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Superconducting critical temperature in the extended diffusive Sachdev-Ye-Kitaev model
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Models for strongly interacting fermions in disordered clusters forming an array, with electron hopping
between sites, reproduce the linear dependence on temperature of the resistivity, typical of the strange metal
phase of high temperature superconducting materials [extended Sachdev-Ye-Kitaev (SYK) models]. We identify
the low energy collective excitations as neutral energy excitations, diffusing in the lattice of the thermalized
non-Fermi liquid phase. However, the diffusion is heavily hindered by coupling to the pseudo-Goldstone modes
of the conformal broken symmetry SYK phase, which are local in space. The imaginary time evolution of the
extended model in the strong interaction and 1/N expansion limit is presented in the incoherent nonchaotic
regime. On the other hand, a Fermi electronic liquid at low energy becomes marginal when perturbed by the
SYK dots. A critical temperature for superconductivity is derived, which is not BCS-like, in case the collective
excitations are assumed to mediate an attractive Cooper pairing.
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I. INTRODUCTION

Understanding the physics of copper-oxide materials,
which undergo the superconducting transition at higher tem-
perature, is still an unsettled topic of condensed matter
physics. Recent work suggests the breakdown of the Fermi
liquid (FL) theory at intermediate temperatures in these met-
als, while FL is the conventional starting point for low critical
temperature superconductivity [1,2]. New approaches to study
high-temperature superconductivity are recently investigated,
in particular lattice fermionic models with a strong local inter-
action [3,4].

Recently a (0 + 1)-dimensional model, the Sachdev-Ye-
Kitaev (SYK) [5–7] model, describing random all-to-all J
interaction between N Majorana fermions, has been exten-
sively studied. In the infrared (IR) limit, when N is large
and the temperature T is low, the model has an emergent ap-
proximate conformal symmetry and has become quite popular
for its large-N “melons” diagrammatics, which allows for a
simple representation of the power-law decay in time of the
correlation functions and for the analysis of the thermody-
namic and chaotic properties [7,8], providing a holographic
dual for gravity theories [9,10].

Generalized SYK models have been proposed with ex-
tension to higher space dimensions [11–18] also having in
mind applications to high critical temperature (HTc) super-
conducting materials. Indeed, there seems to be widespread
consensus that inhomogeneity and strong coupling could be
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distinguished factors for the cuprates and their 2 − d CuO
planes. Moreover, universal features emerge in the high tem-
perature “strange metal” phase, which is recognized as a
non-Fermi liquid (NFL) phase [1,2,19–22]. The most striking
of these is the linear increase with temperature of the electrical
conductivity [23–25].

The conformal symmetry of the SYK model is sponta-
neously broken down to the S̃L(2,R) group symmetry [26]
and Goldstone modes arise which are only approximately gap-
less, when ultraviolet (UV) corrections are taken into account.
The nature and the role of these collective excitations has not
been satisfactorily investigated, to our knowledge, up to now,
in phenomenological approaches for the description of the low
temperature metal phases of extended SYK models [11].

We consider a lattice of (0 + 1) − d SYK clusters (or dots),
each composed of strongly correlated N neutral fermions,
via the SYK interaction. A sketch of the lattice, in two
space dimensions, is depicted in Fig. 1. The first part of
this work discusses the collective bosonic excitations in the
lattice, which arise from the intradot SYK fermionic pseudo-
Goldstone modes (pGm) in the incoherent highly thermalized
phase above some threshold temperature T0. We propose that
these excitations, nicknamed Q excitations, could drive the
transition to superconductivity, when lowering T below some
temperature Tcoh, at which coherence is established in tun-
neling across the lattice but not necessarily in the SYK dots.
To discuss the superconducting critical temperature Tc of the
coherent phase, we adopt, in the second part of this work,
an hydrodynamical picture consisting of a two component
system: the two space dimensional lattice of (0 + 1) − d SYK
clusters and a fermionic low energy liquid, weakly interacting
with it. The electronic, one-band fluid is turned into a marginal
Fermi liquid (MFL) by the perturbation. The SYK dots act as
charge and momentum sinks. By contrast the Q excitations
conserve momentum in the lattice, while the quasiparticles of
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FIG. 1. A cartoon of the SYK model extended to include hopping
between 2 − d square lattice sites. The neutral fermions are depicted
as small blue circles, grouped on the lattice sites (their number is N
on each site). In the right upper part of the picture, a magnification of
four sites with just four Majorana particles at each site, to represent
the all-to-all four fermion interaction Ji jkl (red arrows) and the resid-
ual interaction Uc between quasiparticles (complex superposition of
intracluster pairs of majoranas) (dashed arrow) hopping between
sites [with hopping matrix element t0 (full dark green arrows)].

the MFL are badly defined. In driving the superconductive
instability, the Q excitations could play the same role as the
magnons in the 3He superfluidity [27], though via an unknown
mechanism. As argued in Sec. VII, the validity of this hypoth-
esis can be experimentally tested because it could produce
anomalous intervortex interaction in the presence of magnetic
field. However, we are unable to describe the crossover be-
tween the high temperature and the low temperature phase,
which should be further investigated, resorting to the various
extended SYK models which have appeared in the literature
[16,28].

Our approach to the high temperature phase is one of the
possible extensions of the SYK model [13,18], which assumes
the SYK properties of the local critical two-point functions
on the local scale, but introduces the U(1) symmetry for the
(“interdot”) dynamics in the lattice. It is not really a complex
fermion version of the SYK model [12,29–31]. Indeed, charge
is conserved only at low energies, while the (“intradot”) ex-
citations in the SYK clusters are nonconserving and neutral.
In this respect, we ignore the possibility of charging of the
clusters at the sites of the lattice as if their capacity were
infinite.

Disorder is a distinct feature of the SYK model. Disor-
der averages make the SYK and its generalizations solvable.
We assume random hopping in the lattice and we assume
that self-averaging restores space translational invariance. In
our description, the bilocal auxiliary fields Gx(τ1, τ2) and
�x(τ1, τ2), in imaginary time [11,13], acquire a slowly vary-
ing phase ϕp(τ ). Here the subscript x denotes the space
coordinate and the wave vector p = kã (ã is the lattice pa-
rameter) is used as a quantum number in the continuum

space limit. Gx(τ1, τ2) ≡ Gx(τ12, τ+) acts as an order param-
eter which characterizes the SYK phase in the scaling to
strong interaction J → ∞,N → ∞ with finite βJ /N ratio.
Here τ12 is the relative time coordinate, which takes care
of the “intradot” dynamics, while τ+ is the center of mass
coordinate of the “slow” interdot dynamics. The first task
(Sec. III) is to study the correlations of the pGm’s, when min-
imal coupling to the compact dynamical U (1) gauge boson
ϕx(τ+) is established. Figure 3 displays a “dressed” cor-
relator, 〈δGx(τ12, τ+)δG∗

x′ (τ34, 0)〉 ≈ 〈δGx(0+, τ+)δG∗
x′ (0, 0)〉

compared with a zero order, “naked” one, continued to real
time and in the limit kã 
 1. The naked correlation can
be derived with a real time approach in Appendix C. Both
correlators decay with real time, but the dressed one decays
by far faster. This confirms that the extended SYK model at
hand describes incoherent dynamics. However, Fig. 3 proves
that, as long as the gauge boson lacks its own dynamics,
correlations cannot be said to be diffusive over the lattice.
Actually, diffusivity on a temperature dependent (and scaling-
dependent) space distance ã�(T ), much larger than the lattice
parameter, is expected. In fact, the presence of impurities,
low dimensionality, strong interaction, and disorder usually
makes the collective excitations diffusive at low frequencies
and small momentum [20]. The pGm fermionic excitations of
the SYK dots generate fluctuations of the chemical potential in
the lattice 〈∂τϕp(τ+)∂τϕp(0)〉, driven by quasiparticle hopping
between lattice sites, parametrized by the matrix element t0,
and produce the bosonic Q excitations.

Our aim is twofold. On one hand we want to characterize
the quantum diffusion of the Q excitations in the lattice [11].
On the other hand we want to study the response Dβ (p,	n) of
these modes to interdot tunneling, a JQ − JQ response, where
JQ is an energy flux density which is somehow canonical
conjugate to ∂τϕp(τ+). The latter plays the role of a space
dependent chemical potential across the lattice [32].

The probability of quantum diffusion, involving retarded
and advanced Green’s function in real time, GR and GA, re-
spectively, is written in the form:

P(r, r′;	) ∝
∫

dω GR(r, r′;ω)GA(r′, r;ω −	), (1)

where overline denotes disorder average. On the other hand
the retarded density response function DR

JQJQ
involves the re-

tarded GR and the Keldysh GK Green’s function. Our approach
will be in imaginary time, but correct time ordering is crucial
to guarantee a correct analytical continuation to real times.
A relevant quantity typical of the diffusion processes is its
Fourier transform in time, denoted as the heat kernel [33],
which is defined as the probability z(t ) to return to the origin,
integrated over the point of departure. In Sec. V we derive a
form of it, z(t ) ∼ eD̃Q t ∇2

, after the Q excitations have been
integrated out [Eq. (36)] and we determine how the diffusion
parameter D̃Q depends on the scaling to strong interaction.

In dealing with the “bad” metal at finite temperature T ,
we concentrate on two temperature scales involved in the
extended SYK model, T0 and Tcoh. At T � Tcoh ∼ t2

0 /NJ ,
transport in the lattice is assumed to acquire coherence.
This crossover is out of reach in the present work. We ex-
pect that the Q excitations merge into the particle-hole (p-h)
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continuum of the low energy MFL. A derivation of the Landau
damped acoustic plasmon embedded in the p-h continuum
is reported in Appendix E. At T � T0, thermalization in the
system is very effective and diffusion is incoherent. pGm’s
are the intradot excitations which drive the incoherence. This
is a feature of the SYK model and is attained in the present
extended version of the model. The relaxation time is ∼h̄β
[34]. At later times the system evolves toward the scrambled
phase and the chaotic dynamics as the analysis of the out-of-
time ordered correlator (OTOC) shows. The fate of the chaotic
single dot regime in the extended model deserves specific
concern [21,28,35,36] beyond the present paper.

Usual hydrodynamical approaches to the response function
DR do not involve the role of the pGm’s at energies ∼kBT0.
This is highly questionable, because the diffusion constant D̃Q

is strongly renormalized by the inverse of four point function
of the SYK dots, F−1. Indeed the first UV correction plays
the role of keeping the pGm propagator F finite. A brief
presentation of this approximation to DR, which does not
go beyond the conformal limit [13] and uses the real time
Keldysh contour, is reported in Appendix C. By contrast, our
approach is quite simple and even naive, but it aims to stress
the parameter renormalization in the scaling process. In fact,
the separation in energy of T0 and Tcoh allows us to perform
a kind of adiabatic factorization, between the “fast” intradot
pGm’s and the “slow” interdot Q fluctuations. We discuss the
UV local space-time correction and show how it influences
the time correlation of the Q excitations.

Physically, we concentrate in distinguishing the two
regimes T ≶ T0. The T � T0 regime, being characterized by
strong thermalization, is governed by the order parameter of
the SYK model which, in the UV corrected form, is described
by a complex field φ in Sec. IV. The Q excitations, arising
from the minimal coupling with the gauge mode, are inter-
preted as energy excitations induced by the fluctuations of
the chemical potential. Energy density N and energy flux
density Ṅ ∼ JQ are the physical dynamical variables [12].
The corresponding parameters which rule the response are
thermal capacitance CV and the thermal conductivity κ .

The structure of the paper is as follows. In Sec. II the
extended SYK model is presented. In the conformal symmetry
limit of our approach, the SYK clusters acquire a hopping
dependent self energy of the kind ∼t2

0 GcGc, where Gc(τ1, τ2)
is the fermionic propagator of the SYK model [13]. A term of
this kind is suggested by a simple derivation of the hopping
between two neighboring SYK sites. The local correlations
arising from the kinetic term are obtained by gaussian integra-
tion of the δgm fluctuations in the presence of a source term,
the chemical potential ∂τϕx(τ+). They are derived in Sec. III.
In Sec. IV we clarify that the proper dynamics of the chemical
potential fluctuations should be added to account for the UV
corrections which, by giving mass to the pGm’s, make the
partition functional convergent. This implies a renormaliza-
tion of the correlations provided by the pGm propagator F ,
in which the first UV correction is included. To this end we
introduce a complex local order parameter φ(x, τ+), which is
promoted to a bosonic coherent field in Sec. IV, by means
of a more conventional model for the Q excitations. The in-
clusion of the dynamics via the local action S̃2[∂τϕ(x, τ+)] of
Eqs. (28) and (29) implies that the short range, exponentially

decaying dependence on real time t+ of the correlators turns
into a diffusive dynamics for T � T0, the energy window
in which our approximations are justified (Sec. V A). Sec-
tion V B discusses qualitatively how the transport parameters
evolve with scaling in the incoherent and coherent energy
ranges. They can be used to qualify the diffusion parameter
D̃Q by means of the Einstein relation. In Sec. VI we show how
a coherent low energy FL, when perturbed by a higher energy
SYK-type environment, becomes marginal. A conventional
Eliashberg [37,38] approach to the gap equation is presented
in Sec. VI, where the Q excitations constitute a bosonic virtual
pairing mechanism but with diffusive dynamics. The self-
consistent equation for the non-BCS critical temperature Tc

is derived. Additional remarks and a summary are reported in
the conclusions (Sec. VII). The Appendices give details of the
derivations.

II. THE EXTENDED SYK MODEL

Let the Hamiltonian for the extended model be H0 + HK .
H0 is the sum of the neutral fermion Hamiltonians of uncou-
pled 0 + 1 − d SYK dots, Ha, in a two-dimensional lattice
with intradot random interaction, labeled by the lattice site
a, and HK adds the kinetic energy of electrons with interdot
random hopping between neighboring dots. HK [given by
Eq. (6)] is derived in this section. The Hamiltonian H0 for
the uncoupled 0 + 1 − d SYK dots is:

H0 =
∑

a

Ha = 1

4!

∑
a

∑
klmn

Jaklmnχa,kχa,lχa,mχa,n, (2)

where χa,l are Majorana fermion operators on site a (klmn ∈
1, ..,N).

Electronic quasiparticles hop from site a to a neighboring
site b. c†

j , c j ( j = a, b) are the complex fermionic spinless
operators for the electrons, which can be represented in terms
of two flavors of the neutral fermions on the same site:

cb = 1√
2

(χb1 + i χb2), c†
b = 1√

2
(χb1 − i χb2). (3)

The kinetic term describing the hopping can be written as
hK = t0 c†

bca + H.c., where t0 is a constant hopping energy.
The time dependence of the operator c†

b in the interaction
picture is:

− ∂

∂τ
c†

b = eτ (Hb+Ha )[c†
b,H0] e−τ (Hb+Ha ). (4)

The commutator with the Hamiltonian can be performed
by applying the commutation relations for neutral fermions:
χa,kχa,l + χa,lχa,k = δl,k and χa,kχb,l + χb,lχa,k = 0 for a �=
b, exploiting the antisymmetry of Jbklmn in the permutation of
the klmn indices. From Eq. (4) we get:

∂

∂τ
c†

b(τ ) = i
1

3!

∑
lm

1

2
Jb12lmχb,l (τ )χb,m(τ ) c†

b(τ ). (5)

c†
a commutes with Hb so that it can be added afterwards. The

hermitian conjugate term c†
bca gives the same result with b →

a, i → −i.
This allows us to identify the hopping Hamiltonian term in

the interaction representation, from the evolution operator in
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a single hopping process, δU (τ, 0), to lowest order:

HK (τ ) = i
1

3!

∑
lm, j

1

2
Jj12lmχ j,l (τ )χ j,m(τ ) + H.c. (6)

Here Jj12lm is random interdot hopping for hopping onto site
j. Equation (6) shows that, starting from the neutral fermions
of the SYK model, a symmetric description of conserving
and nonconserving charge processes is provided. This feature

sets charge (and spin) dynamics free with respect to energy
dynamics, which is the premise for NFL behavior.

The disorder average of the standard SYK model includes
here the gaussian average of Jj12lm. The next step is the
integration over the Majorana fields χ j,l (τ ), with the help
of Hubbard-Stratonovich fields which become complex due
to an additional U (1) minimal coupling. The final result is
the action in terms of the complex bilocal auxiliary fields
Gx(τ1, τ2) and �x(τ1, τ2), with a phase ϕx introduced in the
next section [13]:

Iex

N
=

∑
x

[
− ln Det[∂τ−�x]+

∫
dτ dτ ′

{
−J2

4
|Gx(τ, τ ′)|4+�x(τ, τ ′)G∗

x (τ, τ ′) − t2
0

N

∑
x′∈nn

Gx(τ, τ ′)G∗
x′ (τ, τ ′)

}]
. (7)

The last term of the action is the interdot kinetic term. The ex-
pansion up to quadratic terms of this action in δ�x, δGx, ∂τϕx

is discussed in Sec. III and in Appendix A. The single dot
0 − 1 − d SYK action can be recovered by dropping δ�x, the
last term and the sum over sites. The auxiliary fields are now
real and the Det has to be substituted with a Pfaffian. In this
case the IR limit corresponds to the dropping of ∂τ in the
Pfaffian. On the contrary, ∂τ plays an important role in the
extended model.

