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Quantum wakes in lattice fermions
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The wake following a vessel in water is a signature interference effect of moving bodies, and, as described by
Lord Kelvin, is contained within a constant universal angle. However, wakes may accompany different kinds of
moving disturbances in other situations and even in lattice systems. Here, we investigate the effect of moving
disturbances on a Fermi lattice gas of ultracold atoms and analyze the novel types of wake patterns that may
occur. We show how at half-filling, the wake angles are dominated by the ratio of the hopping energy to the
velocity of the disturbance and on the angle of motion relative to the lattice direction. Moreover, we study the
difference between wakes left behind a moving particle detector versus that of a moving potential or a moving
particle extractor. We show that these scenarios exhibit dramatically different behavior at half-filling, with the
“measurement wake” following an idealized detector vanishing, though the motion of the detector does still
leaves a trace through a “fluctuation wake.” Finally, we discuss the experimental requirements to observe our
predictions in ultracold fermionic atoms in optical lattices.
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I. INTRODUCTION

Many signature effects of classical hydrodynamics have
counterparts in quantum systems and serve to provide in-
tuition as well as a spectacular source for interesting new
physical situations. Due to the absence of internal scale in
hydrodynamics, it can be applied for physical scenarios of
vastly different scales. For example, relativistic hydrodynam-
ics has been successfully used to explain collective effects
in heavy-ion collisions at the Relativistic Heavy Ion Col-
lider (RHIC) and Large Hadron Collider (LHC) [1]. On the
other hand, studies of hydrodynamic-like effects in strongly
interacting electron systems show unexpected effects due to
their similarity to viscous fluids. For example, the authors of
Ref. [2] showed that in certain situations, conductance may
exceed Landauer’s ballistic limit due to viscous effects, while
the authors of Ref. [3] demonstrated that slow “swimming” in
a Fermi gas is of a topological nature and can be fine-tuned to
be done without dissipation.

Another interesting example of a hydrodynamics-inspired
study is the investigation of wake waves produced as a
response to a moving potential interacting with a two-
dimensional electron gas, recently described in Ref. [4].
There, it was pointed out that the pattern formed is deter-
mined by a Mach number and has similarities to Kelvin wakes
in water and to Mach shock waves following a supersonic
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projectile. This behavior can be traced to the coherent in-
terference between plasma excitations in the medium, with
a dispersion which is water-like [ω(q)2 ∝ q] at long wave-
lengths. A related effect, Cerenkov radiation due to a moving
charge in a dielectric has also been studied extensively, most
recently in photonic crystals where a host of new variations
on the effect have been uncovered where, for example, the di-
rection of radiated energy can be flipped see, e.g., Refs. [5,6].

Here we consider an altogether different system and,
with it, a new set of nonequilibrium problems. We examine
the discrete-time steady-state generated by the interaction
of different types of disturbances, as described below, with
fermions on a lattice, as the disturbances move from site to
site. Thus, the discrete time, the lattice, and the many-body
nature of the system play essential roles in the definition
of our model. We find that nonclassical disturbances may
yield a drastically different response. The case in point is
that of a moving quantum particle detector, which in this
context has no classical counterpart. In addition, we study
a moving particle extraction site in which particles can be
ejected out of the system. These two types of disturbances
are compared with results we obtain for a moving potential.
We note that in recent years there have been many inves-
tigations of measurement-induced dynamics in many-body
systems [7–12]. Measurement-induced dynamics has been
also observed in experiments [13–15]. Moving detectors have
been considered before as well, most notably in describing the
Unruh effect [16], where a uniformly accelerated detector ob-
serves a thermal radiation in a vacuum. However, the question
we consider here is, to the best of our knowledge, completely
new: what type of a steady-state density pattern will a moving
detector leave behind when measuring particle densities in a
Fermi sea?

The recent progress of quantum simulation with ultra-
cold atoms [17] makes them an ideal platform for studying
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FIG. 1. A lattice of cold atoms interacting with a moving dis-
turbance. The disturbance can be an applied potential, a detector, or
an extractor. The blue dots represent the fermionic atoms and the
red focused laser beam illustrates the disturbance moving into the
direction of the green arrow.

these effects. Here we focus on cold Fermi gases which be-
came a valuable tool in recent years to study nonequilibrium
dynamics in analogy to electronic systems. Indeed, recently,
increasingly sophisticated techniques became accessible lead-
ing to the measurement of spin dynamics [18–20] and charge
transport [21–23]. In particular, it also became possible to
observe spin charge separation in one-dimensional lattice
systems [24] and to study spin and charge transport in the
two-dimensional Fermi-Hubbard model in the regime of low
temperatures and strong correlations that challenge the current
theory calculations [25,26]. These experiments demonstrate
that ultracold fermionic atoms are an effective platform for
quantum simulation of nonequilibrium phenomena even be-
yond the capabilities of exact calculations.

Classically, the universality of wakes following moving
ships has been characterized by Kelvin’s seminal result: that
a (gravity) wake behind a moving ship in water is delimited
within a constant angle 39◦, irrespective of the ship’s veloc-
ity [27]. Recent results emphasized finite-size effects [28]
through the dependence on the Froude number v/

√
gL of a

moving pressure source traveling at velocity v of length L,
where g is the gravitational acceleration constant [29]. Here
we study wakes created by point disturbances moving through
a Fermi lattice gas including the quantum effects (Fig. 1).
Our results depend on both the velocity and the angle with
respect to the Bravais lattice directions, as well as on the type
of disturbance. Concretely, we consider a tip traveling through
a lattice of cold fermionic atoms, interacting with an atom on a
lattice site, and then during a time τ moving on to the next site.

We find several unexpected results. For example, we ob-
serve a dramatic difference between the wakes of a moving
particle detector and a traveling potential disturbance. In par-
ticular, on the square lattice at half-filling the detector wake
vanishes identically due to particle hole symmetry at any
temperature. Another surprising result is that, at half-filling,
the wake formed by a “particle” extractor is independent
of temperature. To find an analytic form for the wake left
behind a moving potential we use a comoving steady-state

FIG. 2. Snapshots of the wake developing following a moving
particle detector at quarter filling. Plotted are the local particle den-
sities of each lattice site as given by the color bar on the right. The
location of the disturbance is marked by a red dot. The simulations
are done by iteration of free evolution [Eq. (4)] interspersed with
interactions with a particle detector [Eq. (6)] beginning from the
ground state of free fermions on a 30 × 30 lattice. The detector was
initialized at position (8,15) and moves horizontally to the next site
during time 1/(3.4 thop), where ıns is the hopping parameter of the
free evolution.

equation and employ a strategy of identifying nodal lines
where the (comoving) disturbance is exactly zero, in contrast
to most treatments of water wakes, which seek for extrema,
i.e., troughs and crests. Due to the scale inherent in the lattice
structure, our wakes depend explicitly on the time τ charac-
terizing the effective speed of the moving tip, compared to the
hopping energy thop of the fermions in a tight-binding lattice.

To describe these effects of dynamics in many-particle
quantum systems we use the nonequilibrium framework de-
rived in Ref. [30]. This framework allows for the study of a
variety of nonequilibrium problems including particle detec-
tion and injection/extraction. It was shown in Ref. [30] that
in certain statistical mechanics problems, which we detail in
Sec. II, it is possible to make a systematic connection between
the evolution of n body density functions with n + 1 density
functions, similar in spirit to the Bogoliubov–Born-Green-
Kirkwood-Yvon (BBKGY) hierarchy, which is the essential
structure leading to the Boltzmann equation for single par-
ticle densities from higher-order correlation functions (see,
e.g., Ref. [31]). This approach allows the buildup of tractable
nonequilibrium problems utilizing combinations of four el-
ementary operations: detection, particle injection, particle
extraction, and free evolution. While some of these ideas
have been applied to problems in one dimension (e.g., driven
and dissipative XX spin chains [32] and steady states of a
driven hopping model [30]), here we study an essential two-
dimensional (2D) problem: the emergence of wakes behind
moving objects interacting with a Fermi sea. In particular,
we discuss the difference between the motion of a detector,
particle extractor, and a potential in detail. The approach of
the authors of Ref. [30] allows for an efficient numerical
calculation of the dynamics in such problems. An example
of the development of a wake a moving detector is described
in Fig. 2, while a comparison between a moving detector and
potential is provided in Fig. 3 at different filling fractions of a
Fermi sea in a 2D hopping model.

