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Measuring topological order
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The topological order of a (2 + 1)D topological phase of matter is characterized by its chiral central charge
and a unitary modular tensor category that describes the universal fusion and braiding properties of its anyonic
quasiparticles. I discuss the topologically invariant quantities associated with these and identify ones that are
useful for determining the topological order. I propose a variety of physical experiments that probe these
quantities and detail the relation of the measured data to the topological invariants.
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I. INTRODUCTION

Topological phases of matter may possess emergent quasi-
particle excitations that exhibit exotic exchange statistics,
such as anyons in (2 + 1)D systems [1,2]. The topological
order of a (2 + 1)D topological phase, i.e., the collection of
universal properties associated with the phase, is understood
to be fully characterized by the combination of (1) the chiral
central charge, which is associated with the chiral thermal
transport of gapless edge modes, and (2) a unitary modular
tensor category (UMTC) [3–5], which specifies the fusion
and braiding properties of the quasiparticle excitations. These
quantities are expected to be topological invariants of the
phase, which are quantized with high precision and remain
unchanged under continuous deformations of the system that
do not close the spectral gap. As such, it is important to
understand how to experimentally extract information about
them from physical systems.

The chiral central charge c− of a topological phase may
be measured via thermal transport experiments, as it is asso-
ciated with a thermal Hall conductivity of κH = π

6 T c− [6–8].
Such thermal Hall transport experiments have recently been
performed for fractional quantum Hall states [9–11] and
α-RuCl3 [12,13]. While these studies affirm successful ex-
tractions of the chiral central charge for the states examined
in these challenging experiments, efforts to understand their
results [14–24] suggest the measured quantities may not all
be universal and topologically quantized, which muddles their
characterization of the bulk topological order. Even if accu-
rately determined, the chiral central charge is, by itself, not
a particularly distinguishing characteristic of a topological
phase, because any value of c− may always be associated with
an infinite number of distinct topological orders.
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In contrast, the UMTC associated with a topological phase
contains significantly more detailed information that can very
precisely identify the topological order. In fact, it even con-
tains c− mod 8 [see Eq. (25)], so nearly all of the information
about the topological order is contained in the UMTC. A
consequence of this is that a larger variety of experiments is
needed to extract this larger set of information embodied by
the UMTC. The “basic data” defining a UMTC, which con-
sists of the so-called “F symbols” and “R symbols,” contain
gauge freedom. Mathematically, it is important to determine
the quantities associated with a UMTC that are gauge invari-
ant and capable of precisely identifying the UMTC. From the
perspective of designing physical experiments, it is important
to identify experiments probing these gauge invariants that
both collect a complete (or near-complete) characterization
of the UMTC, and which do so with methods that allow the
invariants to be carefully separated from nonuniversal effects.
In particular, it is crucial for the experiments not to rely upon
fine-tuning, precise knowledge of the microscopic Hamilto-
nian, or other unrealistic assumptions. Prior efforts in these
directions have been disjointed, with the mathematical side
identifying complete UMTC invariants that are mostly exper-
imentally unapproachable, and the physical side identifying
experiments that narrowly access UMTC information about
certain topological phases, often with methods that are not
robust. In this paper, I bridge this divide with a systematic
treatment that advances both arms of the problem with the
other in mind.

I begin, in Sec. II, by reviewing the UMTC formalism
and discussing the topological gauge invariant quantities as-
sociated with a UMTC, particularly those that may be used
to mathematically identify the topological order. Then, I
discuss experimental methods of determining the invariant
UMTC data associated with a topological phase. In Sec. III, I
propose and analyze various robust experiments involving de-
terministic manipulation of localized bulk quasiparticles and
topological charge measurements (which have probabilistic
outcomes) in detail. While the potential use of these types
of physical operations for performing topological quantum
computation has been explored in great detail [2,25–41], their
use for experiments characterizing the topological order and
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identifying the UMTC has been largely neglected. I find that
a substantial portion of the UMTC data can be determined
through relatively simple experiments of this type. However,
the characterization of topological order that may be obtained
from such experiments is, in general, not complete. Filling
in the full details needed to completely determine the UMTC
generally requires more challenging types of experiments. In
particular, experiments are needed that allow for more general
superpositions of topological charges or quasiparticle trajec-
tories, as these are needed to access the more elusive phase
factors associated with a UMTC’s basic data. In Sec. IV, I
discuss several classes of additional experiments (some of
which were previously proposed) that could potentially be
used to access this remaining information, and obstacles as-
sociated with each of them. These include experiments that
utilize edge modes, topological defects, and mapping class
group transformations on higher genus surfaces.

It is worth remarking that most physically realized topo-
logical phases are actually “quasitopological phases” [42], for
which some of the expected topological properties lose their
topological protection. Properties that are particularly vulner-
able to such effects include overall phases of transformations
and ground state degeneracy on higher genus surfaces. In this
regard, it is expected that the properties measured by the bulk
quasiparticle experiments of Sec. III will remain topologically
protected.

II. UMTCS AND TOPOLOGICAL INVARIANTS

In this section, I review the mathematical structure of
UMTCs and focus on the topological invariants associated
with them. The UMTC formalism may be used to represent
anyonic states and operators, which encodes the purely topo-
logical properties of quasiparticles in a topological phase,
independent of any particular physical realization. For addi-
tional details, I refer the reader to Refs. [43,44].

A UMTC is defined by a set C of conserved quantum
numbers called topological charge, fusion rules specifying
what can result from combining or splitting topological
charges, associativity of fusion on the state space, and braid-
ing rules specifying what happens when the positions of
objects carrying topological charge are exchanged. Each lo-
calized quasiparticle carries a definite value of topological
charge. There is a unique “vacuum” charge, denoted 0 (or I),
for which fusion and braiding is trivial, and each charge a has
a unique conjugate ā which can fuse with a to give 0.

The topological charges obey the UMTC’s (commutative
and associative) fusion algebra

a × b =
∑

c

Nc
abc, (1)

and where Nc
ab are non-negative integers specifying the num-

ber of ways that topological charges a and b can combine to
produce charge c. The properties of the vacuum charge require
that N0

ab = δāb and Nc
a0 = Nc

0a = δac.
These rules prescribe fusion/splitting Hilbert spaces Vc

ab
and Vab

c with dim(Vc
ab) = dim(Vab

c ) = Nc
ab, which generate

the nonlocal state space through repeated fusion/splitting. A
charge a is non-Abelian if it does not have a unique fusion
channel for every type of charge it is fused with, or, alter-

natively, if it has
∑

c Nc
aa > 1. It is clear that the dimension

of the topological state space increases as one includes more
non-Abelian anyons.

Diagrammatically, the orthonormal bra/ket vectors in the
fusion/splitting spaces are represented by trivalent vertices:

(dc/dadb)
1/4

c

ba

μ = a, b; c, μ| ∈ Vc
ab, (2)

(dc/dadb)
1/4

c

ba

μ = |a, b; c, μ ab
c , (3)

where μ = 1, . . . , Nc
ab. The normalization factors involving

da, the quantum dimension of the charge a, are included so
that diagrams are in the isotopy-invariant convention. States
and operators involving multiple anyons are constructed by
appropriately stacking together diagrams, making sure to con-
serve charge when connecting endpoints of lines.

In this way, the projection operator of two anyons with
topological charges a1 and a2, respectively, onto collective
topological charge c is written as

Π(a1a2)
c =

μ

dc

da1da2

c

a2a1

a2a1

μ

μ
. (4)

When an operator acts on only a subset of all the anyons, it
implicitly means that it acts trivially on the other anyons, e.g.,
�(12)

c really means �(12)
c ⊗ 1(3...n) when there are n anyons.