III. KINETIC CORRELATIONS OF THE
EXTENDED SYK MODEL

The single particle Green’s function of the SYK model,
in the conformal symmetry limit, is local in space (i.e.,
wave-vector independent) and, assuming particle-hole (p-h)
symmetry and low temperature, it is given by:

Gc(iωn) = i
sign(ωn)√
J

√|ωn|
, (8)

where ωn are fermionic frequencies. Our aim is to include
correlations between sites of the lattice, here denoted by
the subscript x. The Green function and the self-energy be-
come complex fields, Gx(ϑ1, ϑ2), �x(ϑ1, ϑ2). They include
space dependent fluctuations of the modulus and of the phase,
close to the saddle point Gc(ϑ12), �c(ϑ12):

Gx(ϑ1, ϑ2) = [Gc(ϑ12) + δG(x, ϑ12, ϑ+)] ei ϕx (ϑ+ ),
(9)

�x(ϑ1, ϑ2) = [�c(ϑ12) + δ�(x, ϑ12, ϑ+)] eiϕx (ϑ+ ),

where ϑ12 = ϑ1 − ϑ2 and ϑ+ = (ϑ1 + ϑ2)/2. We have moved
to the center of mass time coordinate ϑ+ and the relative time
coordinate ϑ12 of the incoming particles and of the outgo-
ing ones. Here ϑ = 2πτ/β is a dimensionless time and the
Green’s functions and self energy are also dimensionless, ev-
erywhere, except when explicitly stated. Nevertheless we will
most of the time denote the dimensionless time as τ , unless
differently specified. To spell out the structure of the kinetic
term, we calculate the correlator of the δG fluctuations be-
tween neighboring sites and Fourier transform it with respect
to space. Ignoring the relevant role of the pGm’s, we neglect,
in the IR limit, the local correction δG(x, τ1 − τ2, τ+) ei ϕx (τ+ )

appearing in Eq. (9) and we consider just nearest neighbor

x, x′ terms in a lattice of spacing ã. We get:

δGc,x(τ12, τ+)δG∗
c,x′ (τ34, τ

′
+)

= [Gx(τ1, τ2) G∗
x′ (τ3, τ4) − Gc(τ1 − τ2) Gc(τ3 − τ4)]

≈ 1
2 Gc(τ12)

(
e−iã·∇x[ϕx (τ+ )−ϕx (τ ′

+ )] − 1
)

Gc(τ34),+ c.c.,

where we have qualified the lowest order, originating from
the conformal Green’s functions, with the label c. Only the
quadratic terms of the exponential are included in the ex-
pansion, to account for the additional complex conjugate
contribution, giving

≈ − 1
2 Gc(τ12)(ã · ∇x[ϕx(τ+) − ϕx(τ ′

+)])2 Gc(τ34). (10)

We now approximate (A9) [ϕx(τ+) − ϕx(τ ′
+)] ≈ (τ+ −

τ ′
+)∂τϕx(τ+) and define

R−1
c �cR−1

c = 1
2 (ã ·

←
∇x )Gc(τ12)(τ+ − τ ′

+)2Gc(τ34)(ã ·
→
∇x′ ).

(11)

Owing to the self-averaging established for the SYK model
at large N , translational invariance allows space Fourier trans-
form:

1

N
FTp[δGc,x(τ12, τ+)δGc,x′ (τ34, τ

′
+)]

= δ2

δ∂τϕp(τ+) δ∂τϕp(τ ′+)

1

N
〈∂τϕp|R−1

c �cR−1
c |∂τϕp〉

(12)

(FTp denotes Fourier Transform with respect to the space
coordinate of lattice spacing ã, with p = kã).

We now express Eq. (12) in the frequency space. The
matrix elements of the kernel are labeled by m,m′, � indices.
m,m′ indices refer to the intradot fluctuations δg which are
fermionic in the origin, while � labels bosonic frequencies	�,
corresponding to the spectrum of the Q fluctuations. We get

1

N
FT [δGc,x(τ12, τ+)δGc,x′ (τ34, 0)]|k �=0

= βt2
0

N
k2ã2

∑
�

∑
m,m′

ei	�τ+
(

̂R−1
c �cR−1

c

)�
m,m′e

i ωmτ12 ei ωm′ τ34 .

(13)
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Restricting ourselves to the IR limit, we plot in Fig. 2 the time
Fourier transform, keeping just the dependence on the relative
coordinate τ12 − τ34 mod. 2π (ωm′ = −ωm),

FTk[δGc,x(τ, τ+) δGc,x′ (0, 0)]

≈ k2ã2 t2
0

N

β

J
∑
��2

ei	�τ+

	2
�

∑
m

1

π (2m + 1)
ei ωmτ , (14)

where Eq. (8) has been used. It is denoted as
〈δGc(τ, 0+)δGc(0, 0)〉k in Fig. 2. This quantity, together with

the dressed correlator of Eq. (35) (blue curves), is plotted for
τ+ → 0+. The prefactors k2ã2 βt2

0 /(2πJ ) have been dropped
in the plots. The real part of the continuation of Eq. (14) to
real time t+, when τ → 0+, �e〈δGc(0+, t+)δGc(0, 0)〉k , is
plotted in Fig. 3. Note the difference in the scale of decay
between this correlation derived from the naked kinetic term
and the one of Eq. (35), including UV corrections, which we
are going to discuss in detail in the next section.

Integrating out the δ� fluctuations [see (A10)], the func-
tional integral in terms of the fluctuations δg(τ12, τ+) is

Z[∂τϕp(τ+)] =
∫ (

�δg∗
τ12,τ+

)
(�δgτ12,τ+ ) e

N
4 [〈δg|K−1

c −1|δg〉] e− N
2 �e{〈−i R−1

c ∂τ ϕp|δg〉}e
N
4

t0
2

N p2[〈−i R−1
c ∂τ ϕp|�c|−i R−1

c ∂τ ϕp〉], (15)

Kc(ϑ1, ϑ2, ϑ3, ϑ4) = Rc(ϑ1, ϑ2)Gc(ϑ1, ϑ3)Gc(ϑ4, ϑ2)Rc(ϑ3, ϑ4)

= (βJ )2 (q − 1)|Gc(ϑ1, ϑ2)| q−2
2 Gc(ϑ1, ϑ3)Gc(ϑ4, ϑ2)|Gc(ϑ3, ϑ4)| q−2

2 ,

R−1
c �cR−1

c = FTp[δGc,x(τ12, τ+) δG∗
c,x′ (τ12, τ+)]. (16)

The forks 〈...〉 in Eq. (15) include integration over τ12

and τ+. Here g(τ1, τ2) = Rc(τ1, τ2) G(τ1, τ2) and Rc(τ1, τ2) =
βJ

√
(3)|G̃c(τ1, τ2)| (with q = 4 in the usual notation). Inte-

grating out δgτ12,τ+ , δg
∗
τ12,τ+ , the generating functional of the

δg fluctuations reads:

Z[∂τϕp(τ+)] = e− N
2 〈−i ∂τ ϕp|(F+ t2

0
N p2R−1

c �cR−1
c )|−i ∂τ ϕp〉 (17)

where

F (τ1, τ2, τ3, τ4) = R−1
c Kc[1 − Kc]−1R−1

c (18)

FIG. 2. The modulus and the phase of 〈δG(τ, 0+)δG(0, 0)〉k

(blue curves), obtained in Eq. (35), by averaging with the density ma-
trix of Eq. (32), are plotted vs the dimensionless intradot imaginary
time τ12 − τ34 ≡ τ , in comparison with the naked one from Eq. (14)
(orange curves). The prefactor k2ã2 βt2

0 /(2πJ ), which contains the
k dependence, has been dropped in the plots.

is the four point function of the 0 + 1 − d SYK model. In-
tegration over intermediate times is intended. Here [39] F is
O(1), with the meaning of O([ βJN ]0). As R−1

c �cR−1
c ∝ GcGc

is O(N/βJ ), it appears from Eq. (17) that we can define a
physical parameter βt2

0 /NJ of O(1) to guarantee that the hop-
ping across the lattice is not irrelevant in the scaling. It turns

FIG. 3. The real part of the analytic continuation to real
time of the correlator, �e〈δG(0+, t+)δG(0, 0)〉k , given by
Eq. (34) (blue curves), compared with the naked correlator
�e〈δGc(τ, t+)δGc(0, 0)〉k from Eq. (14) (orange curves), are plotted
vs the dimensionless interdot time t+. While the intradot time τ12 −
τ34 ≡ τ = 0+ appears in the main panel, the curves for τ = 0.15,
0.159, 0.165, 0.2 are plotted in the inset in an expanded scale. The
oscillations of �e〈δG(τ, t+)δG(0, 0)〉k in τ follow those appearing
in Fig. 2, while the naked correlator 〈δGc(τ, t+)δGc(0, 0)〉k has
negligible dependence on τ . The prefactor k2ã2 βt2

0 /(2πJ ), which
contains the k dependence, has been dropped in the plots.
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out, however, that both F and βt2
0

NJ become of O( βJN ) when
the UV correction is included, which is crucially important
to give sense to the functional integration of Eq. (15), as we
explain here below.

Actually, the functional integral of Eq. (15) includes
a divergent contribution due to the Goldstone modes δgc

corresponding to eigenvalues of Kc → 1, which has to be
regularized resorting to the first UV correction 〈δg|K−1

c −
1|δg〉 ∼ βJ . The Faddeev Popov regularization provides an
integration performed in the orthogonal space with respect to
the pGm, while the smallest eigenvalue of the kernel 1 − Kc

is approximated with its UV correction, given by 1 − kc(h =
2, n) ≈ αK

βJ |n| + ... (αK ≈ 3 is a constant) [8]. It follows that
the large but finite contribution to F in Eq. (18) with this UV
correction is not O(1) as stated here above, but O( βJN ) and

the same has to occur for βt2
0

NJ . We will discuss this point in the
next section. The temperature threshold for coherence defined

here, Tcoh = t2
0

NJ , is recurrent in the next.
If we ignore this matter for the time being, the gen-

erating functional of Eq. (17) provides the correlator
1
N FT [δgx(τ12, τ+)δgx′ (τ34, 0)]|k �=0 in imaginary time, inclu-
sive of the hopping in the lattice:

δ2

δ∂τϕp(τ+) δ∂τϕp(τ ′+)

1

N

∑
p′

lnZ[∂τϕp′ (τ+)]

∝ 1

2

(
1 + t2

0

2 N
p2R−1

c �cR−1
c F−1

)
F . (19)

This result adds to the naked correlator F the contribution
coming from Eq. (13), so that the two dynamics are just added
together in this approximation. However, one can envisage the
present one as the lowest order of a ladder resummation which
will appear more clearly in the next section. The operator

̂GcGcF̂−1 appearing in the kernel of Eq. (19) is the inverse
matrix of [8]

F{GcGc}−1 = 6α0βJ
π2αK

∑
|n|�2,even

ei n(y12−y34 )

n2(n2 − 1)
fn(τ12) fn(τ34),

(20)

where yi j ≡ (τi + τ j )/2 in units of h̄β/2π . The basis func-
tions fn(τ12) are defined in Appendix B, together with the
spectral representation of the kernel K−1

c [1 − Kc], as well as
with their Fourier transform.

IV. DRESSED CORRELATOR OF pGm MODES

The derivation of the previous section has assumed that
ϕx(τ+) is given as an external source. However, continua-
tion to real time requires that ϕx(τ+) acquires a dynamics.
Meanwhile, the symmetry breaking induced by the UV pertur-
bation source ∼∂τ , couples to GIR. GIR is derived from a time
reparametrization under the diffeomorphism eiϑ → ei ϕx (ϑ ) of
the conformal Green’s function (� = 1

4 ):

GIR(ϑ1, ϑ2) = Gc(ϕx(ϑ1), ϕx(ϑ2))ϕ′
x(ϑ1)�ϕ′

x(ϑ2)�, (21)

where ϑ = 2πτ/β and ϕ′ ≡ ∂ϑϕ.
The leading correction to the conformal action arising from

this reparametrization (apart for a shift of the ground state
energy) is the Schwarzian [6]:

Ilocal

N

1

2
[∂τϕ] = −2π αSε

∫
dϑ

2π

[
1

2
− (ϕ′′)2 − (ϕ′)2

2

]
.

(22)

Here αS is a constant [8] and ε = 1/βJ . Hence, the full action
in place of the one appearing in Eq. (17) reads:

I∂ϕ =
∑

p

{
Ilocal

1

2
[∂τϕp] − N

2

∫
dτ12〈−i ∂τϕp|

(
F + t2

0

N
p2R−1

c �cR−1
c

)
| − i ∂τϕp〉

}
. (23)

Now the field ∂τϕx has its own dynamics and could be
integrated out, possibly after adding a source term to get
a generating functional of 〈∂ϕ∂ϕ〉 correlators. However, the
action of Eq. (23) is essentially a “phase only” model for
hopping of ∂τϕx across the lattice. This is so, because we
have neglected δG(x, τ12, τ+) appearing in Eq. (9). So as
it stands, Ilocal

1
2 [∂τϕp] ∼ O(N/βJ ), while the other term is

O(1). Hence, the local action Ilocal
1
2 [∂τϕp] is irrelevant in

the βJ → ∞ limit and the phase lacks its own dynamics.
Writing down a partition function for the order parameter
given by Eq. (9), with inclusion of its modulus, gives the

chance of extracting correlation functions which include the
UV correction and can be extended to real time. Let us de-
note the complex order parameter in two space dimension
φ(x, τ12, τ+) = √

ρ0 + δρ eiθ , for each degree of freedom.
The functional integral, with τ of the dimension time in the
following, reads:∫

Dφ(x, τ12, τ+)∗Dφ(x, τ12, τ+) e−S̃[φ∗,φ]. (24)

The action leading to the one of Eq. (23) can involve also
space derivatives:

S̃ = −
∫ β

dτ12

∫
d2x

∫ β

dτ
1

2

[
−v2∂x∂τφ

∗∂x∂τφ+(φ∗∂τφ − φ∂τφ∗)− 1

2παSε

1

2
|φ|4

]
(25)

[an expression for the velocity v appearing here, derived from
a Hamiltonian approach, is presented in Eq. (40) of the next

section and in Appendix D]. In fact, expanding to quadratic
order in θ and δρ, we get (we imply

∫ β dτ12 in the notation in
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what follows)

S̃2 = −
∫

d2x
∫ β

dτ
1

2

[
−ρ0v

2(∂x∂τ θ )2

+ 2i δρ ∂τ θ − 1

2παSε

1

2
δρ2

]
. (26)

Integrating out the fast field δρ in the functional integral,∫
Dδρ e

∫
d2x

∫ β dτ [i δρ ∂τ θ− 1
2παS ε

1
2 δρ

2]

= e−παSε
∫

d2x
∫ β dτ 1

2 (∂τ θ )2
, (27)

we obtain

S̃2 = −
∫

d2x
∫ β

dτ

[
−ρ0

v2

2
(∂x∂τ θ )2 + παSε

1

2
(∂τ θ )2

]
, (28)

which can be identified with Ilocal
N

1
2 [∂τϕ] of Eq. (22) pro-

vided we also introduce space nonlocality there, by trading
Gc (τ12 )

ã v ∂x, which appears in Eq. (28), for ∂τ . Identification
requires that

ρ0 = |φ0|2 = παSε

ã2
|Gc(τ12)|2, ∂τ θ ≡ ∂τϕ (29)

(an extra factor N pops up from the number of flavors in the
first equality). Introducing Rc = |Gc(τ12)| as in Eq. (16) and
substituting −i ∂τϕp → e−iθ ∂τφpR−1

c , the functional integral
becomes∫

Dφ(x, τ12, τ+)∗Dφ(x, τ12, τ+) e−S̃[φ∗,φ]

× e− 1
2π αS ε

∑
p〈φpR−1

c |
→
∂τ (F+ t2

0
N p2R−1

c �cR−1
c )

←
∂τ |φpR−1

c 〉
, (30)

where S̃ is given by Eq. (25). It is useful to redefine the
φ̃ = φ R−1

c in the functional integral. In the change of the
integration field, the action S̃[φ∗, φ] → S̃[φ̃∗, φ̃] acquires a
factor (Gc(τ12))2, except for the |φ|4 term which acquires
the fourth power. Note, however, that in the UV domain is
τ12 ∼ J −1, so that, with [8] b−2 = √

4πJ ,

(Gc(τ12))2 = b2

|τ12| ∼ O(1). (31)

Hence, the last term of the full action from Eq. (30) is O(βJ )
in the large βJ limit, while the first contribution to the full
action, given by S̃, is O(1). Actually the |φ|4 term in S̃ is also
O(βJ ), but we stick to zero order in the anharmonic func-
tional integration. The evolution of Eq. (30) is characterized
by an interplay between the dynamics of the intradot fluc-
tuations and the dynamics of the interdot ∂τϕp fluctuations,
which is mostly represented by the action S̃. If S̃ is dropped
altogether, because it becomes irrelevant in the scaling, the
gaussian integration of Eq. (30) can be easily performed,
giving rise to a density matrix ρδg of the intradot fluctuations at
each given time τ+. When Fourier transformed with respect to
the intradot times τ12, τ34, stripping off the unperturbed evo-
lution F̂ , the result of the functional integration of Eq. (30), in
the absence of S̃ is (again, yi j are center-of-mass times in units

of h̄β/2π and here τ ≡ τ+ = y12 − y34 in unit of h̄β/2π ):

ρδg(y12 − y34; p)m,m′

∼ 1

N

{
1 + t2

0

N

p2

2

→
∂τ
([

̂R−1
c �cR−1

c

]
F̂−1)←∂τ}−1

∣∣∣∣∣
τ+,m,m′
.

