two electrons are prepared in the Fock state |ψ〉 =
ĉ†

a↑ĉ†
b↓ |0〉 where

ĉ†
aσ = 1√

2
(ĉ†

1σ + ĉ†
2σ ) ĉ†

bσ = 1√
2

(ĉ†
1σ − ĉ†

2σ ). (17)

The state |ψ〉 evolve according to Eq. (15),

W (2) |ψ〉

= W (2)

2
(ĉ†

1↑ĉ†
1↓ − ĉ†

1↑ĉ†
2↓ + ĉ†

2↑ĉ†
1↓ − ĉ†

2↑ĉ†
2↓) |0〉

= 1

2
(eiUt ĉ†

1↑ĉ†
1↓ − ĉ†

1↑ĉ†
2↓ + ĉ†

2↑ĉ†
1↓ − eiUt ĉ†

2↑ĉ†
2↓) |0〉

=
(

eiUt + 1

2
ĉ†

a↑ĉ†
b↓ + eiUt − 1

2
ĉ†

a↓ĉ†
b↑

)
|0〉. (18)

As |ψ〉 evolves it goes from a Fock state at t = 0 to be-
come a maximally particle entangled state at t = π

2U . The
mode entanglement between orbitals a and b changes at the
same time from S[ρa(t = 0)] = 0 to S[ρa(t = π

2U )] = 1/2.
The mode entanglement between 1 and 2 remains, on the other
hand, constant at S = 3/4 since the on-site effective Coulomb
interaction is purely local with respect to 1 and 2.

D. Particle entanglement and measurements

The particle entanglement is not only affected by the in-
teractions within a system but also by the interaction with a
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measurement device. The underlying principle of any mea-
surement device is a nonlinear amplification process that is
triggered by its interaction with the probed system. The am-
plification process is in general a cascade reaction designed
to correlate the states of a macroscopically large number of
particles with the state of the probed system. For example, an
electron multiplier measures the occupation of a free electron
orbital (e) at time t = 0 by accelerating the (primary) elec-
tron toward a surface of a secondary-emissive material. The
interaction with the surface electrons (D0) cause the ejection
of secondary electrons which in turn are accelerated toward
a second surface where the process is repeated. The chain
reaction cause a cascade of excited electrons (D1) to travel
down the electron multiplier to finally, at time t = T , reach an
electric readout. An electron multiplier will in general detect
the presence of electrons in more than a single spin-orbital.
This can, however, be treated as an array of ideal detectors
each detecting the occupation of just a single spin-orbital but
having a common electrical readout. The ideal one-particle
detection process of an electron in orbital e can hence be
summarized as

|� i(t = 0)〉 = ĉ†
e

[∑
i∈SN

D0
i (0)Ŝ†

i

]
|0〉

→ |� f (t = T )〉 =
⎡
⎣ ∑

i∈SN+1

D1
i (T )Ŝ†

i

⎤
⎦ |0〉. (19)

The pointer states of the detector (D0 and D1) are at equal
time t = T for all practical purposes irreversibly orthogonal
to each other, i.e.,

〈� i(t = T )|Ŵ (t ′) |� f (t = T )〉 = 0, (20)

where Ŵ (t ′) is any practically achievable evolution operator,
and the time t ′ can be made arbitrarily large by increasing the
size of the detector. To highlight this irreversibility we will
in the following use a notation that separates the state of the
probed system (ψ) and the detector (D),

|�(t )〉 = |ψ (t ), Dp(t )〉 ≡
[∑

i

ψi(t )Ŝ†
i

][∑
j

Dp
j (t )Ŝ†

j

]
|0〉.

(21)
The interaction between the system and the detector in

Eq. (19) causes in general the formation of a superposition
between the different pointer states,

|� i〉 ≡ √
αeiθ ĉ†

e |ψe, D0(0)〉 + √
1 − α |ψs, D0(0)〉

→ |� f 〉 ≡ √
αeiθ |ψe, D1(T )〉 + √

1 − α |ψs, D0(T )〉, (22)

where 0 � α � 1 and the state |ψs〉 does not trigger the detec-
tor. However, since the different pointer states of the detector
always remain orthogonal to each other it is impossible to
access the relative phase eiθ in |ψ f 〉. The irreversible lack
of interference makes the superposition between the different
pointer states equivalent to a statistical (classical) correlation.
The particle entanglement within the detector, i.e., E [|0, D0〉]
and E [|0, D1〉] (see Appendix A), is in general equally un-
accessible. In the following we will therefore focus on the
particle entanglement within the probed system (S) given by

E [P̂Dp |� f 〉], where the projection operator

P̂Dp ≡
∑

i ∈ SD

j ∈ SS

Dp∗
i P̂ji (23)

resolves and projects out the pointer state Dp of the detector
using the projectors P̂ji defined by Eq. (A12).

As shown in Appendix D, if the normalized states |ψe〉
and |ψs〉 contain N and N + 1 electrons, respectively, but
neither state has an electron in orbital e, then the particle
entanglement fulfills the inequality

E [
√

αeiθ ĉ†
e |ψe〉 + √

1 − α |ψs〉]
� αE [|ψe〉] + (1 − α)E [|ψs〉], (24)

for both EG[|ψ〉] and S[|ψ〉]. Equation (24) can be rewritten
as

E [P̂D0 |ψ i〉] � E [P̂D1 |ψ f 〉] + E [P̂D0 |ψ f 〉], (25)

for the states in Eq. (22), which shows that the measurement
of the occupation of a single spin-orbital does not increase
the particle entanglement of the probed system on average.
This parallels how local measurements and classical commu-
nication do not increase the entanglement of distinguishable
particles on average [34].

The interaction with the detector is often preceded by
an excitation of the probed system. In photoemission spec-
troscopy the system is first excited by a photon which causes
an electron to be emitted from the surface of the sample. The
electron enters a highly excited free electron orbital and is
then captured by an electron multiplier as in Eq. (22). If the
excitation by the photon is considered to be much faster than
the dynamics of the system, then it can be described by an ef-
fective one-particle unitary operator (Ŵ (1)). This implies that
the full ideal photoemission spectroscopy measurement also
fulfills the particle entanglement inequality in Eq. (25) and
not only the detection step, i.e., a photoemission measurement
does not increase the particle entanglement.

The working principle of a photomultiplier is the same
as an electron multiplier except that the primary particle is
a photon instead of an electron. The incoming photon hits
a photoemissive surface which in the ideal case cause the
emission of a free electron. The free electron is then detected
by an electron multiplier according to Eq. (22). Although the
detection of the free electron fulfills the particle entanglement
inequality in Eq. (25), the detection of a photon emitted by the
system may still cause the formation of particle entanglement
within the system. The reason is that the combined emission
and absorption of a photon corresponds to a Coulomb inter-
action which may cause particle entanglement to form within
the probed system according to Eq. (15).

The particle number projection in the definition of the N-
SSR restricted mode entanglement corresponds to a projective
quantum nondemolition measurement [35,36] in which the
total number of electrons in an orbital partition is probed in-
stead of the occupation of individual spin-orbitals. This can in
general only be achieved by letting the electrons in the probed
system interact with an auxiliary system, and then measure
the state of the auxiliary system. The interaction between the
two systems can increase the average particle entanglement of
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FIG. 1. (a) Photonic and (b) electronic teleportation schemes. (a) In the photon teleportation scheme of Ref. [37] an entangled resource
state shared between A(lice) and B(ob) is created through a single photon entering a 50/50 beam-splitter S. The state to be teleported instead
is generated at S′. A(lice) performs a projective measurement on her part of the resource state and the state to be teleported (D are detectors).
Depending on the outcome of this measurement, B(ob) needs to perform a suitable operation (phase shift) on his state in order to obtain the
teleported state. b) In our electron teleportation scheme the two H atoms of an H2 molecule play the role of A(lice) and B(ob). The H2 molecule
is adsorbed on a single vacancy in graphene and can be addressed by a spin-polarized STM-tip. The latter can be used to add an electron to the
molecule [state to be teleported, see Eq. (28)] and to perform a magnetization measurement.

the probed system, which is the physical reason why a mode
entangled Fock state can become particle entangled after the
projective occupation measurement.

III. FERMIONIC TELEPORTATION

In this section we propose and analyze three different elec-
tronic teleportation schemes: quantum teleportation within a
molecule on graphene (Sec. III A), a nitrogen-vacancy center
(Sec. III B), and a quantum dot array (Sec. III C) to study the
roles of the different forms of electronic entanglement.

A. Electron teleportation in a hydrogen molecule

Our first teleportation scheme can be seen as a molecu-
lar analog of the photon teleportation scheme presented in
Ref. [37] which is schematically depicted in Fig. 1(a). In this
example we consider a hydrogen molecule that is adsorbed
on graphene and stabilized by a magnetic scanning tunneling
microscope (STM) tip, as shown in Fig. 1(b). The hydrogen
molecule is adsorbed on a single vacancy site since this ad-
sorption site is favored by its binding energy (≈0.4 eV) [38].
An experimental realization of this scheme could be facili-
tated by using a larger, even more stable molecule, as long as
the orbital structure is similar.

