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Role of multiple scattering in single particle perturbations in absorbing random media
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Speckle patterns produced by disordered scattering systems exhibit a sensitivity to addition of individual
particles, which can be used for sensing applications. Using a coupled dipole model we investigate how multiple
scattering can enhance field perturbations arising in such random-scattering-based sensors. Three distinct
families of multiple scattering paths are shown to contribute and the corresponding complex enhancement factors
derived. Probability distributions of individual enhancement factors over the complex plane are characterised
numerically within the context of surface plasmon polariton scattering in which absorption is shown to play an
important role. We show that enhancements become more strongly dependent on individual scatterer properties
when absorption losses are larger, however, amplitude enhancements ∼102, comparable to low-loss surface
plasmons, are achievable through sensor optimisation. Approximate analytic expressions for the complex mean
enhancements are also found, which agree well with simulations when loop contributions are negligible.
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I. INTRODUCTION

Use of optical scattering for detection and measurement
is a powerful and widespread approach underpinning tech-
niques such as interferometric scattering microscopy (iSCAT)
[1], dynamic light scattering [2], and diffusing wave spec-
troscopy [3]. This phenomenon has seen extensive application
in the biological sciences and environmental monitoring, in
turn driving development of scattering-based sensors. As
sensitivity gains have been made, so sensing has moved
from monitoring of bulk properties to detection of individ-
ual nanometer-sized analyte particles, such as virions and
proteins [4]. Such small dimensions however mean particles
only scatter weakly, hence, presenting a major challenge.
To mitigate this issue strongly confined fields, which can
enhance light-matter interactions, have been employed, for
example, using high-Q optical resonators [5], photonic crys-
tals [6], and nanoapertures [7]. Plasmonic systems, supporting
localized or propagating surface plasmon-polaritons (SPPs),
are also particularly attractive for sensing, since in addition
to confining optical fields they can be easily implemented
on chip scale devices, are biocompatible, allow operation in
aqueous/microfluidic environments and can exploit the exist-
ing wealth of functionalization protocols required to maintain
specificity [8,9]. Accordingly, SPPs have found applications
in numerous sensing and particle tracking setups [10–15].

Interferometric plasmonic systems provide one route to
yet further sensitivity gains [16–20] by leveraging coher-
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ent detection. Alternatively, nanostructured sensors, such as
nanoparticle arrays, aperiodic gratings, and randomly disor-
dered substrates [21–25] have also shown significant promise.
Random scattering, in particular, affords numerous opportu-
nities in sensing by virtue of the diverse range of phenomena
that can occur. For example, depending on the degree of
multiple scattering (as parametrized by the scattering mean
free path), scattering can give rise to long- and short-range
correlations, weak and strong (Anderson) localization and
fluctuations in the local density of states. A substantial amount
of work has been dedicated to study such phenomena in
both the optical [26–31] and plasmonic domains [32–38]
over the years. Indeed, exploitation of random scattering
has a rich track record in optics. For example, correlations
present in the speckle patterns have been used for refractive
index sensing, spectrometry, and imaging [39–42]. Speckle
patterns generated by disordered multiple scattering environ-
ments have also been shown to depend on the properties
of individual scatterers [43,44], such as their position, ef-
fective charge or orientation [45–47], whilst also providing
enhanced sensitivity as compared to single scattering envi-
ronments [48]. Approaches to extract the position of a single
scatterer accounting for multiple scattering effects have thus
been developed, for example, based on diffusive models of
light propagation [49] or extension of single scattering holog-
raphy localization techniques [50,51]. Recent advances in
machine learning moreover present further opportunities to
extract information from randomly scattered light, since such
approaches do not require a detailed physical model and are
hence applicable across a broad range of scattering regimes
[52–54].

In plasmonics, random scattering has also seen employ,
for example, in light harvesting, super-resolution imaging and
sensing [25,55–58]. Absorption associated with Ohmic losses
in metals is, however, intrinsic to plasmonic systems [59].
For resonance tracking-based sensors, absorption broadens
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the resonance lineshape and thus limits sensitivity. Statistical
properties of speckle patterns in absorbing multiple scatter-
ing environments can however also be affected, for example,
absorption can give rise to non-Rayleigh intensity statistics,
as well as generate nonuniversal and reduced correlations
[37,60–62]. In this paper, we address the open question as to
how absorption affects sensitivity in random-scattering-based
particle sensing. Particular emphasis is placed on surface-
plasmon-based setups due to their prevalence and capabilities
in this domain. To address this question, in Secs. II A and
II B we first derive three enhancement factors, arising from
three distinct categories of multiple scattering paths, which
describe the effect of multiple scattering on the electric field
perturbation caused by the presence of an additional analyte
particle. We recently studied the amplitude of these enhance-
ment factors in the context of multiple scattering of SPPs
[48] by randomly distributed scatterers on a metal surface,
however, here we study the full probability distribution of the
enhancements on the complex plane, including phase effects.
Approximate analytic results for the mean enhancement fac-
tors are derived in Sec. II C, before numerical results are given
in Sec. III. The dependence of the achievable enhancements
and the associated probability distributions on absorption loss
is detailed in Sec. III B. In particular, through consideration of
the role of scattering phase, propagation phase, and absorption
we identify a nontrivial dependence of the mean enhancement
on tunable properties of the scattering configuration. This
dependence is explored as a route to sensor optimisation in
Sec. III C. As such the insights gained in this paper allow us
not only to understand the interplay of absorption and multiple
scattering upon addition of an analyte particle, but also to
guide future development of optimal random SPP sensors.

II. THEORY

A. Coupled dipole model

The disordered scattering system we shall study is a col-
lection of N coupled point dipole scatterers [63–65], situated
in an environment with background dielectric function ε(r).
A Green’s tensor G(r, r′) can be defined for this system as the
solution to Maxwell’s wave equation

∇ × ∇ × G(r, r′) − ε(r)k2
0G(r, r′) = Iδ(r − r′), (1)

where k0 = ω/c = 2π/λ0, ω is the angular frequency, c is the
speed of light, λ0 is the wavelength in vacuum, and I is the 3 ×
3 identity matrix. When the point scatterers are illuminated
with a monochromatic incident electric field E0(r), the total
electric field E(r) at position r is

E(r) = E0(r) + k2
0

ε0

N∑
j=1

G(r, r j )p j, (2)

where r j , α j and p j = α jEexc(r j ) are the position, dressed
polarizability, and dipole moment of the jth scatterer, re-
spectively, and Eexc(r j ) = E0(r j ) + ∑

i �= j G(r j, ri )pi is the
exciting field incident on the jth dipole, consisting of the
incident field and the field from all other dipoles [63,66].
Notably, α j includes the effect of self-interactions (e.g., due
to reflections from the background medium). From Eq. (2) we

can construct the set of linear equations

N∑
j=1

Mi j p j = p0,i, (3)

for i = 1, 2, . . . N , where p0,i = αiE0(ri ) is the dipole mo-
ment induced by the incident field in the ith scatterer, the
matrix elements Mi j are defined by