(32)

We define

B̂m,m′ (τ+) ≡ [→
∂τ
([

̂R−1
c �cR−1

c

]
F̂−1)

←
∂τ
]

m,m′ , (33)

which will be used in the following. The correlation func-
tion 〈FT [δGx(τ12, τ+)δGx′ (τ34, 0)]〉|k �=0, corresponding to
Eq. (13) but including the ladder resummation, is obtained by
tracing on the density matrix of Eq. (32), after the p = 0 term
has been subtracted. To lowest order, we get:

〈FT [δGx(0+, τ+)δGx′ (0, 0)]〉|k �=0

≈
∑
mm′

Gc(ωm) ρδg(τ+; k)m,m′ Gc(ωm′ ). (34)

where Gc(ωm) is given by Eq. (8). When kã 
 1, the con-
tribution of the ladder can be dropped and the unnormalized
correlator 〈δG(τ12, τ+)δG(τ34, 0)〉k �=0 reads:

〈δG(τ12, τ+)δG(τ34, 0)〉k �=0

≡ FTk �=0〈[δGx(τ12, τ+)δGx′ (τ34, 0)]〉

= 1

N

∑
m

t2
0

2 N
k2ã2[ ̂GcBGc]y,m,−me

i ωm (τ12−τ34 ). (35)

Only the dependence on the relative coordinate τ12 −
τ34 mod. 2π has been retained.

In Fig. 2, the correlator 〈δG(τ, 0+)δG(0, 0)〉k from Eq. (35)
is plotted and compared with the naked 〈δGcδGc〉k correlator
given by Eq. (14). The main panel of Fig. 2 displays the
modulus while the phase appears in the inset of Fig. 2. The
prefactor k2ã2 βt2

0 /(2πJ ) has been dropped.
The correlator 〈δG(τ, 0+)δG(0, 0)〉k has been calculated

as reported in Appendix B, using the Fourier transform of
Eq. (20), with the inclusion of F−1 in the evolution. We had
to truncate the sum over the (even) indices n up to n = 12,
and consequently the sum over internal (odd) indices just
includes up to m,m′ = 5. Its modulus and phase, compared
to those of the corresponding naked 〈δGcδGc〉k correlator,
are plotted in Fig. 2. The modulus of the naked correlator is
exponentially decaying at the intradot time τ ∼ 0, mod[2π ],
while the dressed one is power law, highlighting the criticality
of the phase, when the UV correction is included. The Fourier
transform of the sawtooth phase oscillations of 〈δGδG〉k (blue
curves) appearing in Fig. 2 is not simply ∝1/i ωm, revealing
the “fast” intradot time scale induced by the UV correction,
with respect to the phase of the naked correlator. They could
have acquired further structure, if larger n,m values had been
retained.

The real part of the analytic continuation to real times of
the center of mass coordinate t+ in 〈δG(0+, τ+)δG(0, 0)〉k is
plotted in the main panel of Fig. 3 and compared to the corre-
sponding naked correlation of Eq. (14). The same correlators,
but keeping the dependence on the relative imaginary time
coordinate τ12 − τ34, mod[2π ] as in Eq. (35), are plotted for
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various values of τ = τ12 − τ34 in the inset panel. The de-
pendence on τ is oscillating and we have chosen values for τ
within a single oscillation. The prefactor k2ã2 βt2

0 /(2πJ ) has
been dropped again. The 〈δG(0+, τ+)δG(0, 0)〉k’s appearing
in Fig. 3 are scaled by ×10 with respect to the correlators
arising from the naked kinetic term of Eq. (14). The t+ de-
pendence in the presence of UV corrections appears very
localized and highly variable with the intradot time, as com-
pared with the naked one. The UV corrections squeeze the
interdot correlations in time, increasing their “local” nature.
This drastic drop in time of the correlations cannot guarantee
quantum diffusion on an extended space scale, much larger
than the lattice spacing, and we have to resort to a better
approximation which retains the dynamics entailed by the
action S̃, which was lost in this result.

Besides, the strong dependence of the dressed correlations
on the intradot imaginary time, with a relatively stable interdot
real time dependence, confirms that the UV correction intro-
duces a sizable time scale separation between the intradot and
interdot correlations. This is the basis of the factorization of
the two dynamics, which we use to approximate the quantum
diffusion discussed in the next section.

V. QUANTUM DIFFUSION

In this section, we attempt a better approximation for
evaluating the partition function of Eq. (30) to investigate
the quantum diffusion of the Q excitations across the lattice,
induced by the intradot pGm’s. We want to extract a diffusion
coefficient D̃Q out of the scaling flow to be related to the
thermal conductance κ of the “electronic” carriers and to
the thermal “electronic” capacitance C in the lattice. In turn,
they are connected to a relaxation time TQ and to the inverse
lifetime of the Q excitations �.

A. Partition function of the Q excitations

In Sec. IV we have shown that, to improve the t+ depen-
dence of the correlator �e〈δG(τ, t+)δG(0, 0)〉k of Eq. (34),
the UV local time corrections should be included more
carefully. In fact, the result of the previous section is un-
satisfactory, because, in the flowing to the fixed point of
the partition function of Eq. (30), we had to drop the order
parameter dynamics entailed by the action S̃ of Eq. (25). A
semiclassical approach to the diffusion process can be still
envisaged, however, in the results of the previous section.
When the trace over the intradot frequencies is performed,
the density matrix of Eq. (32), appropriately continued to real
time, ρδg(y12 − y34; k)m,m′ → P(r, r′, t+), takes the form of a
heat kernel z(t ), typical of a diffusion process [33], defined as
the probability to return to the origin, integrated over the point
of departure. From Eq. (32), in the kã 
 1 limit, we have:

z(t+) = 1

N

∫
A

[F · P](r, r, t+) d2r ∝
∑

m

∑
p

e− βt2
0

N
p2

h̄ B̂(t+ )|m,m ,

(36)

where we have restored the free intradot evolution.
Now that we know what the drawback is, we reconsider

the UV correction to the action given by Eq. (22). Its vari-
ation with respect to ϕ′ gives a simple equation of motion

∂2
τ ϕ

′ = −ϕ′. When derived from the action of Eq. (28), this
motion equation is rewritten in the form of lattice space
oscillations. In the following we quantize these space ex-
tended excitations by means of a phenomenological 2 − d
Lagrangian with canonical conjugate variables, introduced in
Appendix B:

θ̇ =
(
κC

h̄T

)1/2JQTQ

kB
, ∇θ =

(
h̄

κC T

)1/2
κ

T
∇T . (37)

Here JQ is the thermal energy current density. The correspond-
ing Lagrangian is

L = 1

2

∫
d2x

[
kB

T

(
JQTQ

kB

)2

+ h̄

κC

(
κ

T
∇T

)2]
≡ 1

2

∫
d2x

[
h̄kB

κC
θ̇2 + T (∇θ )2

]
. (38)

The terms in the square brackets have dimension E/�2 (E ≡
energy, � ≡ length). This Lagrangian is of course conserv-
ing, but we have introduced the relaxation time TQ, so that
we can reproduce a diffusive motion equation of the form
JQ = −κ ∇T , if we approximate the time derivative of the
energy current fluctuations J̇Q ≈ JQ/TQ.

Here κ = C v �

ã2
�

is the thermal conductivity in 2 − d , where

� and v are typical mean free path and velocity, respectively,
while ã2

� ∼ D̃QTQ is the area over which the thermal capaci-
tance C is defined and will be introduced here below.

We quantize the corresponding Hamiltonian, in terms of
the creation and destruction bosonic operators a†

k, ak :

πk = −i T 1/2 1

(2	k )1/2
|k| (a−k − a†

k ),

θk = T −1/2 (2	k )1/2

|k| (ak + a†
−k )

	k = ã

[
κ

kB

CT

h̄

]1/2

|k| ≡ v |k|, (39)

HD̃
0 =

∑
k

	k a†
kak + cnst . (40)

	k is the linear dispersion law of these modes with velocity
v defined in Eq. (39). From the damped fluctuations of these
modes, the response function Dβ (ω) is derived in Eq. (D12),
within this Lagrangian approach. On the contrary, here in the
following, we aim to derive the quantum diffusion probability,
stressing the interplay between intradot δgm modes and the
kinetics of the Q fluctuations in the lattice.

From Eq. (30), we recognize the coupling Hamiltonian ĤD̃,
which, in the interaction representation of Ĥ D̃

0 , takes the form:

ĤD̃(τ ) = − ã2

παSNε

∑
p�=0

p2 βt2
0

2N

∑
k

B̂(τ ) a†
k+p(τ )ak (τ ). (41)

ĤD̃(τ+) of Eq. (41) represents an “effective interaction Hamil-
tonian” for energies in the incoherent phase. We remind that
B̂(τ ), defined in Eq. (33), is ∼O( N

βJ ) and that the hat denotes

the m × m′ matrix structure. As βt2
0

2N ∼ O( βJN ), the additional
factor (παsNε)−1 in Eq. (41) makes [39] ĤD̃ of O( βJN ) and
allows us to define a scaled length ã� ∼ ã (παsNε)−1/2 � ã,
which is the length scale for diffusion in the lattice.
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The partition function of Eq. (30), represented in the
bosonic coherent field φ̃ = φR−1

c , can be expressed as

Tr e−βH0
SYK

{
trφ̃

(
e−βHD̃

0 Tτ+
[
e− ∫ β

0 ĤD̃ (φ̃∗,φ̃,τ+ ) dτ+
])}

(42)

and the full quantum dynamics is included (we drop the tilde
on φ henceforth). Here trφ denotes the trace of a time ordered
functional integral (Tτ+ is time ordering in τ+), while we
keep the symbol Tr for the trace of the m × m matrices.
ĤD̃(φ∗, φ, τ+) is the matrix element derived from Eq. (41) in
the coherent basis representation. In performing the trace, we
assume ĤD̃(φ∗

p, φp, τ ) to be diagonal in the p label.
As we are dropping the |φ|4 term appearing in the original

action S̃ of Eq. (30), our toy model involves noninteracting
bosonic fields only. The partition function can be written down
straightforwardly by slicing the trace trφ̃ into β

M time slices (M
integer) [40]:

Z = lim
M→∞

Tr

{
e−βH0

SYK

×
∏

k

[
1 − {

e
β

M k2 ã2

παS Nε

βt2
0

N B̂( βM )}M]−1

}
. (43)

In Eq. (43) the dynamics of the intradot fluctuations δgm and
their interdot extension to the lattice are fully entangled. In
view of some simplification, we limit ourselves to the regime
in which the inverse timescale of the Q fluctuations in the
lattice, τ−1 ≡ −i T −1

Q , is much smaller than the typical fre-
quency scale of the intradot evolution (which includes the
dominant term of the UV corrections). In this regime we
factorize the ( βM ) slices of the intradot propagator generated

by H0
SYK which is F̂ , while B̂ includes the kernel ̂GcGcF−1

of the Q fluctuations. The factorization amounts to a kind
of “noninteracting blip approximation” [41,42] and can be
justified as long as the thermalization is very effective.

With this approximation, the functional integration of the
partition function of Eq. (43) can be cast in the form:

lim
M→∞

∏
k

Tr

{
F̂ (β )

[
1−

(
1 − β

M
kBT0 f̂τ (k)

)M]−1}
, (44)

where β

M kBT0 f̂τ (k) is a linearized m × m matrix, for a small
increment β

M of τ+, arising from the correspondence

−k2 ã2

παSNε

βt2
0

N
B̂
(
β

M

)
→ β

M
kBT0 f̂τ(k). (45)

The subscript τ is to remind that the factorization of the
traces is only justified in a limited temperature range in which
the separation of the time scales holds. We have extracted a
temperature scale T0 from the left hand side of O( βJN ) and
introduced the function f̂τ of O(1).

FIG. 4. Plot of the approximate lowest M value which fulfills the
unitarity condition of the partition function in Eq. (46), up to 10−5,
vs. T0/T values, for kã = 1.

As we are on a closed time contour [43], the partition
function should be unity. The intradot propagation should be
periodic in τ+, as well: Tr{F̂ (β )} = 1. As both F̂ (β ) and
f̂τ in Eq. (44) are m × m matrix of rank r̃m, the limit of the
trace is costly from the numerical point of view. It can be
done straightforwardly if we trade 1/r̃m for the stripping of
F̂ (β ) off the trace. Once this is done, we have checked what
is the minimal M value, M, which fulfills unitarity, at a given
approximation order:

zM (k) = 1

r̃m
Tr

⎧⎨⎩ 1

1̂ − 1
r̃m

(
e− 1

M

T0
T f̂τ

)M

⎫⎬⎭ ≈ 1. (46)

In Fig. 4, we plot an interpolated smoothed curve of the
(approximate) lowest M value, which satisfies Eq. (46), vs
T0/T , for k2ã2

� = 1. Precision is up to>10−5. M is practically
constant, when T0

T � 1, but it increases strongly when T takes
values T > T0. The trend is only meaningful for T0/T ∼ 1,
because T values larger than T0 require n > 12 in the spectral
representation of Eq. (20) and matrices m × m of rank r̃ > 3,
i.e., higher than the ones used here. Figure 4 is the numeri-
cal proof that T0 represents the temperature above which the
thermalization is more efficient and our factorization between
evolutions breaks down. The threshold temperature scale T0

introduced in Eq. (45) and the space scale ã� defined after
Eq. (41) are discussed in subsection C.

B. 〈δGRδGA〉 diffusion probability

The generating functional to obtain the correlator
of the field φp(τ ) at different times yr − ys (yr ≡
2πr/M; r, s integers) can be derived from Eq. (42) by adding
a source term. Its r, s matrix element can be denoted as
Tr([∂τ + ĤD̃]−1)r,s:

lim
M→∞

Tr([∂τ + ĤD̃]−1)r,s ≈ lim
M→∞

Tr

⎧⎨⎩
[
F̂

(
β

M

)]r−s
(
1 − 1

M
T0
T f̂τ

)(r−s)

1 −
[
F̂
(
β

M

)(
1 − 1

M
T0
T f̂τ

)M
]
⎫⎬⎭

≈ lim
M→∞

Tr
{[

F̂
(
β

M

)]r−s}
Tr

{ [
e− T0

T f̂τ
](yr−ys )

1̂ − 1
r̃m

[
e− T0

T f̂τ
]
}
≈ lim

M→∞
Tr

{[
F̂

(
β

M

)]r−s}
Tr

{[
e− T0

T f̂τ
](yr−ys )}

,

(47)
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FIG. 5. Plot of the logarithm of the propagator appearing in

Eq. (48) for yr − ys = 1 (i.e., M = 1), ln(Tr[e− T0
MT

f̂τ ]1), vs (kã�)2,
for T0

MT
= 0.005, 0.01, 0.03, displaying an approximately linear be-

havior as a function of (kã)2, for (kã)2 > 0.5.

to be compared with the correlators of Eq. (34) and Eq. (35)
(here the term k = 0 has not been subtracted yet).

According to Eq. (36), our aim is to define a scalar diffu-
sion coefficient D̃Q such that, when moving from euclidean

to real time, Tr[e− T0
T f̂τ ] → e−i D̃Q k2TQ . To accomplish this,

we have to check that Tr[e− T0
MT

f̂τ ] provides an exponential
with a k2 factor in the exponent, when the trace has been
performed. In Fig. 5, we plot, vs (kã�)2, the logarithm of the
last term of the propagator on the right hand side of Eq. (47)
for yr − ys = 1,

ln
(
Tr

[
e− T0

MT
f̂τ
]1)
, (48)

for T0

MT
= 0.005, 0.01, 0.03 and we see that it is a linear

function of (kã�)2, for (kã�)2 > 0.5. The linear dependence
confirms that not only the single matrix element contributions
of Eq. (45) but also the logarithm of the trace appearing in
Eq. (48) has the linear dependence on (kã�)2. This linear
dependence on (kã�)2 is the signature of the diffusivity of the
Q-excitation modes which sets in at larger values of (kã�)2.
The scale kã� > 1 characterizes the virtual Q fluctuations,
which we are investigating, by including the UV corrections.