The projection of three anyons with topological charges a1,
a2, and a3, onto collective topological charge c is given by

Π(a1a2a3)
c =

b,μ,ν

dc

da1da2da3

c
b

a1 a2 a3

b

a1 a2 a3

ν

ν

μ

μ

. (5)

Similarly, the projection operator for n anyons is given by

Π(a1...an)
c =

e2,...,en� 1
μ2,...,μn

dc

da1 · · · dan

a1 a2 an· · ·

· · ·
e2

a1 a2 an

e2

· · ·

· · ·

c

μ2

μ2

μn

μn

. (6)

The sum of projectors over all fusion channels is, of course, a
partition of identity, i.e.,∑

c

�(a1...an )
c = 1(a1...an ) (7)

Associativity of fusion in the state space is encoded by
the unitary (change of fusion basis) isomorphisms F abc

d :⊕
e Vab

e ⊗ Vec
d → ⊕

e V
a f
d ⊗ Vbc

f . These F symbols are sim-
ilar to the 6 j symbols of angular momentum representations.
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Diagrammatically, these are written as

a b c

e

d

α

β
=

f,μ,ν

F abc
d (e,α,β)(f,μ,ν)

a b c

f

d

μ

ν
. (8)

If any of a, b, or c is equal to 0, then F abc
d = 1 (when allowed

by the fusion rules), indicating trivial fusion of the vacuum
charge. The F moves can be viewed as changes of bases for
the states associated with quasiparticles. To describe topolog-
ical phases, these are required to be unitary transformations,
i.e., [(

F abc
d

)−1]
( f ,μ,ν)(e,α,β ) = [(

F abc
d

)†]
( f ,μ,ν)(e,α,β )

= [
F abc

d

]∗
(e,α,β )( f ,μ,ν ). (9)

The counterclockwise braiding exchange operator of two
anyons is represented diagrammatically by

Rab =
a b

=
c,μ,ν

dc

dadb
Rab

c μν
c

ba

ab

ν

μ , (10)

where the R symbols are the maps Rab
c : V ba

c → V ab
c that result

from exchanging two anyons of charges b and a, respectively,
which are in the charge c fusion channel. If either a or b is
equal to 0, then Rab = 1, indicating trivial braiding with the
vacuum charge.

Similarly, the clockwise braiding exchange operator is

Rab � 1
=

b a

. (11)

Unitarity of the braiding operator, (Rab)−1 = (Rab)†, which is
a necessary condition to describe topological phases, can be
expressed in terms of the R symbols as[(

Rab
c

)−1]
ν,μ

= [(
Rab

c

)†]
ν,μ

= [
Rab

c

]∗
μ,ν

. (12)

Additional useful ways of representing braiding operations
include

c

ba

μ =
ν

Rab
c μν

c

ba

ν (13)

and

a b c

g

d

γ

λ

=
e,α,β

Babc
d (g,γ,λ)(e,α,β)

a b c

e

d

α

β

, (14)

where[
Babc

d

]
(g,γ ,λ)(e,α,β ) =

∑
f ,μ,μ′,ν

[
F acb

d

]
(g,γ ,λ)( f ,μ,ν )

× [
Rbc

f

]
μμ′
[(

F abc
d

)−1]
( f ,μ′,ν)(e,α,β ). (15)

The F and R symbols are subject to consistency condi-
tions [45], known as the pentagon and hexagon equations. The
pentagon equation ensures that applying different sequences
of F moves that start and end in the same topological configu-
ration yield the same results. The hexagon equations ensure
braiding is compatible with fusion, i.e., fusing two anyons
and then braiding a third with their fusion is equivalent to
first braiding the third anyon around the two anyons and then
fusing the first two. Physically, these consistency conditions
can be interpreted as ensuring the theory respects locality.

So far, this defines a unitary braided tensor category
(UBTC); the “modularity” condition that makes it a UMTC is
an additional nondegeneracy condition on the braiding, which
can be stated as RabRba = 1 for all b only if a = 0. Modularity
will not play an essential role in identifying or measuring
topological invariants, but it will allow some of them to be
conveniently expressed as link invariants. In fact, one should
be careful about depending on modularity when interpret-
ing experimental results, because one might be inadvertently
restricting to a nonmodular subtheory if the experiment un-
knowingly accesses only a subset of the topological charge
types.

The quantities C, Nc
ab, [F abc

d ](e,α,β )( f ,μ,ν ), and [Rab
c ]μν , col-

lectively referred to as the “basic data,” fully define a UMTC
(in mathematical parlance, they provide the “skeletonization”
of a UMTC). However, there is gauge freedom in the F and R
symbols associated with the choice of vertex basis states. Dis-
tinct sets of F and R symbols are considered gauge equivalent,
and hence describe the same UMTC, if they can be related
by unitary transformations (changes of basis) acting on the
fusion/splitting state spaces V ab

c and V c
ab as

˜|a, b; c, μ〉 =
∑
μ′

[
�ab

c

]
μμ′ |a, b; c, μ′〉, (16)

where �ab
c is the unitary transformation. Such gauge transfor-

mations modify the F and R symbols as[
F̃ abc

d

]
(e,α,β )( f ,μ,ν ) =

∑
α′,β ′,μ′,ν ′

[
�ab

e

]
αα′
[
�ec

d

]
ββ ′

× [
F abc

d

]
(e,α′,β ′ )( f ,μ′,ν ′ )

[(
�bc

f

)−1]
μ′μ

[(
�

a f
d

)−1]
ν ′ν (17)

and [
R̃ab

c

]
μν

=
∑
μ′,ν ′

[
�ba

c

]
μμ′
[
Rab

c

]
μ′ν ′
[(

�ab
c

)−1]
ν ′ν . (18)

One must be careful not to use the gauge freedom associated
with �a0

a and �0b
b to ensure that fusion and braiding with

the vacuum 0 remain trivial. More specifically, one should
fix �a0

a = �0b
b = �00

0 . (One can think of this as respecting
the canonical isomorphisms that allow one to freely add and
remove vacuum lines. Alternatively, one could allow the use
of these gauge factors and compensate by similarly modifying
the canonical isomorphisms.)

A property known as “Ocneanu rigidity” states that, apart
from gauge equivalences, the solutions of the pentagon and
hexagon consistency equations cannot be continuously de-
formed into each other, and this implies there are a finite
number of distinct (gauge equivalence classes of) UBTCS for
a specific fusion algebra [46].
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In order to distinguish between gauge equivalence classes
of UMTCS, it is useful to consider quantities that are invariant
under such gauge transformation. These topological invariants
constitute the observables associated with the UMTC. The
most relevant gauge invariant quantities are the fusion coef-
ficients Nc

ab; the quantum dimensions

da = [F aāa
a ]00

� 1 = a , (19)

which are actually equal to the largest eigenvalue of the fu-
sion matrices Na, defined as [Na]bc = Nc

ab; the total quantum
dimension

D =
√∑

a

d2
a ; (20)

and topological twist factors

θa =
c,μ

dc

da
[Raa

c ]μμ =
1
da a

, (21)

which are roots of unity. I note that pure braiding operations
can be expressed in terms the topological twist factors through
the “ribbon property”

Rab
c Rba

c = θc

θaθb
1. (22)

For a UMTC, these invariants are equivalent to the “modu-
lar data,” i.e., the S matrix

Sab =
1
D

c

N c
ābdc

θc

θaθb
=

1
D a b . (23)

and T matrix

Tab = θaδab, (24)

which provide (projective) representations of the modular
transformations of the theory on a torus. The chiral central
charge is related to the data of a UMTC through the relation

1

D
∑

a

θad2
a = ei 2π

8 c− , (25)

so the UMTC contains c−(mod 8).
While the modular data does not generally specify a

UMTC completely [47], they are often enough to uniquely
specify them for cases of physical interest. Moreover, known
examples of UMTCs that require more than the modular data
to distinguish between them only require a small amount of
additional data to do so [48,49]. Indeed, the fusion rules alone
typically narrow the possible UMTCs to a fairly small set of
closely related theories.

The modularity condition, previously expressed as nonde-
generacy of braiding, is equivalent to the condition that the S
matrix is unitary. When this holds, the relation to the fusion
coefficients may be inverted using the Verlinde formula

Nc
ab =

∑
x

SaxSbxS∗
cx

S0x
. (26)

Moreover, the modularity condition allows one to write the
topological charge projection operators in terms of link dia-
grams by using the S matrix to define “ωc loops” as follows:

Π(a1...an)
c =

a1 a2 . . . an

ωc
=

x

S0xS�
cx

a1 a2 . . . an

x
.