The structure of the paper is as follows. We start by briefly
introducing the formalism of Ref. [30]. Next we study the
effect of a potential hopping from site to site, solving for
the characteristic angles of the traveling pattern. We then
continue to study the motion of a detector and the motion of
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FIG. 3. Comparison of density plots for wakes of a moving point
potential (left) with a moving detector (right). The detector/point
potential was initialized at position (8,15) and moves horizontally
to the next site during time 1/(3.4 thop), where thop is the hopping
parameter of the free evolution. Snapshots are taken after 18 time
steps, when the full wake pattern has been sufficiently developed.
At half-filling the difference is most dramatic (top) but differences
remain at quarter-filling (bottom).

a particle extractor and compare these with our results for the
moving potential. Finally, we suggest an experimental setup
to directly observe the wake patterns.

II. FORMALISM

First, we provide a formal description of the system de-
picted in Fig. 1. We will denote by ar the annihilation operator
for a fermion at lattice site r. To describe the density distribu-
tion we will focus on the two point function, defined as

Grr′ (t ) = Trρ(t )a†
rar′ , (1)

where ρ(t ) is the density matrix at time t . The evolution of
Grr′ depends on the problem at hand. Due to the discrete
nature of the lattice, we find it natural to consider the time
evolution in discrete time steps τ , pertaining to the time dis-
turbance moves from site to site. After a step in the evolution
process, G(t ) → K(G) ≡ G(t + τ ), where K(G) is specified
for various processes below.

In general, if the system undergoes Hamiltonian evolution
during a time τ , we have

ρ(t + τ ) = Uρ(t )U†, (2)

where U = T e− i
h̄

∫ t+τ

t H(s)ds is the many-body evolution. For a
general interacting Hamiltonian, Grr′ (t + τ ) is not determined
by G(t ) alone and would depend on all higher-order correla-
tion functions.

For a noninteracting Hamiltonian, however, the evolution
of G does not depend on high-order correlations. Let us take
the Hamiltonian to be H(t ) = ∑

rr′ Hrr′ (t )a†
rar′ , where H is

an N × N matrix if there are N fermion sites. The evolution
of G from time t to time t + τ is simplified by the fact that for

such a Hamiltonian

U†a†
qU = Uqq′a†

q′ , (3)

where Uqq′ = [T e
i
h̄

∫ t+τ

t HT (s)ds]qq′ is an N × N single particle
evolution operator [33]. We therefore find for G:

Grr′ (t + τ ) = TrUρ(t )U†a†
rar′ = Trρ(t )U†a†

rar′U
= [UG(t )U †]rr′ ≡ [KU (G)]rr′ . (4)

In other words, the matrix G undergoes the evolution G(t ) →
UG(t )U †, independent of higher correlation functions. A few
other operations that yield a closed equation for G are possible
and described in detail in Ref. [30].

We will use two of the aforementioned operations. We start
with the elementary particle detection measurement at a site r.
It is described by the following Krauss map of the many body
density matrix:

ρ → n̂rρn̂r + (1 − n̂r )ρ(1 − n̂r ), (5)

where n̂r = a†
rar is the number operator associated with site

r. Note that for fermions, n̂r is a projection operator, and the
Krauss map (5) describes complete decoherence between the
number on the site r and other sites. Substituting (5) in Eq. (1),
fermion detection induces the following map on G:

G → Kdetect. r (G) = P⊥
r GP⊥

r + PrGPr , (6)

where Pr = |r〉〈r| is the (single-particle) projector on site r
and P⊥

r = I − Pr. An additional operation is an extraction
event of a particle at site r. Such an operation can be described
by the Krauss map

ρ → ε(2 − ε)arρa†
r + (1 − εn̂r )ρ(1 − εn̂r ), (7)

where 0 � ε � 1 describes the efficiency of the extraction
procedure. Again, substituting this map in the definition (1)
we obtain

G → Kextr. r (G)

= P⊥
r GP⊥

r + (1 − ε)PrGP⊥
r + (1 − ε)P⊥

r GPr

+ (1 − ε)2PrGPr. (8)

In this paper, we combine the three types of maps above
to represent the dynamics of a disturbance interacting with a
lattice as it moves from site to site. We prepare the system at
an initial state, with a two-point function G(t = 0) = G0. The
disturbance will interact with the system at position r = 0,
and moves to act on an adjacent point aw, where it acts again
after which it moves to 2aw and so on, with the disturbance
at the nth step acting at position r = naw. We only consider
motion at angles where the tip hits the actual lattice sites, i.e.,
the direction of motion w needs to be a lattice vector.

The evolution of the correlation matrix G between succes-
sive time steps is described by the maps given in Eqs (4),
(6), or (8)—as elaborated in detail in each section. Let the
evolution from time τn to τ (n + 1) be given by Kn [for ex-
ample, detection at point r = naw using Eq. (6), followed by
noninteracting evolution for a time τ using (4)]. The evolved
system at time nτ will therefore have the correlation matrix

G(nτ ) = Kn(Kn−1(. . .K1(G0) . . .)), (9)
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and in particular, the local density change compared to the
initial density is

δGrr ≡ Tr[ρ(nτ )a†
rar] − Tr[ρ(0)a†

rar]

= Grr(nτ ) − Grr(0), (10)

we follow these dynamics numerically, explicitly affecting the
iteration procedure for each of the cases, as explained below,
and compare the results to the comoving steady state which
we now define.

For a moving disturbance, a steady state can only be
formed in the comoving frame. Consider an elementary
operation G → K(G) (for example, detection, followed by
noninteracting evolution for a time τ ), which is then repeated,
but shifted in space by the vector aw. Let S be the translation
operator along the direction of motion w, via S† r = r + aw.
We then define a steady state for the correlation matrix in the
comoving frame via the requirement that

Gsteady = S†K(Gsteady)S, (11)

namely Gsteady is invariant under the combination of the op-
eration K and moving to the next site. To identify relevant
steady states, we will seek solutions to Eq. (11) in the vicinity
of states associated with an unperturbed system. Indeed, as we
shall see, the nature of the steady states depends both on the
form of the dynamics K as well as on the initial background
state (for example, a Fermi gas at different filling fractions).

We note that, for simplicity, we focus here on initial states
suitable for noninteracting systems. We emphasize that the
formalism is valid also for systems prepared in an interacting
state as long as the subsequent dynamics is well approximated
by noninteracting evolution.