In Fig. 1(b) the two constituting hydrogen atoms H of the
molecule are labeled A and B, respectively, and will play the
role of Alice and Bob. We assume that the molecule is initially
in its ionized state H+

2 , with one spin ↓ electron in its binding
orbital σ (with the spin pointing in the in-plane x direction).
Thus, the initial wave function of the molecule reads

ĉ†
σ↓ |0〉 = 1√

2
(ĉ†

A↓ + ĉ†
B↓) |0〉, (26)

where ĉ†
σ↓ (ĉ†

A↓ and ĉ†
B↓) creates an electron with spin ↓ in the

binding orbital σ which is a superposition of the s orbitals of
H atoms A and B. ĉ†

σ↓ |0〉 represents the initial resource state
shared between A(lice) and B(ob). Its mode entanglement,
given the bipartition between A and B, can be calculated from

the reduced density matrix ρA, defined in Eq. (B1). The ma-
trix ρA, written in the basis {|0〉 , ĉ†

A↓ |0〉 , ĉ†
A↑ |0〉 , ĉ†

A↓ĉ†
A↑ |0〉},

reads

ρA = 1

2

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, (27)

which gives the mode entanglement S[ρA] = Tr[ρA(1 −
ρA)] = 1/2. Clearly, ĉ†

σ↓ |0〉 is not particle entangled nor N-
SSR mode entangled as it only contains a single electron.

Next, we inject a second electron with spin ↑ into the H+
2

molecule via the spin-polarized STM tip. The energy of this
injected electron is chosen so that it occupies a superposi-
tion γ of the binding σ and antibinding σ̄ orbital of the H2

molecule, giving the initial state

ĉ†
γ↑ |0〉 =

[
a + b√

2
ĉ†
σ↑ + a − b√

2
ĉ†
σ̄↑

]
|0〉 = (aĉ†

A↑ + bĉ†
B↑) |0〉,

(28)
where a and b are unknown coefficients, and |a|2 + |b|2 = 1.
The (partial) state aĉ†

A↑ |0〉 corresponds to the unknown state
to be teleported from Alice’s spin-orbital A↑ to {\rm Bob}s
spin-orbital B↓ giving the final state (aĉ†

B↓ + bĉ†
B↑) |0〉. Note

that in the related photonic scheme, depicted in Fig. 1(a), the
state to be teleported represents a superposition between a
single photon and the vacuum. However, the parity supers-
election rule (P-SSR) for electrons does not allow for such
a superposition of even and odd particle numbers. Thus, the
second arm of the interferometer in Fig. 1(a), ranging from S′
to B, which in the photonic scheme serves solely as a way to
verify a successful teleportation, is an essential constituent in
the electronic scheme. This extra spin-orbital (B↑) introduces
an ambiguity in the bipartitioning of the system. If B↑ is
considered to belong to Bob, then the initial state in Eq. (28)
is mode entangled with respect to A(lice) and B(ob) but the
final state is not. The opposite is true if B↑ is instead assigned
to Alice. In the following analysis of the mode entanglement
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we use the former choice of the bipartition, but return to the
latter choice and its impact on the N-SSR restricted mode
entanglement in the end of the section.

The mode entanglement of Eq. (28) can be calculated from
its reduced density matrix ρA

ρA =

⎛
⎜⎜⎜⎝

|b|2 0 0 0

0 0 0 0

0 0 |a|2 0

0 0 0 0

⎞
⎟⎟⎟⎠ (29)

and yields S[ρA] = 1 − |a|4 − |b|4. ĉ†
γ↑ |0〉 is again not par-

ticle entangled nor N-SSR mode entangled since it only
contains a single electron.

The total state of the H2 molecule is given by

|ψ〉 ≡ ĉ†
σ↓ĉ†

γ↑ |0〉 = 1√
2

(ĉ†
A↓+ ĉ†

B↓)(aĉ†
A↑+ bĉ†

B↑) |0〉. (30)

|ψ〉 is mode entangled if we consider a bipartition between
hydrogen atoms A and B. In this case, the reduced density
matrix ρA becomes

ρA = 1

2

⎛
⎜⎜⎜⎜⎝

|b|2 0 0 0

0 |b|2 0 0

0 0 |a|2 0

0 0 0 |a|2

⎞
⎟⎟⎟⎟⎠, (31)

which yields the entropic mode entanglement S[ρA] = 1 −
1/2(|a|4 + |b|4). Note that this is not simply the sum of the
entropic entanglement of the states in Eqs. (26) and (28) since
we are considering linear and not logarithmic entropy. |ψ〉 =
ĉ†
σ↓ĉ†

γ↑ |0〉 is not a particle-entangled state as it clearly can be
written as a single Slater determinant. The calculation of the
N-SSR restricted mode entanglement of |ψ〉 requires a few
more steps. The initial projective occupation measurement in
its definition produce the (unnormalized) states

|ψ (0)〉 = 1

2
|0〉, (32)

1√
2

|ψ (1)〉 =
[

b√
2

ĉ†
A↓ĉ†

B↑ + a√
2

ĉ†
B↓ĉ†

A↑

]
|0〉, (33)

|ψ (2)〉 = 1

2
ĉ†

A↓ĉ†
A↑ |0〉. (34)

The local Fock states |ψ (0)〉 and |ψ (2)〉 do not contribute to
the mode entanglement, but the particle entangled state |ψ (1)〉
(EG[1/

√
2 |ψ (1)〉] = 1/2 − 1/2 max(|a|2, |b|2) does. The re-

duced density matrix of 1/
√

2 |ψ (1)〉 reads

ρA = 1

2

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 |b|2 0 0

0 0 |a|2 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠, (35)

which yields the N-SSR restricted mode entanglement

SN (|ψ〉) = 1
2 (1 − |a|4 − |b|4). (36)

It is the projective occupation measurement of the Fock state
|ψ〉 that produces the particle entanglement in the state |ψ (1)〉.
The presence of particle entanglement after the projective

occupation measurement is indeed necessary (although not
sufficient) for a state to be N-SSR mode entangled, as shown
in Appendix C, since the projection also removes any contri-
bution from nonlocal orbitals to the mode entanglement.

The next step in our teleportation scheme is a measurement
of the spin of the electrons in atom A along the y axis. Even
if very challenging, this measurement can in principle be
performed by exciting the electrons in A with a photon to
make them tunnel to the magnetized STM-tip which detects
their spin. This causes the build up of particle entanglement
between the system and the detector, but it does not increase
the particle entanglement within the probed system itself as
the spin measurement corresponds to two separate spin-orbital
occupation measurements which both fulfill Eq. (25).

To analyze the possible outcomes of the measurement, we
substitute ĉ†

A↑(↓) = 1/
√

2(ĉ†
A↑y

+
(−) ĉ†

A↓y) and rewrite the initial
state |ψ〉 as

|ψ〉 = 1√
2

[
1√
2

(ĉ†
A↑y − ĉ†

A↓y) + ĉ†
B↓

]

×
[

a√
2

(ĉ†
A↑y + ĉ†

A↓y) + bĉ†
B↑

]
|0〉

= 1√
2

[
ĉ†

A↑y√
2

(−aĉ†
B↓ + bĉ†

B↑) − ĉ†
A↓y√

2
(aĉ†

B↓ + bĉ†
B↑)

+ aĉ†
A↑yĉ†

A↓y + bĉ†
B↓ĉ†

B↑

]
|0〉. (37)

If Alice either detects no electrons (due to b√
2
ĉ†

B↓ĉ†
B↑ |0〉)

or two electrons (due to a√
2
ĉ†

A↑yĉ†
A↓y |0〉) from atom A, then no

teleportation can be achieved, as Bob’s spin-orbitals are then
either completely filled or empty, respectively, due to particle
number conservation. Thus, the probability of a successful
teleportation is limited to 50%. The reduced success rate is
reflected in the N-SSR restricted mode entanglement as it
projects the state on exactly these subspaces before the mode
entanglement is measured.

The two successful magnetization measurement out-
comes of |ψ〉 are 1

2 ĉ†
A↑y(−aĉ†

B↓ + bĉ†
B↑) |0〉 and 1

2 ĉ†
A↓y(aĉ†

B↓ +
bĉ†

B↑) |0〉. In the latter case the electron on atom B is already
in the state to be teleported [see Eq. (28)], and no further
operation is necessary to complete the teleportation scheme.
In the former case Bob still needs to apply a “phase shift”
to the electron spin on atom B in order to obtain the desired
outcome. This can be achieved by applying a magnetic field
on atom B in ↓ x direction for a specific time t = π/(μBx ),
which yields

e− i
h̄ μBxŜxt (aĉ†

B↓ − bĉ†
B↑) |0〉 = (e−i π

2 aĉ†
B↓ − ei π

2 bĉ†
B↑) |0〉

= −i(aĉ†
B↓ + bĉ†

B↑) |0〉. (38)

This example shows that it is possible to teleport a state
without creating or destroying particle entanglement within
the system. The caveat is that there is only a 50% probability
of success, which is reflected in the reduction of the mode
entanglement through the particle-number superselection rule
(N-SSR). A 100% success rate requires the use of Bell
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FIG. 2. Schematic visualization of a NV center in diamond and
its dangling p orbitals oriented toward the vacancy (in the center of
the pyramid). The N-p orbital is labeled with pN , while the corre-
sponding C-p orbitals are labeled with pC .

states [39], which are maximally particle and mode entangled
by construction, as illustrated in the next two examples.