To sum up, the steps of the logical inference starting from
Eq. (45) are

−k2 ã2

παSNε

βt2
0

N
B̂
∣∣∣∣
τ+=β/M

→ β

M
kBT0 f̂τ

(
k;
β

M

)

→ ln

(
Tr

[
e− T0

MT
f̂τ
] β

M =1
)

→ T0

MT
f τ → D̃Q k2 TQ

M
. (49)

As the left hand side is O( βJN ), the product D̃QTQ is O( βJN ) as
well. In fact we will put D̃QTQ = ã2

� = ã2T0/T . The diffusion
coefficient D̃Q and the relaxation time scale of the diffusion
process i TQ ≡ τ are discussed in subsection C.

Our simplified approach to the diffusive constant
D̃Q provides an analytical approximate expression for
〈δG(0+, τ+)δG(0, 0)〉k . From the left hand side of the second

line of Eq. (47) we write:

〈δG(0+, y)δG(0, 0)〉|k �=0 ∝ e− f k
′
y

1 − e−2π f k
′ , (50)

with f k
′ = βD̃Qk2/2 π . By Fourier transforming to Matsub-

ara Bose frequencies (n stands here for β	n/2 π ) we obtain:∫ 2π

0
dy

e− f k
′
y

1 − e−2π f k
′ ei n y = 1 − e−2π f k

′+2π i n

f k
′ − i n

1

1 − e−2π f k
′

so that:

{〈δG(0+, τ+)δG(0, 0)〉}|k �=0,n ∝ 2π

β

1

D̃Qk2 − i 	n
. (51)

This result highlights the diffusive pole in the Fourier trans-
form of the Q-fluctuation correlator [11].

Identifications of the threshold temperature T0 and of
the space parameters ã�, D̃QTQ, introduced as scales in the
previous derivation, require a modelization of the damped dy-
namics of the Q excitations, which we derive in subsection C.
While these parameters, in the course of the derivation, have
been recognized as marginal in a renormalization group sense,
as they are O( βJN ) (in the limit J ,N → ∞, J /N → cnst),
they should rest on phenomenological fundamental quantities,
like the thermal capacitance C per unit mass and the thermal
conductivity κ . These quantities will be related to two param-
eters, i.e., the damping of the neutral Q excitations � and their
propagation velocity v, given by Eq. (39) in our model. The
velocity v appears in the linear spectrum of the Q excitations
given by Eq. (40), while � is introduced as a broadening of
their spectral peak. Subsection C is devoted to the presentation
and discussion of these relations.

C. Thermalized and coherent energy processes

In the previous sections we have shown how the pGm
within each SYK dot, δgm, generate energy modes diffusing
in the lattice of the extended SYK model. The validity of
our approach, involving the partial factorization that we have
adopted in our traces, rests on different temporal dependence
scales of the center of mass times yr − ys on one side and
of the intradot fluctuations on the other. The “interdot” dy-
namical time scale is discussed phenomenologically in this
subsection.

The “interdot” time scale is the thermalization time TQ,
introduced in Eq. (49). TQ, the threshold temperature scale for
thermalization T0, and the space scale ã�, are connected with
the velocity v, given by Eq. (39), and with the phenomeno-
logical damping �, which is the inverse lifetime of the Q
excitations. In turn, these quantities depend on the thermal
capacitance C per unit mass and the thermal conductivity κ ,
which are the phenomenological, experimentally measurable
quantities.

When adopting our rough approximations, we cannot
ignore that these parameters depend on temperature. In par-
ticular, the two sets of scales should be considered, (Tcoh, TQ)
related to particle transport in the coherent phase and (T0 ·
( N
βJ ), h̄β ) for a thermalized system in the incoherent phase,

when T � T0 > Tcoh. The parameters Tcoh, TQ,T0 and ã2
� are

O( βJN ). We will discuss the two regimes in this subsection. At
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finite T the small gap of the Q excitations can be disregarded.
We assume that both regimes have gapless and chargeless
bosonic excitation modes of energy 	k = h̄v|k|, given by
Eq. (39). Indeed, we exclude charging effects in transport. In
the incoherent regime the gaussian action of Eq. (28) involves
energy density N ∝ ∂τ θ fluctuations and energy flux density
Ṅ ∝ JQ fluctuations [12], the Q excitations. In the coherent
phase, bosonic excitations are particle-hole excitations with
fluctuations of the particle number Ne and first sound excita-
tions. In Appendix E we show that the sound mode survives
when the interaction with the SYK dots is turned on perturba-
tively, embedded in the p-h continuum. We attribute an inverse
lifetime � ∝ T to these excitations.

We proceed with the incoherent regime first, at T ≈ T0.
The thermal conductivity, in the presence of a damping �, is
derived in Eq. (D14) from the JQ − JQ response:

κ = kB �

(
h �

CT

1

2

)1/2

. (52)

From one of the Einstein relations, the diffusivity D̃Q is related
to the thermal capacitance C and to the density ρ0, according
to (p-h symmetry is assumed)

D̃Q = κ

Cρ0
. (53)

As the chemical potential μ is assumed to vanish, the 2 − d
particle density ρ0 involved in these excitations, given by
Eq. (29), is not well phenomenologically defined. We will
estimate it as ρ0 = �2/v2, a choice that will turn out to be
consistent with our results of this subsection.

We proceed now by deriving an estimate of T0. In this
case, energy diffusion is mainly due to heat transport in a
highly thermalizable environment and we use the first temper-
ature dependent correction to the energy of the SYK model
[8]: δE = c/(2β2) = CT in Eq. (52), where c = 4π2αSN/J .
From Eq. (52), we get:

κ = kB �
3/2(h̄β )1/2

(
βJ
παSN

1

2

)1/2

, (54)

which, inserted in Eq. (53), with ρ0 = �2/v2 gives:

D̃Q = �

(
βJ
παSN

1

2

)
ã2, (55)

where Eq. (39) has been used. On the other hand, the last
inference in Eq. (49), together with Eq. (45), suggests that
f τ ∝ k2ã2, with ã2

� ∼ ã2T0/T . We conclude from Eq. (55) that
D̃Q ∝ � ã2

� and, as D̃QTQ = ã2
� , the relaxation time [34] TQ ∼

�−1 ∼ h̄β. Thermalization is better handled in euclidean time.
Putting TQ → h̄β in ã2 T0

T ∼ D̃QTQ and using Eq. (55), we
conclude that

kBT0 ∼ 2π h̄ �

(
βJ

NπαS

1

2

)
. (56)

This equation qualifies kBT0 as a threshold energy for efficient
thermalization and confirms that T0 is O( βJ

NπαS

1
2 ) if just the

zero order for � is retained. As we have assumed that � ∝
T , both D̃Q of Eq. (55) and T0 of Eq. (56) are temperature
independent.

Our approximations, which involve some kind of adiabatic
factorization, do not allow us to discuss the coherent carrier
transport regime, T � 	n � Tcoh < T0, except for a very
qualitative bird’s eye. Indeed, the convergence of the ‘nor-
malization’ of Eq. (46) in Fig. 4 is misleading, as one should
keep in mind that just the dominant UV contribution of F has
been retained and all the regular contributions (belonging to
the fluctuation domain orthogonal to the pGm’s) have been
neglected. These include low energy contributions and their
evolution cannot be factorized. Anyhow, back to Eq. (53)
for this case, an approximated expression for the specific
heat arising from the gapless modes of the model given by
Eqs. (39) and (40) is given by Eq. (D15):

CV = kB
1

2π

(
kBT

h̄v

)2

6 ζ [3], (57)

where ζ [n] is the Riemann function. When the velocity v

is inserted in this expression, we get an equation for 1/C2
V ,

which can be related to Eq. (52) to give:( κ

kB�

)4 1

(h�)2

1

2
= 1

C2
VT 2

1

2
= 2π

kB

h̄

(kBT )3

κ

6 ζ [3]
. (58)

Inserting this result in Eq. (53), with v given by Eq. (39) and
ρ0 = �2/v2, we obtain:

D̃Q = κ2

�2

T

h̄kB
ã2 = h̄2�2

h̄

1

kBT

(
1

6 ζ [3]

)1/3

ã2. (59)

Assuming again � ∼ T , Eq. (59) shows that the diffusion
constant is in this case ∝T as in the Einstein -Smoluchowski
formula. At least formally, it can be put in the form of a bound
on the diffusion rate, which has been conjectured for strongly
interacting systems at zero chemical potential [34,44]:

D̃Q � h̄
�2ã2

kBT
. (60)

In this case the velocity which arises here is not vF but ṽ ∼
ã�. Equation (60) is nonuniversal.

Now we proceed just by analogy with the previous case
and we assume that, just by replacing T0 with Tcoh, we can put
here

ã2
� ∼ D̃QTQ = ã2Tcoh/T . (61)

From Eq. (59) it follows that:

ã2 Tcoh

T
∼ h̄2�2

h̄

1

kBT

(
1

6 ζ [3]

)1/3

ã2T coh
Q , (62)

which implies

T coh
Q ∼ (6 ζ [3])1/3 kBTcoh

h̄�2
. (63)

Given Tcoh ∝ t2
0 /NJ ∼ J /N , T coh

Q ∝ T −2 as in the Fermi
liquid case.

VI. SUPERCONDUCTIVE COUPLING
AT LOW TEMPERATURE

In this section we present an Eliashberg approach to the
superconducting instability of a quantum electron liquid that
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contains the Q excitations in its energy spectrum. As ex-
plained in the introduction, we consider a model with two
components: a lattice of local 0 + 1 − d SYK dots and an un-
derlying FL which interacts with the dot lattice perturbatively.
Higher dimensional complex SYK models with nonrandom
intersite hopping have been constructed with fascinating NFL
properties [4,35]. We use a perturbative approach [18] in sub-
section A and derive the self energy of the coherent phase of
the quantum liquid, which turns out to be a MFL with short
lived and ill defined quasiparticles. In subsection B we assume
an attractive pairing among the quasiparticles, mediated by the
virtual Q excitations, and we derive the critical temperature Tc,
which is non BCS-like.

A. Marginal Fermi liquid

The quasiparticles of a low energy 2 − d FL have a quasi-
particle residue Z and a single particle energy ε�k = ṽF k in
the continuum limit, with a renormalized physical velocity
v∗

F = Z ṽF and a residual local interaction of strength Uc,
which is dealt with perturbatively. The isotropic self-energy
arising from the interaction, for k on the Fermi surface, is:

�(kF , iω) = Uc

∑
�q

∫
d	

2π
G(ε�kF +�q − ε�kF

, iω+ i 	)�(q, i 	)

≈ Uc

∑
�q

∫
d	

2π

1

iZ−1(ω+	) − ṽF q cos θ
�(q, i 	).

(64)

In Eq. (64), θ is the angle between �q and �k = �kF and, for |q| 

kF , we have approximated ε�kF −�q − ε�kF

≈ ṽF q cos θ .
�(q, i 	) is the polarization function

�(q, i 	) =
∑

p

∑
ωn

G(εp, iωn) G(εp+q, i ωn + i 	m).

In the range of frequencies	 < 	∗ = W 2/Uc, where W is the
bandwidth, there are two contributions to the polarization, one
(labeled by i = 1) coming from the residual FL interaction
and a second one (i = 2) coming from hybridization with
the incoherent disordered SYK clusters of 0 + 1 − d neutral
fermions, interacting at energy J , one at each lattice site (see
Fig. 1). While �1(q, i 	) uses the Green’s function which
appears in Eq. (64) with a simple pole, �2(i 	) is evaluated
from the single particle Green’s of the SYK model, in the
conformally symmetric limit, which is local in space (i.e.,
q independent) and reported in Eq. (8). Approximately, it is
[18]:

�1(q, i 	) ≈ Zν0

[
1 − 	 sign(	)√

	2 + (Z ṽF q)2

]
, (65)

�2(i 	) ≈ − 4

J ln

( J
max[	,	∗]

)
→ − 8

J ln

(J
W

)
. (66)

Here ν0 = kF/(2π h̄ṽF ) is the density of states at the Fermi
surface and Zν0 ∼ U −1

c . In performing the integral over mo-
menta p, we have assumed that, at low temperatures T 
 	∗,
the difference in occupation numbers nF (Zε�k+�q ) − nF (Zε�k ) ≈
−δ(ε�k ) ṽF q cos θ .

Moving to real frequencies we get:

�(kF , ω) = −ωZ−1 − i αν0|ω|2 ln
Z ṽF kF

|ω| sign(ω)

− i
εF

2	∗ |ω| ln

(J
W

)
sign(ω). (67)

For T > 	∗ = W 2

Uc
we should put 2 ln(J /W ) → ln(J /T ) in

Eq. (67). �(kF , ω) changes sign at ω = 0 when the quasipar-
ticle becomes a quasihole. The first term is the real part, while
the second term is the imaginary part, ∝ω2 × log |ω|, from
the well known instability of the FL in 2 − d . The third term
arises from the coupling to the high energy modes and is be-
yond the Landau Fermi liquid theory. Indeed, the quasiparticle
relaxation rate is:

1

τ
∼ −Z �m�(kF , ω)

=
[
|ω| εF

	∗ ln

(J
W

)
+ α

Z

ν0|ω|2
h̄

ln
Z ṽF kF

|ω|
]

sign(ω) (68)

(α is a parameter of order one), which shows that to the
lowest approximation, the perturbed FL is a marginal Fermi
liquid. The interaction of the electronic quantum liquid (qL)
delocalized over the 2 − d lattice with the SYK clusters makes
the quasiparticles not well defined but still with a well defined
Fermi surface. In Appendix E, we derive the lowest lying
collective excitations in the present perturbative frame. The
hydrodynamic collective excitation, the would-be acoustic
plasmon, is also rather well defined. At strong coupling, in
the limit Uc → J , its dispersion tends to the boundary of the
p-h continuum and the imaginary part, which blurs the mode,
vanishes. The acoustic plasmon is on the verge to emerge as a
bound state at low energies, splitted off the p-h continuum.

B. Superconductive critical temperature

We outline here the derivation of the superconducting
critical temperature Tc, of a 2 − d qL in interaction with the
SYK lattice, using the Eliashberg approach [37,45]. Although
we are unable to discuss the nature of the microscopic low
temperature electron-electron interactions driven by the vir-
tual Q fluctuations, we assume that Cooper pairing is induced
in a qL of bandwidth W , by virtual coupling with the diffusive
energy Q modes in the lattice, which, in turn, are generated
by the pGm of the SYK clusters, as discussed in the previous
sections. Three energy scales come into play in this context.
The energy scale t2

0 /J ∼ W 2/J , associated with the temper-
ature threshold Tcoh, below which coupling between the SYK
clusters and the qL is perturbative. Two more energies associ-
ated to the coupling between the qL and the Q excitations, the
coupling strength g and the energy cutoff of the interaction Uc,
which also appears in the minimal frequency for the attractive
interaction 	∗ = t2

0 /Uc ∼ W 2/Uc (in this subsection is
h̄ = 1). This assumption immediately implies an electronic
energy scale, as the reference scale for the superconducting
transition. Our standard approach to the superconducting
transition within the Eliashberg theory [38] gives rise to
a non-BCS-like phase transition. The non BCS critical
temperature is a direct consequence of the quantum liquid to
be marginal and of the excitation modes to be diffusive.
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In a mean field superconducting Hamiltonian, in the Nambu representation, the one electron Green’s function and the
electronic self-energy �(p, i ων ) are 2 × 2 matrices defined by the Dyson equation

[G(p, i ων )]−1 = [G0(p, i ων )]−1 −�(p, i ων ), (69)

where G0(p, i ων ) is the one-electron Green’s function for the noninteracting system ([G0(p, i ων )]−1 = i ων − ξpσ3) and the
approximation used for the self energy is (see Appendix F):

�(p, i ων ) = − 1

β

1

Nq

∑
q

∑
p′ν ′
σ3 G(p′, i ων ′ ) σ3 |g(p p′; q)|2D(q, i ων − i ων ′ )

= − 1

β

∑
p′ν ′
σ3 G(p′, i ων ′ ) σ3

∫
d	

1

4π

ã2
�

D̃Q

∫
d	q|gp,p′ (	q)|2B(	q,	)

{
1

2

1

i ων − i ων ′ −	 − 1

2

1

i ων − i ων ′ +	
}
.