Mi j =
{

I i = j

− k2
0

ε0
αiGi j i �= j,

(4)

for i, j = 1, 2, . . . N , and Gi j = G(ri, r j ). Once Eq. (3) is
solved for the N dipole moments, the field at any point can
be calculated using Eq. (2). Throughout this analysis, we con-
sider scattering of a vector field with corresponding Green’s
tensor, such that Mi j are the tensor elements of an N × N
matrix of tensors (or equivalently they are the 3 × 3 blocks
making up a 3N × 3N matrix), which we denote M. Our
analysis, however, is equally valid for scattering of a scalar
field, if G, αi, E, and pi are replaced with scalar equivalents,
in which case Mi j are the scalar elements of an N × N matrix.
For random positions ri the matrix M is a Euclidean random
matrix, the statistics of which have been studied, for example,
in the context of optical scattering and vibrational modes
of glasses [67–70]. Within the single scattering regime, the
off-diagonal terms describing coupling between the dipoles
are negligible such that Mi j ≈ Iδi j and pi ≈ p0,i.

B. Adding a scatterer

We now consider perturbing the scattering configuration
by introducing an additional point scatterer with polarizability
αN+1 at position rN+1. The perturbed system can be described
similarly to above yielding the set of coupled dipole equations∑N+1

j=1 M ′
i j p′

j = p0,i (i = 1, 2, . . . N + 1) in terms of the modi-
fied dipole moments p′

j . We note that the matrix elements M ′
i j

for the perturbed system are again given by Eq. (4) albeit the
indices i and j run from 1 to N + 1 (hence M ′

i j = Mi j , for
i, j � N). The new set of N + 1 dipole moments results in the
perturbed field E ′ [cf. Eq. (2)]:

E ′(r) = E0(r) + k2
0

ε0

N+1∑
j=1

G(r, r j )p′
j . (5)

Accordingly, the perturbation to the field δE = E ′ − E caused
by the addition of the scatterer is hence

δE(r) = k2
0

ε0
G(r, rN+1)pN+1 + k2

0

ε0

N∑
j=1

G(r, r j )δp j, (6)

where δp j = p′
j − p j is the perturbation to the jth dipole

moment and, since there is no (N + 1)th scatterer in the
unperturbed system, we have dropped the prime from pN+1.
The first term of Eq. (6) corresponds to the field scattered
by the added dipole pN+1, whereas the second term arises be-
cause multiple scattering introduces dipole coupling whereby
the presence of the additional scatterer modifies the N initial
dipole moments. In the single scattering regime, the coupling
between dipoles is negligible so that δpi = 0 and the second
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term vanishes. Similarly, pN+1 = p0,N+1 such that the single
scattering perturbation δEss(r) reduces to

δEss(r) = k2
0

ε0
G(r, rN+1)p0,N+1. (7)

The coupled dipole equations for the perturbed N + 1 scat-
terer system can be expressed in the form

N∑
j=1

Mi j (p j + δp j ) − k2
0

ε0
αiGi,N+1 pN+1 = p0,i, (8)

pN+1 − k2
0

ε0

N∑
j=1

αN+1GN+1, j (p j + δp j ) = p0,N+1. (9)

Using Eq. (3), Eq. (8) can in turn be rearranged to yield

δpi =
N∑

j=1

M−1
i j

k2
0

ε0
α jG j,N+1 pN+1, (10)

where M−1
i j is here used to denote the the (i, j)th 3 × 3 block

(corresponding to rows 3i − 2 to 3i and columns 3 j − 2 to 3 j)
of the inverse of the entire 3N × 3N matrix M, as opposed to
(Mi j )−1, the inverse of the 3 × 3 submatrix Mi j [similarly, in
the scalar case, it corresponds to the (i, j)th element of the
inverse of the N × N matrix M]. Substituting Eq. (10) into
Eq. (6) then gives

δE(r) = k2
0

ε0
G(r, rN+1)γ1(r)pN+1. (11)

where we have also defined the enhancement factor

γ1(r) = I + k2
0

ε0
G(r, rN+1)−1

N∑
i, j=1

G(r, ri )M
−1
i j α jG j,N+1.

(12)

Expressing δE as such allows comparison with the single
scattering result in Eq. (7). Specifically, it is evident that the
perturbation to the dipole moments of the N initial scatterers
from introduction of an additional scatterer is described by
the factor γ1. Equivalently, dipole coupling through multiple
scattering acts to modify the effective dipole moment of the
additional scatterer such that pN+1 → γ1(r)pN+1. The tensor
nature of γ1 reflects the fact that the polarization of the field
perturbation can be modified by multiple scattering. Similarly,
γ1 is a complex quantity, implying multiple scattering can
affect both the phase and amplitude of δE.

In addition to the dipole coupling captured in γ1, there re-
main further multiple scattering effects, which cause pN+1 �=
p0,N+1. Specifically, the local field experienced by the ad-
ditional scatterer is not solely dictated by the incident field
E0, but also contains a contribution from scattering of the
illumination field by the N initial scatterers. To demonstrate
this, we substitute Eqs. (10) and (3) into Eq. (9), which results
in

pN+1 = p0,N+1 + k2
0

ε0

N∑
i, j=1

αN+1GN+1,iM
−1
i j p0, j

+
(

k2
0

ε0

)2 N∑
i, j=1

αN+1GN+1,iM
−1
i j α jG j,N+1 pN+1. (13)

Rearranging for pN+1 yields

pN+1 =
[

I −
(

k2
0

ε0

)2 N∑
i, j=1

αN+1GN+1,iM
−1
i j α jG j,N+1

]−1

×
[

p0,N+1 + k2
0

ε0

N∑
i, j=1

αN+1GN+1,iM
−1
i j p0, j

]
. (14)

Defining two further enhancement factors allows δE to be
expressed as

δE(r) = k2
0

ε0
G(r, rN+1)γ1γ2γ3 p0,N+1, (15)

where

γ2 =
[

I −
(

k2
0

ε0

)2 N∑
i, j=1

αN+1GN+1,iM
−1
i j α jG j,N+1

]−1

, (16)

γ3 = I + k2
0

ε0

N∑
i, j=1

αN+1GN+1,iM
−1
i j

p0,i p
†
0,N+1

|p0,N+1|2
. (17)

Expressed in this way, it can be seen that the effect of mul-
tiple scattering is equivalent to changing the dipole moment
from p0,N+1 to γ1γ2γ3 p0,N+1. In general, as with γ1, the en-
hancement factors γ2 and γ3 are complex matrices, meaning
multiple scattering can change the phase, amplitude, and po-
larization of δE.