In the above analysis of the mode entanglement the spin-
orbital B↑ was assigned to Bob. If B↑ is instead assigned to
Alice, then the entropic mode entanglement of the total state
Eq. (30) is 1/2 and the N-SSR restricted mode entanglement
is zero. The optimal success rate of the teleportation is nev-
ertheless still 50% since the teleportation protocol can remain
unaltered, except for a trivial modification of the phase shift
operator such that it only acts on B↓. This illustrates that the
N-SSR restricted mode entanglement is only a useful measure
of the optimal success rate if the quantum teleportation can be
verified by a local measurement. This is not the case when
B↑ belongs to Alice since this makes the final teleported
state mode entangled. Put differently, it is the projective local
number measurement in the definition of the N-SSR restricted
mode entanglement that brings the (predicted) success rate to
zero, not the actual teleportation protocol.

B. NV-center teleportation scheme

In our second example we consider a nitrogen-vacancy
(NV) center in diamond—a point defect in the diamond lattice
which consists of a substitutional N atom and a neighboring
vacancy site (see Fig. 2). NV centers are promising candidates
for implementing quantum technologies since they exhibit
atom like properties in a solid-state environment [40,41]. It is
their long-lived spin quantum states which can be addressed
via optical transitions that make them particularly attractive
as solid-state spin qubits. Numerous experiments involving
NV centers have successfully been carried out in recent
years [42–44], among them a quantum teleportation between
distant NV centers [45]. Here, we investigate a teleportation
scheme within a single neutral NV0 center. While experiments
usually concentrate on the negatively charged NV−, also the
neutral NV0 has recently attracted attention [46–48]. The
teleportation scheme is inspired by the work in Ref. [39],
where methods for reliable teleportation involving interac-
tions among the involved quantum particles are investigated.

Our proposed NV0 teleportation scheme involves five elec-
trons in eight spin-orbitals, which corresponds to three holes
residing in the dangling-bond orbitals around a vacancy site
in diamond (see Fig. 2 for a schematic visualization). More
specifically, the three C atoms nearest to the vacancy site
each contribute with a dangling p orbital which hybridize
and form three molecular orbitals with angular momentum
ml =−1, 0, 1. The N atom contributes with one dangling p
orbital with angular momentum ml = 0. We start out with an
entangled pair of holes in NV0. We assume that this pair of
holes is prepared in the following Bell state

|ψ1〉 = 1√
2

(ĉN↓ĉ1↓ + ĉN↑ĉ−1↓) |1〉, (39)

where ĉi are annihilation operators which annihilate an elec-
tron, i.e., create a hole, in the respective spin-orbital i. For
simplicity, the annihilation operators for the C spin-orbitals
do not carry a subscript C. |1〉 represents the filled state with
fully occupied spin-orbitals. |ψ1〉 is a particle entangled state.
Its maximum overlap with a Fock state is 1/2 which yields
a geometric entanglement measure of EG = 1 − 1/2 = 1/2.
Its one-particle reduced density matrix, which in the basis
{N ↓, N ↑, 1 ↓,-1 ↓} reads

ρ (1p) = 1

2

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠, (40)

gives an entropic particle entanglement of S[ρ (1p)] = 1. If we
consider a bipartition between the C orbitals (Alice) and the
N orbitals (Bob), then we obtain a reduced density matrix (in
the basis {|0〉 , ĉ†

N↓ |0〉 , ĉ†
N↑ |0〉 , ĉ†

N↓ĉ†
N↑ |0〉})

ρN = 1

2

⎛
⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎞
⎟⎟⎟⎠, (41)

which yields an entropic mode entanglement of S[ρN ] = 1/2.
Thus—unlike in our first example—here we already start out
with a maximally particle and mode entangled Bell state |ψ1〉.

The state to be teleported is initially encoded in the spin
state of a third hole residing in the C, ml = 0 orbital. The state
of this hole reads

|ψ2〉 = (aĉ0↑ + bĉ0↓) |1〉, (42)

where a and b are unknown coefficients, and |a|2 + |b|2 = 1.
Clearly, |ψ2〉 is neither particle entangled nor mode entangled
with respect to the bipartition between the N and the C or-
bitals. By combining |ψ1〉 and |ψ2〉, we obtain the total state
of the NV0 which reads

|ψ〉 = 1√
2

(ĉN↓ĉ1↓ + ĉN↑ĉ−1↓)(aĉ0↑ + bĉ0↓) |1〉. (43)

The particle and mode entanglement of this state are the
same as for |ψ1〉 in Eq. (39) since |ψ2〉 does not add any
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entanglement. We can rewrite Eq. (43) in the following form:

|ψ〉 = 1

2
√

2
(ĉ1↓ĉ0↑ − ĉ−1↓ĉ0↓)(aĉN↓ − bĉN↑) |1〉

+ 1

2
√

2
(ĉ1↓ĉ0↑ + ĉ−1↓ĉ0↓)(aĉN↓ + bĉN↑) |1〉

+ 1

2
√

2
(ĉ−1↓ĉ0↑ − ĉ1↓ĉ0↓)(aĉN↑ − bĉN↓) |1〉

+ 1

2
√

2
(ĉ−1↓ĉ0↑ + ĉ1↓ĉ0↓)(aĉN↑ + bĉN↓) |1〉, (44)

where we have factorized every contribution to |ψ〉 into two
parts (brackets). The second brackets clearly resemble, apart
from phase factors (signs), the original state to be teleported
of Eq. (42). However, in order to perform the teleportation,
we need to be able to distinguish between the four lines of
Eq. (44) through a measurement. For this purpose we consider
a Coulomb interaction among the holes residing in the C
spin-orbitals. Let us first recall that the Coulomb interaction
conserves the total spin and angular momentum. Thus, terms
with same spins, such as ĉ−1↓ĉ0↓, remain unchanged. Terms
with opposite spins can undergo the following spin-flip tran-
sitions

ĉ1↓ĉ0↑ −→ ĉ1↑ĉ0↓
ĉ−1↓ĉ0↑ −→ ĉ−1↑ĉ0↓, (45)

where all spins of the involved spin-orbitals are flipped. By
applying these spin-flip Coulomb interactions to |ψ〉, we ob-
tain

|ψ ′〉 = − 1

2
√

2
ĉ0↓(ĉ1↑ − ĉ−1↓)(aĉN↓ − bĉN↑) |1〉

− 1

2
√

2
ĉ0↓(ĉ1↑ + ĉ−1↓)(aĉN↓ + bĉN↑) |1〉

− 1

2
√

2
ĉ0↓(ĉ−1↑ − ĉ1↓)(aĉN↑ − bĉN↓) |1〉

− 1

2
√

2
ĉ0↓(ĉ−1↑ + ĉ1↓)(aĉN↑ + bĉN↓) |1〉. (46)

We can now quantify the particle and mode entanglement
of |ψ ′〉. The reduced density matrix

ρN = 1

2

⎛
⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎞
⎟⎟⎟⎠ (47)

gives an entropic mode entanglement of S[ρN ] = 1/2 for |ψ ′〉,
which is the same value as for |ψ〉. The reason is that the spin-
flip transitions under consideration in Eq. (45) are all local
operations on the C orbitals while the N orbital is not affected.
The particle-number superselection rule does not change the
mode entanglement of |ψ ′〉 since in any possible outcome of
a measurement [all four lines in Eq. (46)] there are one hole
in the N orbitals (Bob) and two holes in the C orbitals (Alice).

The spin-flip transitions in Eq. (45) are particle interac-
tions which may change the particle entanglement in |ψ ′〉.
To explicitly calculate the particle entanglement of |ψ ′〉, we

construct its one-particle reduced density matrix in the basis
{0 ↓, 1 ↓, 1 ↑,-1 ↓,-1 ↑, N ↓, N ↑}

ρ (1p) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 0

0 |b|2 a∗b 0 0 0 0

0 ab∗ |a|2 0 0 0 0

0 0 0 |b|2 a∗b 0 0

0 0 0 ab∗ |a|2 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(48)

and find an entropic particle entanglement of S[ρ (1p)] =
1/2[1 + 2(|a|2 + |b|2) − (|a|2 + |b|2)2]=1. Surprisingly, this
is the same value as for the state |ψ〉. The geometric particle
entanglement stays also the same, i.e., EG = 1/2. By taking
a second look at the effect of the spin-flip interactions in
Eq. (45) we find that for |ψ〉 they simply act as a unitary spin
transformation given by

ĉ1↓ → bĉ1↓ + aĉ1↑ ĉ1↑ → −aĉ1↓ + bĉ1↑
ĉ−1↓ → bĉ−1↓ + aĉ−1↑ ĉ−1↑ → −aĉ−1↓ + bĉ−1↑

ĉ0↓ → bĉ0↓ − aĉ0↑ ĉ0↑ → aĉ0↓ + bĉ0↑ (49)

which brings |ψ〉 to |ψ ′〉. This explains why the particle en-
tanglement is the same in |ψ〉 and |ψ ′〉.