(70)

Here �q = �p − �p ′ is the transferred momentum and 	q = D̃Qq2 is the energy of the collective excitations. An isotropic coupling
density g(p p′) is assumed and, in place of the sum over p′ vectors, we integrate over 	q, with the energy density of the q

momenta 1
4π

ã2
�

D̃Q
. The imaginary part of the retarded energy flux density response function is

B(	q,	) = − 1

π
�m

{
DR(	q,	)

} = − 1

π

[
	q 	

	2 +	2
q

]
TQ. (71)

Note the difference, due to diffusivity, with respect to the usual Eliashberg approach, in which B(q,	) ∼ 	q

	2
q+	2 . We take

D̃QT coh
Q = ã2

� = ã2Tcoh/T , as in Eq. (61) (we drop the label coh from T coh
Q in the following).

Using Eq. (67), Eq. (69), we write [G(p, i ων )]−1 = i Z−1ω − (ξ̃p − i �m�(kF , ω))σ3 −� σ1, in which the mean pairing field
� has to be self-consistently determined:

[G(p, ω)]−1 = Z−1 ω1 −
{
ξp − i Z−1

[
|ω| εF

	∗ ln

(J
W

)
+ α

Z
ν0|ω|2 ln

Z ṽF kF

|ω|
]

sign(ω)

}
σ3 −�(ω)σ1. (72)

The final result for Eq. (70) is:

�(kF , ω) = ν0

∫ ∞

−∞
dω′ �e

{
Z−1ω′1 −�(ω′) σ1

[P (ω′)]1/2

} ∫ ∞

0
d	

ã2
�

D̃

∫
d	q

4π
|gkF ,ω′ (	q)|2B(	q,	)

×
[

f (−ω′)
ω − ω′ −	+ i 0+ + f (ω′)

ω − ω′ +	+ i 0+ + N (	)

ω − ω′ −	+ i 0+ + N (	)

ω − ω′ +	+ i 0+

]
P (ω) = Z−2 ω2 + Z−2

[
|ω| εF

	∗ ln

(J
W

)
+ α

Z
ν0|ω|2 ln

Z ṽF kF

|ω|
]2

−�2(ω)

N (	) = 1

eβ	 − 1
, f (ω) = 1

eβω + 1
, (73)

where N (	) and f (ω) are the Bose and Fermi occupation probabilities. The term in curly brackets arises from
�m{ν0

∫ +∞
−∞ dξp′ σ3G(p′, ω) σ3} which turns into a real part by working out the inverse of Eq. (72). A limited region contributes

to the integral
∫

dξp′ , but we can extend the integration limits to infinity with no big error.
Following McMillan [46], we want to find an approximate solution to the gap equation [�(ω) = Z (ω)�(ω)]. At the critical

temperature, � ∼ 0 and can be dropped in the denominator, but the gap equation has to be satisfied. From Eqs. (72), the term
multiplied by σ1 gives

�(ω) = Zν0

∫ ∞

0

dω′[
ω′2 + (

1
τ (ω′ )

)2
]1/2 �e{�(ω′)}

∫ ∞

0
d	

ã2
�

D̃Q

∫
d	q

4π
|gkF ,ω′ (	q)|2B(	q,	)

×
{

[N (	) + f (−ω′)]
[

1

ω + ω′ +	 + 1

−ω + ω′ +	
]

− [N (	) + f (ω′)]
[

1

ω − ω′ +	 + 1

−ω − ω′ +	
]}
. (74)

τ (ω′) is the lifetime of the quasiparticles from Eq. (68).
In the rest of the calculation we neglect the thermal excitations and drop N (	). Two energy ranges contribute to �(ω):

�(ω) =
{
�0 0 < ω < 	∗
�∞ 	∗ < ω . (75)
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The first, �a(ω), arises from integration over 0 < ω′ < 	∗ and the second, �b(ω), from the integration over 	∗ < ω′ < Uc (Uc

is the cutoff energy). Hence �(ω) = �a +�b.
While �0 can be assumed as the usual order parameter in the lattice, it is unclear what �∞ is when ω > 	∗ and incoherence

is established at these energies. In the mean field approach, �∞ can be thought of as some kind of intradot field induced by
the ordering of the low energy system. Of course we concentrate on the ordering transition for ω < 	∗, but both �’s should be
nonvanishing.

Observing that the integration variable 	q has the meaning of the diffusive energy [see Eq. (71)], it is clear that it cannot
be integrated at energies above 	. We also use the parameter equality Zν0 = U −1

c and we take |gkF ,ω′ (	q)|2 = g2 constant
([g]−1 ∼ time (h̄ = 1 here)):

�(ω) ≈ ã2
�

D̃Q

∫ ∞

0

dω′

|ω′| εF
	∗ ln

(J
W

) �e{�(ω′)}
∫ 	

0

d	q

4π
|gkF ,ω′ (	q)|2

× 1

Uc

∫ Uc

0
d	

(
1

π

[
	q 	

	2 +	2
q

]
TQ

)
2

{
f (−ω′)

1

	+ ω′ − f (ω′)
1

	− ω′

}
. (76)

In the case of �a(ω′), the range of ω′ values cannot be larger
than 	∗, as well. However, Fermi functions select ω′ ∼ 0
and we neglect ω′ in the denominators of the curly bracket,
obtaining [47]:

�a(0) = ã2
�

D̃Q

∫ 	∗

0
dω′ �o

ω′ εF
	∗ ln

(J
W

)
× |g|2 ln 2

4 Uc

∫ Uc

0

d	

2π
TQ{ f (−ω′) − f (ω′)}

≈ ã2
�

D̃Q
TQ

|g|2 ln 2

8π

�o
εF
	∗ ln

(J
W

) ln βc	
∗. (77)

Now the contribution that is coming from �b(ω′). We neglect
	 in the denominator in the curly bracket and we keep the FL
contribution to the lifetime for large ω′:

�b(0) = ã2
�

D̃Q

|g|2 ln 2

4π
TQ

×
∫ Uc

	∗
dω′ �∞

α
Z ν0|ω′|3 ∣∣ln |ω′|

Z ṽF kF

∣∣ 1

Uc

∫ Uc

0
d		,

≈ ã2
�

D̃Q

|g|2 ln 2

8π
TQ
�∞
2α

(
Uc

ν0W 2

)2 1

ln 	∗
Z ṽF kF

,

Summing the two contributions together, �0 = �a(0) +
�b(0), we have:

�0

[
8π

|g|2 ln 2

D̃Q

ã2
�

1

TQ
− 	∗

εF ln
(J

W

) ln βc	
∗
]

= �∞
2α

( Uc

ν0W 2

)2 1

ln 	∗
Z ṽF kF

. (78)

Using the definition of TQ ≡ TQ
coh given by Eq. (63), the

pairing parameter takes the form:

D̃Q

|g|2ã2
�

1

TQ
∼ 1

|g|2T 2
Q

=
[
�

|g|
h̄�

kBTcoh

1

(6 ζ [3])1/3

]2

. (79)

As TQ,Tcoh ∼ O( βJ
NπαS

), it follows that |g| ∼ O( NπαS
βJ ), so that

|g|Tcoh ∼ O(1). Assuming both �0 and �∞ to be nonzero,

Eq. (78) gives:

kBTc =
(
J W

Uc

) εF
2α	∗ ln 	∗

Z ṽF kF

�∞
�0

( 1
ν0	

∗ )2 − 8π

(|g|TQ )2 ln 2

. (80)

Eq. (80) provides the value of Tc on a scale of 	∗
c , which

is a power of JW/Uc, which is difficult to determine, be-
cause it requires the full quantitative characterization of the
model. However, qualitatively, the non-BCS behavior is fully
apparent. Indeed, TQ itself is a function of the temperature,
because the energy width of the mode relaxation �, appearing
in Eq. (79), is expected to be ∼T . In this case, Eq. (80)
defines Tc only implicitly. Writing the exponent as u4/λwhere
u = kBTc

	∗
c

, the zeros of the function F [u] = u −� exp(u4/λ)
give the Tc value. In the prefactor �, all the unknown features
of the pairing interaction are lumped. � strongly depends
on the cutoff energy Uc/W and on J /W , as well as on the
lifetime of the quasiparticles in 2 − d at higher energy ∼W
[see Eq. (72)]. F [u] is plotted in Fig. 6 vs u, at � = 0.1,

FIG. 6. Plot of the function F [u] = u −� exp(u4/λ) of Eq. (80),
vs u = kBTc

	∗
c

, for various values of the exponent u4/λ, where λ ∝
W |g|2T 2

Q /Uc (= 5, 0.5, 0.2) is defined in the text. We have put
� = �∞

�0
[α(ν0W )2 ln 2ν0W ]−1 = 0.1. The zeros of F [u] provide the

critical temperature Tc.
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for λ = 5, 0.5, 0.2. Increasing the pairing strength ∝|g|2, λ
increases, and so does Tc.

VII. CONCLUSIONS

Hopefully, the intriguing high temperature “strange metal”
phase of materials undergoing a HTc superconducting tran-
sition is at a turning point, since attention was drawn to the
“universal” linear dependence on T of the resistivity and to
features like the possible violation of the Wiedemann and
Franz law [1,48]. The Wiedemann and Franz universal ratio
unambiguously rests on the coexistence of heat and charge
transport typical of weakly interacting electronic Fermi liq-
uids. It is accepted that interactions in these systems are
strong and play a nonperturbative role. This gives credit to
a non-Fermi-liquid (NFL) perspective for the high temper-
ature normal “bad metal” phase. Consensus in the physics
community increases on the use of the doped Mott insulator
paradigm as an interpretation ground for the copper oxide HTc
materials [49]. On the other hand, strong crystal anisotropy
and doping tend to privilege the role of copper-oxide planes
and the role of collective fluctuations. Even when clean single
crystals are available [50], the doping and the chemistry of the
charge reservoir layers separating the CuO2 plane(s) from one
another could induce inhomogeneities.

It was really a twist to discover that the Su-Ye-Kitaev
model, in the limit of strong interactions and strong disorder,
can be solved exactly in 0+1 dimension displaying a NFL
incoherent toy system, with nontrivial properties as a zero
temperature finite entropy and a chaotic behavior at long
times. Moreover, hydrodynamical extensions to higher space
dimensions provides the linear dependence of the resistivity
which has attracted a flurry of interest from the condensed
matter community. By contrast, a conventional Eliashberg
approach, typical of FL systems, has not been seriously ques-
tioned [38].

On one side we inquire on the influence of a hopping
term between neighboring SYK clusters organized in a 2 − d
lattice. Hopping is assumed to be marginal in a 1/N expansion
and strong coupling J limit, with βJ /N kept finite. On the
other side we study the perturbative effect that the SYK lattice
exerts on a FL with delocalized electrons (in the continuum
hydrodynamical limit), displaying a well defined Fermi sur-
face and a large Fermi energy. The aim is to characterize the
collective excitations of the SYK system in view of identify-
ing the latter as responsible for the superconducting instability
via an unidentified mechanism.

There are various ways to extend the SYK model to a
lattice, and we use one of them [11,13,18]. All of them rest
on a disorder average, and we assume that self averaging al-
lows for a translationally invariant approach with wave vector
kã 
 1, where ã is the lattice spacing. We focus on the role
of the collective fermionic excitations of a SYK dot δgm of
Matsubara frequency ωm. Among these, there are also incip-
ient Goldstone modes, which originate from the spontaneous
breaking of the conformal symmetry. However, they acquire
mass when the first UV correction ∼O( N

βJ ) is included. They
are denoted as pseudo-Goldstone modes (pGm’s) in the text
[6,8]. The UV correction forces locality in space and time. The
real fermionic propagator δgm of the IR limit acquires a com-

plex local phase in the extended SYK action, due to minimal
compact U (1) coupling. The energy fluctuations driven by
these dressed excitations across the lattice can be monitored
by investigating the correlations of a local space-time UV
“order parameter” of the incoherent phase, an extension of the
bilocal two-point propagator Gc of the conformal symmetric
limit. In a NFL system they can be interpreted as energy den-
sity excitations, better than chemical potential fluctuations.
In this work our focus was on the nature of these dressed
bosonic fluctuations which we nickname as “Q excitations”
and on the response Dβ of the lattice system to perturbations
which excite them. In the recent past, the scaling of U(1) RVB
models with a gap to both charge and spin excitations has been
studied [51].

We take advantage of the fact that two time (or temper-
ature) scales come into play: the “fast” intradot fermionic
δgm modes and the “slow” interdot bosonic energy den-
sity fluctuations originating from the Q excitations. This
allows us to characterize the dynamics in a range of ener-
gies ∼T0, where T0 is a threshold temperature for efficient
thermalization. In this temperature range the Q excitations
are proved to be diffusive when the dynamics induced by
the UV correction is appropriately accounted for. Diffusivity
arises from the combination of disorder in the SYK dots
and hopping in the superlattice. We find the mode-mode
correlations in imaginary time ∝GcGcF−1 where F is the
bilocal four-point propagator, which diverges in the conformal
limit but is made finite when the UV dominant correction is
included.

The presence of F−1 in the diffusion parameter is the
signature of the presence of the pGm and is the main result
of this work. The corresponding retarded response function
in real time can be derived from the correlations, by analytic
continuation to real frequencies i ωm → ω + i0+. A similar
result was derived directly in real time [13] but without in-
cluding the role of the pGm and is reproduced in Appendix C.
In the real time approach, the factor F−1 does not appear
as part of the diffusive pole. The scaling renormalizes the
thermalization temperature T0 and the diffusion constant D̃Q,
by introducing a lattice length ã� ∼ ã T0/T and a diffusion
time TQ, such that D̃QTQ ∼ ã�. A simple quantum approach
to the dynamics of the energy fluctuations in the presence of
damping � allows for their explicit determination. � ∼ T is
the energy broadening of the Q-fluctuation excitation due to
relaxation in the lattice. If we resort to the Einstein relations
which connect the diffusion coefficient D̃Q to the transport
coefficients [34], we derive the temperature dependence of
these quantities and obtain Eq. (60) which refers to ṽ ∼ ã�
as a physical (nonuniversal) diffusion velocity. Equation (60)
has to be contrasted with a bound for incoherent systems that
has been conjectured [44].

In the study of the correlations, it emerges clearly (see
Fig. 4) that our approach to the partition function and to
the generating functional is only valid for T ∼ T0, an energy
range which we conclude to be well separated with respect
to the one ∼Tcoh, the temperature which marks the prevail
of the low energy Fermi liquid. For T < T0, entanglement
of the dynamics of the pGm’s in the SYK dots with the
dynamics of the energy fluctuations across the lattice require
more sophisticated methods than the factorization used here in
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the calculation of the thermodynamic functionals. Still, some
qualitative hint is presented in Sec. V B.

In Sec. VI B we assume that the Q excitations have a role
in the superconductive instability at low temperature. A dis-
persive self energy for an electronic quantum liquid perturbed
by a SYK dot with a local interaction J turns the FL into a
marginal FL [52] with inverse lifetime of the quasiparticles
close to the Fermi surface ∝ω. The quasiparticle lifetime
influences the mean field superconductive order parameter
�∞ at energies above 	∗ ∼ W 2/Uc, where Uc is the cutoff
energy for the pairing interaction. The topic, whether the Q
excitations could really play the role of virtual excitations
inducing pairing, provided an appropriate attractive coupling
is active [3,53,54], is beyond the present state of the art. It is
an old idea that an incipient Goldstone mode of an ordered
phase can accomplish this task. This possibility was exam-
ined in the past and it was concluded that the fluctuations
involved would lead to a depression of Tc [55]. We think
that this pattern may not work here for various reasons. Here,
indeed, the vertex corrections vanish to lowest approximation
order. However, the fluctuations driving the transition do not
arise from an incipient order but are nonlocal in time in a
fully disordered system. What we call “order parameter” here
is energy relaxational modes which are effectively nonlocal
in space and non-number conserving in nature, as phonons
would be. We have also omitted the influence of long-range
Coulomb interactions, which certainly modifies the spectrum
of boson density fluctuations [49].

Of course, if the Q modes play a role, the temperature
scale of the superconducting Tc is of electronic origin, ∼	∗

c ,
defined in Eq. (80). Tc, as derived using the Eliashberg [45]
and McMillan [46] approaches, is not BCS-like and appears
as the zeros of a function F [ kBTc

	∗
c

], which is plotted in Fig. 6.