III. MOVING POTENTIAL

Consider a tip traveling along the lattice, in a direction w
taking a time τ to move between two sites. We approximate
this process as a discrete process, where a potential V hops
from site to site, remaining at time unit τ at each site. For
the purposes of this paper, we will focus on the simplest
case of a square lattice with nearest-neighbor hopping as
the free evolution, i.e., H0 = −thop

∑
〈r,r′〉 a†

rar′ with single
particle energies ε(k) = −2thop[cos (kxa) + cos (kya)] where
a is the lattice spacing. We will take the tip potential at a
fixed reference point r0 to be V = Va†

r0
ar0 . We will mostly

concentrate on half-filling in this section.
We describe below the wake formed behind a point po-

tential moving at a general speed and angle with respect to
the lattice. We begin by summarizing the main results of this
section before providing full derivations. Figure 4 shows the
simulation of the wake pattern formed by evolving the system
in real time following a successive application of the tip along
a horizontal line moving at various speeds. Figure 5 represents
the simulation of the wake formed by similarly evolving the
system in real time except with the tip moving at several
different angles with respect to the lattice. Denoting

α = 1

2τ thop
, (12)

FIG. 4. Density plots for varying velocities of a moving poten-
tial. From left to right, velocities α = 1.7, 1.0, and 0.7. Red lines
represent the angles given by Eq. (35). Each line corresponds to the
solution for a given quadrant in Fig. 6. Note the forward pointing
cone is a result of a forward d-wave radiation when the source is
moving slowly.

we use Eq. (11) to find that the angles of lines of zero distur-
bance are described by

ry

rx
= 1 + wyα

±1 + wxα
,

ry

rx
= −1 + wyα

±1 + wxα
. (13)

These “zero disturbance” lines are represented as red lines
in the figures and delineate the shape of the wake openings.
As expected, since we are not in a Kelvin regime, the angle
depends on the speed of the disturbance and is discussed be-
low. Note, in contrast to the classic Kelvin wakes and potential
wakes in a two-dimensional electron gas [4], here the lattice
breaks rotational symmetry and the wake pattern changes as
the potential path rotates with respect to the lattice.

Before moving on to the derivation, let us comment briefly
on the limiting behavior of Eq. (13). Note, that as α → 0,
we find ry

rx
→ ±1, i.e., the two main diagonal directions. This

result is consistent with the expectation that as the velocity
vanishes, the moving potential is almost static and will radiate
via the underlying D-wave symmetry of the lattice.

As α → ∞, i.e., the limit of an extremely fast moving tip,
we find that ry

rx
→ wy

wx
, in other words, the wake converges onto

a line following the disturbance, as any disturbance would not
have time to disperse. Hence, Eq. (13) implies that the wake
will essentially vanish for a potential moving at α → ∞.

The comoving steady state to be found for our system is
described by, Eq. (11), where K(G) = eiτ (H0+V )Ge−iτ (H0+V )

FIG. 5. Density plots for varying the angle of a moving potential
compared to the lattice vectors. A potential moving at 0◦, 23◦, and
45◦ with respect to the lattice. Here α = 1.7. A smeared potential
(Gaussian with half a lattice spacing width) is used instead of a point
potential to include effects when the tip is not precisely on a lattice
site. It is argued in the Appendix that the wake geometry is unaffected
by this change away from a point potential. Red lines represent the
angles given by Eq. (35). Note that for motion at 45◦ the angles for
quadrants 1 and 4 in Eq. (35) coincide reducing the number of lines
to 3.
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where H0 = −thop
∑

〈r,r′〉 |r〉 〈r′| is the unperturbed single par-
ticle Hamiltonian and V = V |r0〉 〈r0| is the tip potential at
some initial reference point r0. Namely,

S†eiτ (H0+V )Ge−iτ (H0+V )S = G. (14)

In general, Eq. (14) admits infinitely many solutions for G.
In particular, any correlation matrix G that satisfies

[G, S†eiτ (H0+V )] = 0 (15)

will automatically be a comoving nonequilibrium steady state.
In the physical scenario we are interested in, however, we
have an initial reference state, the correlation matrix G0 of the
unperturbed Fermi system, and in the following we consider
the wake as a weak perturbation on this state, allowing us
to analytically establish the dominant behavior of the wake
pattern.

Since we are only perturbing the free evolution by a
small potential, we can assume the steady state G will be
close to the steady state of free evolution, G0, where G0rr′ =
〈a†

rar′ 〉equilibrium. Thus, we write G = G0 + δG where δG is as-
sumed a small perturbation. Since H0 is translation-invariant,
we write the comoving nonequilibrium steady-state equation
in momentum space as

eiaw·(k−k′ )〈k|eiτ (H0+V )(G0 + δG)e−iτ (H0+V )|k′〉
= 〈k|G0 + δG|k′〉.

Substituting lowest-order perturbation theory, keeping terms
up to linear order in V and δG, we find that the real-space
density disturbance, at zero temperature is given by

〈r|δG|r〉 = V τa4

(2π )4

∫∫ π
a

− π
a

dkdk′A(k, k′)R(k, k′, w),

× ei(r0−r)·(k−k′ ){ 
[ε f − ε(k)] − 
[ε f − ε(k′)]},
(16)

where

A(k, k′) = eiτ [ε(k)−ε(k′ )] − 1

τ [ε(k) − ε(k′)]
, (17)

R(k, k′, w) = 1

1 − e−iaw·(k−k′ )e−iτ [ε(k)−ε(k′ )] , (18)

and ε f is the Fermi energy. Derivation details can be found in
the Appendix.

Our main objective now is to compute the large-scale fea-
tures of the resulting pattern, namely the typical angle that
appears in the wake pattern. As in the case of the origi-
nal Kelvin wake, which is typically derived by a stationary
phase method, the present treatment requires careful consid-
eration of the dominant contribution to the density variation
[Eq. (16)]. The terms A and R in Eq. (16) will provide us with
regions that are particularly important for the integral over k
and k′. Due to the Fermi functions, we can write Eq. (16) as

〈r|δG|r〉 = 2V τa4

(2π )4

∫
ε(k)>ε f

∫
ε(k′ )<ε f

dkdk′,

× Re{A(k, k′)R(k, k′, w)ei(r0−r)·(k−k′ )}. (19)

Note that |A(k, k′)| < 1 (this follows from the inequality
|eiθ − 1| � |θ |) and is dominated by k, k′ near ε(k) − ε(k′) =

FIG. 6. Fermi surface at half-filling. At half-filling all states with
momenta kx and ky within the diamond shape are occupied. For the
calculation we consider the four quadrants separately.

0. We thus see that in contrast to the measurement and ex-
traction wakes considered next, the integral is dominated by
momenta near the Fermi surface since we can take such
momenta to satisfy both conditions τ [ε(k) − ε(k′)] � 1 and
ε(k) > ε f and ε(k′) < ε f .

We will henceforth consider the situation at half-filling.
Looking at the Fermi surface for our system, we break up the
expansion around the Fermi surface into four quadrants given
in Fig. 6. Close to the Fermi lines, we will use the variables
δy and δy′ instead of ky, k′

y as the small shifts away from the
Fermi surface. Explicitly,

Quadrant
1 ky = π

a − kx + δy k′
y = π

a − k′
x + δy′

2 ky = −π
a + kx + δy k′

y = −π
a + k′

x + δy′

3 ky = π
a + kx + δy k′

y = π
a + k′

x + δy′

4 ky = −π
a − kx + δy k′

y = −π
a − k′

x + δy′

.

(20)
Let us now concentrate on R in Eq. (16). This term diverges

when

τ [ε(k) − ε(k′)] + aw · (k − k′) = 2πn (21)

for n integer. Here we concentrate on the n = 0 contribu-
tion which already recovers some basic features of the wake
pattern, and leave the analysis of n = 0 contributions for a
future work. The equation can also be interpreted as a Mach-
Cherenkov-Landau condition [34] for the momenta emitted
by the wake due to creating a particle-hole excitation of mo-
mentum K = k − k′. Perhaps a more familiar way to write the
condition is

�(K) + K · V = 0, (22)

where V = τ−1αaw, and �(K ) = ∇kε(k)|kF · K.
For the square lattice, we have

αaw · (k − k′)

= cos (kxa) + cos (kya) − cos (k′
xa) − cos (k′

ya), (23)

where α is defined by Eq. (12). Now, combining the restriction
τ [ε(k) − ε(k′)] � 1 with Eq. (23), we find that

k′
x = kx + w(ky − k′

y) + δx, (24)
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where δx is given by δx ≡ τ [ε(k)−ε(k′ )]
awx

and where w ≡ wy

wx
.