Each enhancement factor can be associated with a class of
multiple scattering paths involving the additional scatterer as
shown in Fig. 1. Firstly, the effect of rescattering of the field
as it propagates to the observation point r after being scattered
by the additional scatterer is accounted for by γ1. The factor
of α jG j,N+1 freely propagates the scattered field from rN+1 to
a scattering event at the jth scatterer, while M−1

i j propagates
the field from the jth scatterer to the ith scatterer via all pos-
sible scattering paths involving the initial N scatterers. Free
propagation from the ith scatterer to the observation point r is
then described by G(r, ri ). Secondly, the γ2 factor describes
the effect of loop scattering paths in which waves, after being
scattered by the additional dipole, return (possibly multiple
times) to the additional dipole via multiple scattering from the
N initial dipoles. As with γ1, a factor of M−1

i j α jG j,N+1 prop-
agates the scattered field from the additional scatterer to the
ith scatterer via all possible scattering paths not including the
additional scatterer. The factor of αN+1GN+1,i then propagates
the field back to the additional scatterer, from which it is scat-
tered again, completing the loop. Summing over the number
of loops yields a geometric series in terms of the single-loop
factor, and hence γ2 can be expressed as a matrix inverse. This
loop contribution is a self-interaction effect analogous to the
surface dressing of polarizability. Finally, γ3 accounts for the
effect of scattering of the incident field onto the additional
scatterer and therefore γ3 describes the hotspot effect [71,72].
The incident field at the jth scatterer is multiply scattered to
the ith scatterer, described by M−1

i j , and then propagated to the
additional scatterer at rN+1, as is described by the final factor
of αN+1GN+1,i.

Optical sensing often aims to detect particles at a sur-
face where functionalization of the surface can allow for
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FIG. 1. Example multiple scattering paths for each enhancement factor: (γ1, left) rescattering between scattering from the additional
particle and propagation to the observation point, (γ2, center) loop trajectories starting and ending on the additional scatterer, and (γ3, right)
multiple scattering of the illumination field onto the analyte particle.

specificity. For this reason, we shall henceforth consider
scattering configurations in which the N initial scatterers
are distributed over a planar surface at positions zi > 0.
Physically, the scatterers could hence correspond to sur-
face roughness features, bound receptors or nanoparticles, or
nanostructures fabricated on a substrate. We also assume that
the observation point r = (ρ, z) is taken in the far field as is the
case in most sensing setups, which allows the form of γ1(r) to
be greatly simplified. Specifically, the far field Green’s tensor
G∞ is proportional to the 2D Fourier transform of the near
field Green’s tensor G̃(q, z, r′) with respect to the transverse
position ρ = (x, y), i.e., [73]

G∞(r, ri ) = −ik cos θG̃(k‖, 0; ri )
eikr

r
, (18)

where k = nbk0 is the wavenumber in the far field, nb is the re-
fractive index at z, k‖ = (kx, ky) = k sin θ (cos φ, sin φ) is the
2D transverse component of the wave vector in the direction
of observation, and (r, θ, φ) are the standard spherical coor-
dinates of r. Under the assumption of translational invariance
in the transverse (x, y) plane and that the scatterers all lie in
the same bulk medium of dielectric constant εd , the far field
Green’s tensors for two different source positions are related.
If the observation point is on the same side (z > 0) as the
scatterers then

G∞(r, ri ) = (
Gdir

∞ (r, 0) + Gref
∞ (r, 0)e2ikzzi

)
e−i(k‖·ρi+kzzi ), (19)

whereas for observation points in the lower half space, for
example if a thin film substrate is used, then

G∞(r, ri ) = Gtr
∞(r, 0)e−i(k‖·ρ j+kzzi ), (20)

where kz = ±(εd k2
0 − k2

‖ )1/2, the upper (lower) sign is for
observation points above (below) the interface and Gdir

∞ , Gref
∞ ,

and Gtr
∞ are the direct, reflected, and transmitted components

of the Green’s tensor, respectively [73]. Under these assump-
tions, the Green’s tensors in Eq. (12) cancel with the inverse
Green’s tensor factor, resulting in

γ1(k‖) = I + k2
0

ε0

N∑
i, j=1

[
R±(zi, zN+1)e−ik‖·(ρi−ρN+1 )

× e−ikz (zi−zN+1 )M−1
i j α jG j,N+1

]
. (21)

The function R±(zi, zN+1) is derived in the Appendix. Im-
portantly, R−(zi, zN+1) = I for observation points z < 0 and
R±(zi, zi ) = I regardless of observation point. The remaining
two enhancement factors do not depend on the observation
point and thus do not differ between the far-field or near-field.

We have so far only considered the perturbation to the
electric field, however most experimental setups measure the
intensity of light, I = |E|2. The intensity perturbation δI =
|E ′|2 − |E|2 is therefore the typical signal in scattering-based
optical sensing, and can be related to the field perturbation
through

δI (r) = |δE(r)|2 + 2	[δE(r) · E∗(r)], (22)

where, in addition to the intensity of the perturbation δE,
there is a term corresponding to the interference between the
field perturbation and the initial field. If, as will typically be
the case for a large number of scatterers, |E| � |δE|, the
interference term dominates and the intensity perturbation can
be significantly larger than the dark-field case where only
the intensity scattered by the analyte particle is present. This
principle is central to iSCAT and related techniques [1,11,74],
but it is not a multiple scattering effect and can be achieved
equally well within a single-scattering regime (and indeed
typically is in iSCAT experiments), whether the interference
is with other scattered fields or an external reference field. As
such, this form of signal enhancement is independent of the
scattering regime and different to the enhancement mecha-
nisms we are considering. The phase difference between E
and δE is random in both the single- and multiple-scattering
regimes, so that the phase statistics of the interference term are
essentially identical. The primary difference in the statistics of
the interference term between single and multiple scattering
lies in the different amplitudes |δE|.