The spin-flip transition localize one hole in the C 0 ↓
orbital. Alice can therefore distinguish between the four dif-
ferent lines in Eq. (46) by measuring the occupation of the
ml = ±1 spin-orbitals. According to the outcome of this
measurement she can tell Bob to apply the appropriate spin
rotation and phase shift to the N orbital to obtain the original
state to be teleported.

The initial Bell state (|ψ2〉) is both maximally particle en-
tangled and N-SSR mode entangled, which allows this scheme
to reach a 100% success rate. The spin-flip transitions do
not change the particle entanglement of |ψ ′〉 nor the mode
entanglement between Alice and Bob, but they allow Alice
to perform a less involved orbital occupation measurement in-
stead of a Bell state measurement that would require a particle
entangled reference state. Such an orbital-selective occupation
measurement should be feasible with the current experimental
accuracy in manipulating NV centers. However, the prepara-
tion of the highly entangled resource state in Eq. (39) still
poses a formidable challenge for the experimental realization
of this teleportation protocol.

C. Teleportation in a quantum dot array

Semiconductor quantum dots are another promising real-
ization of solid-state qubits for quantum computation [6,49].
In a quantum dot, the qubit is usually represented by the spin
degree of freedom of an excess electron since the decoherence
time of the spin is much longer than that of the charge [50].
Several protocols for quantum information processing or co-
herent spin transport with quantum dots have already been
proposed and implemented [50–53]. Also a few teleportation
schemes based on quantum dot arrays have been suggested in
Refs. [54–56]. Inspired by these references, we here present
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FIG. 3. Teleportation scheme with three quantum dots: (a) The
state to be teleported, Eq. (50), is initially encoded in the spin
state of an electron residing in dot 1. Two additional electrons in
a singlet state are located in dot 3. (b) A particle-entangled support
state, Eq. (52), is created through tunneling between dot 2 and 3.
(c) One possible outcome of a successful teleportation [see first line
of Eq. (59)] obtained through a second tunneling process between
dot 1 and 2. The state to be teleported is now located in dot 3.

as a third example a teleportation scheme involving a linear
array of three quantum dots.

In our scheme, the state to be teleported is initially encoded
in the spin state of an electron in the first dot of the array [see
Fig. 3(a)]. This state reads

|ψ1〉 = (αĉ†
1↑ + β ĉ†

1↓) |0〉, (50)

where α and β are unknown coefficients and |α|2 + |β|2 = 1.
|ψ1〉 is neither particle nor mode entangled, since we assign
dot 1 and 2 to Alice and dot 3 to Bob. Two additional electrons
are residing in the third dot, i.e.,

|ψ2〉 = ĉ†
3↑ĉ†

3↓ |0〉. (51)

These two electrons are used to produce an entangled resource
state via a conditional tunneling between dot 2 and 3. This
tunneling process can be controlled by lowering and raising
the tunnel barrier between the dots through a gate voltage [49].
Through the tunneling, which is assisted by the local Coulomb
interaction within the dots or by a total occupation measure-
ment of dot 2 or dot 3, we can obtain the following entangled
resource state [see Fig. 3(b)]:

|ψ ′
2〉 = 1√

2
(ĉ†

2↑ĉ†
3↓ − ĉ†

2↓ĉ†
3↑) |0〉. (52)

Similar to Eq. (39) in the second example, |ψ ′
2〉 represents

a maximally particle-entangled state of two electrons with a
geometric entanglement measure of EG = 1/2 and a particle
entanglement entropy of S = 1. With a bipartition between
dot 2 and 3, the mode entanglement as well as the N-SSR
restricted mode entanglement of |ψ ′

2〉 can easily be evaluated
as S = 1/2.

By combining |ψ1〉 and |ψ ′
2〉, we can write the total state of

the quantum dot array as

|ψ〉 = 1√
2

(αĉ†
1↑ + β ĉ†

1↓)(ĉ†
2↑ĉ†

3↓ − ĉ†
2↓ĉ†

3↑) |0〉

= 1√
2

(−αĉ†
1↑ĉ†

2↓ĉ†
3↑ + β ĉ†

1↓ĉ†
2↑ĉ†

3↓

+ αĉ†
1↑ĉ†

2↑ĉ†
3↓ − β ĉ†

1↓ĉ†
2↓ĉ†

3↑) |0〉. (53)

The entanglement of |ψ〉 is the same as for |ψ ′
2〉 since |ψ1〉

does not add any entanglement. In the next step, we allow
tunneling between dot 1 and 2. In this way, we couple the state
to be teleported residing in dot 1 to the entangled resource
state in dots 2 and 3. First, we note that the two expressions
in the last line of Eq. (53) do not allow for any tunneling
between dot 1 and 2 since the electrons have the same spin.
The expressions in the second line of Eq. (53) allow instead
for tunneling. If both electrons reside in either dot 1 or 2 in
the end, then we can achieve a 100% success rate. To this end
we choose a particular conditional tunneling process given by
the following conditional hopping operator which is diagonal
in the bonding/antibonding basis defined in Eq. (17),

Ĥ = U

4
ĉ†

a↑ĉ†
a↓ĉa↓ĉa↑ + 3U

4
ĉ†

a↓ĉ†
b↑ĉb↑ĉa↓

+ 5U

4
ĉ†

b↑ĉ†
b↓ĉb↓ĉb↑ + 7U

4
ĉ†

a↑ĉ†
b↓ĉb↓ĉa↑. (54)

In order to apply the evolution operator Ŵ (2)(t = π/U ) to
|ψ〉 according to Eq. (15) we first need to write the creation
operators in |ψ〉 to the ab-basis,

|ψ〉 =
( −1

2
√

2
ĉ†

a↑ĉ†
a↓ + 1

2
√

2
ĉ†

b↑ĉ†
b↓

)
(αĉ†

3↑ + β ĉ†
3↓)

+
(

1

2
√

2
ĉ†

a↓ĉ†
b↑ + 1

2
√

2
ĉ†

a↑ĉ†
b↓

)
(αĉ†

3↑ − β ĉ†
3↓)

− α√
2

ĉ†
a↑ĉ†

b↑ĉ†
3↓ + β√

2
ĉ†

a↓ĉ†
b↓ĉ†

3↑ |0〉. (55)

We can now directly apply the operator W (2)(t = π/U ),
giving

|ψ ′〉 =
(

−e
iπ
4

2
√

2
ĉ†

a↑ĉ†
a↓ + e

−3iπ
4

2
√

2
ĉ†

b↑ĉ†
b↓

)
(αĉ†

3↑ + β ĉ†
3↓)

+
(

e
3iπ
4

2
√

2
ĉ†

a↓ĉ†
b↑ + e− iπ

4

2
√

2
ĉ†

a↑ĉ†
b↓

)
(αĉ†

3↑ − β ĉ†
3↓)

− α√
2

ĉ†
a↑ĉ†

b↑ĉ†
3↓ + β√

2
ĉ†

a↓ĉ†
b↓ĉ†

3↑ |0〉. (56)

Transforming the creation operators in |ψ ′〉 back to the quan-
tum dot basis yields

|ψ ′〉 = −1

2
[ĉ†

1↑ĉ†
1↓(iαĉ†

3↑+ β ĉ†
3↓)+ ĉ†

2↑ĉ†
2↓(αĉ†

3↑+ iβ ĉ†
3↓)] |0〉

+ 1√
2

(αĉ†
1↑ĉ†

2↑ĉ†
3↓ − β ĉ†

1↓ĉ†
2↓ĉ†

3↑) |0〉. (57)

To analyze the particle entanglement after this second tun-
neling process, we construct the one-particle reduced density
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matrix of |ψ ′〉 in the basis {1 ↑, 1 ↓, 2 ↑, 2 ↓, 3 ↑, 3 ↓}

ρ (1p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+2|α|2
4 0 0 − iβ∗α∗√

2
0 0

0 1+2|β|2
4 0 0 0 0

0 0 1+2|α|2
4 0 0 0

iβα√
2

0 0 1+2|β|2
4 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(58)

and calculate the particle entanglement entropy S[ρ (1p)] =
5/4. The geometric entanglement measure EG[|ψ ′〉] = 1/2 is
obtained from a parameterized search over all Fock states.
The particle entanglement entropy is larger than the one for
|ψ〉, i.e., S = 1, but the geometric entanglement measure is
unchanged. The mode entanglement does not change in the
tunneling process since the tunneling Hamiltonian only acts
on Alice orbitals. Also the particle-number superselection rule
does not change the mode entanglement in this teleportation
scheme since in any measurement outcome of |ψ ′〉 in Eq. (57)
we have two electrons residing with Alice (dot 1 and 2) and
one with Bob (dot 3).