Comparing to Eq. (20) we arrive at

kx = k′
x + δx′ , (25)

where δx′ ≡ w(δy−δy′ )+δx

1+(−1)bw
. Here, b = 1 for quadrant 1 and 4

(Fig. 6). Otherwise b = 0. Note that our treatment of δx′

as small breaks down when w is close to 1. Indeed, when
wx = wy, the constraints on energy together with Eq. (23) are
insufficient to force k and k′ to be close since (k − k′) can be
large, with both k, k′ close to the Fermi surface, and (k − k′)
perpendicular to the w vector. While more refined analysis is
needed to describe the special point wx = wy exactly, here we
simply observe numerically that our treatment works well for
wx < wy and wy > wx, and that the wake pattern change is
continuous at wx = wy and is well described by our Eq. (13).
We now combine Eqs. (25), (20), and (23), and expand in
small δx′ , δy, δy′ to second order. Solving those, we can relate
δx′ and δy′ to δy and solve for kx − k′

x and ky − k′
y as

kx − k′
x

= 2[wxα + sin (akx )][wyα + (−1)b+1 sin akx]

[wx + (−1)bwy]α{[wx + (−1)b+1wy]α + 2 sin (akx )} ,

(26)

and

ky − k′
y

= 2[wxα + sin (akx )]2

[wx + (−1)bwy]α{[wx + (−1)b+1wy]α + 2 sin (akx )} .

(27)

If we assume our potential is at site r0 = (0, 0), the term
ei(r0−r)·(k−k′ ) in Eq. (19) becomes

ei(r0−r)·(k−k′ ) → e−ir·(k−k′ ) = e−iδyB, (28)

where

B = 2[wxα + sin (akx )]

[wx + (−1)bwy]α{[wx + (−1)b+1wy]α + 2 sin (akx )}
× { rx[wyα + (−1)b+1 sin akx] + ry[wxα + sin akx]},

(29)

greatly reducing our momentum space integral to two coordi-
nates, kx and δy. Note that when the denominators in A, R in
Eq. (19) vanish, the leading behavior of the combination AR
is real, we arrive at

〈r|δG|r〉 ∝ −2V τa4

(2π )4

∑
Q

Re

{∫∫
Q

dkxdδyeiδyB

}
, (30)

where Q is the set of four quadrants in Fig. 6. We checked
numerically that the integral (30) indeed captures the main
wake pattern of the moving potential well. Our next task is to
use Eq. (30) to find the main wake angles.

We now estimate analytically the main angles involved in
the wake pattern left behind the moving potential. In the case
of water wakes, we are interested in the wavefronts, which
are lines of maximal disturbance. Here, we find that a more
direct approach is to look instead for lines of zero disturbance,

i.e., 〈r|δG|r〉 = 0. We will begin by looking at the effects
of individual quadrants in Eq. (30). Integrating over δy and
looking first at quadrant 1, we find

〈r|δG|r〉 ∝ −2V τa2

(2π )4
Re

{ ∫ π/a

0

∫ kx

0
dkxdδyeiδyB

}

= 2V τa2

(2π )4
Im

{ ∫ π/a

0
dkx

eikxB − 1

B

}
. (31)

To find the characteristic wake lines, we now look for direc-
tions r such that Eq. (31) vanishes. Assuming that we could
treat the equation by a stationary phase method, a condition
for Eq. (31) vanishing would be that there exists a k0 such
that kxB ≈ (kx − k0)2. In this case, using the stationary phase
approximation around k0 makes the dominant contribution to
the integral in Eq. (31) real, and 〈r|δG|r〉 vanishes. Specifi-
cally, for this to happen, we need B = 0 and d

dkx
B = 0 when

evaluated at k0. Looking at rx, ry � 1, i.e., far away from
the potential, the dominating behavior of B [Eq. (29)] comes
from rx[wyα + (−1)b+1 sin akx] + ry[wxα + sin akx]. Hence,
we find the equations

rx[wyα + (−1)b+1 sin akx] + ry[wxα + sin akx] = 0, (32)

and

(−1)b+1rx cos akx + ry cos akx = 0. (33)

Therefore, cos akx = 0 implying k0 = π
2a . Plugging this into

Eq. (32) yields

ry

rx
= 1 + wyα

1 + wxα
. (34)

Repeating this calculation for the other three quadrants, we
find

Quadrant Line of〈r|δG|r〉 = 0
1 ry

rx
= 1+wyα

1+wxα

2 ry

rx
= −1+wyα

1+wxα

3 ry

rx
= 1+wyα

−1+wxα

4 ry

rx
= −1+wyα

−1+wxα

(35)

and hence our main result Eq. (13). Figures 4 and 5 show
agreement between the simulations of the potential wakes and
our Eq. (35). While the above treatment was perturbative in
V , our analytical treatment for the angles should hold asymp-
totically at large distances from the source. This is because, in
that regime, the response to the disturbance is weak regardless
of the strength of the perturbation. Close to the source, the
density profile will, in general, not be linear in the strength
of the perturbing potential. In particular, at half-filling, the
requirement δG � G0 implies that 〈r|δG|r〉 � 1

2 . To see the
range of validity of the description close to the source, let
us consider 〈r|δG|r〉 as expressed in the integral (31). We
note that B grows linearly in |r|, and therefore, asymptoti-
cally 〈r|δG|r〉 oscillates and decays at least as fast as |r|−1

(consistent with the numerical observations). The expression
(31) shows that the density profile will be perturbative when
V τa
|r| � 1, or, in other words at distances |r|

a � V τ .
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IV. MOVING PARTICLE EXTRACTOR AND MOVING
DETECTORS

We proceed to consider a moving detector or particle
extraction from the system. Note, that these processes are
nonunitary. In this section we establish the comoving steady
state for this problem. In particular, we show that in marked
contrast with a moving potential, a moving detector at half-
filling does not generate a wake because of particle-hole
symmetry.

We assume that the detection or extraction process is dom-
inant when the tip is at a given site, but quickly weakens
as the tip moves away from that site. It is therefore natural
to discretize the process in such a way that we have a dis-
turbance at a given site, followed by a free evolution of the
system during a time τ that the tip is traveling to the next site
on its trajectory. The appropriate transformation rules K(G)
for detection and extraction are given in Eqs. (6) and (8),
respectively. If we allow for pure detection to happen with
probability p (associated with the efficiency of the detector)
and similarly extraction protocol with probability q, we can
combine them, together with the free evolution U = e−iτH0

into the general form

G → K(G)

= KU [(1 − p − q)G + pKdetect(G) + qKextract(G)], (36)

which can be written as

G → K(G) = U †[G − γ {G, P} + ξPGP]U, (37)

where ξ = 2p + ε2q, γ = p + εq, {G, P} ≡ GP + PG indi-
cates the anticommutator, and P is the projection onto a site
r0 where the tip acts. In particular, pure detection will be
described by q = 0, hence γ = p and ξ = 2p.

In the next sections we work under the assumption that
p, q � 1 and hence γ � 1. The comoving steady-state equa-
tion (11) now reads

〈k|S†U †[G − γ {G, P} + ξPGP]US|k′〉 =〈k|G|k′〉. (38)

Written explicitly in momentum space we have

eiaw·(k−k′ )eiτ [ε(k)−ε(k′ )]{〈k|G|k′〉 − γ 〈k|{G, P}|k′〉
+ ξ 〈k|PGP|k′〉} = 〈k|G|k′〉.