C. Mean enhancement factors

For any given scattering configuration the value of each
enhancement factor can be determined, however, it is valu-
able to characterise the distribution and average properties of
the enhancement factors over the ensemble of different ran-
dom configurations. In the following, the transverse positions
ρi of the initial scatterers are assumed to be independently
randomly distributed with uniform probability across a 2D
planar region of area L2 on the surface of a substrate, with
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the same height zi = zs for i � N . Furthermore, the initial
scatterers are assumed to be identical and to have the same
orientation relative to the surface, whereby αi = α for i � N .
Even for isotropic scatterers α may still be an anisotropic
tensor due to surface dressing effects, however since the N
scatterers are at the same height, the surface dressing effect
is identical for each scatterer. Note that the polarizability
αN+1 is not restricted and may be different to the background
scatterers. We do however limit attention to the case where
R±(zi, zN+1) = I since this matches our simulations below

and embodies all relevant physics in spite of the reduced math-
ematical complexity. Under these assumptions, 〈γ1〉, 〈S2〉, and
〈γ3〉 can be calculated analytically, where γ2 = (I − S2)−1 and
angled brackets denote averaging over realizations of the N
background scatterer positions ρi. It should be noted, owing to
the inverse relationship between γ2 and S2, their statistics have
a more complicated relationship than the relationship between
γ1,3 and the corresponding sum terms appearing in Eqs. (12)
and (17). Using Fourier analysis, γ1,3 and S2 can be expressed
as

γ1(k‖) = I + k2
0

ε0

∫
d2q

(2π)2
A(k‖, q)αG̃(q; zs, zN+1)e−ikz (k‖ )(zs−zN+1 ), (23)

γ3(E0) = I + k2
0

ε0

∫
d2q

(2π)2

d2q′

(2π)2
αN+1G̃(q; zN+1, zs)A(q, q′)αẼ0(q2; zs)eiq′·ρN+1

p†
0,N+1

|p0,N+1|2
, (24)

S2 =
(

k2
0

ε0

)2 ∫
d2q

(2π)2

d2q′

(2π)2
αN+1G̃(q; zN+1, zs)A(q, q′)αG̃(q′; zs, zN+1), (25)

where f̃ (q) denotes the 2D Fourier transform of f (ρ) such
that f (ρ) = ∫

f̃ (q)eiq·ρd2q/(2π)2 and the function A(q, q′) is
defined by

A(q, q′) =
N∑

i, j=1

e−iq·(ρi−ρN+1 )M−1
i j eiq′ ·(ρ j−ρN+1 ). (26)

In this form, the dependence of γ1,3 and S2 on the background
scatterer positions is entirely described by A, such that their
statistics are determined solely by the statistics of A. Accord-
ingly, the means of Eqs. (23)–(25) can be calculated from
〈A(q, q′)〉. In order to calculate 〈A〉, we use the Neumann
series (I − P)−1 = ∑∞

l=0 Pk to expand M−1
i j as M−1

i j = Iδi j +∑∞
k=1 Pk

i j where

Pk
i j =

(
k2

0

ε0

)k N∑
l1, l2, . . . , lk−1 = 1

li+1 �= li
l1 �= i

lk−1 �= j

αGil1αGl1l2αGl2l3 . . . αGlk−1 j . (27)

Physically, Eq. (27) shows how M−1
i j corresponds to a sum

over all scattering paths starting at the jth scatterer and ending
at the ith scatterer, with Pk

i j corresponding to the contribution
from all paths visiting exactly k scatterers. Each factor of
αGlili+1 propagates the field to the next scattering event. The
li+1 �= li exclusion arises because a scattering path does not
visit the same scatterer consecutively (as the self interaction is
accounted for in α). Inserting this expansion into A(q, q′), the
pth order contribution, denoted A(p)(q, q′) such that A(q, q′) =∑∞

p=0 A(p)(q, q′), is given by

A(p)(q, q′) =
(

k2
0

ε0

)p ∑
i, j, l1, l2,
. . . , lp−1

e−iq·(ρi−ρN+1 )αGil1αGl1l2αGl2l3

× . . . αGlr lr+1 . . . αGlp−1 je
iq′ ·(ρ j−ρN+1 ). (28)

where henceforth the limits and exclusions from the sums will
be left implicit. Replacing each Green’s tensor with its Fourier
decomposition allows the dependence on the scatterer posi-
tions to be included within an exponential factor as follows:

A(p)(q, q′) =
∫ p∏

b=1

d2qb

(2π)2

k2
0

ε0
αG̃(qb; zs, zs)

×
∑

i, j,l1,...,lp−1

e−iq·(ρi−ρN+1 )eiq1·(ρi−ρl1
)eiq2·(ρl1

−ρl2
)

× . . . eiqp·(ρlp−1
−ρ j )eiq′·(ρ j−ρN+1 ). (29)

The only random component of Eq. (29) is the exponential
factors. Regrouping the exponents so that each rli term is in
one exponential factor allows the sum to be rewritten as∑

i, j,l1,...,lp−1

ei(q1−q)·ρi ei(q2−q1 )·ρl1 . . . ei(qc+1−qc )·ρlc

× . . . ei(q′−qp)·ρ j ei(q−q′ )·ρN+1 . (30)

In general, there are terms in the sum in Eq. (30) where
li = l j even when i �= j, meaning each exponential factor is
not necessarily independent of the others and hence cannot
be averaged individually. Following a similar approach to that
taken in Ref. [69], we first consider only terms with no shared
indices, where each li is distinct. For these terms, each expo-
nential ei(qc+1−qc )·ρlc can be averaged independently from the
rest. Since there are p + 1 different scatterers in such terms,
there exist N (N − 1)(N − 2) . . . (N − p)) ≈ N p+1 terms in
the sum with no repeated scatterers. Averaging a general
function f (ρi ) over a scatterer position ρi corresponds to
the integral 〈 f (ρi )〉 = ∫

f (ρi )d
2ρi/L2. Therefore, averaging

over the p + 1 different scatterer positions gives a factor of
(L2)−(p+1), so that the contribution of these distinct scatterer
terms scales as np+1, where n = N/L2 is the areal scatterer
density. If we now consider the contribution of terms in the
sum with 1 repeated scatterer (corresponding to scattering
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paths involving loops), meaning p distinct scatterers are vis-
ited, choosing p scatterers out of N options gives N (N −
1) . . . (N − (p − 1)) ∼ N p such terms. In this case, averaging
over the p scatterer positions give (L2)−p, so that the con-
tribution of these single repeated scatterer terms to the total
sum is ∼np. It can be seen that the contribution of terms
with r repeated scatterers to the total sum in Eq. (30) scales
as np+1−r . While methods to calculate the contribution from
these loop paths exist [69], here we only take the leading order
terms in n, i.e., the no loop contributions where all the indices
i, j, l1, . . . , lp−1 are distinct. Within this approximation, in the
limit of large system size and scatterer number, L → ∞ and
N → ∞, while keeping the scatterer density n constant, the
identity 〈∑N

j=1 eiq‖·ρ j 〉 → n(2π)2δ(q‖) can be applied for each
summation index. After averaging, each exponential factor in
Eq. (30) can therefore be replaced with a Dirac δ function.
Thus, the pth order contribution to A can be approximated by

〈A(p)(q, q′)〉 ≈ np+1

[
k2

0

ε0
αG̃(q; zs, zs)

]p

(2π)2δ(q − q′). (31)

Summing over p hence gives

〈A(q, q′)〉 ≈ n(2π)2δ(q − q′)
[

I − n
k2

0

ε0
αG̃(q; zs, zs)

]−1

.