The first line of Eq. (57) already resembles our target state
for a successful teleportation, with the state to be teleported
eventually residing in dot 3. In order to make use also of the
second part of |ψ ′〉, we need to rewrite Eq. (57) in terms of the
spin in x direction, i.e., ĉ†

↑(↓) = 1/
√

2(ĉ†
↑x

+
(−) ĉ†

↓x ). This yields

|ψ ′〉 = 1

2
ĉ†

1↑xĉ†
1↓x(iαĉ†

3↑ + β ĉ†
3↓) |0〉

+ 1

2
ĉ†

2↑xĉ†
2↓x(αĉ†

3↑ + iβ ĉ†
3↓) |0〉

+ 1

2
√

2
ĉ†

1↑xĉ†
2↑x (αĉ†

3↓ − β ĉ†
3↑) |0〉

+ 1

2
√

2
ĉ†

1↓xĉ†
2↑x (αĉ†

3↓ + β ĉ†
3↑) |0〉

+ 1

2
√

2
ĉ†

1↑xĉ†
2↓x (αĉ†

3↓ + β ĉ†
3↑) |0〉

+ 1

2
√

2
ĉ†

1↓xĉ†
2↓x (αĉ†

3↓ − β ĉ†
3↑) |0〉, (59)

where we can now clearly identify in each line the state to be
teleported—residing in dot 3 and differing from the original
state of Eq. (50) only through a unitary spin rotation. To
complete the teleportation, Alice needs to perform a charge
and/or magnetization measurement on dot 1 in order to dis-
tinguish between the different lines of Eq. (59). According
to the outcome of this measurement Bob then needs to apply
a magnetic field to the electron spin in dot 3 which yields
the original state to be teleported. In Fig. 3(c) we show one
possible outcome of a successful teleportation [corresponding
to the first line of Eq. (59)] with two electrons residing in
quantum dot 1 and the state to be teleported in dot 3.

Given the fast progress in manipulating spin quantum
dots [56,57], an experimental realization of the presented
quantum dot teleportation scheme seems feasible in the near
future. The most challenging part is the realization of the

conditional tunneling operation outlined in Eq. (54). This
particular tunneling process could, however, be replaced by
a standard tunneling process and a subsequent occupation
measurement, at the cost of a lower teleportation success rate.

IV. CONCLUSION AND OUTLOOK

We have studied the basic mechanisms that generate or-
bital (mode) and particle entanglement between the electrons
in a material. Mode entanglement is defined with respect
to a bipartition of orbitals and is closely related to the en-
tanglement of distinguishable particles. It is formed both in
nonlocal electron hopping processes and due to the Coulomb
interaction between the electrons in a material. Particle entan-
glement refers to the quantum correlations in a fermionic state
which cannot be described by a Fock state (single Slater de-
terminant). It is formed through electron-electron (Coulomb)
interaction, both within a material and during a measurement
process. An ideal photoemission measurement (photon in,
electron out) does not generate particle entanglement within
the system, but a spectroscopic measurement (photon in,
photon out), such as resonant inelastic x-ray scattering, may
increase the particle entanglement in the system.

The N-SSR restricted mode entanglement measure con-
tains a projective measurement of the number of electrons in a
local orbital partition. We have shown (in Appendix C) that if
an N-electon state has N-SSR restricted mode entanglement,
then it will also be particle entangled after the projective
particle number measurement. The N-SSR restricted mode en-
tanglement is, however, not directly connected to a difference
in particle entanglement before and after the measurement,
since the measurement can not only create particle entangle-
ment but also destroy it.

We have proposed three solid-state quantum teleporta-
tion schemes and investigated the formation and the role of
particle- and mode entanglement therein. (i) Our first protocol
teleports an electronic state within a hydrogen molecule on
graphene. It only requires that the system starts in a mode
entangled state but not a particle-entangled state. The protocol
creates particle entanglement through a magnetization mea-
surement, but this particle entanglement is shared between
the system and the detector and vanish when the detector is
projected out. The lack of a particle entangled state within
the system itself comes at the cost of a strongly reduced
success rate (50%). The spin-orbitals can be bipartitioned in
two different ways without affecting the teleportation protocol
and its success rate. The two choices does, however, affect
the calculated mode entanglement and N-SSR restricted mode
entanglement. When the final state is local one may perform
a local particle number measurement either at the start of
the protocol or after the verification without affecting the
total success rate of the teleportation. The N-SSR restricted
mode entanglement incorporates the additional information
provided by this occupation measurement, which allows it
to better reflect the optimal success rate of a quantum tele-
portation protocol with a local final state, compared to the
unrestricted mode entanglement. On the other hand, the N-
SSR restricted mode entanglement (severely) underestimates
the success rate of the teleportation protocol if the final tele-
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ported state is mode entangled, i.e., if the verification of a
successful teleportation requires a nonlocal measurement.

(ii) The second teleportation scheme uses a neutral
nitrogen-vacancy center NV0 in diamond. The initial state
is a highly mode and particle entangled state with one hole
in the nitrogen orbital (belonging to Bob) and two holes
in the carbon orbitals (belonging to Alice) [Eq. (43)]. The
local integer particle number is conserved throughout the
teleportation scheme, and both the initial mode and particle
entanglement is preserved in the teleportation process until the
final measurements by Alice. This protocol utilizes that the
Coulomb interaction between two electrons can cause them
to exchange their spins, which yields a 100% success rate in
the ideal case without the need for a Bell-type measurement.
(iii) Our third example describes a quantum teleportation in
a quantum dot array. A particle and mode entangled state
[Eq. (52)] is initially created through a conditional tunneling
process between two quantum dots. Also this example yields
a 100% success rate in the ideal case without the need for
a Bell-type measurement through the use of a conditional
hopping process.

Thus, in the investigated teleportation schemes both mode
and particle entanglement are present and play an important
role. Nevertheless, the state of the system (not including the
detector) does not have to be particle entangled for a quantum
teleportation to be successful 50% of the times. For a 100%
teleportation success rate instead one needs to use a Bell state
which is maximally particle and mode entangled. The initial
N-SSR restricted mode entanglement reflects the optimal suc-
cess rate of the set of quantum teleportation protocols that start
with a local particle number measurement. However, this set
of protocols does not in general contain the optimal teleporta-
tion protocol if the final teleported state is mode entangled.
These results support our view that the different forms of
entanglement between electrons are complementary, and that
there is no single definition of entanglement that captures all
aspects of a quantum system or a quantum protocol.
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APPENDIX A: PARTICLE AND MODE ENTANGLEMENT

1. Second quantization formalism

The second quantization formalism offers a natural way to
address states of identical particles. It is based on the notion of
creation (ĉ†

i ) and annihilation (ĉi) operators, which create and
destroy an electron in the spin-orbital i, respectively. In the
following we will only consider orthonormalized orbitals, to
avoid the additional algebra associated with overlap matrices.

All pure many-body states can be formed by applying
the creation operators to the vacuum state (|0〉), which is
annihilated by any annihilation operator, ĉi |0〉 ≡ 0. A pure

N-electron state [58] can hence be written

|ψ〉 =
∑
i∈SN

AiŜ
†
i |0〉, (A1)

where the Slater determinant index i ∈ SN is an ordered se-
quence of N orbital indices, i.e., i1 < i2 < · · · < iN , and Ŝ†

i ≡
ĉ†

i1
ĉ†

i2
· · · ĉ†

iN
. A state that can be written as Ŝ†

i |0〉 in a given
orbital basis is known as a Slater determinant. In the following
we will call a state that is a Slater determinant in some orbital
basis, but not necessarily the given one, a Fock state. The
reason for this distinction will become clear when we define
particle and mode entanglement.

The choice of orbital basis does not hold any physical
significance in itself. A change of the orbital basis ĉ†

i → ĉ′†
i ,

where

ĉ′†
j ≡

∑
i

ĉ†
i V †

i j , (A2)

and V is a unitary transformation, can be performed by sub-
stituting the identity

ĉ†
i =

∑
j

ĉ′†
j Vji (A3)

into Eq. (A1). The fermionic commutation relation ĉ†
i ĉ†

j =
−ĉ†

j ĉ
†
i can then be used to sort the creation operators accord-

ing to the selected orbital order. For example, the state

|ψ ′〉 = 1
2 (ĉ†

1↑ + ĉ†
1↓)(ĉ†

2↑ + ĉ†
2↓) |0〉, (A4)

represents two electrons located in the spin-orbitals 1 ↑, 1 ↓,
2 ↑, and 2 ↓. In the orbital basis

ĉ†
1↑x = 1√

2
(ĉ†

1↑ + ĉ†
1↓) ĉ†

2↑x = 1√
2

(ĉ†
2↑ + ĉ†

2↓)

ĉ†
1↓x = 1√

2
(ĉ†

1↑ − ĉ†
1↓) ĉ†

2↓x = 1√
2

(ĉ†
2↑ − ĉ†

2↓), (A5)

it takes the simple product form

|ψ ′〉 = ĉ†
1↑xĉ†

2↑x |0〉 . (A6)

The unitary transformation in Eq. (A5) corresponds to a π/2
spin rotation around the y axis.