Assuming that γ � 1, G ≈ G0 + δG, with δG being a small
correction, and zero temperature, we find that the local density
variation is given by

〈r|δG|r〉 = γ a4

(2π )4

∫∫ π/a

−π/a
dkdk′R(k, k′, w)ei(r0−r)·(k−k′ )

×
[
ξρ f

γ
− 
[ε f − ε(k)] − 
[ε f − ε(k′)]

]
,

(39)

where ρ f is the density of fermions in G0 (i.e., the diagonal
of the G0 matrix). Note, that like in the potential case, the
term R in Eq. (39) implies that Eq. (23) still characterizes a
dominant region for the integral. However, Eq. (39) has two
added difficulties when compared with the moving potential
case Eq. (16). First, we no longer have the helpful constraint
that τ [ε(k) − ε(k′)] ≈ 0. Second, ε(k) and ε(k′) can now

FIG. 7. Density plot of a wake developing following a fermion
extraction site moving at α = 1.7. The pictures show a steady state
in the comoving frame.

be on the same side of ε f as well as on the opposite side.
Nonetheless, in numerical experiments we observed that the
geometry for a moving potential, Eq. (35), does appear to
also match with the wake patterns of a moving detector and
extractor, as can be observed, e.g., by comparing the wake
pattern Fig. 4 to the extractor pattern Fig. 8.

By iterating the evolution equation for the two point func-
tion G, the wake pattern can be generated numerically. For
the case of a particle removal site moving through a half-filled
Fermi sea we obtain the images shown in Figs. 7 and 8. The
geometry of the wake patterns is similar to the ones described
for the moving potential Fig. 4, however, the density variation
is always negative due to the depleted particles.

A. Moving detector at half-filling

Particle detection at half-filling shows marked contrast
with the density wake due to a moving potential. Indeed,
due to particle hole symmetry it leaves the average density
profile, namely the diagonal of G unchanged. On the other
hand, a potential perturbation breaks particle-hole symmetry
and generates the density wake described above.

In fact, we can establish a stronger property, namely,

〈r|δG|r〉μ + 〈r|δG|r〉−μ = 0, (40)

where 〈r|δG|r〉μ is obtained by successive applications of K
from Eq. (36) on an initial state G0 = 1

1+eβ(H−μ) , with q = 0,
using an arbitrary choice of measuring site at each step, and
in the end subtracting G0. In other words, changing the sign
of the chemical potential changes the sign of the wake.

An immediate consequence of Eq. (40) is that at the point,
where our many-body Hamiltonian has particle-hole symme-
try, namely μ = 0, i.e., at half-filling:

〈r|δG|r〉μ=0 = 0, (41)

FIG. 8. Density plot for varying speeds of a moving particle
extractor at half-filling. From left to right, speed α = 1.7, 1.0, and
0.7, respectively.
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FIG. 9. Density plots of a detector moving through a Fermi sea
at several filling fractions. From left to right, the detector is moving
at α = 1.7 for quarter-filling, half-filling, and three-quarter-filling,
respectively. The color bar has the same scale but different offset
(centered around the initial filling fraction).

i.e., there should be no wake pattern created by a moving
detector. This is shown in Fig. 9 by comparing a detector
moving through a half-filled versus a quarter-filled Fermi sea.
The image also shows how the quarter-filled wake is opposite
in sign to the wake generated in the Fermi system at three-
quarter-filling.

A full nonperturbative proof of the remarkable relation
Eq. (40) is presented in the Appendix. Here for simplicity
we establish Eq. (40) starting from the (zero temperature)
perturbative result Eq. (39) with εF = μ and ξ = 2γ . Note
that the sum 〈r|δG|r〉μ + 〈r|δG|r〉−μ is given by Eq. (39) with
the term in brackets replaced with

2 − 
[μ − ε(k)] − 
[μ − ε(k′)]

− 
[−μ − ε(k)] − 
[−μ − ε(k′)], (42)

where we used that ρ f (εF ) + ρ f (−εF ) = 1.
Now consider the following map reflecting points about the

Fermi surface:

k → M(k) ≡ (−1b,−11+Q)
π

a
− k, (43)

where Q is the quadrant number and b = 0 if in quadrants
1 or 2 and b = 1 in quadrants 3,4. Note that ε[M(k)] =
−ε(k), and that exp{ir · [M(k) − M(k′)]} = exp[−ir · (k −
k′)] thus, the real part of R(k, k′, w)ei(r0−r)·(k−k′ ) in Eq. (39) is
symmetric under such a transformation. On the other hand, the
bracket term Eq. (42) is antisymmetric under the map M. The
result of k, k′ integrations will therefore vanish, establishing
Eq. (40).

B. “Fluctuation” wake

The above results suggest at first glance that there is no
effect of the detector at half-filling. In fact, this is not the case.
While the moving detector does not affect the average density
at half-filling, it does perturb correlations, and thus may be
observed through fluctuations. For example, such correlations
may be observed by looking at the number of particles in
a mode a†

A(r) ≡ 1√
A

∑
r′−r∈A a†

r′ , representing an equal weight
superposition in a region lattice neighborhood A of a point r.
We have

nA(r) ≡ 〈a†
A(r)aA(r)〉 = 1

|A|
∑

r′r′′∈(A+r)

Gr′r′′

= 1

|A|
∑

r′′r′∈(A+r)

G0r′r′′ + 1

|A|
∑

r′r′′∈(A+r)

δGr′r′′ . (44)

FIG. 10. Density of particles in a spatially spread mode centered
around each lattice site [given by nA(r) as defined in Eq. (44)]
following a moving detector at half-filling. Here α = 1.7.

We will focus on A being the set of nearest neighbors: an
example of the wake in the density of the nA(r) is then shown
in Fig. 10. That this wake may be nonzero can be observed by
generalizing Eq. (39) for off-diagonal elements. In this case,
the only change to Eq. (39) is that e−ir·(k−k′ ) → e−i(r·k−r′ ·k′ ).
Now, combining Eqs. (39) and (44), we find

e−i(r·k−r′ ·k′ ) → e−ir·(k−k′ )
∑

q,q′∈κ

e−iqa+iq′a

= e−ir·(k−k′ )
(

1 − ε(k)

thop

)(
1 − ε(k′)

thop

)
,

(45)

where κ = {0, kx, ky,−kx,−ky}.
Note that Eq. (45) is not symmetric under a reflection of

ε(k), ε(k′) about the Fermi energy. This implies that, unlike
the diagonal of Grr , the wake generated for the modes like A
for a detector are nonzero.

A couple of remarks are in order.
(1) While we focused here on the density of the a†

A modes
as an indicator of correlations, more natural quantities for
an experimental consideration are density-density correlations
and number fluctuations in the region A. A preliminary check
shows that such number fluctuations will also exhibit a wake,
which can be studied by considering the four-Fermi correla-
tion generalization of Eqs. (4) and (6), which give a closed
hierarchy of four point functions. This calculation will be
presented in a future work.

(2) A moving detector at half-filling is an interesting ex-
ample of a “hierarchy” of steady states. In this hierarchy,
the local average density or “diagonal” of G at half-filling is
steady for any path a detector makes and is thus in a steady
state. However, the correlations depend on the trajectory of
the detector and would, in general, not be in a steady state,
moreover the many-body density matrix would not be in a
steady state. It is not hard to construct examples where G is
in a steady state, while the many-body density matrix is time
dependent.
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FIG. 11. Density plots of potential (top) and extraction (bottom)
wakes at half-filling over varying temperature. From left to right

T
thop

= 0, 1, and 10.