(27)

This will be useful for expressing topological invariants in
terms of link diagrams.

The R symbols are fully determined, up to gauge freedom,
by the modular data (see, e.g., Ref. [48]). In particular, there
is always a choice of gauge such that

[
R̃ab

c

]
μν

= [
R̃ba

c

]
μν

=
√

θc

θaθb
δμν (28)

and [
R̃aa

c

]
μν

=
√

θc

θa

[
�aa

c

]
μν

, (29)

where �aa
c is a signature matrix, i.e., a diagonal matrix with

values ±1 on the diagonal. The trace of �aa
c is gauge invariant

and, for a UMTC, can be expressed in terms of the modular
data, i.e., ∑

μ

[
�aa

c

]
μμ

=
√

θc

D2

∑
x,y,z

Na
xyNc

xz

θ2
y

θxθz
dydz. (30)

Thus the topological invariants outside of the modular data
that are necessary to form a completely specifying set of
invariants must be contained in the F symbols. It is known
from geometric invariant theory that a fusion category (and
hence the F symbols of a MTC) is determined by a finite set
of invariants [50]. However, these invariants are not given by
closed-form expressions nor do they have a clear relation to
familiar physical quantities.

On the other hand, there are topological invariants con-
tained in the F symbols that are simple to write and can even
be expressed in terms of link invariants. This includes the
gauge invariant quantities

α,β
μ,ν

F abc
d (e,α,β)(f,μ,ν)

2

=
1
dd

a b c

ωd

ωe

ωf

.

(31)

This represents a large portion of the invariant information
contained in the F symbols. Moreover, I will show that
these are straightforward quantities to physically measure. For
UMTCs with no fusion multiplicities, i.e., Nc

ab ∈ {0, 1} for all
a, b, c ∈ C, these invariant are simply the magnitudes of all F
symbols.
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Notice that setting c = 0, f = b, and e = d , Eq. (31) re-
duces to the fusion coefficients

Ne
ab =

1
de a b

ωe . (32)

Some of the invariant phase information of F symbols may
be found in the Frobenius-Schur indicators

κa =
[
F aaa

a

]
00∣∣[F aaa

a

]
00

∣∣ , (33)

for a = ā. (The right-hand side of this equation is not gauge
invariant for a 	= ā.) Additional invariant phase information
may be found in the higher order Frobenius-Schur indica-
tors [51], when a is higher order (a is order n when n is the
smallest number of copies of a that can fuse together into the
vacuum channel 0). For a UMTC, these can all be expressed
in terms of the modular data through the relation

κ (n)
a = 1

D2

∑
x,y

Ny
axdxdy

(
θy

θx

)n

, (34)

when a is order n, i.e., n is the minimal number of a anyons
that can be fused together into the vacuum 0. I note that
κa = κ (2)

a = �aa
0 . These Frobenius-Shur indicators can also be

expressed in terms of link diagrams.
Another significant quantity associated with modular trans-

formations is the punctured torus S matrix

S
(z)
(a,μ)(b,ν) =

1
D√

dz

a b z

ν

μ

(35)

= 1

D
∑

c,α,β,γ

dadb
θc

θaθb

[
F bb̄a

a

]
0,(c,α,β )

×
[(

F bb̄a
a

)−1
]

(c,α,β ),(z̄,ν,γ )

[
F z̄aā

z̄

]
(a,γ ,μ),0, (36)

where Nz
aā 	= 0 and Nz

bb̄
	= 0. This provides a projective repre-

sentation of the corresponding modular transformation for a
torus that has a single boundary which carries the topological
charge z.

The definition of the punctured torus S matrix is equivalent
to the diagrammatic relation

a

b

z̄

z̄

ν

μ

=
D√
dz

S
(z)
(a,μ)(b,ν)

z̄

(37)

The punctured torus S matrix also yields the link invariants

μ,ν

S
(z)
(a,μ)(b,ν)

2

=
dadb

D2dz

a b

ωz (38)

and

μ

S
(z)
(a,μ)(a,μ) =

da

Ddz

a

ωz̄

. (39)

The latter can be expressed in terms of a colored Whitehead
link and has proven useful for mathematically distinguishing
different UMTCs with identical modular data [48].

A useful generalization of Eq. (38) is given by a link
invariant that I denote as [103]

L
(n,n )
a,b,c;d(e, g) =

1
dd

Rn

Rn

a b c

ωd

ωe

ωg

, (40)

where the Rn box represents n braiding exchanges on the lines
entering the bottom of the box. When b = c, this invariant can
be written as

L(n,n′ )
a,b,b;d (e, g) =

∑
α,β,μ,ν

[(
Babb

d

)n]
(e,α,β )(g,μ,ν )

× [(
Babb

d

)n′]
(g,μ,ν )(e,α,β ). (41)

The case when b 	= c is straightforward to compute, but cum-
bersome to write out, so I simply note that, this invariant will
automatically be zero if n + n′ is odd, due to conservation
of charge. When n = 2m and n′ = 2m′ are even, this can be
written as

L(2m,2m′ )
a,b,c;d (e, g) =

∑
α, β, μ, ν

f , λ, σ

f ′, λ′, σ ′

[
F abc

d

]
(e,α,β )( f ,λ,σ )

(
θ f

θbθc

)m

× [
F abc

d

]∗
(g,μ,ν )( f ,λ,σ )

[
F abc

d

]
(g,μ,ν )( f ′,λ′,σ ′ )

×
(

θ f ′

θbθc

)m′[
F abc

d

]∗
(e,α,β )( f ′,λ′,σ ′ ). (42)
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When n = 2m + 1 and n′ = 2m′ + 1 are odd, this can be
written as

L(2m+1,2m′+1)
a,b,c;d (e, g) =

∑
α, β, μ, ν

f , λ, σ, η

f ′, λ′, σ ′, η′

[
F abc

d

]
(e,α,β )( f ,λ,σ )

×
(

θ f

θbθc

)m[
Rcb

f

]
λ,η

[
F acb

d

]∗
(g,μ,ν )( f ,η,σ )

× [
F acb

d

]
(g,μ,ν )( f ′,λ′,σ ′ )

(
θ f ′

θbθc

)m′

× [
Rbc

f ′
]
λ′,η′
[
F abc

d

]∗
(e,α,β )( f ′,η′,σ ′ ). (43)

The case where n′ = −n will be relevant for the experiments
in Sec. III C.

It is an open question whether all the invariant data con-
tained in F symbols can be expressed in terms of link
diagrams or whether they can be expressed in terms of the
modular data supplemented by the punctured torus S matrix.
For example, this is not known for the gauge invariant quantity

α,β

F abc
b (b,α,β)(b,β,α)

=
1

dad2
bdc α,β

a

c

b

b

b

b

b
α

α

β

β

(44)

which exists when Nb
ab 	= 0 and Nb

cb 	= 0.
I end this section with a few relations between UMTC

quantities, some of which are useful in the study of physical
experiments.

A straightforward diagrammatic manipulation of Eq. (31)
reveals the relation∑

α, β

μ, ν

∣∣[F abc
d

]
(e,α,β )( f ,μ,ν )

∣∣2 =
∑
α, β

μ, ν

∣∣[F cba
d

]
( f ,μ,ν )(e,α,β )

∣∣2. (45)

Applying R moves to the a line in Eq. (44) allows the
F -symbol invariant to be equated with a B-symbol invariant

∑
α,β

[
F abc

b

]
(b,α,β )(b,β,α) =

∑
α,β

[
Bbca

b

]
(b,α,β )(b,β,α). (46)

This shows that, when Nb
ab 	= 0 and Nb

cb 	= 0, there is nontrivial
information about braiding that is entirely determined by the
fusion F symbols.

Application of a Hexagon equation allows one to rewrite
the expression of B symbols in terms of F and R symbols as[

Babc
d

]
(g,γ ,λ)(e,α,β ) =

∑
μ,ν

[(
Rac

g

)−1]
γμ

[
F cab

d

]
(g,μ,λ)(e,α,ν)[R

ec
d ]νβ .