2. Particle entanglement

The product form of a Fock state, i.e., that it can be writ-
ten as a single Slater determinant Ŝ†

i |0〉 = ĉ†
i1

ĉ†
i2

· · · ĉ†
iN

|0〉 in
some orbital basis, gives it properties closely related to those
of a product state of distinguishable particles [20,24]. For
example, an unknown Fock state can be fully characterized
by single-particle measurements of the orbital occupations.
A Fock state can therefore in principle be described by a
hidden-variable theory, where the hidden variables specify
which orbitals are fully occupied. This has lead to the concept
of particle entanglement, which identifies the Fock states as
being nonentangled [19,20,22–24,24,59]. It should, however,
be noted that it is only when the occupied orbitals of a Fock
state are local that the hidden variables description become
local as well. The “nonlocal” Fock states can hence still po-
tentially be used as a resource in a quantum computational
algorithm.
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3. Mode entanglement

Although the choice of orbital basis does not hold any
physical significance, the way the state can be written in terms
of creation operators still affects orbital-dependent quantities.
For example, given a set of orbitals that belongs to Alice
(A), and a set that belongs to Bob (B), one may ask whether
the electrons within one orbital partition can be described
independently of the electrons in the other partition. This is the
defining idea behind mode entanglement [8], which follows
closely the concept of entanglement between distinguishable
particles but applied to the orbital occupation. A state |ψ〉 is
mode entangled with respect to the orbital partitions A and B
unless it can be written as the product

|ψ〉 =
(∑

i∈SA

AiŜ
†
i

)⎛⎝∑
j∈SB

BjŜ
†
j

⎞
⎠ |0〉, (A7)

where i ∈ SA denotes all possible combinations of occupied
orbitals in A. Even a single electron state can thus be mode
entangled if the corresponding occupied orbital is shared be-
tween A and B. The simplest possible mode entangled state is
hence

|ψ〉 = 1√
2

(ĉ†
1 + ĉ†

2) |0〉, (A8)

where orbital 1 and 2 belong to partition A and B, respectively.
A less trivial example is given by |ψ ′〉 in Eq. (A4) if the spin
up orbitals belong to A and the spin down orbitals to B. A third
example of a mode entangled state is

|ψ ′′〉 = 1√
2

(ĉ†
1↑ĉ†

2↓ + ĉ†
1↓ĉ†

2↑) |0〉. (A9)

This state is special since it is mode entangled with respect
to any bipartition of the spin-orbitals 1 ↑, 1 ↓, 2 ↑, and 2 ↓.
Such state can not be a Fock state, since a fully occupied or
empty orbital would form a separable subspace, which implies
that the state must be particle entangled [19,20,23,24]. The
converse, that a particle entangled state is mode entangled
with respect to any bipartition is not true in general since some
of the orbitals can still be fully occupied or empty in a particle
entangled state.

4. N-SSR restricted mode entanglement

A quantum teleportation scheme transfers the unknown
state of an electron from one local orbital partition A (be-
longing to Alice) to another orbital partition B (Bob) without
a phase coherent transport of electrons or other information
carriers between the two orbital partitions. Only operations
that conserve the (local) particle number of the two orbital
partitions are hence allowed in the teleportation protocol. The
unknown state to be teleported is in general entangled with
electrons in a third remote partition, which implies that also
its relative phase needs to be transferred. Alice and Bob will
need additional electrons to carry out the teleportation, but in
order to have well-defined conditions for a successful telepor-
tation these electrons should not initially be entangled with
the unknown state. In particular, a successful teleportation
should not be affected by any subsequent local measurements

performed by Alice. Alice may hence perform a total occupa-
tion measurement after the teleportation, without affecting the
result, using the local occupation number operator

N̂A =
∑
i∈A

ĉ†
i ĉi, (A10)

where i ∈ A runs over all the spin-orbitals in A. Since all the
allowed operators in the teleportation protocol preserve the
number of electrons in A, they commute with N̂A. This im-
plies that Alice may perform a total occupation measurement
of her orbital partition at the very start of the teleportation
protocol and still get the same result on average [14]. The
N-SSR restricted mode entanglement corresponds to the mode
entanglement of the system but after a projective total occu-
pation measurement of the local orbital partition A or B. The
measurement of the occupation number projects an N-electron
state |ψN 〉 into P̂(n)

A |ψN 〉 with probability 〈ψN | P̂(n)
A |ψN 〉,

where the projection operator P̂(n)
A is given by

P̂(n)
A =

∑
i∈SB

j∈SA
n

Ŝ†
i P̂ji, (A11)

where the operator

P̂ji = Ŝ†
j |0〉 〈0| ŜjŜi (A12)

has been introduced for later convenience. A pure N-electron
state is therefore N-SSR mode entangled unless it can be
written in the form

|ψN 〉 =
N∑

n=0

⎛
⎝∑

i∈SA
n

AiŜ
†
i

⎞
⎠
⎛
⎝ ∑

j∈SB
N−n

BjŜ
†
j

⎞
⎠ |0〉. (A13)

As shown in Appendix C, if an N-electron state has N-SSR
restricted mode entanglement, then it will also be particle en-
tangled after the projective occupation number measurement.
N-SSR restricted mode entanglement is from this perspective
a hybrid of mode entanglement and particle entanglement,
where the mode entanglement gives the nonlocal correlation
while the particle entanglement provides the handle to access
the correlation.

APPENDIX B: ENTANGLEMENT MEASURES

1. Mode entanglement

Since the definition of mode entanglement follows closely
the definition of entanglement for distinguishable particles,
although applied to the orbital occupation, it can be measured
in a similar fashion. Given a bipartition of the orbitals into A
and B, the partial trace of |ψ〉 over the orbitals in B gives the
reduced density matrix

ρA = TrB[|ψ〉 〈ψ |] ≡
∑
i∈SB

j, k∈SA

P̂ji |ψ〉 〈ψ | P̂†
ik, (B1)

where the projection operator P̂ji was introduced in Eq. (A12).
The partial trace converts the mode entanglement in |ψ〉 be-
tween A and B to entropy in ρA. The (linear) entropy S[ρA] =
Tr[ρA(1 − ρA)] serves therefore as a measure of the mode
entanglement. However, if the initial state is mixed, then its
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nonzero entropy is also partially transferred to ρA, which
implies that S[ρA] only gives an upper bound to the mode
entanglement in this case.

2. N-SSR restricted mode entanglement

N-SSR restricted mode entanglement is also measured
using the entropy of the reduced density matrix, but as an
average after the local occupation has been resolved. The
N-SSR restricted mode entanglement is hence given by

SN [ρA] =
∑

n

Tr
[
ρ

(n)
A

]
S

[
ρ

(n)
A

Tr
[
ρ

(n)
A

]
]
, (B2)

where the particle resolved reduced density matrix ρ
(n)
A of the

N-electron state |ψ〉 is given by

ρ
(n)
A =

∑
i∈SB

N−n
j, k∈SA

n

P̂ji |ψ〉 〈ψ | P̂†
ik. (B3)

3. Particle entanglement

The particle entanglement of a pure state |ψ〉 can also be
measured using the entropy of a reduced density matrix [17],
but in this case of the one-particle reduced density matrix
ρ

(1p)
i j = 〈ψ | ĉ†

j ĉi |ψ〉. The entropy

S[|ψ〉] ≡ 〈ψ〉 ψS

[
ρ (1p)

〈ψ〉 ψ

]

= 〈ψ〉 ψTr

{
ρ (1p)

〈ψ〉 ψ

[
1 − ρ (1p)

〈ψ〉 ψ

]}
, (B4)

is zero for any Fock state, positive for a particle-entangled
state, and invariant under any unitary orbital transformation
c†

i → c′†
i . Again, if the initial state is mixed, then S[ρ (1p)]

will only give an upper bound to the particle entanglement.
An alternative particle entanglement measure is based on the
geometric distance to the closest Fock state [34,60,61],

EG[|ψ〉] = 〈ψ | |ψ〉 − max
|ψ ′〉

|〈ψ ′| |ψ〉|2, (B5)

where |ψ ′〉 is restricted to be a Fock state. If the system has
only two electrons, then it is straightforward to show that
EG[|ψ〉] = 〈ψ〉 ψ − ρ

(1p)
max , where ρ

(1p)
max is the largest eigen-

value of the one-particle reduced density matrix ρ (1p) [60]. In
the case of three or more electrons the search for the closest
Fock state becomes much more involved, as illustrated by the
state

|ψ ′′′〉 = 1√
3

(ĉ†
1↓ĉ†

2↑ĉ†
3↑− ĉ†

1↑ĉ†
2↓ĉ†

3↑+ ĉ†
1↑ĉ†

2↑ĉ†
3↓) |0〉, (B6)

which is composed of three Slater determinants. At first
glance, the maximum squared overlap of |ψ ′′′〉 with a Fock
state seems to be 1/3. However, a parameterized search over
all unitary orbital transformations [60] yields the transforma-
tion

ĉ′†
i↑ = 1√

3
(
√

2ĉ†
i↑ + ĉ†

i↓) ĉ′†
i↓ = 1√

3
(−ĉ†

i↑ +
√

2ĉ†
i↓) (B7)

that allows us to rewrite the state in Eq. (B6) as

|ψ ′′′〉 = 2

3
ĉ′†

1↑ĉ′†
2↑ĉ′†

3↑ |0〉 + 1

3
ĉ′†

1↑ĉ′†
2↓ĉ′†

3↓ |0〉 + 1

3
ĉ′†

1↓ĉ′†
2↑ĉ′†

3↓ |0〉

− 1

3
ĉ′†

1↓ĉ′†
2↓ĉ′†

3↑ |0〉 −
√

2

3
ĉ′†

1↓ĉ′†
2↓ĉ′†

3↓ |0〉. (B8)