V. FINITE TEMPERATURE STATES

In this section we analyze the effect of a nonzero temper-
ature of the system on our moving disturbances. We assume
that the system is prepared initially at finite temperature, and
we neglect thermal dissipation on the time scale of the mo-
tion of our disturbances. We find that at a generic filling the
amplitude of the wakes are decreased, as may be expected
on general grounds, i.e., with increased density fluctuations
of the background. These results are shown in Figs. 11 and
12. Furthermore, we find that, at ρ f = 1

2 , a moving detector
continues to produce no wake at finite temperature. Perhaps
the most surprising effect we find is that the extractor wake
at half-filling is temperature independent. This behavior is
striking when compared to the moving potential source, see
Fig. 11.

At finite temperature, 〈k|G0|k′〉 = δkk′F [ε(k)] instead of
δkk′
(ε f − ε(k), where F [ε(k)] is the Fermi-Dirac distribu-
tion. We find that the finite temperature steady states, are
simply obtained by replacing the step functions in Eqs. (16)
and (39) by Fermi-Dirac functions F [ε(k)].

Thus, the steady state of δG for a moving potential source,
Eq. (16), becomes

〈r|δG|r〉 = V τa4

(2π )4

∫∫ π/a

−π/a
dkdk′A(k, k′)R(k, k′, w)

× ei(r0−r)·(k−k′ ){ F [ε(k)] − F [ε(k′)]}, (46)

FIG. 12. Density plots of detection wakes at quarter-filling and
varying initial temperature. From left to right T

thop
= 0, 1, and 10.

while for detection/extraction at finite temperature, Eq. (39)
becomes

〈r|δG|r〉 = γ a4

(2π )4

∫∫ π/a

−π/a
dkdk′R(k, k′, w)ei(r0−r)·(k−k′ )

×
[
ξρ f

γ
− F [ε(k)] − F [ε(k′)]

]
. (47)

We can understand the temperature independence of the
moving extractor at half-filling as follows. Consider the dif-
ference between the moving extractor and moving detector
steady-state equations [Eq. (47) with ξ = 2γ and ξ = γ , re-
spectively], we find

〈r|δGdet|r〉 − 〈r|δGextr|r〉

= γ a4

(2π )4

∫∫ π/a

−π/a
dkdk′R(k, k′, w)ei(r0−r)·(k−k′ )ρ f . (48)

Note that Eq. (48) depends only on the density ρ f . Therefore
the difference Eq. (48) is independent of temperature if tem-
perature is varied at a fixed density. Since detection creates
no wake when ρ f = 1

2 at any temperature, this implies that a
moving particle extractor is temperature independent at ρ f =
1
2 . The result above, Eq. (48), that the difference between the
detector and extractor wakes is temperature independent has
been done perturbatively in δG for illustration purposes. In
fact, it is possible to establish that

d

dT
(〈r|Gdet|r〉 − 〈r|Gextr|r〉) = 0, (49)

where Gdet, Gextr are the nonperturbative steady states for a
moving detector and extractor, respectively, as derived in the
Appendix. This result matches simulations of the moving
particle extractor as shown in Fig. 11. We note, in passing, that
numerical checks show that the fluctuation wake is tempera-
ture dependent at half-filling, even though there is no detector
wake.

VI. DISCUSSION OF EXPERIMENTAL REALIZATIONS

Here we consider a setup where the wakes may be explored
in experiments with ultracold 6Li fermions in optical lattices.
Quantum gas microscopes with single-particle and single-site
resolution can directly observe the wake structure, as follows.
The disturbance can be created by a focused laser beam with a
waist on the order of the lattice spacing by employing a high-
resolution objective [35]. Experimental system sizes of more
than 30 × 30 lattice sites have been realized for fermions [26].
We checked by numerical simulations that using a Gaussian

FIG. 13. A Gaussian potential at half-filling and α = 1.7. From
left to right, the standard deviation of the Gaussian in terms of lattice
spacing a is point potential 0.5a and a.
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FIG. 14. A Gaussian potential at half-filling, α = 1.7, and 0.5a
standard of deviation where a is the lattice spacing. Left is a Gaussian
starting directly on lattice site (8,15). Right is a Gaussian starting
in-between lattice sites at (8.3,15.6).

smeared potential instead of a point potential does not signifi-
cantly alter wake geometry. Moreover, the wake pattern is not
significantly changed if the initial Gaussian is not centered on
a lattice site.

Because of the light mass of 6Li the timescales for Hubbard
physics are still convenient for lattice spacing of approxi-
mately 1 μm [24] leading to moderate requirements of the
objective (NA >0.5). A dynamically movable disturbance
can be implemented, for example, by piezoactuated mirror
mount or an acoustooptical deflector. An experimental run
will then start with the preparation of a two-dimensional
Fermi-Hubbard system and the movement of the focused laser
beam through this system up to a certain position. Finally, the
system is frozen by increasing the lattice depth and then im-
aged via fluorescence imaging. A single realization does not
contain enough information to extract the details of the wake
pattern. Reaching a density resolution of about 2% requires
averaging about 2500 experimental realizations (1/

√
n) while

keeping track of the final position of the disturbance. The re-
quired precision and amount of data are comparable to recent
experiments at existing quantum gas microscopes [24,34].
The parameter τ is proportional to the duration of beam mo-
tion, which should be compared to the hopping energy thop.
It is possible to swipe the beam at different rates to obtain

values of α spanning the full range from the slow-moving
D-wave-like wakes to the disappearance of the disturbance at
high speeds. We remark that in a finite optical lattice setting,
the large-scale wake pattern may not have enough time to
develop if the speed is such that the comoving steady state
cannot be effectively reached.

We note that all three types of disturbances can be imple-
mented in experiments. A moving potential can be created by
a far-detuned laser beam. A moving detector can be realized
by a near-resonant laser beam. Scattering of photons at low
intensity leads in good approximation to a measurement of
the on-site particle density. Last, a particle extractor can be
implemented via a defocussed red-detuned optical dipole trap.
Caused by the out-of-plane minimum in the potential, atoms
will be sucked out-of-plane and will be lost in the experiment.

Beyond cold atoms, we expect the effects we predict to also
hold in other systems which can be well described by nonin-
teracting fermions. We note that, for spin-polarized fermions
contact-interactions are suppressed at low temperatures and
dynamics is dominated by the effects of Pauli exclusion, mak-
ing our approach particularly effective in this case. Moreover,
we emphasize that our treatment is essentially exact, and thus
can provide a benchmark for studies of the perturbative effect
of interactions.

It is also important to note that while the present discussion
is focused on noninteracting systems, the formalism presented
in Ref. [30] is valid also for systems prepared in an interacting
state, as long as the subsequent step of unitary evolution while
the tip is traveling between sites is well approximated by non-
interacting evolution. Thus, a system prepared in a strongly
correlated state, such as a Mott insulator, for example, that
undergoes a quantum quench where interactions are turned
off will still be described by the current method.
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APPENDIX A: STEADY-STATE EQUATIONS

1. Moving potential

Here we explain the iterative equations for the two-point correlation functions and the density in the case of noninteracting
evolution. We start with the case of a system interacting with an external potential, no measurements or change in particle number
is involved, and so the evolution is unitary. In this case, the evolution of the system’s many-body density matrix is driven by the
Schrödinger equation

∂tρ(t ) = − i

h̄
[H(t ), ρ(t )], (A1)

where H(t ) is the many-body Hamiltonian. For the two-point correlation function, defined as

Grr′ (t ) = 〈a†
rar′ 〉 = Tr[ρ(t )a†

rar′ ], (A2)

it follows that

∂t Grr′ (t ) = − i

h̄
Tr{[H(t ), ρ(t )]a†

rar′ } = − i

h̄
Trρ(t )[a†

rar′ ,H(t )]. (A3)