(47)

Taking the trace of the magnitude square of both sides of this
expression reveals the relation∑

γ , λ

α, β

∣∣[Babc
d

]
(g,γ ,λ)(e,α,β )

∣∣2 =
∑
μ, λ

α, ν

∣∣[F cab
d

]
(g,μ,λ)(e,α,ν)

∣∣2. (48)

This relation indicates that, in general, there are significant
braiding properties that are entirely determined by the fusion
properties. Indeed, I will show that this relation is relevant
to experiments that directly probe the non-Abelian nature of
braiding, and that it demonstrates the fact that having multiple
possible fusion channels implies the existence of non-Abelian
braiding.

III. EXPERIMENTS FOR MEASURING TOPOLOGICAL
INVARIANTS USING LOCALIZED BULK

QUASIPARTICLES

The main class of experiments that I consider in this paper
involves creating, manipulating, and measuring quasiparticles
that are localized in the bulk of the system. While I discuss
these at a level of generality and abstraction applicable to
any topological phase, they correspond to physically realistic
experiments. Though their implementation will depend on the
details of the physical system involved, they require neither
unrealistically precise knowledge of the microscopic Hamil-
tonian nor fine-tuned control of the system and operations.

A localized quasiparticle carries a definite value of
topological charge, as superpositions of different localized
topological charge values will rapidly decohere due to in-
teraction with local noise (assuming there is no additional
symmetry protecting such superpositions). As such, this class
of experiments crucially relies on superpositions of nonlocal
topological charge values. In other words, the localized quasi-
particles in these experiments must be non-Abelian anyons
in order to yield nontrivial information about the F and R
symbols.

The set of basic operations for performing these experi-
ments are the following. (1) Localization of a quasiparticle
with specific topological charge value. (2) Measurement of
the collective topological charge of pairs of quasiparticles. (3)
Moving localized quasiparticles through the bulk. (4) Splitting
one localized quasiparticle into two separate quasiparticles
with specific topological charge values.

Localization of a quasiparticle in the bulk may be imple-
mented using some (pointlike) local pinning potential that
energetically favors one particular topological charge value.
Moving quasiparticles though the bulk may be done via adia-
batic transport that moves the locations of pinning potentials.
Splitting a quasiparticle into two quasiparticles may be done
using an adiabatic process where the initial pinning potential
is adiabatically transformed into two separate, appropriately
chosen pinning potentials. The topological charge values in-
volved in a splitting processes must respect the fusion rules
in order for the process not to spawn stray quasiparticles.
Splitting operations include pair-creation from vacuum, in
which case the initial “quasiparticle” is trivial. Appendix A
describes details of how such operations may be carried out
for an idealized toy-model of pinning potentials.
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Measurement of the topological charge of pairs of quasi-
particles must be able to distinguish between all distinct fusion
channels possible. This will generally involve a calibration of
the measurements to identify the signatures of the possible
topological charge values, which involves a separate, prior
set of experiments to establish. Such measurements may be
performed using the measurement of some local quantity that
is correlated with the topological charge, e.g., of a localized
energy density, charge distribution, etc. of the system. This
requires first moving the two quasiparticles into sufficiently
close proximity of each other and then performing the local
measurement. The proximal distance between quasiparticles
required for the measurement is set by the reach of the mea-
surement device in the system.

Alternatively, the measurements could potentially be per-
formed via nonlocal methods, such as interferometry or
measurement devices capable of coherently coupling across
distances that are long compared to the correlation length.
Such nonlocal methods may also enable measurement of the
collective fusion channels of not just pairs of quasiparticles,
but clusters of multiple quasiparticles. Nonlocal measure-
ments may be useful, but are not essential for the class of
experiments considered in this section.

Another natural operation to consider is the fusion of two
quasiparticles. This will not be considered a basic operation,
as it is essentially the combination of operations from the
above list: moving two localized quasiparticles into proximity
of each other and performing a local measurement of their
collective topological charge. The main distinction one may
wish to make is that one typically thinks of only a single
quasiparticle remaining after the fusion of two. In terms of the
basic operations, this may be achieved simply by treating the
pair of quasiparticles as a single object following the measure-
ment. From the perspective of local pinning potentials, this
may require modifying the potentials so that the measurement
outcome is made to be the energetically favored topological
charge value. Since such a process can be performed locally,
the post-measurement topological charge value will be con-
served, even if it involves level-crossings. (See Appendix A
for more details.)

The operations of moving and splitting quasiparticles are
not essential for performing these experiments. Localization
of quasiparticles and pairwise measurements of their topo-
logical charge are sufficient, and tunable interactions may
also be utilized as an alternate operation. This is possible
because anyonic teleportation and “measurement-only” meth-
ods [34–36] may be used instead of adiabatic transport to
generate transformations that have the same effect as mov-
ing the quasiparticles. Similar methods may be used instead
of splitting quasiparticles for the state initializations used in
these experiments. However, these substitutions for splitting
require either the ability to perform collective topological
charge measurement of multiple quasiparticles, requiring in-
terferometrical methods [44], or the restriction to initial states
created by pairwise measurements in Abelian fusion channels.
The translation of how the experiments would be imple-
mented with the full set of operations described above to
these restricted sets of operations is straightforward, so I
will only describe the former. It is, however, important to
recognize that the use of measurement-only methods does

not always provide access to as much information about
the braiding properties as actual transport does, in particu-
lar with respect to braiding distinct topological charge types
with each other. These limitations are discussed in detail
in Appendix B.

In some situations, it may only be possible to localize
quasiparticles without knowing their topological charge val-
ues precisely (e.g., one only knows the electric charge carried
by the quasiparticles), or it may only be possible to perform
collective topological charge measurements that distinguish
between different fusion channels without specifying their
corresponding topological charge values. In such cases, the
experiments of this section may still be performed, though
they may provide less complete information about the topo-
logical order.

An important feature of the class of experiments discussed
in this section is their robustness to nonuniversal physics,
when operating in the topological limit. As long as the lo-
calized quasiparticles are kept far apart (as compared to the
correlation length), except during splitting and measurement
steps, these experiments do not require precise knowledge of
the Hamiltonian, fine-tuned control of operations, nor much
care to avoid the introduction of geometric and dynamical
phases. This is because the localized topological charges
(which are never superposed) are moved and split determin-
istically, while the nontrivial operations being probed are
effected on the nonlocal topological state space, which is
protected. In other words, nonuniversal effects will naturally
drop out of the measurement outcome data, which, also being
independent of gauge choices, are associated with universal
topological invariants of the phase of matter. The only cor-
rections to this that will not be exponentially suppressed are
diabatic corrections associated with performing transport in
finite time [52]. However, such corrections should not pose
a substantial problem, since (1) they can be reduced, though
with polynomial suppression, by increasing transport time
scales, and (2) they are, at least in principle, detectable and
correctable [52]. Moreover, Ocneanu rigidity [46] ensures
that, for a given set of fusion rules, there are a finite number
of possible UMTCs whose corresponding topological invari-
ants will differ by discrete amounts. In other words, it is not
unreasonable to expect that the error bars on the measured
quantities can be made small enough to allow sufficient confi-
dence in the ability to distinguish between the possible values
of the corresponding invariants.

I note that one can and should use similar, but more mun-
dane experiments to those described in this section to verify
that the experiments are indeed operating in the topological
limit. Verifying this should be considered a prerequisite step to
be performed prior to or in conjunction with the experiments
described here, as it will otherwise be unclear whether the
measured results are actually universal topological invariants.
I describe such an experiment for verifying operation in the
topological limit in Appendix C.

In discussing the detailed predictions of these experiments,
I will focus on UMTCs with no fusion multiplicities, i.e.,
Nc

ab ∈ {0, 1} for all a, b, c ∈ C, since it simplifies the discus-
sion, yet covers essentially all examples that are likely to
be of physical relevance. As such, the fusion multiplicity
indices (α, β, μ, ν) will be left implicit in the following. It is
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FIG. 1. An experiment that can determine the fusion rules and
quantum dimensions. (a) The system is initialized to have a ā-a pair
of quasiparticles in the vacuum channel and a b-b̄ pair of quasi-
particles in the vacuum channel. (b) After initialization, the joint
topological charge (fusion channel) of the a-b pair of quasiparticles is
measured. The measured fusion channel is found to have topological
charge c with probabilities pab(c) given in Eq. (49).

straightforward to generalize the discussion and analysis for
UMTCs that do have fusion multiplicities.