The first Slater determinant, ĉ′†
1↑ĉ′†

2↑ĉ′†
3↑ |0〉, on the right-hand

side of Eq. (B8) has a weight of 2/3 > 1/
√

3. The state |ψ ′′′〉
is hence particle entangled with a geometric entanglement
measure of EG = 1 − |2/3|2 = 5/9. The entropic entangle-
ment measure for the same state |ψ ′′′〉 can be calculated from
its one-particle reduced density matrix, which in the basis
{1 ↑′, 1 ↓′, 2 ↑′, 2 ↓′, 3 ↑′, 3 ↓′} reads

ρ (1p) = 1

9

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 −√
2 0 0 0 0

−√
2 4 0 0 0 0

0 0 5
√

2 0 0

0 0
√

2 4 0 0

0 0 0 0 5
√

2

0 0 0 0
√

2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B9)

By inserting ρ (1p) into Eq. (B4) we obtain an entanglement en-
tropy of S = 4/3. For comparison, the two-fermion entangled
state of Eq. (A9) has an entanglement entropy of S = 1 and a
geometric entanglement measure of EG = 1 − 1/2 = 1/2. In
the result section we will use these entanglement measures to
analyze the mode entanglement and the particle entanglement
in three different teleportation schemes involving identical
particles.

APPENDIX C: N-SSR AND PARTICLE ENTANGLEMENT

In this Appendix we show that if an N-electron state |ψ〉
has N-SSR restricted mode entanglement, then the state of the
system after the projective orbital occupation measurement
P̂(n)

A |ψ〉 [see Eq. (A11)] is particle entangled for some n.
To prove this it is enough to show that if the state P̂(n)

A |ψ〉
is a Fock state, then its mode entanglement between orbital
partition A and another partition B is zero.

Let us start by looking at the one-particle reduce density
matrix

ρ
(1p)
i j = 〈ψ | P̂(n)†

A ĉ†
j ĉiP̂

(n)
A |ψ〉, (C1)

in an orbital basis where the orbitals i and j belong to either
partition A or B. If i ∈ A and j ∈ B or i ∈ B and j ∈ A, then
we get

P̂(n)†
A ĉ†

j ĉiP̂
(n)
A = 0, (C2)

which implies that all off-diagonal elements in ρ (1p) between
the orbital partition A and B are zero.

If P̂(n)
A |ψ〉 is a Fock state, then there is an orbital transfor-

mation that brings ρ (1p) into a diagonal form with diagonal
elements 1 or 0. Since ρ (1p) has no off-diagonal elements be-
tween A and B this transformation can be performed without
mixing the orbitals of the two partitions. In this new orbital
basis we can hence write the state P̂(n)

A |ψ〉 as the clearly
nonentangled state Ŝ†

a Ŝ†
b |0〉 where a ∈ SA

n and b ∈ SB
N−n. This
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proves that if P̂(n)
A |ψ〉 has no particle entanglement, then its

mode entanglement between A and B is also zero.

APPENDIX D: PARTICLE ENTANGLEMENT INEQUALITY

In this Appendix we prove the particle entanglement in-
equality in Eq. (25) explicitly for the linear entropy particle
entanglement measure S[|ψ〉] and the geometric particle en-
tanglement measure EG[|ψ〉].

The initial state in Eq. (25) is

|ψ i〉 = √
αeiθ ĉ†

e |ψe〉 + √
1 − α |ψs〉

=
⎡
⎣√

αeiθ ĉ†
e

⎛
⎝ ∑

i∈SN−1

ψe
i Ŝ†

i

⎞
⎠

+√
1 − α

(∑
j∈SN

ψ s
j Ŝ†

j

)⎤⎦ |0〉, (D1)

where the states ĉ†
e |ψe〉 and |ψs〉 are normalized and contain

N electrons. By definition neither |ψe〉 nor |ψs〉 contain an
electron in orbital e. This allows us, for convenience, to absorb
the relative phase eiθ between the two states into the definition
of ĉ†

e . Furthermore, since E [|ψe〉] = E [ĉ†
e |ψe〉] we only need

to prove the inequality

E [
√

αĉ†
e |ψe〉 + √

1 − α |ψs〉]
� αE [ĉ†

e |ψe〉] + (1 − α)E [|ψs〉]. (D2)

1. Linear entropy measure

The states ĉ†
e |ψe〉 and |ψs〉 give rise to three different

contributions to the one-particle reduced density matrix, ρi j =
〈ψ i| ĉ†

j ĉi |ψ i〉, given by

ρi j = αρe
i j + (1 − α)ρs

i j +
√

α(1 − α)ρoff
i j , (D3)

ρe
i j = 〈ψe| ĉeĉ†

j ĉiĉ
†
e |ψe〉, (D4)

ρs
i j = 〈ψ s| ĉ†

j ĉi |ψ s〉, (D5)

ρoff
i j = 〈ψe| ĉeĉ†

j ĉi |ψ s〉 + 〈ψ s| ĉ†
j ĉiĉ

†
e |ψe〉. (D6)

Let us now define the creation operator ĉ†
s through the

equation √
β ĉ†

s |0〉 = (−1)N−1
∑

i∈SN−1

ψe∗
i Ŝi |ψs〉, (D7)

where β is a non-negative normalization constant. The orbitals
e and s have to be orthogonal when β > 0 since ĉe |ψs〉 = 0. In
case β = 0 any orbital that is orthogonal to e can be selected
to represent the orbital s. We are therefore always allowed
to include both e and s in our orbital basis, which simpli-
fies Eq. (D6) to yield ρoff

i j = √
β(δieδ js + δisδ je). Finally, by

writing |ψe〉 and |ψs〉 as superpositions of states that contain
ĉ†

s and states which do not, it is straightforward to show that
β � ρs

ss(1 − ρe
ss).

Let us first deal with the case when β = 0, i.e., ρoff = 0.
The linear entropy of ρ is then given by

S[ρ] = Tr{αρe + (1 − α)ρs − [αρe + (1 − α)ρs]2}
= αTr[ρe] + (1 − α)Tr[ρs] − α2Tr[(ρe)2]

− (1 − α)2Tr[(ρs)2] − 2α(1 − α)Tr[ρeρs]

= αTr[ρe − (ρe)2] + (1 − α)Tr[ρs − (ρs)2]

+ α(1− α)(Tr[(ρe)2]+ Tr[(ρe)2]− 2Tr[ρeρs]).
(D8)

The last term in Eq. (D8) is always larger than zero since the
product of two hermitian operators Â and B̂ fulfill the Cauchy-
Schwarz inequality

Tr[ÂB̂] �
√

Tr[Â2]Tr[B̂2]

�
√

Tr[Â2]Tr[B̂2] + 1

4
(Tr[Â2] − Tr[B̂2])2

= 1

2
(Tr[Â2] + Tr[B̂2]), (D9)

which directly yields

S[ρ] � αTr[ρe − (ρe)2] + (1 − α)Tr[ρs − (ρs)2]

= αS[ρe] + (1 − α)S[ρs] (D10)

when β = 0.
In case β > 0 we get a finite contribution from ρoff that

reduces the linear entropy of ρ. To prove the inequality in
Eq. (24) it is therefore not enough to only use the Cauchy-
Schwarz inequality in Eq. (D9) but we must treat the effect of
ρoff explicitly. To this aim, let us define the projection matrix

Pi j = δeiδe j + δsiδs j (D11)

that project out the orbital subspace spanned by e and s. The
linear entropy of ρ can then be written as

S[ρ] = Tr[PρP − (PρP)2] + Tr[(ρ − PρP) − (ρ − PρP)2].
(D12)

The second term in Eq. (D12), S[ρ − PρP], does not contain
any contribution from ρoff . It can therefore be expanded as
in Eq. (D8) and bound by the inequality in Eq. (D9), which
yields

S[ρ − PρP] � αS[ρe − PρeP] + (1 − α)S[ρs − PρsP].
(D13)

The first term in Eq. (D12), S[PρP], is explicitly given by

S[PρP] = αS[PρeP] + (1 − α)S[PρsP]

+ α(1 − α){Tr[(PρeP)2] + Tr[(PρsP)2]

− 2Tr[PρePρsP] − 2Tr[ρoffρoff ]}.
= αS[PρeP] + (1 − α)S[PρsP]

+ α(1 − α)
[
1 + (ρe

ss − ρs
ss

)2 − 2β
]
. (D14)

Substituting β � ρs
ss(1 − ρe

ss) into Eq. (D14) yields

S[PρP] � αS[PρeP] + (1 − α)S[PρsP]. (D15)

Finally, combining Eq. (D13) and Eq. (D15) gives

S[ρ] � αS[ρe] + (1 − α)S[ρs], (D16)

033120-14



ORBITAL AND ELECTRONIC ENTANGLEMENT IN … PHYSICAL REVIEW RESEARCH 3, 033120 (2021)

which together with Eq. (D10) proves Eq. (D2) for the linear
entropy measure for all values of β.