It also depends on the “low” energy scale ∼T coh
Q

−1
, on the

lifetime at higher energies of the Cooper-pairing electron
charges, and on the diffusion length of the Q excitations.
Indeed, the correlation length of the pairs ξ depends on the
effective mean square length ã2

� ∼ DQTQ which identifies the
2 − d range of the pairing attractive potential. In our model,
its temperature dependence is ã2

� ∼ Tcoh/T . This suggests a
possible experimental check for the surmise that the super-
conductive instability is driven by the Q modes in the CuO2
planes. Two possibilities arise: (a) Multiple order parameters
could provide different intervortex interactions for different
magnetic field strengths in lowering the temperature. However
this possibility is beyond the Ginzburg-Landau formalism,
which is considered solid only close to Tc. (b) A second
superconducting phase transition to type I superconductivity
takes place, a rather unlikely possibility. A discussion of this
sort arose in connection with superconductivity in the two
band MgB2 [56,57].
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APPENDIX A: EXPANSION OF THE ACTION
UP TO SECOND ORDER

We expand Eq. (7) of the main text (MT),

Ia

N
=

∑
x

[
− ln Det (G−1

o −�x ) + 1

2

∫
dθ1dθ2

(
�x(θ1, θ2) G∗

x (θ1, θ2) − (βJ )2

4
|Gx(θ1, θ2)|4

)

+ (βt0)2

N

∑
x′nn

∫
dθ1dθ2 Gx(θ1, θ2) G∗

x′ (θ1, θ2)

]
(A1)

to second order in δ�x, δGx, ∂τϕx:

Gx(θ1, θ2) = (Gc(θ1 − θ2) + δG(x, θ1 − θ2, θ+)) ei ϕx (θ+ ),

�x(θ1, θ2) = (�c(θ1 − θ2) + δ�(x, θ1 − θ2, θ+)) eiϕx (θ+ ).

where θ+ = (θ1 + θ2)/2. Gauge invariance is exploited, transforming �x(τ1, τ2) in such a way that the time derivative ∂τϕx(τ )
appears in the Det, so that the variation of the Det term reads:

1
2 ln Det

[
G−1

o −�c
] − 1

4 Tr
([

G−1
o −�c

]−1|i ∂τϕx + δ�|)2

→ 1
2 ln Det

[
G−1

o −�c
] − 1

4 Tr
[
2 �e{Gc i ∂τϕxGc δ�} − (Gc∂τϕx )2 + (Gcδ�)2] (A2)

Integrals in time are intended in the second term. Close to the conformal symmetry point (using the saddle point equality
�c = J 2G3

c) the second term in the action of Eq. (A1) gives:

(�c + δ�)(Gc + δG) − J 2

4
(Gc + δG)4 ∼ 3J 2

4
G4

c + δ�δG − 3J 2

2
G2

cδG
2. (A3)

Only second order terms will be retained.
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We introduce a dimensionless approach: θ = 2πτ/β with the substitutions proposed by Kitaev [6] and define
Kc(θ1, θ2, θ3, θ4):

g(τ1, τ2) = Rc(τ1, τ2) G(τ1, τ2), f (τ1, τ2) = R−1
c (τ1, τ2)�(τ1, τ2)

Rc(θ1, θ2) = βJ
√

(q − 1)|G̃c(θ1, θ2)|
q−2

2 . Kc = Rc(θ1, θ2)G̃c(θ1, θ3)G̃c(θ4, θ2)Rc(θ3, θ4) (A4)

For q = 4, the saddle point bilocal field is:

Gc(τ ) = b

[
π

β sin π τ
β

] 1
2 1/2

sign(τ ), b2 = 1

2 Jπ1/2
. (A5)

Excluding for the time being the hopping term, the action Ia of Eq. (A1), expanded up to second order, reads:

Ĩ2

N
= −1

2
〈δ f |δg〉 − 1

4

[〈δ f |Kc|δ f 〉 + 2 �e
{〈δ f |Kc|i R−1

c ∂τϕx〉
} + 〈

R−1
c ∂τϕx

∣∣Kc

∣∣R−1
c ∂τϕx

〉] − 1

4
〈δg|δg〉 (A6)

We integrate out δ f ′ = δ f + i R−1
c ∂τϕx:

∼e− N
4

∑
x [〈δ f ′ |Kc|δ f ′〉+2〈δ f ′ |δg〉−2〈i R−1

c ∂τ ϕx |δg〉]e− 1
4 〈δg|δg〉 ∼

∏
x

e
N
2

〈
i R−1

c ∂τ ϕx

∣∣δg〉 e
N
4 [〈δg|K−1

c −1|δg〉]. (A7)

The second variation of the hopping term [third term in Eq. (A1)] to lowest order can be expanded as follows:

δGc,x(τ12, τ+)δG∗
c,x′ (τ34, τ

′
+) = [Gx(τ1, τ2) G∗

x′ (τ3, τ4) − Gc(τ1 − τ2) Gc(τ3 − τ4)]

≈ 1
2 Gc(τ12)

(
e−iã·∇x[ϕx (τ+ )−ϕx (τ ′

+ )] − 1
)

Gc(τ34) + c.c.

→ − 1
2 Gc(τ12)(ã · ∇x[ϕx(τ+) − ϕx(τ ′

+)])2 Gc(τ34), (A8)

where only quadratic terms of the exponential have been included, to account for the additional complex conjugate contribution.

We approximate [ϕx(τ+) − ϕx(τ ′
+)] = (τ+ − τ ′

+)∂τϕx(τ+) and define R−1
c �cR−1

c = 1
2 (ã ·

←
∇x )Gc(τ12)(τ+ − τ ′

+)2Gc(τ34)(ã ·
→
∇x′ ),

so that, with relative time integrals traced out,∫
dτ

∫
dτ ′ ∂τϕx(τ )R−1

c �c(τ − τ ′) R−1
c ∂τϕx(τ ′). (A9)

Fourier transform of the time dependences gives �c(ωm, ωm′ ;	�). Fourier transforming the hopping term w.r. to x we obtain
the kinetic term added to the action of Eq. (A6) so that the full functional integral is:

∝
∏

p

∫
(�mδg

∗
m)(�m′δgm′ ) e

N
2 〈i R−1

c ∂τ ϕx |δg〉 e
N
4 [〈δg|K−1

c −1|δg〉] e− N
2 t02k2 ã2[〈−i R−1

c ∂τ ϕp|�c|−i R−1
c ∂τ ϕp〉] (A10)

where the forks 〈...〉 denote integration over (τ (12)+ − τ (34)+).
In the conformal limit i ωm can be dropped in G−1

0 in Eq. (A1) and the functional integral of Eq. (A10) is just a gaussian form,
so that integrating out the δg’s we have:

∼
∏

p

e− N
2 〈−i R−1

c ∂τ ϕp|[K−1
c −1]−1|−i R−1

c ∂τ ϕp〉 e
N
4

t0
2

N p2[〈−i R−1
c ∂τ ϕp|�c|−i R−1

c ∂τ ϕp〉]

∼
∏

p

e− N
2 〈−i R−1

c ∂τ ϕp|(1− t0
2

N p2�c[1−Kc])Kc[1−Kc]−1|−i R−1
c ∂τ ϕp〉 ∼

∏
p

e− N
2 〈−i ∂τ ϕp|(1− t2

0
N p2R−1

c �cR−1
c F−1 )F |−i ∂τ ϕp〉. (A11)

Here we have defined F = R−1
c Kc[Kc − 1]−1 R−1

c , and in the kernel of Eq. (A11) we write:

R−1
c Kc[1 − Kc]−1R−1

c − t2
0

N
R−1

c �c[1 − Kc]K−1
c Kc[1 − Kc]−1R−1

c =
(

1 − t2
0

N
p2R−1

c �cR−1
c F−1

)
F . (A12)

The numerical evaluation of this kernel is discussed in Appendix B.

APPENDIX B: NUMERICAL EVALUATION OF THE KERNEL OF EQ. (A12)

The correlator F = R−1
c Kc[Kc − 1]−1 R−1

c has been defined after Eq. (A11). It diverges in the conformal limit because
[Kc − 1] has zero eigenvalues due to the spontaneous symmetry breaking. We will keep just the series of these eigenvalues (usu-
ally denoted by h = 2), which make the largest contribution to the correlator functions. The spectral representation in imaginary
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time of the regularized form of the kernel, obtained by shifting the zero eigenvalues, k(h = 2, n) ≈ 1 − αK
βJ |n| + ...(αK ≈ 3),

thus including the UV correction at O(N/βJ ) is [8]

Kc[1 − Kc]−1 = 1

2
Rc(τ12) F (τ12, τ34) Rc(τ34) =

∑
h,n

 h,n(τ12)
k(h, n)

1 − k(h, n)
 ∗

h,n(τ34).

The basis functions for h = 2 are

 2 n(x, y) = γn
e−i ny

2 sin x
2

fn(x), fn(x) = sin nx
2

tan x
2

− n cos
nx

2
, γ 2

n = 3

π2|n|(n2 − 1)
, (B1)

with x12 = τ1 − τ2, y12 = τ1+τ2
2 . We Fourier transform the variables τ12 and τ34. In full generality:

Om,m′ =
∑
n�2

ei n(y12−y34 )"n(ωm)〈2, n|O|2, n〉"∗
n(ωm′ ),

where ωm, ωm′ are the fermionic Matsubara frequencies. We redefine variables in such a way that ωm → m with m integer. The
basis functions are:

"n(m) =
∫ 2π

0

dτ

2π

1

sin τ
2

fn(τ ) ei m τ . (B2)

It can be shown that the Fourier transforms "n(m) have a factor − 1
2 (1 + e2 i mπ ) or − 1

2 (1 − e2 i mπ ), depending on n being even
or odd, respectively. It follows that odd m imply even n as expected because the τ+ time dependence has to be with n even, i.e.,
bosoniclike. "n(m) have a maximum at increasing values of m when n increases and eventually go to zero.

The largest contribution O(βJ /N ) of [1 − Kc]−1 appearing in Eq. (A11) gives R−1
c Kc[1 − Kc]−1R−1

c ∼ O(1) and, as GcGc ∼
1/βJ , the kinetic term t0 ∼ O([βJ /N]1/2) to have the same order in O(1). In the definition of the matrix function R−1

c �cR−1
c

from Eq. (11), the matrix ̂GcGcF̂−1 appears, which is the inverse of F
GcGc

.

The dominant expression for F
GcGc

(τ1...τ4) in imaginary times, on the subspace orthogonal to the pGm fluctuations is [8]:

F
GcGc

(τ1...τ4) = 6α0

π2αK
βJ

∑
n�2

ei n(y12−y34 )

n2(n2 − 1)
fn(τ12) fn(τ34). (B3)

Its Fourier transform requires the transformed basis functions:

φn(m) =
∫ 2π

0

dτ

2π
fn(τ ) ei m τ .

All of them have a factor sin mπ which vanishes for m odd integer. However, this zero can be compensated by a zero in the
denominator. Consider the case n = 2 for example:

φ(n = 2,m) = sin mπ

π m(m − 1)(m + 1)
eimπ .

We give a finite expression to this vector element using the limit:

lim
x=±1

sin xπ

(x − 1)(x + 1)
= 1

2
(∓π ). (B4)

However, all m > 1 give zero for n = 2, because there is no other factor of the kind (m − 3), (m − 5), ...(only odd m are
considered) in the denominator. We get φn(m) = sign(m)×:

n = 2 ⇒
{

m = 1 1
2 m2 eimπ ,

m = 3, 5, 7, ... 0

n = 4 ⇒
{

m = 1 −2 (5m2−2)
(m−2)(m+2)

1
2 m2 eimπ

m = 3, 5, 7, ... 0
(B5)

n = 6 ⇒

⎧⎪⎨⎪⎩
m = 1 − (36−119m2+35m4 )

(m−3)(m−2)(m+2)(m+3)
1

2 m2 eimπ

m = 3 − (36−119m2+35m4 )
(m−2)(m−1)(m+1)(m+2)

1
2 m2 eimπ

m = 5, 7, 9, ... 0
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n = 8 ⇒

⎧⎪⎪⎨⎪⎪⎩
m = 1 − 2 (−288+1068m2−462m4+42m6 )

(m−4)(m−3)(m−2)(m+2)(m+3)(m+4)
1

2 m2 eimπ

m = 3 − 2 (−288+1068m2−462m4+42m6 )
(m−4)(m−2)(m−1)(m+1)(m+2)(m+4)

1
2 m2 eimπ

m = 5, 7, 9, ... 0

n = 10 ⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
m = 1 − 3 (−4800+18964m2−9735m4+1386m6+55m8 )

(m−5)(m−4)(m−3)(m−2)(m+2)(m+3)(m+4)(m+5)
1

2 m2 eimπ

m = 3 − 3 (−4800+18964m2−9735m4+1386m6+55m8 )
(m−5)(m−4)(m−2)(m−1)(m+1)(m+2)(m+4)(m+5)

1
2 m2 eimπ

m = 5 − 3 (−4800+18964m2−9735m4+1386m6+55m8 )
(m−4)(m−3)(m−2)(m−1)(m+1)(m+2)(m+3)(m+4)

1
2 m2 eimπ

m = 7, 9, 11, ... 0

n = 12 ⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m = 1 = − 2(−259200+1066104m2−603746m4+105963m6−6864m8+143m10 )
(m−5)(m−4)(m−3)(m−2)(m+2)(m+3)(m+4)(m+5)

1
2 m2 eimπ

m = 3 − 2(−259200+1066104m2−603746m4+105963m6−6864m8+143m10 )
(m−5)(m−4)(m−2)(m−1)(m+1)(m+2)(m+4)(m+5)

1
2 m2 eimπ

m = 5 − 2(−259200+1066104m2−603746m4+105963m6−6864m8+143m10 )
(m−4)(m−3)(m−2)(m−1)(m+1)(m+2)(m+3)(m+4)

1
2 m2 eimπ

m = 7, 9, 11, ... 0

(B6)

Also the polynomials in the numerator could have been factor-
ized but the roots are noninteger. We normalize each n vector
of the basis but we do not orthogonalize these basis vectors.
We define matrices W n

m,m′ by multiplying column × row each
n vector. To the elements with m,m′ = 1, all vectors n =
2, 4, 6, 8, 10, 12 contribute. To the elements with m,m′ = 3,
vectors with n = 4, 6, 8, 10, 12 contribute. To the elements
with m,m′ = 5 only vector with n = 10, 12 contributes. The
final result for n � 12 is a 3 × 3 matrix. Each 3 × 3 matrix
Ŵ n has eigenvalues 1,0,0. Computations leading to Figs. 2–
4 of the MT have been performed with 3 × 3 matrices up to
n = 12. The starting point is Eq. (20) of the text:

F
GcGc

(y12 − y34)

∣∣∣∣
m,m′

= 6α0

π2αK
βJ

10∑
n�2,even

cos n(y12− y34)

n2(n2− 1)
W n

m,m′ ,

where y are center-of-mass times: y = y12 − y34.
In Fig. 4 of the MT we plot an interpolated smoothed curve

of the (approximate) lowest M value which fulfills unitarity of
the partition function of Eq. (46) of MT vs T0/T , for kã = 1.
Precision is up to >10−5. The trend is only meaningful for
T0/T ∼ 1, because larger values require n > 12 in the spectral
representation of Eq. (B3) and matrices m × m of rank r̃ > 3,
i.e., higher than the ones used here.

APPENDIX C: REAL TIME APPROACH TO
THE CORRELATION FUNCTIONS

The response function in real time is derived from ex-
tension of the imaginary time along the Keldysh contour.
The present approach [13] is only semiclassical. In setting
up the functional we disregard the q − q term and neglect
variation with respect to the saddle point solutions for the G
and � of the SYK dots. This means that, in going back to
the action in Eq. (A6), terms with δg and δ f are disregarded,
so that only an extra term is added here, taken from the
imaginary time action, that is −N

4 〈R−1
c ∂τϕx|Kc|R−1

c ∂τϕx〉 =
−N

4 〈∂τϕx|GcGc|∂τϕx〉, which we denote as the kinetic energy
term.

As for the nonlocal phase fluctuations, Fourier transform-
ing with respect to time the nonlocal fluctuation part of the
action [i.e., the “hopping” term of Eq. (A9)] is of a similar

form:∫
d p D̃ p2

∑
ss′

∫
dω ϕs(ω) ss′ Gss′′ (ω) Gs′′s′ (−ω) ϕs′ (−ω).

(C1)

With respect to the Fourier transform of the kinetic energy
term, the present one has a factor ω2 lacking, so that we merge
the two together, by defining a function[

D̃ p2 h(ω)

ω2
− 1

]
GcGc ≡ ζ GcGc, (C2)

which defines the function ζ (ω). h(ω) excludes the ω = 0
term. Its retarded form is defined as

D̃ hR(ω) GR
ωGK

−ω = D̃
∫ ∞

−∞
dt GR(t )GK (−t ) [ei ωt − 1]

∼ i D̃ ω

∫ ∞

−∞
dt GR(t )GK (−t )

≈ i D̃ ω GR
0 GK

0 .

When writing h(ω), we will not specify the label R/A for the
retarded or advanced form, in the following, as long as no am-
biguity arises. Transforming from the branches s, s′ = +,−
to the combined α, β ≡ cl, q [43,58], we get:

ϕcl/q(t j ) = 1√
2

(ϕ+(t j ) ± ϕ−(t j )),

1

2

(
1 1
1 −1

) (
G++ G+−
G−+ G−−

) (
1 1
1 −1

)
=

(
0 GA

GR GK

)
.