A. Fusion rules and quantum dimensions

The simplest experiment in the class of bulk quasiparti-
cle experiments is performed by the following steps, shown
schematically in Fig. 1.

(1) Pair-create quasiparticles carrying topological charges
ā and a from vacuum, and move them apart.

(2) Pair-create quasiparticles carrying topological charges
b and b̄ from vacuum, and move them apart.

(3) Measure the collective topological charge of the a-b
pair of quasiparticles.

The initialization steps 1 and 2 can alternatively be imple-
mented by other means, such as by localizing the individual
quasiparticles and then using measurements to obtain the
desired initial state. The measurement outcome of this ex-
periment will find the fusion channel of the a-b pair to have
topological charge c with probability

pab(c) = Π(ab)
c |ā, a; 0 b, b̄; 0

2

= ā, a; 0| b, b̄; 0 Π(ab)
c |ā, a; 0 b, b̄; 0

=
dc

d3
ad3

b
cā b̄

ba

ba

= N c
ab

dc

dadb
.

(49)

For a UMTC, the diagrammatic representation of this pro-
cess used in this calculation is equivalent to Eq. (32), with
appropriate normalizations. Note that the property dadb =∑

c Nc
abdc ensures that the probabilities of all possible out-

comes sum to
∑

c pab(c) = 1, as they should.
Repeating this experiment many times for all possible val-

ues of a and b produces statistics that allow one to infer the
fusion coefficients Nc

ab and the quantum dimensions da. This
can be done by first identifying which values of charge have
c = 0 as one of its possible outcomes, and then recognizing
that pab(0) = δābd−2

a . This identifies the topological charge
conjugate ā of each charge a, and yields its quantum dimen-
sion da. In turn, this allows one to factor out the quantum
dimensions from the results for general a, b, and c, to find
the fusion coefficients.

FIG. 2. A system of four quasiparticles carrying topological
charges a, b, c, and d̄ , with collective topological charge 0, can
be produced to have different fusion channels. (a) The state with
quasiparticles a and b having joint charge e. (b) The state with
quasiparticles b and c having joint charge f . These states can be
generated through a sequence of quasiparticle splitting operations or
by using measurements.

It is worth noting that the existence of multiple fusion
channels (Nc

ab 	= 0 for more than one value of c) or non-
trivial quantum dimensions (da > 1) implies the existence
of non-Abelian braiding [53,54] (see also the discussion in
Sec. III C 4). Thus, even though it would not be as direct as
actually performing non-Abelian braiding experiments, the
fusion rules experiments described here constitute perhaps the
easiest way to verify the existence of non-Abelian statistics.

The setup for the fusion rules experiments may also be
used to verify that the system is operating in the topological
limit. For this, one simply needs to repeat the measurement
in step 3, with a variable time interval between the repeated
measurements. This can be thought of as an anyonic version
of a Rabi oscillation experiment, which can be used to detect
error rates due to the breaking of topological degeneracies.
Indeed, if one also has the ability to vary the distances between
quasiparticles in such experiments, then one can also use such
experiments to extract the correlation lengths. More details are
given in Appendix C.

B. Associativity

The next experiment involves an initialization setup that
localizes quasiparticles of topological charges a, b, and c, in
the collective fusion channel d , as shown in Fig. 2(a). This can
be realized by the following steps.

(1) Pair-create quasiparticles carrying topological charges
d and d̄ from vacuum, and move them apart.

(2) Split quasiparticle d into quasiparticles carrying topo-
logical charges e and c, and move them apart.

(3) Split quasiparticle e into quasiparticles carrying topo-
logical charges a and b, and move them part.

This creates the three quasiparticles with charges a, b, and
c, as well as a fourth quasiparticle of charge d̄ that is used to
force the fusion channel of the other three to be d , but which
otherwise will not participate in the experiment [104]. With
this initial setup, the experiment is performed by the following
steps, shown schematically in Fig. 3.

(4) Measure the collective topological charge of the b-c
pair of quasiparticles.

(5) Measure the collective topological charge of the a-b
pair of quasiparticles.

(6) Go to step 4.
The post-measurement state of step 4, which is shown

in Fig. 2(b), becomes the initial (pre-measurement) state for
step 5.
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FIG. 3. An experiment that can determine the magnitudes of
the associativity F symbols. (a) After initializing the system in the
state of Fig. 2(a), the joint topological charge of the b-c pair of
quasiparticles is measured. This measured fusion channel is found
to have topological charge f with probabilities pa(bc);d ( f |e) given in
Eq. (50). (b) After initializing the system in the state of Fig. 2(b), the
joint topological charge of the a-b pair of quasiparticles is measured.
This measured fusion channel is found to have topological charge e
with probabilities p(ab)c;d (e| f ) given in Eq. (51).

The probability that the measurement of the b-c pair (at
step 4) will have outcome f , given that the a-b pair previously
had collective charge e is given by

pa(bc);d ( f |e) = ∣∣�(bc)
f |a, b; e〉|e, c; d〉|d, d̄; 0〉∣∣2

= ∣∣[F abc
d

]
e f

∣∣2. (50)

This probability may also be computed using Eq. (31), whose
diagram is related to the process in question.

Similarly, the probability that the measurement of the a-b
pair (at step 5) will have outcome e (possibly different from
the previous value of e), given that the b-c pair previously had
collective charge f is given by

p(ab)c;d (e| f ) = ∣∣�(ab)
e |b, c; f 〉|a, f ; d〉|d, d̄; 0〉∣∣2

= ∣∣[F abc
d

]
e f

∣∣2. (51)

I note that p(ab)c;d (e| f ) = pa(bc);d ( f |e).
Repeating steps 4 and 5 many times will yield different

measurement outcomes, i.e., different values of f and e, and
generate statistics that can determine these conditional proba-
bilities for all possible values of the fusion channels of the b-c
and a-b pairs, respectively.

This set of experiments is seen to contain the fusion and
quantum dimension experiments by setting a = b̄ and d = c,
and noting that pb̄(bc);c( f |0) = pbc( f ) from Eq. (49). The
only reason to perform the fusion and quantum dimension
experiments separately from these would be to allow for an
experimental setup that is only capable of measuring the joint
fusion channel of one fixed pair of quasiparticles. Otherwise,
the associativity experiments provide a more efficient method
of collecting the data, since the two pair-creation steps for
initialization are not required for each round of measurement.

Repeating this entire experiment many times for all possi-
ble values of a, b, c, and d will allow one to infer all the F
symbols invariants of Eq. (31). This gives the magnitudes of
all the F symbols, when the UMTC has no fusion multiplici-
ties. I note that the relation in Eq. (45) makes it clear that the
physical positioning of the quasiparticles is unimportant. The
primary determining aspect of this experiment is that the joint
fusion measurements of quasiparticles are alternating between
the a-b and b-c pairs. As such, it is not necessary to repeat

FIG. 4. An experiment that can determine the magnitudes of
the components of the topological S matrices. (a) After initializing
the system in the state of Fig. 1(a), the quasiparticles a and b are
transported one full revolution around each other. (b) After the pure
braid of quasiparticles a and b, the joint topological charge of the ā-a
pair of quasiparticles is measured. This measured fusion channel is
found to have topological charge z with probabilities p(2)

ab (z|0) given
in Eq. (52).

the experiments for different topological charge configura-
tions that are related by symmetries that leave this property
unchanged.

While this set of experiments is (in principle) able to ex-
tract the magnitudes of all the F symbols, it does not access
the their phases. Some of this phase information may poten-
tially be determined via consistency constraints, such as the
pentagon equations and unitarity. Experimental determination
of some of the phase information may also be possible using
braiding experiments, as I will show.