For a general interacting Hamiltonian, the equation above is very complicated and ∂t Grr′ (t ) involves high-order correlations
through the right-hand side of the equation, and we do not have a closed equation for the matrix G.
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In the case where particles are noninteracting fermions (for example, neutral fermionic atoms, or when electron-electron
interactions are screened), a closed equation for G is available. In such a situation, the Hamiltonian is quadratic in
creation/annihilation operators, i.e., of the form H(t ) = ∑

xy Hxy(t )a†
xay. Using the cannonical anticommutation relations

{a†
x, ay} = δxy and {ax, ay} = 0, the commutator in the equation of motion for G is of the form

[H(t ), a†
rar′ ] =

∑
xy

Hxy(t )[a†
xay, a†

rar′ ] =
∑

xy

Hxy(t )(δyra†
xar′ − δxr′a†

ray), (A4)

leading to

∂t Grr′ (t ) = i

h̄
Trρ(t )[H(t ), a†

rar′ ] = i

h̄

∑
x

Hxr(t )Trρ(t )(a†
xar′ ) − i

h̄

∑
y

Hr′y(t )Trρ(t )(a†
ray) (A5)

= i

h̄

∑
x

Hxr(t )Gxr′ (t ) − i

h̄

∑
y

Hr′y(t )Gry(t ) = i

h̄
{[HT (t ), G(t )]}rr′ , (A6)

yielding a closed equation for G. In particular, the local density at point r which is Grr(t ) evolves as

∂t Grr(t ) = i
h̄ {[HT (t ), G(t )]}rr. (A7)

It is important to note that this equation is not a closed equation for the density since it involves of-diagonal terms in G, thus
to find the evolution of the density, the full Eq. (A5) must be solved. For a real Hamiltonian, as discussed in this paper, this
equation is solved for any time τ by

G(t + τ ) = T e
i
h̄

∫ t+τ

t H (s)dsG
(
T e

i
h̄

∫ t+τ

t H (s)ds
)† = KU (G), (A8)

as described in Eq. (4).
The discrete-time comoving steady-state equation on the lattice G = S†K(G)S, Eq. (11), states that as the potential (or another

type of disturbance) moves to the next lattice site, G remains invariant, up to a shift of the coordinates comoving with the
disturbance. Written explicitly in coordinate representation, Eq. (11) reads Grr′ = [S†K(G)S]rr′ , or, equivalently, using that for
momentum states S |k〉 = e−iaw·k |k〉, we have

Gkk′ = [S†K(G)S]kk′ = eiaw·(k−k′ )[K(G)]kk′. (A9)

Let us write G = G0 + δG, where G0 is the initial steady state before turning on the traveling perturbation. Using the form (A8),
taking the Hamiltonian H between steps to be of the form H0 + V , the steady-state equation (A9) is explicitly given by

eiaw·(k−k′ )〈k|eiτ (H0+V )(G0 + δG)e−iτ (H0+V )|k′〉 = 〈k|G0 + δG|k′〉. (A10)

Note that at this no approximation has been made up to this point. Since we are only perturbing the free evolution by a local
potential, we can assume the steady state G will be close to the steady state of free evolution G0, and thus δG is assumed a small
perturbation. To proceed, we now use perturbation theory in Eq. (A10), by expanding to lowest order in V . Namely, we use the
expansion

e−iτ (H0+V ) ≈ e−iτH0 + ie−iτH0

∫ τ

0
dseisH0Ve−isH0 , (A11)

and keep terms up to linear order in V and in δG. The resulting equation is

eiaw·(k−k′ ){〈k|G0|k′〉 + 〈k|eiτH0δGe−iτH0 |k′〉 + 〈k|eiτH0

(
i
∫ τ

0
dseisH0 [G0V ]e−isH0

)
e−iτH0 |k′〉} (A12)

= 〈k|G0|k′〉 + 〈k|δG|k′〉. (A13)

Next we note that without the perturbation, G0 is assumed to be a steady state of free evolution. Since H is transnational invariant,
G0 can be taken to be diagonal in momentum space, therefore we can set (eiaw·(k−k′ ) − 1)〈k|G0|k′〉 = 0. Doing the s integral

i
∫ τ

0
dseis[ε(k)−ε(k′ )] = eiτ [ε(k)−ε(k′ )] − 1

ε(k) − ε(k′)

we find

(
eiaw·(k−k′ )eiτ [ε(k)−ε(k′ )] − 1

)〈k|δG|k′〉 =
(
eiτ [ε(k)−ε(k′ )] − 1

)
eiaw·(k−k′ )eiτ [ε(k)−ε(k′ )]

ε(k) − ε(k′)
〈k|[G0V ]|k′〉. (A14)

At zero temperature

〈k|G0V |k′〉 = G0(k)〈k|V |k′〉 = 
(ε f − ε(k))
∑

r

〈k|r〉V (r)〈r|k′〉 (A15)

= V

vol

[ε f − ε(k)]eir0·(k−k′ ), (A16)
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where vol is the system volume. Thus,

〈k|δG|k′〉 = V
(
eiτ [ε(k)−ε(k′ )] − 1

)
eiaw·(k−k′ )eiτ [ε(k)−ε(k′ )]

vol[ε(k) − ε(k′)](eiaw·(k−k′ )eiτ [ε(k)−ε(k′ )] − 1)
eir0·(k−k′ ){ 
[ε f − ε(k)] − 
[ε f − ε(k′)]}. (A17)

Finally, density variation in the comoving nonequilibrium steady state is given by Fourier transforming Eq. (A17) back to real
space and taking the diagonal element

〈r|δG|r〉

= V τa4

(2π )4

∫∫ π/a

−π/a
dkdk′

[
eiτ [ε(k)−ε(k′ )] − 1

τ [ε(k) − ε(k′)]

][
1

1 − e−iaw·(k−k′ )e−iτ [ε(k)−ε(k′ )]

]
ei(r0−r)·(k−k′ ){ 
[ε f − ε(k)] − 
[ε f − ε(k′)]}.

(A18)

In experiments the point potential may be realized by a broader beam. As we are looking for far field wake patterns, we do not
expect local structure of the disturbance to have a significant effect. For example, if the point potential was instead Gaussian, the

term ei(r0−r)·(k−k′ ) in Eq. (A18) would be replaced by e− σ2

2 |k−k′|2+i(r0−r)·(k−k′ ) where σ 2 is the variance of the Gaussian potential.
Note, however, that when calculating the wake geometry we look far away from the potential source (|r0 − r| large) and also
need only to consider terms where |k − k′| is small since these k, k′ dominate the integral. Hence, we can safely neglect the

e− σ2

2 |k−k′|2 term so long as |r0 − r| � σ and thus find that the wake geometry of the Gaussian potential is equivalent to that of
the point potential. In Figs. 13 and 14 we simulate potential wakes for a selection of Gaussian potentials and find that the wake
geometry is indeed equivalent to that of the point potential.