(32)
The means of Eqs. (23)–(25), to leading order in n, therefore
follow and are given by

〈γ1(k‖)〉 =
[

I − n
k2

0

ε0
αG̃(k‖; zs, zs)

]−1

, (33)

〈γ3(E0)〉 = I + n
k2

0

ε0

∫
d2q

(2π)2
αN+1G̃(q; zN+1, zs)

×
[

I − n
k2

0

ε0
αG̃(q, zs, zs)

]−1

αẼ0(q; zs)

×eiq·ρN+1
p†

0,N+1

|p0,N+1|2
, (34)

〈S2〉 = n

(
k2

0

ε0

)2 ∫
d2q

(2π)2
αN+1G̃(q; zN+1, zs)

×
[

I − n
k2

0

ε0
αG̃(q; zs, zs)

]−1

αG̃(q; zs, zN+1). (35)

For the simple case of an incident (lossless) plane wave E0 =
A0ξ̂ exp(ikin · r) and isotropic polarizabilities, 〈γ3〉 reduces to
a much simpler form, specifically,

〈γ3(kin
‖ )〉 =

[
I − n

k2
0

ε0
αG̃(kin

‖ ; zs, zs)

]−1

ξ̂ξ̂
†
. (36)

The similar forms of 〈γ1〉 and 〈γ3〉 reflect the reciprocal sym-
metry present between scattering of an incoming plane wave
scattering into an outgoing plane wave [75].

A notable feature of Eq. (33) is the divergence when
I − n(k2

0/ε0)αG̃(k‖; zs, zs) is singular, or in the scalar case,
when n(k2

0/ε0)αG̃(k‖; zs, zs) = 1. When this condition is close
to being satisfied (i.e., det[I − n(k2

0/ε0)αG̃(k‖; zs, zs)] is close
to zero), the mean will become very large, suggesting the

multiple scattering environment is significantly more sensi-
tive to the addition of a scatterer than the single scattering
environment. In the scalar case, |〈γ1〉| has a maximum value
|〈γ1〉|max > 1 provided 	[αG̃(k‖; zs, zs)] > 0, occurring at a
density nopt,1, where

nopt,1 = 	[αG̃(k‖; zs, zs)]
k2

0
ε0

|αG̃(k‖; zs, zs)|2
, (37)

|〈γ1〉|max = |αG̃(k‖; zs, zs)|
�[αG̃(k‖; zs, zs)]

. (38)

Analogous expressions for nopt,3 and |〈γ3〉|max arise in the loss-
less case, replacing k‖ with kin

‖ in the argument of the Green’s
function. Physically, we can understand these conditions by
considering the phase shifts involved in scattering. The plane
wave component of the field scattered from one scatterer at
wave vector q is phase shifted by arg[αG̃(q)] relative to the
incident field. For any multiple scattering path, this phase shift
is acquired at each scattering event, in addition to a propa-
gation phase from traveling between scatterers. On averaging
over realizations, the propagation phases cancel out, while the
phase shift imparted by scattering events remains constant.
When �[αG̃(q)] = 0 and 	[αG̃(q)] > 0, there is no phase
shift upon scattering and the averaged multiple scattering
paths add up in phase, giving a maximum amplitude, which,
since the N → ∞ limit has been taken, diverges as there are
an infinite number of scattering paths in this case. In turn, a
divergence of Eq. (38) results. Of course, any given realization
need not be close to the mean, and the random propagation
phase can play a large role for any given realization. As a
result, it is important to study the statistics beyond simply the
complex means, which we do numerically below.

III. NUMERICAL RESULTS

A. Numerical model

In order to further study the statistical properties of the en-
hancement factors, Monte Carlo simulations were performed
for scattering of SPPs propagating at a metal-dielectric in-
terface (with dielectric constants εm and εd , respectively) by
nanoparticles in the dielectric near the surface (see inset of
Fig. 2). As discussed above, this choice of system is motivated
by the use of SPP scattering in biological sensors [11,20,74].
Specifically, realizations of randomly distributed scatterers
were generated and their corresponding scattered fields cal-
culated by solving Eq. (3) and using Eq. (2). The simulation
was repeated with an additional particle [cf. Eq. (5)] from
which the field perturbation and individual enhancement fac-
tors were determined. Notably, a scalar model can be used to
describe SPP scattering [76,77], with the scalar field corre-
sponding to the out-of-plane component Ez of the SPP field.
When both z and z′ are near the interface, the Green’s function
can be approximated as a cylindrical wave [65,77,78] given by

GSPP(r, r′) = iA0e−akSPP(z+z′ )H (1)
0 (kSPP|ρ − ρ′|), (39)

where a = (εd/(−εm))1/2, A0 = akSPP/[2(1 − a4)(1 − a2)],
kSPP is the complex SPP wavenumber with corresponding
absorption length labs = (2�[kSPP])−1 and H (1)

0 (x) is the ze-
roth order Hankel function of the first kind. Simulations were
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(a) (b)

(c) (d)

FIG. 2. High loss, λ0 = 600 nm, mean enhancements: Dependence of the real part (blue �), imaginary part (orange �) and magnitude (red
�) of (a) 〈γ1〉 (b) 〈γ2〉 (c) 〈γ3〉 on scatterer density n (and mean free path ls) for a 21.5-nm-radius gold nanosphere sitting on the surface of
a gold interface (inset) as found from Monte Carlo simulations. Corresponding analytic approximations are also shown (solid, dashed, and
dotted lines, respectively). (d) Variation of the mean amplitudes of individual and total enhancement factors 〈|γ1|〉 (blue �), 〈|γ2|〉 (red �),
〈|γ3|〉 (orange �), and 〈|γ1γ2γ3|〉 (green �).

performed using this Green’s function. The incident field was
taken to be a decaying SPP plane wave of the form E0,z(x) =
�(x) exp(ikSPPx), where �(x) is the Heaviside step function
and we assume zN+1 = zs. Evaluating Eqs. (33)–(35) with
these assumptions gives

〈γ1(k‖)〉 = k2
SPP − k2

‖
k2

SPP − k2
‖ + 4nμ

, (40)

〈γ3(xN+1)〉 = −2nμ exp[i(̃k(n) − kSPP)xN+1]

(kSPP − k̃(n))̃k(n)
, (41)