C. Braiding

In this section, I consider bulk quasiparticle experiments
that involve braiding operations. Even though these experi-
ments represent direct probes the braiding properties of the
quasiparticles, in contrast with the fusion and associativity
experiments, not all of these braiding experiments actually
reveal additional information about the topological order of
the phase. This is because the algebraic consistency conditions
of UMTCs impose constraints that relate braiding properties
to the fusion and associativity properties, as emphasized at
the end of Sec. II. I will point out such relations for the
experiments described in the following.

1. S matrix

The simplest experiment that involves braiding is per-
formed by the following steps, shown schematically in Fig. 4.

(1) Pair-create quasiparticles carrying topological charges
ā and a from vacuum, and move them apart.

(2) Pair-create quasiparticles carrying topological charges
b and b̄ from vacuum, and move them apart.

(3) Move quasiparticle a around quasiparticle b once in the
counterclockwise direction.

(4) Measure the collective topological charge of the ā-a
pair of quasiparticles.

Steps 1 and 2 are the same initialization steps for the fusion
experiment in Sec. III A. The pure braid operation in step 3 is
shown in Fig. 4(a). It is equivalent to two successive braiding
exchanges of quasiparticles a and b, and it can equivalently
be implemented by moving quasiparticle b once around a in
the counterclockwise direction, or both of them around each
other in a way that amounts to a single counterclockwise
revolution. In step 4, the measurement of the ā-a pair, shown
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FIG. 5. An experiment that can determine braiding properties.
(a) After initializing the system in the state of Fig. 2(a), the quasipar-
ticles b and c are transported around each other for m full revolutions.
(b) After the m pure braid operations on quasiparticles b and c, the
joint topological charge of the a-b pair of quasiparticles is measured.
This measured fusion channel is found to have topological charge e′

with probabilities p(2m)
abc;d (e′|e) given in Eq. (53).

in Fig. 4(b), can alternatively be replaced by a measurement
of the collective charge of the b-b̄ pair, the outcome of which
will correspond to the conjugate of the outcome of the mea-
surement of the ā-a pair. The measurement of the ā-a pair in
this experiment will find topological charge z with probability

p(2)
ab (z) = ∣∣�(āa)

z RabRba|ā, a; 0〉|b, b̄; 0〉∣∣2
= D2dz

d2
a d2

b

∣∣S(z)
āb

∣∣2. (52)

This probability is computed using Eq. (38), whose diagram
(when normalized appropriately) represents the process in
question.

2. Pure braiding

The S matrix braiding experiment can be modified to make
it more general and provide additional information. For this,
the initial setup can start in the same manner as the associa-
tivity experiment by creating four quasiparticles from vacuum
that respectively carry topological charge a, b, c, and d̄ , fol-
lowing the steps 1–3 from Sec. III B.

With this initial setup, the braiding experiment can be
performed by the following repeatable steps, shown schemat-
ically in Fig. 5.

(4) Move quasiparticle b around quasiparticle c in the coun-
terclockwise direction m times.

(5) Measure the collective topological charge of the a-b
pair of quasiparticles.

(6) Go to step 4.
The m pure braids in step 3 are equivalent to 2m braiding

exchanges of quasiparticles b and c, and can equivalently
be implemented by moving quasiparticle c around b in the
counterclockwise direction m times, or both of them around
each other in a way that amounts to m counterclockwise
revolutions.

For a given round of applying steps 4 and 5, where the
a-b pair initially had collective charge e, the probability of the
measurement of a-b at step 5 having outcome e′ will be

p(2m)
abc;d (e′|e) = ∣∣�(ab)

e′
(
RbcRcb

)m|a, b; e〉|e, c; d〉|d, d̄; 0〉∣∣2
=
∣∣∣∣∣∣
∑

f

[
F abc

d

]
e f θ

m
f

[
F abc

d

]∗
e′ f

∣∣∣∣∣∣
2

. (53)

FIG. 6. An experiment that can determine braiding properties.
(a) After initializing the system in the state of Fig. 2(a), a braiding ex-
change of quasiparticles b and c is performed an odd number of times
n. (b) After the n braiding exchange operations on quasiparticles b
and c, the joint topological charge of the a-c pair of quasiparticles is
measured. This measured fusion channel is found to have topological
charge g with probabilities p(n)

abc;d (g|e) given in Eq. (55).

This probability can be computed using Eq. (42) with
m′ = −m, as the corresponding diagram in Eq. (40) is related
to the process in question. This set of experiments is seen to
contain the S matrix experiments by setting a = b̄ and d = c,
and noting that p(2)

b̄bc;c
(e′|0) = p(2)

bc (e′) from Eq. (52).
Repeating these experiments many times for all possible

values of a, b, c, and d , as well as m will allow one to infer in-
formation about the twist factors of charges f that are allowed
fusion channels of the pairs of charges b and c, as well as
possibly some information about the F symbols involved. In
particular, Eq, (53) can be written in terms of a sum of the real
parts of relative twist and F -symbol phase factors, weighted
by the magnitudes of F symbols, which can be determined
from the associativity experiments. For example, when e = e′,
the probabilities can be written as

p(2m)
abc;d (e|e) =

∑
f

∣∣[F abc
d

]
e f

∣∣4
+ 2

∑
f < f ′

∣∣[F abc
d

]
e f

[
F abc

d

]
e f ′
∣∣2 Re

(
θm

f

θm
f ′

)
, (54)

and F -symbol phase factors enter the expressions when
e 	= e′. (Here, I have assumed some arbitrary ordering on the
topological charge set.)

3. Exchange braiding

A similar braiding experiment can be performed involving
an odd number n of braiding exchange operations (allowing
braiding exchanges in addition to pure braids) of quasiparti-
cles b and c. For this, one starts with the same initial setup
in steps 1–3, and then follows the repeatable steps, shown
schematically in Fig. 6.

(4) Exchange the positions of quasiparticle b and quasipar-
ticle c in the counterclockwise direction n times (where n is
odd).

(5) Measure the collective topological charge of the a-c
pair of quasiparticles.

(6) Exchange the positions of quasiparticle c and quasipar-
ticle b in the counterclockwise direction n times (where n is
odd).

(7) Measure the collective topological charge of the a-b
pair of quasiparticles.

(8) Go to step 4.
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For a given round of applying steps 4–7, where the a-b
pair initially had collective charge e, the probability of the
measurement of a-c at step 5 having outcome g will be

p(n)
abc;d (g|e) = ∣∣�(ac)

g Rcb(RbcRcb)
n−1

2 |a, b; e〉|e, c; d〉|d, d̄ ; 0〉∣∣2
=
∣∣∣∣∣∣
∑

f

[
F abc

d

]
e f Rcb

f θ
n−1

2
f

[
F acb

d

]∗
gf

∣∣∣∣∣∣
2

, (55)

and given the measurement outcome g at step 5, the probabil-
ity of measurement outcome e at step 7 will be

p(n)
acb;d (e|g) = p(−n)

abc;d (g|e). (56)

These probabilities can be computed using Eq. (43) with
n′ = −n, as the corresponding diagram in Eq. (40) is related
to the process in question. While Rcb

f are not a gauge invariant
quantities when b 	= c, the probabilities expressed in Eq. (55)
are invariants.

Repeating these experiments many times for all possible
values of a, b, c, and d , as well as m and n will allow one to
infer information about the relative braiding phases and twist
factors between the topological charges that show up as fusion
channels f of the pairs of charges b and c.

I note that, even though these experiments provide direct
probes of the braiding properties, not all of the variations of
these experiments provide additional information about the
topological order of the phase. For example, the information
about the topological order that may be gained from the n = 1
braiding exchange experiments is already provided by the
associativity experiments, since

p(1)
abc;d (g|e) = ∣∣[Bacb

d

]
eg

∣∣2 = ∣∣[F bac
d

]
eg

∣∣2 = pb(ac);d (g|e). (57)

This relation is obtained by first applying the definition of the
B symbol, and then using Eq. (48).