2. Moving detection/extraction

The comoving steady-state equation reads G = S†K(G). Written explicitly in momentum space, using Eq. (36), we have

eiaw·(k−k′ )eiτ [ε(k)−ε(k′ )]{〈k|G|k′〉 − γ 〈k|{G, P}|k′〉 + ξ 〈k|PGP|k′〉} = 〈k|G|k′〉. (A19)

Assuming that γ � 1, G ≈ G0 + δG, and zero temperature,

γ 〈k|GP|k′〉 ≈ γ 〈k|G0P|k′〉 = γ

vol

[ε f − ε(k)]eir0·(k−k′ ). (A20)

Hence

γ 〈k|{G, P}|k′〉 ≈ γ

vol
eir0·(k−k′ ){ 
[ε f − ε(k)] + 
[ε f − ε(k′)]} . (A21)

Now turning to the PGP term,

〈k|PG0P|k′〉 = a2vol

(2π )2

∫
dq
[ε f − ε(q)]〈k|P|q〉〈q|P|k′〉 = a2vol

(2π )2
eir0·(k−k′ )

∫
dq
[ε f − ε(q)] = ρ f

vol
eir0·(k−k′ ) , (A22)

where ρ f is the density of fermions for G0.
Plugging Eqs. (A21) and (A22) into Eq. (A19), we get

〈k|δG|k′〉 = γ

vol

(
eiaw·(k−k′ )eiτ [ε(k)−ε(k′ )]

eiaw·(k−k′ )eiτ [ε(k)−ε(k′ )] − 1

)[
ξρ f

γ
− 
[ε f − ε(k)] − 
[ε f − ε(k′)]

]
eir0·(k−k′ ) . (A23)

Finally, the local density variation is given by

〈r|δG|r〉 = γ a4

(2π )4

∫∫ π/a

−π/a
dkdk′

(
1

1 − e−iaw·(k−k′ )e−iτ [ε(k)−ε(k′ )]

)
ei(r0−r)·(k−k′ )

[
ξρ f

γ
− 
[ε f − ε(k)] − 
[ε f − ε(k′)]

]
,

(A24)

which is Eq. (39) in the main text.

APPENDIX B: NONPERTURBATIVE RESULTS

In this section, we show that no detection wake is created at ρ f = 1
2 and that the difference between detection and extraction

is temperature independent even nonperturbatively.
We start by looking at a series of nonperturbative detections on G0. A single detection at site r and evolution for time τ is

G = UPrG0PrU
† + UP⊥

r G0P⊥
r U † ≡

∑
a={0,1}

Pa
r (τ )G0Pa

r (τ ) (B1)

since [U, G0] = 0 and where P0 ≡ P, P1 ≡ P⊥, and UPU † ≡ P(τ ).
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Hence, after doing a series of m measurements, we have

G =
∑

a1,a2,...,am

{[ ∏
n=m,m−1,...,1

Pan
rn

[(m − n + 1)τ ]

]
G0

[ ∏
n=1,2,...,m

Pan
rn

[(m − n + 1)τ ]

]}
. (B2)

Looking at the diagonal of G in real space and inserting a resolution of identity,
∫

dqn|qn〉〈qn|, to the right of every Pan
rn

sitting
in the first term in brackets in Eq. (B2) and inserting

∫
dq′

n|q′
n〉〈q′

n| to the left of every Pan
rn

sitting in the second bracketed term
in Eq. (B2) we find

〈r|G|r〉 ≡ ζm(μ) =
∫

dkdk′e−ir·(k−k′ )
∫

dQdQ′ ∑
a1,a2,...,am

{〈k|Pam
rm

(τ )|qm〉〈qm|Pam−1
rm−1

(2τ )|qm−1〉 . . .

× 〈q2|Pa1
r1

(mτ )|q1〉〈q1|G0|q′
1〉〈q′

1|Pa1
r1

(mτ )|q′
2〉 . . . 〈q′

m|Pam
rm

(τ )|k′〉}, (B3)

where μ is the chemical potential. Now, focusing on only terms directly dependent on q1, q′
1 and denoting all other terms by B,

we find

ζm(μ) = B
∫

dq1dq′
1

∑
a1

〈q2|Pa1
r1

(mτ )|q1〉〈q1|G0|q′
1〉〈q′

1|Pa1
r1

(mτ )|q′
2〉

= B
∫

dq1

∑
a1

〈q2|Pa1
r1

(mτ )|q1〉Fμ(ε(q1))〈q1|Pa1
r1

(mτ )|q′
2〉

= B
∫

dq1eimτ

[
ε(q2 )−ε(q′

2 )]Fμ(ε(q1))[δq1q2δq1q′
2
+ eir1·(q2−q′

2 )
(
2 − δq1q2 − δq1q′

2

)]
= ζm−1(μ) + B

∫
dq1eimτ [ε(q2 )−ε(q′

2 )]Fμ(ε(q1))eir1·(q2−q′
2 )
(
2 − δq1q2 − δq1q′

2

)
= ζm−1(μ) + Beimτ [ε(q2 )−ε(q′

2 )]eir1·(q2−q′
2 ){2ρ f − Fμ[ε(q2)] − Fμ[ε(q′

2)]}. (B4)

Now, we look at ζm(μ) + ζm(−μ) in a way analogous to Eq. (42) in the main text. Here we find

ζm(μ) + ζm(−μ) = ζm−1(μ) + ζm−1(−μ)

+ B{eimτ [ε(q2 )−ε(q′
2 )]eir1·(q2−q′

2 ){2 − Fμ[ε(q2)] − Fμ[ε(q′
2)] − F−μ[ε(q2)] − F−μ[ε(q′

2)]}}. (B5)

Note that the real part of the term in braces in Eq. (B5) is antisymmetric under the transformation q → M(q), where q here
represents all qn, q′

n, k, and k′. Let us now look at the term B. Note, explicitly,

B =
∫

dQ1dQ′
1e−ir·(qm+1−q′

m+1 )
∑

a2,...,am

∏
n=m+1,m,...,2

〈qn|Pan−1
rn−1

[(m − n + 2)τ ]|qn−1〉〈q′
n−1|Pan

rn−1
[(m − n + 2)τ ]|q′

n〉 (B6)

where dQ1 and dQ′
1 are defined by

∏
n=2,...,m+1 dqn and

∏
n=2,...,m+1 dq′

n, respectively. Also, here we define qm+1 ≡ k and
q′

m+1 ≡ k′.
Simplifying B, we find

B =
∫

dQ1dQ′
1e−ir·(qm+1−q′

m+1 )
∏

n=m+1,m,...,2

ei(m−n+2)τ [ε(qn )−ε(qn−1 )+ε(q′
n−1 )−ε(q′

n )]

× [δqnqn−1δq′
nq′

n−1
− eirn−1·(qn−qn−1 )δq′

nq′
n−1

− eirn−1·(q′
n−1−q′

n )δqnqn−1 + 2eirn−1·(qn−qn−1 )eirn−1·(q′
n−1−q′

n )]. (B7)

It can now be seen from Eq. (B7) that B is symmetric under the transformation q → M(q). Since B is symmetric and the
term in braces in Eq. (B5) is antisymmetric, we find

ζm(μ) + ζm(−μ) = ζm−1(μ) + ζm−1(−μ). (B8)

Thus, ζm(μ) + ζm(−μ) = ζ0(μ) + ζ0(−μ) = 1 and

〈r|G|r〉μ = 1 − 〈r|G|r〉−μ, (B9)

i.e., the detection wake for a chemical potential of μ is one minus the detection wake for a chemical potential of −μ. Hence
when μ = 0 there is no detection wake. We emphasize that this result assumed no particular path for the moving detector.

Turning to a moving extractor, note that for the difference between the extractor and detector wake, we get Eq. (B2) where
we set a1, a2, . . . , am = 0. Thus, Eq. (B5) becomes

ζm = B
∫

dq1eimτ [ε(q2 )−ε(q′
2 )]δq1q′

1
F [ε(q1)]eir1·(q2−q′

2 ) = Beimτ [ε(q2 )−ε(q′
2 )]eir1·(q2−q′

2 )ρ f . (B10)
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Hence, the difference between a moving detector and moving extractor is temperature-independent nonperturbatively. Similar
to the perturbative case, this implies that a moving particle extractor at ρ f = 1

2 is temperature independent. Again, note that we
have assumed no particular path for our moving particle extractor.
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