〈S2〉 = −μN+1

π
log

(
1 + 4nμ

k2
SPP

)
, (42)

where we have defined k̃(n) = (k2
SPP + 4nμ)1/2, μ =

α(k2
0/ε0)A0 exp[−2akSPPzs], and μN+1 is defined analogously

with αN+1 and zN+1 replacing α and zs. In addition, the SPP
elastic scattering cross section σSPP = 4|μ|2/	[kSPP] and
corresponding scattering mean free path ls = (nσSPP)−1

can be defined for this model [76,77]. Note that the
complex incident wave vector kSPP (i.e., the presence
of absorption) means that 〈γ3〉 does not take the form
of Eq. (36). In order to study the role of absorption,
simulations were performed at two different wavelengths.
Firstly, the “low loss” case was simulated at λ0 = 650
nm, for which εd = 1.77 (corresponding to water) and
εm = −13.68 + 1.04i (corresponding to gold [79]),
meaning that kSPP = (1.42 + 0.008i)k0. The “high loss”

case corresponded to λ0 = 600 nm, for which εd = 1.77
(water) and εm = −8.0 + 2.1i (gold) were taken whereby
kSPP = (1.49 + 0.05i)k0. The absorption lengths were 9.9λ0

and 1.6λ0, respectively. In each case, the number of scatterers
N was fixed (700 for the “low loss” case and 800 for the “high
loss” case), and they were randomly distributed in a square of
sides L. To vary the scatterer density n, L was varied between
L = 9.3λ0 and L = 118λ0 in the low-loss case and between
L = 8λ0 and L = 30λ0 for the high-loss case. Different sets
of parameters were chosen for the two different wavelengths
in order to ensure the density ranges in each case included
both the single scattering and strong multiple scattering
(ls < λ0) regimes. In all simulations performed, the additional
scatterer was identical to the other scatterers (αN+1 = α) and
added at the fixed position rN+1 = (0, 0, zs). All data points
shown were calculated using 50,000 realizations of different
scatterer positions unless otherwise stated.

B. Sensitivity enhancements: Absorption dependence

Figures 2(a)–2(c) show the complex mean enhancements
〈γi〉 observed in the far field at 70◦ to the surface normal
in the backward direction (k‖ = −ε

1/2
d k0 sin(70◦)x̂) for λ0 =

600 nm and assuming a polarizability αg1 corresponding to a
21.5-nm-radius gold sphere sitting on the gold surface. The
mean amplitudes 〈|γi|〉 are also shown in Fig. 2(d). The the-
oretical expressions [Eqs. (40) and (41)] are seen to describe
〈γ1,3〉 well over the entire density range. Both 〈γ2〉 and 〈γ3〉 re-
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(a) (b)

(c) (d)

FIG. 3. Low loss, λ0 = 650 nm, mean enhancements: As Fig. 2 but for λ0 = 650 nm and polarizability αg2 corresponding to a 40-nm gold
sphere. Vertical dashed lines indicate densities at which probability distributions shown in Fig. 4 are shown.

main close to unity, as do the corresponding mean amplitudes,
indicating that the effects of the associated multiple scattering
paths are negligible. As a result, γ1 is the dominant factor
in the behavior of the total mean amplitude enhancement
〈|γ1γ2γ3|〉 [Fig. 2(d)], which scales very similarly to 〈|γ1|〉 and
|〈γ1〉| [Fig. 2(a)].

Equivalent plots for the low-loss, λ0 = 650 nm, case with
a polarizability αg2 equivalent to that of a 40-nm gold sphere
sitting on the surface and the same observation position are
shown in Fig. 3, from which a few significantly different
features are evident. In the low-loss case, the enhancement
factors show greater deviation in the complex means from
unity [Fig. 3(a)–3(c)], even at mean free paths of several
wavelengths, which is unsurprising because the attenuation of
propagating SPPs means the amplitude of multiple scattering
paths are negligible when ls > labs. The other significant dif-
ference between the low and high-loss cases is in the mean
of the absolute value of the enhancement factors [Fig. 3(d)].
The statistics of this quantity are explored in more detail
in Ref. [48], but here we note that in the low-loss case,
〈|γ1,3|〉 are very different from |〈γ1,3〉|, by up to two orders
of magnitude, whereas in the high-loss case, the quantities
are similar in value. Importantly, the low-loss case allows
for mean total amplitude enhancements 〈|γ1γ2γ3|〉 > 1, im-
plying that multiple scattering increases the sensitivity, quite
significantly, for a wide range of densities, whereas in the
high-loss case, multiple scattering only acts to decrease sen-
sitivity on average. For the low-loss case, the analytic results
[Eqs. (40)–(42)] still provide an accurate description at lower
densities/longer mean free paths, however at higher densities,
significant deviations are seen, particularly for 〈γ3〉, indicat-

ing that the loop scattering paths ignored in the derivation
of the average enhancements play a significant role. Such
loop paths are associated with weak localization effects such
as coherent backscattering [80], which become significant
at higher densities when 	[kSPP]ls ∼ 1. Furthermore, in the
region where the mean amplitude grows large, the complex
mean is slower to converge due to the larger variance in
the underlying probability distribution (see Fig. 4) and hence
larger statistical fluctuations are seen in the simulated data.
Indeed, the results plotted between nλ2

0 = 0.21 and 3.87 in
Fig. 3 are averaged over 150 000 realizations in order to
improve convergence. Stronger Anderson localization begins
to play a role at the highest densities. The localization length
ξ = ls exp(πRe[kSPP]ls/2) [81] becomes comparable to the
system size for ls ≈ 0.73λ0, at which point Anderson local-
ization means only scatterers within ∼ξ couple strongly with
each other. As a result, the effect of the added scatterer is
reduced, explaining the decrease in mean amplitudes at the
very highest densities.

To study the underlying probability distributions in more
detail we have plotted histograms of the relative frequency
of the enhancement factors in the complex plane in Fig. 4
for the low-loss case at different densities. Movies 1 and 2
within the Supplemental Material [82] show the complete
density evolution of the distributions for both the high and
low cases. In general, γ1 and γ3 appear to be distributed
with rotational symmetry about their centres. Specifically, the
standard deviations of the real and imaginary parts were found
to typically be within 10% of each other for both γ1 and γ3,
although in some cases large outliers can cause significant
differences. Similarly, the correlation coefficient between the
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FIG. 4. Histograms showing the relative frequency of γ1 (top row), γ2 (middle row), and γ3 (bottom row) on the complex plane at densities
nλ2

0 = 0.05 (left column), 0.67 (middle column), and 8.0 (right column). Data shown corresponds to 50 000 realizations in the “low loss” case
for polarizability αg2. Evolution of the distributions as scatterer density is increased can be seen in Movies 1 and 2 within the Supplemental
Material [82].

phase and amplitude of the centered distribution γ1,3 − 〈γ1,3〉
was never more than ∼0.02 across the density range consid-
ered. In contrast, γ2, associated with loop scattering paths,
has a more complicated locus on the complex plane, remi-
niscent of the previously studied eigenvalue distributions of
Euclidean matrices arising in similar scattering studies [68].
In the low-loss case the distributions of γ1,3, while being
narrow at low and high density become very broad for a range
of intermediate densities. Thus, although the center of the
distribution remains close to the origin, the mean amplitudes
〈|γ1,3|〉 become very large as seen in Fig. 3(d). In fact, the
center of the distributions, starting from 1 at the lowest den-
sities, move towards the origin with increasing density. This
movement of the center of the γ1 distribution towards the
origin is also seen in the high-loss case [Fig. 2(a)], however,
the distribution remains tight around the center over the full
density range. Similarly, γ3 retains the narrow width for the
entire density range, although in this case the center remains

close to 1. The similarity between the mean absolute values
and the absolute value of the complex mean arises from these
tight distributions.