In the case where c = b, steps 6 and 7 do not need to
be distinguished from steps 4 and 5, and the corresponding
measurement outcome probabilities become

p(n)
abb;d (e′|e) =

∣∣∣∣∣∣
∑

f

[
F abb

d

]
e f

(
Rbb

f

)n[
F abb

d

]∗
e′ f

∣∣∣∣∣∣
2

. (58)

In fact, this expression holds for all integer values of n. I note

that Rbb
f =

√
θ f

θb
�bb

f is a gauge invariant root of unity when

N f
bb = 1.

4. Non-Abelian braiding

A property of much interest regarding anyons is whether
their braiding is Abelian or non-Abelian in nature. More
specifically, the question is whether the product of two dis-
tinct braiding operations is independent of the order they are
applied, when the final configurations resulting from different
orders of application are the same. A general experiment
to test this property may be carried out for three identical
quasiparticles carrying topological charge a, whose collective
fusion channel is d (and there will be a fourth quasiparticle of
charge d̄ that compensates for their collective charge). Label-
ing the positions (of the pinning potentials) where the three
a quasiparticles can be localized before and after braiding, I

consider the braiding exchanges R12 interchanging the quasi-
particles at positions 1 and 2 in a counterclockwise fashion,
and R23 interchanging the quasiparticles at positions 2 and
3 in counterclockwise fashion. Then the question is whether
R12R23 is equal to R23R12? The simplest way to probe this is
to implement the commutator R−1

12 R−1
23 R12R23 and inspecting

whether the resulting operation is identity. The initial setup
for this experiment can start in the same manner as the as-
sociativity experiment by creating four quasiparticles from
vacuum that respectively carry topological charge a, a, a, and
d̄ , following the steps.

(1) Pair-create quasiparticles carrying topological charges
d and d̄ from vacuum and move them apart.

(2) Split quasiparticle d into quasiparticles carrying topo-
logical charges e and a and move them apart to positions 2
and 3, respectively.

(3) Split quasiparticle e into quasiparticles carrying topo-
logical charges a and a and move them apart to positions 1
and 2.

With this initial setup, the braiding experiment can be
performed by the following repeatable steps, shown schemat-
ically in Fig. 7.

(4) Exchange the quasiparticles at positions 2 and 3 in the
counterclockwise direction.

(5) Exchange the quasiparticles at positions 1 and 2 in the
counterclockwise direction.

(6) Exchange the quasiparticles at positions 2 and 3 in the
clockwise direction.

(7) Exchange the quasiparticles at positions 1 and 2 in the
clockwise direction.

(8) Measure the collective topological charge of the a-a
pair of quasiparticles at positions 1 and 2.

(9) Go to step 4.
If the braiding operations are Abelian, every repetition

of this experiment will result in the measurement at step 8
finding the same topological charge value e as the initial value.
Thus, if repetitions of this experiment yield the observation of
more than one possible measurement outcome for the fusion
channel of the quasiparticles at positions 1 and 2, then it is a
clear indication that the commutator of braiding operations is
not proportional to identity, and hence the braiding of type a
quasiparticles is non-Abelian.

Indeed, given that the initial fusion channel of the quasi-
particles at positions 1 and 2 was e, the probability of the
measurement in step 8 having outcome e′ is

pcom
aaa;d (e′|e) = ∣∣�(12)

e′ R−1
12 R−1

23 R12R23|a, a; e〉|e, a; d〉|d, d̄; 0〉∣∣2
= ∣∣�(12)

e′ R23R−1
12 |a, a; e〉|e, a; d〉|d, d̄; 0〉∣∣2

= ∣∣[Baaa
d

]
ee′
∣∣2 = ∣∣[F aaa

d

]
ee′
∣∣2. (59)

The first equivalence in the above equation is obtained by ap-
plication of the Yang-Baxter relation for braids R12R23R12 =
R23R12R23; the second equivalence is obtained by evaluating
the operations; and the final equivalence is an application of
Eq. (48). Thus pcom

aaa;d (e′|e) = pa(aa);d (e′|e) from Eq. (50). The
fact that this probability can be reduced to an expression that
only involves F symbols further highlights how “non-Abelian
fusion” (i.e., having multiple fusion channels) implies the
existence of non-Abelian braiding.
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FIG. 7. An experiment that can detect non-Abelian braiding. After initializing the system in the state of Fig. 2(a) with a = b = c,
a commutator of braiding exchange operations R−1

12 R−1
23 R12R23 is implemented by performing the sequence of braiding exchanges shown

sequentially in (a)–(d). (e) After performing the braiding sequence R−1
12 R−1

23 R12R23, the joint topological charge of the pair of quasiparticles
at positions 1 and 2 is measured. This measured fusion channel is found to have topological charge e′ with probabilities p(com)

aaa;d (e′|e) given in
Eq. (59). A measurement outcome e′ 	= e is an indication of non-Abelian braiding statistics.

I note that this experiment actually distinguishes whether
or not the commutator is proportional to identity. As such, it is
insensitive to effects (universal or nonuniversal) that introduce
overall phase factors. This includes moving the quasiparticles
on different time scales or along different, but topologically
equivalent, paths, as well as when the quasiparticles carry
the same topological charge values, but are not identical ob-
jects, for example, having different electric charge values.
This make the experiment a robust probe of the existence of
non-Abelian braiding statistics.

D. Examples

It is instructive to consider how the fusion and braiding
properties of a topological phase may be extracted from the
described experiments. This is most easily examined for the
case where a and b have two allowed fusion channels, which
I write as the charges e1 and e2, and b and c have two allowed
fusion channels, which I write as the charges f1 and f2.

The fusion rules experiments will determine these to be
the allowed fusion channels, and will reveal the corresponding
quantum dimensions of these fusion channels. The associativ-
ity experiments may be used to determine the magnitudes of
all the F -symbol components. The relevant F symbol in this
case is a 2×2 unitary matrix

F abc
d =

[
F11 F12

F21 F22

]
. (60)

The condition of unitarity requires |F22|=|F11|, |F12|=|F21|=√
1 − |F11|2, and F12F ∗

22 = −F11F ∗
21, so all the magnitudes are

related. The phases of the F -symbol components cannot be
determined by the associativity experiments, though it may
be possible to derive some information about them from the
algebraic conditions required to be satisfied by UMTCs.

The measurement outcome probabilities for the pure braid
experiments in this case are

p(2m)
abc;d (e1|e1) = p(2m)

abc;d (e2|e2)

= |F11|4 + |F12|4 + 2|F11F12|2 cos(mϕ)

= 1 − 2|F11F12|2[1 − cos(mϕ)], (61)

p(2m)
abc;d (e1|e2) = p(2m)

abc;d (e2|e1)

= 2|F11F12|2[1 − cos(mϕ)], (62)

where eiϕ = θ f2
θ f1

is the relative phase between the twist factors

of f1 and f2. Having first determined the magnitudes of the
F symbols from the associativity experiments, the pure braid

experiments provides the value of cos(ϕ) = Re(
θ f2
θ f1

). In this

case, only the m = 1 experiment is needed to extract the
relevant braiding data, i.e., cos(ϕ); however, performing the
m 	= 1 experiments may provide useful corroboration of the
extracted information. If the topological charges are chosen
such that c = b̄, so that f1 = 0, this provides the real part of
the twist factor of f2.

Using the same assumptions, but letting c = b, the re-
sulting measurement outcome probabilities for the exchange
braiding experiments are similarly obtained to be

p(n)
abb;d (e1|e1) = p(n)

abb;d (e2|e2)

= 1 − 2|F11F12|2[1 − cos(nλ)], (63)

p(n)
abb;d (e1|e2) = p(n)

abb;d (e2|e1)

= 2|F11F12|2[1 − cos(nλ)], (64)

where eiλ = Rbb
f2

Rbb
f1

=
√

θ f2 �bb
f2√

θ f1 �bb
f1

. Recall from Eq. (57) that the n=1

experiment only yields information about the topological
order that can already be obtained from associativity exper-
iments. Hence, this is also true for all n, in this situation.
Moreover, setting a = b̄ and using Eq. (48) yields the relation

Re

(
Rbb

f2

Rbb
f1

)
= −d f1

(
d f1 − 1

)+ d f2

(
d f2 − 1

)
2d f1 d f2

, (65)

when b×b = f1 + f2, which explicitly demonstrates this fact.
However, it is nonetheless useful to perform these exchange
experiments to corroborate the data and demonstrate its ex-
traction through braiding operations.