2. Geometric measure

Although both the geometric particle entanglement mea-
sure EG[|ψ〉] and the linear entropy particle entanglement
measure S[|ψ〉] are zero if and only if |ψ〉 is a Fock state,
they are not equivalent measures. Eq. (D2) requires therefore
a separate proof for EG.

Let us start by considering an arbitrary Fock state |ψ i′′〉
with N electrons. Since |ψ i′′〉 is a Fock state there exists an
orbital basis in which it can be written as a single Slater
determinant |ψ i′′〉 = ĉ†′′

1 ĉ†′′
2 · · · ĉ†′′

N |0〉. We would now like to
decompose |ψ i′′〉 with respect to the occupation of a given
orbital e. To this aim, let us perform an orbital basis transfor-
mation using a unitary matrix W to a basis in which ĉ†

1 ≡ ĉ†
e ,

⎛
⎜⎜⎜⎜⎜⎝

ĉ†′′
1
...

ĉ†′′
N
...

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

W11 · · · W1N · · ·
...

. . .
...

WN1 · · · WNN

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ĉ†
1
...

ĉ†
N
...

⎞
⎟⎟⎟⎟⎟⎠. (D17)

We can always decompose the upper N × N block of W into
a unitary matrix Ũ multiplied from the right with an up-
per triangular matrix Ṽ with non-negative diagonal elements
0 � Ṽii � 1. By extending Ũ with the identity matrix for the
remaining orbitals we can define the unitary matrix U that
gives⎛

⎜⎜⎜⎜⎜⎝

W11 · · · W1N · · ·
...

. . .
...

WN1 · · · WNN

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

Ũ11 · · · Ũ1N 0
...

. . .
... 0

ŨN1 · · · ŨNN 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

Ṽ11 · · · Ṽ1N · · ·
0 . . .

...

0 0 ṼNN · · ·
W(N+1)1 · · · W(N+1)N · · ·

⎞
⎟⎟⎟⎟⎠. (D18)

The full V matrix, i.e., V = U †W , corresponds to a valid
orbital basis transformation since both U and W are unitary.
Let us therefore consider the Slater determinant given by
|ψ i′〉 = ĉ†′

1 ĉ†′
2 · · · ĉ†′

N |0〉 where

ĉ†′
i =

∑
j

Vi j ĉ
†
j . (D19)

Since Vi1 = 0 for i = 2, 3, . . . , N only ĉ†′
1 contributes to

the occupation of ĉ†
1 = ĉ†

e in |ψ i′〉. Furthermore, the oper-
ator

√
1 − V11ĉs ≡∑ j=2 V1 j ĉ

†
j fulfills {ĉ†′

s , ĉ′
i} = 0 for i =

2, 3, . . . , N since {ĉ†′
1 , ĉ′

i} = 0 for i = 2, 3, . . . , N . We can
therefore write [59]

|ψ i′〉 = (α′ĉ†
e + √

1 − α′ĉ†
s )ĉ†′

2 · · · ĉ†′
N |0〉, (D20)

where α′ = V11. The Fock state |ψ i′〉 is, however, identical to
|ψ i′′〉 since

|ψ i′〉 = ĉ†′
1 ĉ†′

2 · · · ĉ†′
N |0〉

=
(

N∑
j=1

U ∗
j1ĉ†′′

j

)(
N∑

j=1

U ∗
j2ĉ†′′

j

)
· · ·
(

N∑
j=1

U ∗
jN ĉ†′′

j

)
|0〉

= det Uĉ†′′
1 ĉ†′′

2 · · · ĉ†′′
N |0〉

= |ψ i′′〉. (D21)

This implies that an arbitrary Fock state can always be de-
composed as in Eq. (D20) with respect to the occupation of
any single orbital e.

Let us now consider the squared overlap between the Fock
state |ψ i′〉 and the input state

|ψ i〉 = √
αĉ†

e |ψe〉 + √
1 − α |ψs〉. (D22)

The decomposition of |ψ i′〉 in Eq. (D20) gives

|〈ψ i′〉 ψ i|2 = |
√

αα′ 〈ψ ′
e〉ψe

+
√

(1 − α)(1 − α′) 〈ψ ′
e| ĉs |ψs〉 |2, (D23)

where |ψ ′
e〉 = ĉ†′

2 · · · ĉ†′
N |0〉. The overlap is maximized when

the phase of ĉs and the size of α′ are adjusted so that

〈ψ ′
e| ĉs |ψs〉

|〈ψ ′
e| ĉs |ψs〉| = 〈ψ ′

e〉 ψe

|〈ψ ′
e〉 ψe| , (D24)

α′ = α|〈ψ ′
e〉 ψe|2

α|〈ψ ′
e〉 ψe|2 + (1 − α)|〈ψ ′

e| ĉs |ψs〉|2 , (D25)

which yields

max
|ψ i′〉

|〈ψ i′〉ψ i|2

= max
|ψ ′

e〉,ĉs

[α|〈ψ ′
e〉 ψe|2 + (1 − α)|〈ψ ′

e| ĉs |ψs〉|2]

� α max
|ψ ′

e〉
∣∣〈ψ ′

e〉 ψe|2 + (1 − α) max
|ψ ′

s〉
|〈ψ ′

s| |ψs〉
∣∣2, (D26)

where the maximization is over all normalized Fock states.
The inequality in Eq. (D26) gives

1 − max
|ψ i′〉

|〈ψ i′〉 ψ i|2 � α
(
1 − max

|ψ ′
e〉

|〈ψ ′
e〉 ψe|2

)
+ (1 − α)

(
1 − max

|ψ ′
s〉

|〈ψ ′
s| |ψs〉|2

)
,

(D27)

which proves Eq. (D2) for the geometric particle entangle-
ment measure.

033120-15



ANNA GALLER AND PATRIK THUNSTRÖM PHYSICAL REVIEW RESEARCH 3, 033120 (2021)

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[2] T. E. Northup and R. Blatt, Quantum information transfer using
photons, Nat. Photon. 8, 356 (2014).

[3] J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K.
Saucke, C. Kurtsiefer, and H. Weinfurter, Observation of En-
tanglement of a Single Photon with a Trapped Atom, Phys. Rev.
Lett. 96, 030404 (2006).

[4] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum
dynamics of single trapped ions, Rev. Mod. Phys. 75, 281
(2003).

[5] H. Häffner, C. Roos, and R. Blatt, Quantum computing with
trapped ions, Phys. Rep. 469, 155 (2008).

[6] M. A. Eriksson, M. Friesen, S. N. Coppersmith, R. Joynt, L. J.
Klein, K. Slinker, C. Tahan, P. M. Mooney, J. O. Chu, and
S. J. Koester, Spin-based quantum dot quantum computing in
silicon, Quant. Inf. Process. 3, 133 (2004).

[7] J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan,
P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and
L. J. Sham, Demonstration of Quantum Entanglement Between
a Single Electron Spin Confined to an Inas Quantum Dot and a
Photon, Phys. Rev. Lett. 110, 167401 (2013).

[8] P. Zanardi, Quantum entanglement in fermionic lattices, Phys.
Rev. A 65, 042101 (2002).

[9] H. Barnum, E. Knill, G. Ortiz, R. Somma, and L. Viola, A
Subsystem-Independent Generalization of Entanglement, Phys.
Rev. Lett. 92, 107902 (2004).

[10] A. P. Balachandran, T. R. Govindarajan, A. R. de Queiroz,
and A. F. Reyes-Lega, Entanglement and Particle Identity: A
Unifying Approach, Phys. Rev. Lett. 110, 080503 (2013).

[11] F. Benatti, R. Floreanini, and U. Marzolino, Sub-shot-noise
quantum metrology with entangled identical particles, Ann.
Phys. 325, 924 (2010).

[12] D. Dasenbrook, J. Bowles, J. B. Brask, P. P. Hofer, C. Flindt,
and N. Brunner, Single-electron entanglement and nonlocality,
New J. Phys. 18, 043036 (2016).

[13] N. Friis, A. R. Lee, and D. E. Bruschi, Fermionic-mode en-
tanglement in quantum information, Phys. Rev. A 87, 022338
(2013).

[14] H. M. Wiseman and J. A. Vaccaro, Entanglement of Indistin-
guishable Particles Shared Between Two Parties, Phys. Rev.
Lett. 91, 097902 (2003).

[15] M.-C. Bañuls, J. I. Cirac, and M. M. Wolf, Entanglement in
fermionic systems, Phys. Rev. A 76, 022311 (2007).

[16] U. Marzolino and A. Buchleitner, Quantum teleportation with
identical particles, Phys. Rev. A 91, 032316 (2015).

[17] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[18] L. Ding, S. Mardazad, S. Das, S. Szalay, U. Schollwöck,
Z. Zimborás, and C. Schilling, Concept of orbital entangle-
ment and correlation in quantum chemistry, J. Chem. Theory
Comput. 17, 79 (2021).

[19] J. Schliemann, J. I. Cirac, M. Kuś, M. Lewenstein, and D. Loss,
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