In order to understand the significant difference in the
widths of the probability distributions for the high- and low-
loss cases, we must consider the relative role of scattering
and propagation phases along different multiple scattering
trajectories. Each scattering path has an associated phase
and amplitude, which are determined by contributions from
scattering events (Ascatei�scat ) and from propagation between
scattering events (Apropei�prop ), such that the enhancement fac-
tors are determined from the sum over all possible paths
∼ ∑

paths Ascatei�scat Apropei�prop . Changing realizations changes
the propagation factors while the scattering contribution for a
given sequence of scatterers is unchanged, since the scatterer
positions change but not their properties. When averaging
over realizations, the random �prop leads to cancellation
of the propagation component and thus the complex mean
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(a) (b)

(c) (d)

FIG. 5. As Fig. 2 but with an observation wave vector k‖ = −	[kSPP]x̂ and a phase shifted polarizability α = αg1eiπ . Vertical dashed line
indicates optimal scatterer density as predicted by Eq. (37).

simplifies to the sum of the deterministic Ascatei�scat factors
arising from scattering events. Absorption means that scatter-
ing paths longer than labs have a small amplitude Ascat and
hence contribute negligibly to the enhancement factors for
that particular realization. In the low-loss case (labs = 9.9λ0),
a large number of scattering paths several wavelengths long
contribute. As the paths extend over multiple wavelengths,
the phases �scat are essentially uniform and random and thus
the sum over scattering paths can give a significantly different
result to the complex mean. Conversely, in the high-loss case,
only a small number of scattering paths shorter than labs =
1.6λ0 contribute significantly to the enhancement factor. Fur-
thermore, since the amplitude decay due to absorption occurs
on the wavelength scale (the amplitude decays by ∼20% over
one SPP wavelength in the high-loss case compared to ∼2% in
the low-loss case), very short sub-wavelength scattering paths
for which �prop is close to zero will have significantly higher
amplitude and contribute more to the total enhancement fac-
tors. As a result, the high-loss case is close to the complex
mean since the propagation has little effect. The behavior
of γ1,3 in the high-loss case is therefore dominated by the
scattering phase shift.

C. Optimising enhancements: Scatterer dependence

The conclusion that multiple scattering has a more pro-
nounced effect in the low-loss case is unsurprising, but the
fact that the high-loss case shows great sensitivity to the phase
acquired in a scattering event, which is determined by the indi-
vidual scatterer properties, is significant. To illustrate this, we

consider a case close to the divergence condition of Eq. (38).
Since G̃(k‖) ∝ 1/(k2

SPP − k2
‖ ), the choice of observation point

such that k‖ is close to the pole at kSPP, i.e., k‖ = 	[kSPP],
ensures a large |G̃| and thus the optimum density predicted
by Eq. (37) is reduced. In addition, it ensures the optimum
density condition for γ1 and the lossless version of γ3 coincide
(since the input and output wave vectors are equal). Such an
observation point is not possible in a setup consisting of a sin-
gle metal-dielectric interface since 	[kSPP] > ε

1/2
d k0, however

it is possible for SPPs excited in a thin gold film on a glass
substrate (see inset of Fig. 5). In particular, provided nglassk0 >

	[kSPP], an observation point taken in the leakage ring (a ring
of directions in which light radiated to the far field is strongly
confined [83,84]) in the glass substrate satisfies k‖ = 	[kSPP].
An observation position in the leakage ring furthermore has
the additional benefit, from a sensing perspective, that the con-
finement of light means detected signals are stronger. While
such a thin film configuration alters the Green’s function and
surface dressing, the functional form of the SPP remains the
same for points in the lower index dielectric near the surface
of the gold film, with only the parameter values changed (i.e.,
A0, kSPP, a, and α). We thus now consider such an observation
position, keeping in mind that the parameters in the model
will no longer correspond to the same physical properties.
Figure 5 shows the results from further simulations of the
high-loss case, analogous to those shown in Fig. 2, albeit
assuming k‖ = −	[kSPP]x̂ and that the polarizability is phase
shifted by π , i.e., α = αg1eiπ . Note that since the amplitude
of the polarizability is unchanged, the cross section and mean
free path are also unaltered. The phase shift to α alters the
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(a) (b)

FIG. 6. The maximum mean amplitude enhancement 〈|γ1γ2γ3|〉 (blue �) and mean free path lopt,tot (red �) at which it occurs for both high
(a) and low (b) cases, as a function of the phase of α (or equivalently μ) relative to that of a gold nanosphere on the surface. The observation
point was taken in the leakage ring (k‖ = −	[kSPP]x̂). Median value of |γ1γ2γ3| at lopt,tot is also shown (orange �). Light blue shaded region
indicates 〈|γ1γ2γ3|〉 � 1, meaning that the single scattering case is optimum and multiple scattering always reduces sensitivity on average
(these points are not plotted). The dashed black line denotes the optimum phase at which �[αG̃] vanishes and Eq. (38) diverges.

absorption loss from a single scatterer, and also the phase dif-
ference between the scattered and incident field. The chosen
phase means the divergence condition of Eq. (38) is nearly
satisfied, i.e., the phase difference between the SPP incident
on a scatterer and the SPPs radiated by the scatterer is small.
We see significantly different behavior in Fig. 5 as compared
to Fig. 2. In particular, an optimum density nopt = 3.18λ−2

0 , at
which 〈|γ1γ2γ3|〉 is maximised, is evident with a correspond-
ing total amplitude enhancement of 〈|γ1γ2γ3|〉 = 196. The
optimum density predicted from Eq. (37) is nopt,1 = 2.22λ−2

0 .
Critically, these large enhancements occur even with ls > labs

when one might expect absorption to quench the effect of
multiple scattering as was observed in Fig. 2. Results for the
“low loss” case with α = αg2e3iπ/4 (tuned near the divergence
condition for the “low loss” parameters) were also obtained
(not shown), however, in contrast to the high-loss case, the
behavior of the means shows very little difference qualita-
tively from the results of Fig. 3 and with similar levels of
enhancement observed.