(C3)

The cl − cl component is zero in the matrices on the right.
It reflects the fact that for a pure classical field configuration
(ϕq = 0), the action is zero. Indeed, in this case ϕ+ = ϕ− and
the action on the forward part of the contour is canceled by
that on the backward part (safe for the boundary terms that
may be omitted in the continuum limit), because the circuit is
closed [43].

The integrand of Eq. (C1) becomes [13]:

(ϕc
ω ϕ

q
ω )

(
GA
ω GR

−ω GA
ωGK

−ω
GK
ωGR

−ω GR
ωGA

−ω + GK
ωGK

−ω

)(
ϕc

−ω
ϕ

q
−ω

)
.
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The resulting matrix can be rewritten as matrix of the self energies �D due to the D̃ coupling, which shows the same causality
structure: (

GA
ω GR

−ω GA
ωGK

−ω
GK
ωGR

−ω GR
ωGA

−ω + GK
ωGK

−ω

)
=

(
GA
ω GR

−ω �A
D

�R
D �K

D

)
.

We neglect the qq term and write the functional:

∫
Dϕc

ωDϕq
ω e

− i
2

∫
dω (ω ϕc

ω ω ϕ
q
ω ) (

GA
ω GR

−ω ζA GA
ωGK

−ω
ζR GK

ωGR
−ω 0

)(
ωϕc

−ω
ωϕ

q
−ω

)
, (C4)

where we have also added the kinetic energy term of the semiclassical approach.
The field Ṅ (x, t ) is the source of ∂tϕ(x, t ). We want the response written along the Keldysh contour:

DṄ Ṅ (x, t ) = i θ (t )〈[Ṅ (x, t ), Ṅ (0, 0)]〉

= i

2
〈{Ṅ c(x, t )Ṅ q(0, 0) + Ṅ q(x, t )Ṅ c(0, 0)}〉. (C5)

To get the generating functional of the ϕ − ϕ fluctuations we invert the kernel of Eq. (C4), obtaining the matrix:(
0

(
ζ RGK

ωGR
−ω

)−1(
ζ AGA

ωGK
−ω

)−1 −(
GK
ωGK

−ω
)−1

)
.

The [G−1]K component for the free field is only a regularization factor, originating from the (time) boundary terms. It is,
in general, nonlocal in x and x′, however, being a pure boundary term, it is frequently omitted [43]. In our case this should
apply because [G−1]K (t, t ′) = [G−1]R ◦ F − F ◦ [G−1]A = [GR]−1 ◦ F − F ◦ [GA]−1 = [GK ]−1. Integrating out the ϕ fields and
ignoring again the q − q term, we get:

∝ exp

{
− 1

2

∫
dω (Ṅ c(ω) Ṅ q(ω))

(
0 (ζ RGK

ωGR
−ω )−1(

ζ AGA
ωGK

−ω
)−1

0

) (
Ṅ c(−ω)

Ṅ q(−ω)

)}
. (C6)

Functional derivation with respect to the sources provides the cross contributions (we keep just the lowest order in ω). Using
the definition of Eq. (C2):

Nω2〈ϕcl (ω) ϕq(−ω)〉 ≈ (
GK

0 GR
0

)−1 ω2

i D̃ p2ω − ω2

Nω2〈ϕq(ω) ϕcl(−ω)〉 ≈ (
GA

0 GK
0

)−1 ω2

−i D̃ p2ω − ω2
.

Now, the retarded energy flux density response of Eq. (C5) can be estimated, considering that δϕ̇c,q and Ṅ c/q are conjugate
variables Ṅ c/q(t ) = δSϕ

δϕ̇c,q , so that, keeping just the ω2 term in Eq. (C4),

Ṅ cl(ω) = −N GA
0 GK

0 ωϕq(−ω), Ṅ q(ω) = −N GK
0 GR

0ωϕcl(−ω)

we get

〈Ṅ cl(ω) Ṅ q(−ω)〉 = −N2 GA
0 GK

0 GK
0 GR

0 ω
2〈ϕq(−ω)ϕcl(ω)〉 = −N2 ω2

i t2
0 p2ω − ω2

GA
0 GK

0 ,

〈Ṅ q(ω) Ṅ cl(−ω)〉 = −N2 GK
0 GR

0 ω
2 〈ϕcl(−ω)ϕq(ω)〉 GA

0 GK
0 = −N2 ω2

−i t2
0 p2ω − ω2

GK
0 GR

0 .

The symmetrized correlation is:

1

2
(〈Ṅ cl(ω) Ṅ q(−ω)〉 + 〈Ṅ q(ω) Ṅ cl(−ω)〉) = N2 �e

{
ω2

i t2
0 p2ω + ω2

GK
0 GR

0

}
≈ N2 t2

0 p2ω

(t2
0 p2)2 + ω2

�m
[
GK

0 GR
0

]
. (C7)

This result can be rewritten as

sign(ω) �m

{
ω

i t2
0 p2 − ω �m

[
GK

0 GR
0

]}
.
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Subtracting the p = 0 term, we recognize �m{DR(p, ω)}, the imaginary part of the density response function [59]

�m
{
DR

Ṅ Ṅ (p, ω)
} = −sign(ω) �m

{(
D p2

i ω − D p2

)
�m

[
GK

0 GR
0

]}
. (C8)

This result should be compared with Eq. (51) of the MT. Apart for the matrix structure of the function in Eq. (47) of the MT, the
important point is that F−1 is absent here in the definition of the diffusion parameter.

We add here the important consequence on the electrical conductivity. In the conformal limit, the electrical conductivity
is [13]:

Re{σ } = − lim
ω→0

1

ω
�m

{
DRβ (ω)

} ∝ − β

2π2

t2
0

N

∫
dω sech2 βω

2

(�m
{
GRβ (ω)

})2

= − 1

2π3/2

t2
0

Nε

∫
dx sech2(πx)

[
�e

{
�
(

1
4 − i x

)
�
(

3
4 − i x

)}]2

∝
(
βJ
παSN

1

2

)
. (C9)

Resistivity is ∝T in this approach.

APPENDIX D: QUANTIZATION OF GAPLESS
DIFFUSIVE EXCITATION MODE

JQ = −κ∇T is a classical diffusion equation of a non-
conserving system. We now construct a Hamiltonian of the
excitation modes which is conserving but we ask that, in-
troducing a relaxation time τ0 = h̄/� for these modes, the
equation of motion reproduces JQ = −κ∇T . We will quan-
tize this Hamiltonian and derive the response function from
the fluctuations of these modes. The canonical conjugate vari-
ables and the corresponding Lagrangian (in 2 − d) are:

θ̇ =
(
κC

h̄T

)1/2JQτ0

kB
, ∇θ =

(
h̄

κC T

)1/2
κ

T
∇T . (D1)

Here C is the thermal capacitance, κ is the thermal conduc-
tance, and JQ is the thermal energy current. The corresponding
Lagrangian is

L = 1

2

∫
d2x

[
kB

T

(
JQτ0

kB

)2

+ h̄

κC

(
κ

T
∇T

)2]
≡ 1

2

∫
d2x [A θ̇2 + B (∇θ )2] (D2)

with A = h̄kB
κC and B = T . These choices provide terms in the

square brackets which have dimension E/�2 (E ≡ energy).
With the approximation τ0J̇Q ≈ JQ, the equation of mo-

tion,

d

dt

(
∂L

∂θ̇

)
− ∂L

∂∇θ = Aθ̈ + B∇θ = 0, (D3)

boils down to the diffusion equation:

h̄

κC
JQ = − h̄

κC
κ∇T .

Although h̄ is already in the Lagrangian, we proceed with
quantization of the theory [59]. Fourier transforming, the
canonical momentum for θk is

πk = ∂L
∂θ̇k

= Aθ̇−k, [θk, πk′ ] = i δkk′ . (D4)

The Hamiltonian

H = 1

2

∑
k

[
1

A
π−kπk + Bk2 θ−kθk

]

is second quantized according to âk = ukθk + i vk π−k , with

uk = 1√
2

(AB)1/4, vk = 1√
2

(AB)−1/4,

εk =
√

B k2

A
=

[
κ

kB

CT

h̄

]1/2

|k| ≡ v |k|, (D5)

πk = −i T 1/2 1

(2εk )1/2
|k| (â−k − â†

k ),

θk = T −1/2 (2εk )1/2

|k| (âk + â†
−k ) (D6)

H =
∑

k

εk â†
k âk + cnst . (D7)

In Eq. (D5) we have defined the velocity v of these modes.
The approach is similar to the one for phonons. π (x) plays the
role of the space displacement d (x, t ), while ∇θ plays the role
of the phonon impulse�(x, t ). The thermal conductance used
in the text is given by

1

2
�e{κ (ω)} = − 1

ω
�m

{
1

2

〈{
JQ
−k (−ω), JQ

k (ω)
}〉}

(ω,k=0)

, (D8)

where

1

2

〈{
JQ
−k, J

Q
k

}〉
ω

= 1

τ 2
0

κCT

2h̄
〈{π−k, πk}〉ω. (D9)

The symmetrized correlation on the right hand side, Dβ (ω) =
〈{π−k, πk}〉ω,k=0, apart from the prefactor T , can be evaluated
at zero temperature in a standard way [59]. Equation (D8)
gives:

�e{κ (ω)} = π2 kB
ωτ0

v2τ 2
0

. (D10)

If �e{κ (ω)} ∼ κ τ0 we get, from Eq. (D5),

v2τ 2
0 = κτ0

kB

CT

h̄/τ0
⇒ κ = πkB

τ0

(
h̄ω

CT

1

2

)1/2

. (D11)

However, introducing the damping of the mode in Dβ , by
adding an energy broadening �, we get

Dβ (ω) = πT

v4�

∫ +∞

0

2 e−ε0+
ε

ε2 − (ω + i �)2 ε
2dε (D12)
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and

�m
{
Dβ (ω)

} = −2πT ω2

v4�

{(
1 − �2

ω2

)
arctan

�

ω

1

2

+ �

ω
ln

(
1 + �2

ω2

)}
,

which, in the limit �/ω 
 1 gives:

�m{Dβ (ω)} = −2πT

v4
ω. (D13)

Posing again �e{κ (ω)} ∼ κ τ0, in place of Eq. (D11) we have:

v2τ 2
0 = κτ0

kB

CT

h̄/τ0
⇒κ = kB�

(
h �

CT

1

2

)1/2

. (D14)

Using the κ = C vF� = C v2
Fτ0, the gapless bosonic exci-

tations of energy h̄v k generate a specific heat at fixed 2 − d
volume:

CV
ã2

= d

dT

1

2π

(
kBT

h̄v

)3

h̄v

∫ +∞

0

z2 dz

ez − 1

= kB
1

2π

(
kBT

h̄v

)2

6 ζ [3] (D15)

and the thermal conductivity

κ = kB

π

(
kBT

h̄v

)2

3 ζ [3] v �. (D16)

Here ζ [n] is the Riemann function [60]. This is the Stefan-
Boltzmann relation in two dimensions [61].

In the case of the SYK model, based on the saddle point
contribution to energy [8]:

lnZ = −βE0 + S0 + c

2β
+ · · · , with

c

2
= 2π2αSN

J ,

the first energy correction in temperature is E = c/(2β2) (c ≈
0.396N/J ), so that, by taking CT ∼ c/(2β2) in Eq. (D14), we
get:

κ = kB �

(
h �

CT

1

2

)1/2

→ kB �
3/2(h̄β )1/2

(
2π

2 β

c

1

2

)1/2

= kB �
3/2(h̄β )1/2

(
βJ
παSN

1

2

)1/2

(D17)

(dimensions are [C/t] as always). The thermal conduction re-
sponse in the conformal limit [13] requires the energy current
response function Gc

Rβ
Q (ω)

�e{κ}
NT

= − lim
ω→0

1

ωNT
�m

{
DRβ

Q (ω)
}

= 1

NTπ2

∫
dω tanh

βω

2

∂

∂ω

(
ω �m

{
Gc

Rβ
Q (ω)

})2

∝
(
βJ
N

)
.

In the Fermi liquid case, τ0 ∼ T −2 and C ∼ T , so that
κ ∼ T −1.

APPENDIX E: THE ACOUSTIC PLASMA MODE
IN THE MARGINAL FERMI LIQUID

To characterize the MFL phase, it is important to check the
nature of the collective excitations, in particular the particle-
hole continuum, under the action of the increasing coupling
to the high energy localized modes. We will show that, within
our approximations, the real part of the ω(q) dispersion of
the density excitations is linear, but with a small reduction of
the physical velocity dω/dq at small q, and, most of all, a
peculiar imaginary part. We also find that, at large couplings,
the interaction pulls a linearly dispersed, well defined acoustic
plasmon mode out of the particle-hole continuum.

When the residual interaction is turned on, the vertex func-
tion �(p, p − q; q, i 	) satisfies the Bethe-Salpeter equation
[62],

�(p, p + q; q, ω) = n−�q + i g Uc
1

V
∑

p′
Dp′,q(ω)

× �(p′, p + q, q;ω).

Dp,q(i 	) =
∑
ωn

G(εp−q, i ωn) G(εp, i ωn + i 	m)

G(ε �p, i 	) = 1

iZ−1(ω +	) − ε �p
. (E1)

The functions Dp′,q(ω) are related to the polarization functions
of Eqs. (65) and (66) of the MT, when frequency is continued
to real values and p′ ∼ pF . We define

�̃1,2(q, ω) = −i ν0D1,2
q (ω) �1,2(pF , pF − q; q, ω) (E2)

where, in place of the
∑

p′ appearing in Eq. (E1), we multiply

by ν0 after having put | �p′| = pF . The resulting functions D1,2
q

of Eq. (E2) are redefined as ( ω
Z ṽF q < 1)

ν0D1
q(ω) = Zν0

⎡⎣1 − i
ω

Z ṽF q
√

1 − ω2

(Z ṽF q)2

⎤⎦,
ν0D2

q (ω) = ν0

∫
dθ

2π
(1 − cos θ ) D2

�k,�q(ω)

∣∣∣∣
k=pF

. (E3)

In fact, following [[18]], we consider two ranges of energy
values: a low energy one (ω < 	∗

c ), (i = 1), and a high energy
one (ω < 	∗

c ), (i = 2), with ν0Di
kF ,q

(q, ω) = �i(q, ω).
Limiting ourselves to the FL energy range, i = 1, for the

moment, Eq. (E2) becomes

i �̃1(q, ω) = −i ν0D1
pF ,q(ω)�(pF , pF − q; q, ω), (E4)

where ν0 A = 1

(2π )2
2πkF

A
h̄v∗

F

= 1

π

kF A
h̄v∗

F

.

ν0 is the 2 − d density of states at εF per unit volume A. Here
we are assuming that, in this energy range, �(p, p − q; q, i 	)
does not depend on the angle θp′,q = p̂′q except for an average
of sin2 θ/2 ∼ (q/(2kF ))2 ∼ 1/2. We have also put |p|, |p′| =
kF , so that the only � dependence is �(q, i 	). This choice,
together with that of the onsite interaction Uc, provides the
reference result we are looking for.
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We expect a collective mode of compressibility type em-
bedded in the particle-hole excitation continuum. In the low
temperature Fermi liquid limit, the p-h continuum has a
boundary of the kind min{εk+q − εk} = Z ṽF q. We find a col-
lective mode ω = Z zṽF q with z complex and �e{z} < 1 and
negative imaginary part which is related to the lifetime of the
mode.

Here

�1(q, ω) = Zν0

⎡⎣1 − i
ω

Z ṽF q
√

1 − ω2

(Z ṽF q)2

⎤⎦,
so that{[

ν0D1
pF ,q(ω)

]−1 − i gUc
}
[i �̃(q, ω)] = −i n−�q. (E5)

This provides the equation for the FL collective excitation
mode (Zν0 = U −1

c ):[
1 − i

z√
1 − z2

]−1

− i g = 0, z = ω

Z ṽF q
< 1

⇒1 − i g = g
z√

1 − z2
. (E6)

The homogeneous equation can be cast in the form: 1/χ (0) −
U = 0 if

i ν0D1
kF ,q(q, ω) = i�1(0)(q, ω) = −i χ (0). (E7)

The contribution to the polarization function from high-
energy excitations �2(q, i 	) has a completely local q-

independent form and is given by

�2(i 	) ≈ − 8

J ln

(J
W

)
(	∗

c � 	 > 0).