For the case shown in Fig. 5 and its low-loss counterpart,
the probability distributions over the complex plane behave
analogously to the behavior shown in Fig. 4 (see also corre-
sponding Movies 3 and 4 within the Supplemental Material
[82]), with γ1,3 showing both the initial broadening as scat-
terer density increases before contracting at higher densities,
along with migration of the distribution center from 1 at
low density towards 0 at high density. The distribution of γ2

appears relatively unchanged by the different observation po-
sition and tuning the phase of α, maintaining the extended tails
along the real and imaginary axes, while γ1,3 again exhibit the
same rotationally symmetric form.

In order to investigate the extent to which the divergence
condition predicted in Eq. (38) holds, the maximum mean
total absolute enhancement 〈|γ1γ2γ3|〉max and density nopt,tot

(and corresponding mean free path lopt,tot) at which it occurs
were calculated numerically as the phase of μ was varied (|μ|
was again held constant and we assumed k‖ = −	[kSPP]x̂).
While arg(μ) is not dynamically tunable in general, it can
be modified by changing various properties of the scatterers,
for example their composition or geometry, or tuning the
wavelength through a localized plasmonic resonance. More
complex engineered scatterer structures such as core-shell

nanospheres or nanorods allow further degrees of freedom for
tuning α. In addition, the phase of μ can be altered via its
dependence on zs and use of index-matched spacer layers.
Figure 6 shows the dependence of 〈|γ1γ2γ3|〉max and lopt,tot

on arg(μ), for both the high-loss and low-loss case. In the
low-loss case, we see that 〈|γ1γ2γ3|〉max is always achievable
regardless of arg(μ), with the value varying slightly with
arg(μ), albeit remaining ∼102 for a broad range of phases.
The optimum phase predicted from Eq. (38) coincides with
the region where the enhancement is largest, and is also
achieved at larger mean free paths (i.e., lower densities).
Conversely, the high-loss case has a range of arg(μ) for
which no enhancement is possible on average, since absorp-
tion quenches any multiple scattering enhancements. Tuning
of arg(μ) does nevertheless allow a similar level of enhance-
ment to the low-loss case to be achieved, with the divergence
condition introduced by Eqs. (37) and (38) providing a good
predictor of the optimum phase. For the low-loss case, long-
range scattering paths play a significant role as is discussed
further in Ref. [48].

IV. CONCLUSION

To conclude, we have presented a general formalism to
describe multiple scattering-based enhancements to the field
perturbation caused by adding an analyte particle into a
random distribution of background scatterers. The approach
presented is general and applicable to any wave scattering
scenario, both vector and scalar, through appropriate choice
of Green’s tensor, for example scattering of acoustic waves or
electromagnetic waves in free space, waveguides, or photonic
crystals [85–88]. Three enhancement factors were derived,
each arising from a different class of multiple scattering paths
and their statistics were studied in the context of scattering of
planar SPP waves. Through a series of Monte Carlo simula-
tions we demonstrated that absorption can play an important
role in the statistics of the enhancement factors, as it can
quench long-distance scattering paths. Supporting analytic
calculations for the complex means of the enhancement fac-
tors were found to agree well when loop contributions were
negligible. Whilst absorptive quenching was often seen to
lead to an absence of any multiple scattering enhancement
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for high-loss systems, the small propagation phases of short-
distance scattering paths imbues the system with a greater
sensitivity to the scattering phase shift, and hence the in-
dividual scatterers. Consequently, we demonstrated that, by
tuning the polarizability of the background scatterers, a mean
total enhancement of up to two orders of magnitude can
be achieved. Analytic expressions, capable of predicting the
optimum polarizability, were also derived. Low-loss systems
were shown to exhibit contrasting behavior. Specifically, it
was found to always be possible to achieve an enhancement
through appropriate tuning of the density of scatterers, regard-
less of the individual scatterer properties. Our results therefore
demonstrate that multiple scattering can significantly enhance
single particle detection, even in the presence of high losses,
whilst insights gained can aid design of random-scattering-
based nanostructured sensors, potentially enabling detection
of weakly scattering particles such as single proteins or viri-
ons.
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APPENDIX

In this section we outline the derivation of the function
R±(zi, zN+1) appearing in Eq. (21) defined through the equa-
tion

G∞(r, rN+1)−1G∞(r, ri )

= R±(zi, zN+1)e−ik‖·(ρi−ρN+1 )e−ikz ·(zi−zN+1 ). (A1)

We assume that the upper interface of a planar stratified
medium (such as a thin film structure) is located at z = 0,
whilst the lowest interface lies at a position z = −d . Recall
that all scatterers are assumed to lie in the upper half-space
zi > 0 for i = 1, 2, . . . N + 1. We first note that from the trans-
lational invariance of the Green’s function in the transverse

plane, i.e., G∞(r, ri ) = G∞(r, zi ) exp(−ik‖ · ρi ) it follows im-
mediately that R±(zi, zi ) = I . Considering the more general
case of observations positions lying in the lower half space,
i.e., for z < −d , it also follows trivially that R−(zi, zN+1) = I
since there is only a transmitted component of the Green’s
function whereby from Eq. (20)

G∞(r, rN+1)−1G∞(r, ri )

= Gtr
∞(r, 0)−1Gtr

∞(r, 0)e−ik‖·(ρi−ρN+1 )e−ikz ·(zi−zN+1 )

= e−ik‖·(ρi−ρN+1 )e−ikz ·(zi−zN+1 ). (A2)

In the reflection case, the Fourier space Green’s tensor, for
observation points above the source point z > zi > 0 is [73]

G̃(k‖; ri ) = i

2kz
H̃ (k‖, zi )e

−i(k‖·ρi+kzzi ), (A3)

where

H̃ (k‖, zi )

= (1 + rs(k‖)e2ikzzi )�s(k‖) + �p(k‖)D(k‖, zi ). (A4)

D(k‖, zi ) is a diagonal matrix given by

D(k‖, zi ) = I −
⎡⎣1 0 0

0 1 0
0 0 −1

⎤⎦rp(k‖)e2ikzzi , (A5)

and �s,p are matrices projecting the source onto s and p
polarized vectors, and can be expressed as

�s,p(k‖) = ês,p(k‖)ê†
s,p(k‖). (A6)

The unit vectors ês,p(k‖) are the s and p polarized unit vectors
for a plane wave of wave vector k‖ + kz ẑ, given by

ês(k‖) = (−ky, kx, 0)T /k‖, (A7)

êp(k‖) = (−kxkz,−kykz, k2
‖ )T /(

√
εd k0k‖). (A8)

From Eq. (18) we note that G∞(r, rN+1)−1G∞(r, ri ) =
G̃(k‖, rN+1)−1G̃(k‖, ri ) whereby

R+(zi, zN+1) = H̃ (k‖, zN+1)−1H̃ (k‖, zi ). (A9)
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