In the case of ν0D1
p′,q, it was enough to put p′ → pF , but

in the case of �̃2
q(ω), it is important to keep a dependence

on the scattering angle θ�k,�q = �̂k, �q explicitly and to integrate
over it. In fact, we cannot neglect the dependence of the
vertex � appearing in the Bethe-Salpeter Eq. (E1) on the

scattering angle θ�k,�q = �̂k, �q. As it is usual when calculating
the dc conductivity in metals [63], we assume that this an-
gular dependence is ∼(1 − cos θ ) in Eq. (E3). The factor
(1 − cos θ�k,�q

1
2 ) expresses the growing predominance of for-

ward scattering with declining temperature, which contributes
less than wide angle scattering to the effective “collision
rates.” A q dependence has been added in D2

�k,�q(ω) of Eq. (E3)

by including a k-dependent correction to the conformal local
SYK Green function Gc:

Here we use Gc(i ωn), extended to include a k dependence

G2(�k, iωn) ≈ − 1

�0
c (i ωn)

+ ε�k∣∣�0
c (i ωn)

∣∣2 . (E8)

Here �0
c (i ωn) = [G0

c (i ωn)]−1 is the self energy correspond-
ing to the zero order approximation.

Equation (E8) can be viewed as an expansion of the high
energy total Green function to lowest order in εk [18], or can
be obtained, by assuming random hopping between sites. so
that, according to Eq. (E2), the propagator is:

ν0D2
,q(i 	m) =

(
1

V
∑

k

)∑
ωn

1

�0
c (i ω)

1

�0
c (i ω + i	)

[
1 +

(
εk−q

�0
c
∗(i ω)

+ εk

�0
c
∗(i ω + i	)

)
+ εk−q

�0
c
∗(i ω)

εk

�0
c
∗(i ω + i	)

]
. (E9)

The ωn sum can be transformed into an integral. A lengthy but straightforward calculation provides a function of k, q, �k · �q =
k q cos θ and i 	:

f (k, q, cos θ ; i	) = − 8

Uc
ln

Uc

W
+ εk εk−q

U 2
c

2

	
arctanh

	

	∗
c

+ 2 i

Uc

{
− (εk−q − εk )

W
+ (εk−q + εk )

W

√
	∗

c

	
arctanh

	

	∗
c

}
We neglect the second and the fourth term (for a p-h pair in a p-h symmetric system is εk−q + εk = 0), obtaining

f (k, q, cos θ ;	) ≈ − 8

Uc
ln

Uc

W
+ 2 i

Uc

{
− (εk−q − εk )

W

}
.

We finally get:

ν0D2
,q(ω) = −ν0W

8

Uc
ln

Uc

W

[
1 + i

1

8 ln Uc
W

ṽF q

W

]
. (E10)

We now rewrite Eq. (E1) for the vertex as follows (i = 1, 2):

�(pF , pF − q; q, ω) = n−�q + Uc
[
gi1 ν0D1

,q(ω) + gi2 ν0D2
,q(ω)

]
�(pF , pF − q; q, ω).

By posing

�̃1,2(q, ω) = −i ν0D1,2
,q (ω) �(pF , pF − q; q, ω) (E11)

we get a system, which, using ZνoUc = 1 and z = ω/(Z ṽF q), takes the form:⎛⎝[
1 − i z√

1−z2

]−1 − i g11 i g12

i g12 − Z
8 W

Uc
ln Uc

W

[
1 + i 1

8 ln Uc
W

ṽF q
W

]−1 − i g22

⎞⎠(
i �̃1(q, ω)

i �̃2(q, ω)

)
= −i n−q

(
1
1

)
(E12)
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The results are given in Figs. 1 and 2 for the real and imaginary part of ω/(Z ṽF q) vs g = U/Uc.
When q increases there is a monotonic flattening of �m{ωq} with Z ṽF q/W with a saturation at large q, as can be seen by

plotting dωq/dq vs q. As �e{ω} is strictly linear with q in a large range of values of q, the plot of Fig. 10 shows the behavior of
this derivative.

The polarization function of the coupled system, given by Eq. (E2), satisfies the equation:([
ν0D1

q(ω)
]−1 − i g11 Uc i g12 Uc

i g12 Uc
[
ν0D2

q(ω)
]−1 − i g22 Uc

)(
i �̃1(q, ω)

i �̃2(q, ω)

)
= −i n−q

(
1
1

)
. (E13)

Given a transferred momentum q, the energy of the corre-
sponding collective excitation makes the determinant of the
matrix on the left hand side of Eq. (E14) vanish. Here, g11Uc

is assumed to be the residual interaction within the low en-
ergy FL due to the SYK cluster, g22Uc ∼ J parametrizes the
interaction within the SYK cluster, while g12Uc provides the
coupling between the two.

To zero order in perturbation, χ (0) = ν0D1
q(ω),[

1 − i
z√

1 − z2

]−1

− i g = 0, (E14)

in the limit g → 0 the solution is z → 1, giving a strictly linear
dispersion, ω ∝ v∗

F q. When the couplings are nonvanishing,
the mode dispersion keeps being substantially linear, but the
physical velocity is renormalized and an imaginary part arises.
The real and imaginary parts of the function z = ω/(v∗

F q)
are plotted in Figs. 7 and 8 as a function of g11 and g22, for
v∗

F q/W = 0.1. Plots are reported for Uc/W = 10 and Z = 0.1.
The limitation z = ω

v∗
F q < 1 implies that we track the collec-

tive excitation mode inside the p-h continuum only. In Fig. 7
we plot the real part �e{z} vs g11, choosing g22 = 2, when the
ratio of the couplings between the two systems b = g12/g11 is
b = 0, 0.4, 0.6, 0.8.

The effective velocity of the excitation mode, �e{z}, de-
creases with respect to the unperturbed value v∗

F and saturates
to about 90% of the unperturbed value when g12 increases. As

FIG. 7. Renormalization of the velocity of the linear dispersion
v∗

F in the presence of coupling to high energy correlations. Here we
plot the real part of ω/(v∗

F q) versus g11 at g22 = 1.8 and v∗
F q/W =

0.1. Here g12 = b g11 is the coupling strength to the high energy SYK
fluctuations (b = 0, 0.4, 0.6, 0.8, respectively, with Uc/W = 10 and
Z = 0.1).

shown in the inset, the saturation is even faster, when g11 is
kept fixed (in our case at the value g11 = 1) and g22 > g11 is
increased.

The imaginary part of the energy of the mode �m{ ω
v∗

F q } is
zero at g11 = 0 and increases mildly, in absolute value, with
increasing of g11, as reported in Fig. 8 vs g11 at g22 = 1.8. It
is remarkable that, when g11 > g22, �m{z} vanishes. Simul-
taneously the slope of the mode increases up to value one,
for b → 1. This appears in Fig. 8 and, more explicitly, in
Fig. 9, which is a plot vs b with g11 = g22 for various values
gii = 0.8, 1.2, 1, 8 and v∗

F q/W = 0.8. When g12 increases in
Eq. (E14), a real term −g2

12 grows in the determinant, which
reduces �m{z}. In these conditions, the dispersion tends to
the boundary of the particle-hole continuum (�e{z} → 1),
while the corresponding imaginary part in Fig. 8 vanishes.
This feature appears clearly in Figs. 9(a) and 9(b) and is the
signature of the splitting of a bound state out of the particle-
hole continuum with linear dispersion and velocity >v∗

F . We
interpret this as an acoustic plasmon which, however, requires
strong coupling of the MFL to the SYK cluster, to be tackled
even further, far beyond the present perturbative approach.
When q increases, there is a monotonic increase of �m{ωq}
with v∗

F q/W and a saturation at large q, as can be seen by
plotting dωq/dq vs q (see Fig. 10).

To sum up the results of this Appendix, we can conclude
that the low energy FL on the lattice appears quite robust with
respect to interaction with incoherent local disordered SYK
clusters, when only the lowest perturbative order is included
and no disorder, in the continuum, k → 0, limit. The Fermi
surface is still well defined, but the liquid becomes a MFL.
The hydrodynamic collective excitation, the would-be acous-
tic plasmon, is also rather well defined. At strong coupling, in
the limit Uc → J , its dispersion tends to the boundary of the

FIG. 8. Imaginary part of ω/(v∗
F q) versus g11 corresponding to

the real part of Fig. 7 (g12 = bg11, with b = 0, 0.6, 0.8, respec-
tively), at g22 = 1.8 and v∗

F q/W = 0.1. Note the flattening at zero
for g11> 3.0, when b → 1.
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FIG. 9. Real (a) and imaginary (b) part of ω/(v∗
F q) versus b = g12/g11 for various values of gii ≡ g11 = g22, with gii = 0.8, 1.2, 1.8,

respectively, at v∗
F q/W = 0.8.

p-h continuum and the imaginary part, which blurs the mode,
vanishes. We expect that a well defined acoustic plasmon is
on the verge to emerge as a bound state at low energies,
split off the p-h continuum. However, other excitations are
present in the system, the pGm of the SYK system, which
are investigated in the next section.

APPENDIX F: THE SUPERCONDUCTING CRITICAL
TEMPERATURE AT LOW TEMPERATURE

In this Appendix we use an Eliashberg [45] approach to
the superconducting critical temperature Tc, assuming that
pairing is driven by the diffusive excitation modes introduced
in Appendix D. As explained in the MT,	∗

c is the energy scale
of Tc and the dependence on the coupling strength turns out to
be non BCS-like. We report here the derivation.

In the mean field Hamiltonian, in the Nambu [64] repre-
sentation,

H (k) ≡
∑

i j

[hi j ĉ†
i ĉ j +�i jc

†
i c†

j + H.c.]

FIG. 10. Plot of ∂�m{ω}
∂�e{ω} vs v∗

F q/W . As �e{ω} is strictly linear
with q in a large range of values of q, the derivative with respect to
�e{ω} can be interpreted as a derivative with respect to q. Here g11 =
g22 = 1.8 and g12 = 0.8 × g11 (Z = 0.1, Uc/W = 10, as always).

=
∑

k

(c�k
† c−�k )

(
ξk �

� −ξk

)(
c�k
c−�k

†

)
, (F1)

the one electron Green’s function G(p, i ων ) and the electronic
self-energy �(p, i ων ) are 2 × 2 matrix defined by the Dyson
equation

[G(p, i ων )]−1 = [G0(p, i ων )]−1 −�(p, i ων ), (F2)

= i Z−1ων − ξ̃pσ3 − φ(p, i ων ) σ1, (F3)

where G0(p, i ων ) is the one-electron Green’s function for the
noninteracting system, σi are Pauli matrices, and ξk = εk − μ.
The εk’s are single particle electron energies and μ is the
chemical potential. We do not include Coulomb electron-
electron interaction, so that the self-energy � ∝ σ1 is just off
diagonal. The approximation used in self energy [65]:

�(p, i ων ) = − 1

β

∑
p′ν ′
σ3 G(p′, i ων ′ ) σ3 |g(p, p′)|2

×D(p − p′, i ων − i ων ′ ), (F4)

where g(p, p′) is the coupling with the bosonic modes and
D(p − p′, i 	n) is the response function in imaginary fre-
quency to the bosonic modes. The latter can be represented in
terms of its imaginary part, B(q, i 	n) = − 1

π
�m{D(q, i 	n)},

as

D(q, i ων − i ων ′ ) =
∫ ∞

0
d	 B(q,	)

{
1

2

1

i ων − i ων ′ −	

−1

2

1

i ων − i ων ′ +	
}

where (	q = D̃Qq2) and, in our case

B(q, i 	) = − 1

π

[
	q 	

	2 +	2
q

]
TQ. (F5)
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To make matches with the usual Eliashberg theory, the isotropic gap model which we consider here provides the dimensionless
coupling function:

α2F (	) = 1

Nq

∑
q

δ(	−	q)ν(0)
∫

dω′|g(kF , ω
′; q)|2, (F6)

as an integral over the transferred momentum q. We have to integrate over all q′s:

1

Nq

∑
q

⇒ ã2

(2π )2
2π

∫
q

d q

d	q
d	q = ã2

2π

1

2 D̃Q

∫
d	q,

where ã2 is the average diffusion area. We obtain

�(p, i ων ) = − 1

β

∑
p′ν ′
σ3 G(p′, i ων ′ ) σ3

∫
d	

1

4π

ã2

D̃Q

∫
d	q|gp,p′ (	q)|2B(	q,	)

{
1

2

1

i ων − i ων ′ −	 − 1

2

1

i ων − i ων ′ +	
}

with

[G(p, ω)]−1 = Z−1 ω1 −
{
ξp − i Z−1

[
|ω| εF

	∗ ln

(J
W

)
+ α

Z
ν0|ω|2 ln

Z ṽF kF

|ω|
]

sign(ω)

}
σ3 −�(ω)σ1 (F7)

The mean field�(ω) = Z (ω)�(ω) has to be determined in the following. In Eq. (F7) the inverse lifetime of the quasiparticles
of Eq. (68) of MT appears. Here α is a numerical factor of order one. Note the difference with the usual approach: diffusivity
implies Eq. (F5) here, while usually is B(q,	) ∼ 	q

	2
q+	2 in the Eliashberg approach.

On the other hand, from Eq. (F2): The final form of the self energy is:

�(p, ω) = ν0

∫ ∞

−∞
dω′ �e

{
Z−1ω′1 −�(ω′) σ1

[P (ω′)]1/2

} ∫ ∞

0
d	

∫
d	q

4π
|gp,p′ (	q)|2B(	q,	)

×
[

f (−ω′)
ω − ω′ −	+ i 0+ + f (ω′)

ω − ω′ +	+ i 0+ + N (	)

ω − ω′ −	+ i 0+ + N (	)

ω − ω′ +	+ i 0+

]
,

P (ω) = Z−2 ω2 + Z−2

[
|ω| εF

	∗ ln

(J
W

)
+ α

Z
ν0|ω|2 ln

Z ṽF kF

|ω|
]2

−�2(ω), (F8)

where N (	) = [eβ	 − 1]−1 and f (ω) = [eβω + 1]−1 are the Bose and Fermi occupation probabilities. The term in curly brackets
arises from �m{ν0

∫ +∞
−∞ dξp′ σ3G(p′, ω) σ3}, which turns into a real part from the inverse of [G(p′, ω)]−1 given in Eq. (F7). The

critical temperature is the one at which � ∼ 0 and can be dropped in the denominator, but the gap equation has to be satisfied.
In all the further calculations we neglect the thermal excitations and drop N (	). Observing that the integration variable 	q

has the meaning of the diffusive energy [see Eq. (F5)] it is clear that it cannot be integrated at energies above 	. We also use the
parameter equality Zν0 = U −1

c and we take |gkF ,ω′ (	q)|2 = g2 constant ([g]−1 ∼ time (h̄ = 1 here)). We get:

�(ω) ≈ ã2

D̃Q

∫ ∞

0

dω′

|ω′| UcεF
W 2 ln

(Uc
W

) �e{�(ω′)} 1

Uc

∫ Uc

0
d	

∫ 	

0

d	q

4π
|gkF ,ω′ (	q)|2

(
1

π

[
	q 	

	2 +	2
q

]
TQ

)
× 2

{
f (−ω′)

1

	+ ω′ − f (ω′)
1

	− ω′

}
. (F9)

We concentrate on ω = 0 and we deal with two contributions to�(ω′) separately,�(ω′) = �a +�b, where the first arises from
integration over 0 < ω′ < 	∗ ∼ W 2/Uc and the second from integration over 	∗ < ω′ < Uc.

In the first case, observing that the range of ω′ cannot be larger than 	∗, but the Fermi function selects ω′ ∼ 0, we neglect ω′
in the denominators of the curly bracket obtaining [47]:

�a(0) = ã2
�

D̃Q

∫ 	∗

0
dω′ �o

ω′ εF
	∗ ln

(J
W

) |g|2 ln 2

4 Uc

∫ Uc

0

d	

2π
TQ{ f (−ω′) − f (ω′)}

≈ ã2
�

D̃Q
TQ

|g|2 ln 2

8π

�o
εF
	∗ ln

(J
W

) ∫ 	∗

0

dω′

ω′ tanh
βω′

2
≈ ã2

�

D̃Q
TQ

|g|2 ln 2

8π

�o
εF
	∗ ln

(J
W

) ln βc	
∗.

Now the �b contribution. We neglect 	 in the denominator in the curly bracket of Eq. (F9) and we include the ω′2 term of the
inverse lifetime, only.

�b(0) = ã2

D̃Q

∫ Uc

	∗
c

dω′ �∞
α
Z ν0|ω′|2 ln Z ṽF kF

|ω′|

1

Uc

∫ Uc

0
d	

∫ 	

0

d	q

4π
|gkF ,ω′ (	q)|2
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×
(

1

π

[
	q 	

	2 +	2
q

]
TQ

)
2

{
f (−ω′)

1

	+ ω′ − f (ω′)
1

	− ω′

}

= ã2

D̃Q

|g|2 ln 2

4π2
TQ

∫ Uc

	∗
c

dω′ �∞
α
Z ν0|ω′|2 ln Z ṽF kF

|ω′|

1

Uc

∫ Uc

0
2	 d	

1

	+ ω′ ,

where we have disregarded the terms ∝e−βω′
in the last integral. The rest of the derivation can be found in the main text.
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