Now considering specific UMTCs, I first examine the
Ising(ν) topological phases, the basic data of which are given
in Table I. Here, ν is an odd integer mod 16 that distinguishes
the eight different theories that share the same fusion rules.
Table I also lists some useful topological invariants and the
predicted measurement probabilities for the bulk quasiparticle
experiments described in this paper. The σ topological charge
is the only one that is non-Abelian, so these quasiparticle
types are the only ones that will generate nontrivial infor-
mation from the bulk quasiparticle experiments. For these
topological orders, all of the fusion rules, quantum dimen-
sions, and magnitudes of the F symbols can be determined
using the fusion and associativity experiments. The braiding
experiments (using σ quasiparticles) can determine the value
of θψ . However, the values of κσ and θσ cannot be obtained
from such experiments. Thus these experiments can determine
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TABLE I. The basic data of Ising(ν ) UMTCs, along with some of the topological invariants and the predicted probability outcomes for the
experiments described in this section [Eqs. (49), (50), (53), (55), and (59)]. Here, ν ∈ {1, 3, . . . , 15} is an odd integer mod 16 that characterizes
the eight different UMTCs with these fusion rules, I is the vacuum charge, and e, e′, f ∈ {I, ψ}. Fusion with vacuum, and F symbols and R
symbols that equal 1 are not shown. These are all the possible UBTCs with these fusion rules.

C = {I, σ, ψ} ψ×ψ = I, σ×ψ = σ, σ×σ = I + ψ dI = dψ = 1, dσ = √
2

Fψσψ
σ = F σψσ

ψ = −1, [F σσσ
σ ]e f = κσ√

2

[
1 1
1 −1

]
e f

κσ = (−1)
ν2−1

8

Rψσ
σ = Rσψ

σ = (−i)ν, Rσσ
I = κσ e−i π

8 ν, Rσσ
ψ = κσ ei 3π

8 ν θI = 1, θψ = −1, θσ = ei π
8 ν

S = 1
2

[
1

√
2 1√

2 0 −√
2

1 −√
2 1

]
, S(ψ ) = e−i π

4 ν c− mod 8 = ν

2

pσσ (I ) = pσσ (ψ ) = 1
2 pσ (σσ );σ ( f |e) = p(σσ )σ ;σ (e| f ) = 1

2 p(2)
σσ (I ) = 0, p(2)

σσ (ψ ) = 1

p(n)
σσσ ;σ (e′|e) =

⎧⎨⎩
δe,e′ for n = 0 mod 4
1
2 for n odd
1 − δe,e′ for n = 2 mod 4

pcom
σσσ ;σ (e′|e) = 1

2

the topological order to be of the Ising(ν) type, but cannot
distinguish between different ν.

Next, I examine the Fibonacci topological phases, whose
basic data are given in Table II. In this case, s = ±1 labels
the two theories with the same fusion rules, which are simply
distinguished by their chirality. Table II also lists some useful
topological invariants and the predicted measurement proba-
bilities for the bulk quasiparticle experiments described in this
paper. In this case, the ε topological charge is the only nontriv-
ial one and it is non-Abelian. For these topological orders, all
of the fusion rules, quantum dimensions, and magnitudes of
the F symbols can be determined using the fusion and associa-

tivity experiments. The braiding experiments can extract the
value of Re(θε ), but cannot determine which chirality s = ±1
is present.

The Ising(ν) and Fibonacci topological phases are exam-
ples for which the bulk quasiparticle braiding experiments
described do not provide additional information about the
topological order, beyond what may be obtained from the
fusion and associativity experiments (together with consis-
tency conditions). However, the braiding experiments provide
additional verification of the information learned from the
associativity experiments, as well as direct probes of the braid-
ing properties.

TABLE II. The basic data of Fibonacci UMTCs, along with some of the topological invariants and the predicted probability outcomes for
the experiments described in this section [Eqs. (49), (50), (53), (55), and (59)]. Here, s = ±1 indicates the chirality of the two UMTCs with
these fusion rules, φ = 1+√

5
2 is the Golden ratio, and I is the vacuum charge. Fusion with vacuum, and F symbols and R symbols that equal 1

are not shown. These are all the possible UBTCs with these fusion rules.

C = {I, ε} ε×ε = I + ε dI = 1, dε = φ

[F εεε
ε ]e f =

[
φ−1 φ−1/2

φ−1/2 −φ−1

]
e f

κε = 1

Rεε
I = e−is 4π

5 , Rεε
ε = eis 3π

5 θI = 1, θε = eis 4π
5

S = 1√
φ2+1

[
1 φ

φ −1

]
, S(ε) = eis 3π

10 c− mod 8 = s 14
5

pεε (I ) = 1 − pεε (ε) = φ−2 pε(εε);ε (I|I ) = pε(εε);ε (ε|ε) = 1 − pε(εε);ε (I|ε) = 1 − pε(εε);ε(ε|I ) = φ−2

p(2)
εε (I ) = 1 − p(2)

εε (ε) = φ−4 pcom
εεε;ε (I|I ) = pcom

εεε;ε (ε|ε) = 1 − pcom
εεε;ε (I|ε) = 1 − pcom

εεε;ε (ε|I ) = φ−2

p(n)
εεε;ε (I|I ) = 1 − p(n)

εεε;ε (I|ε) = 1 − p(n)
εεε;ε (ε|I ) = p(n)

εεε;ε (ε|ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for n = 0 mod 10

φ−2 for n = 1, 9 mod 10

φ−4 for n = 2, 8 mod 10

φ−4 + 2φ−2 for n = 3, 7 mod 10

2φ−4 + φ−2 for n = 4, 6 mod 10

φ−6 for n = 5 mod 10
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IV. ADDITIONAL EXPERIMENTS

Even though bulk quasiparticle experiments of the type dis-
cussed in Sec. III can provide a large amount of information
about the topological order of a phase, they generally will
not provide complete information, as was demonstrated for
the Ising(ν) and Fibonacci topological phases. The primary
limitations of those experiments stem from the fact that the
position and topological charge of a localized quasiparticle
behave as classically controlled parameters that take definite
values. As such, those experiments are unable to utilize su-
perpositions of different quasiparticle trajectories and can
only utilize coherent superpositions of different topological
charges that occur as common fusion channels of the same sets
of localized quasiparticles (which requires the localized quasi-
particles to be non-Abelian). The impact of these limitations
is most extreme for Abelian topological phases, for which no
nontrivial information about associativity or braiding can be
obtained using these bulk quasiparticle experiments; they can
only access the fusion rules. Moreover, a general limitation
due to the intrinsic nature of the bulk quasiparticle experi-
ments is that they are unable to probe the chirality of the
topological phase, as doing so requires some form of external
reference.

In light of these limitations, additional types of exper-
iments should be considered in order to access additional
information about the topological order. These additional ex-
periments come with their own implementation difficulties
and obstacles, so it is useful to weigh these against what
information they may provide. In this section, I consider sev-
eral classes of additional experiments, determine the invariant
information they access, and discuss some of the difficulties
and challenges with their implementations. This is not meant
to be an exhaustive list, but rather is intended to convey that
there are numerous approaches one may pursue to provide
additional information in certain circumstances.

A. Edge modes

Many experiments have been proposed to probe the topo-
logical order of topological phases with gapless edge modes,
which most notably include fractional quantum Hall states.
The gapless edge modes can be used to reveal informa-
tion about the bulk topological order, because the bulk-edge
correspondence allows the bulk quasiparticles’ topological
quantum numbers to also manifest on the edge excitations.
This is well-understood, in particular, when the effective the-
ory of the bulk is described by a Chern-Simons quantum
field theory, in which case the edge manifests a correspond-
ing conformal field theory (CFT). Such a Chern-Simons and
CFT description is typically applicable for the long-distance
effective theory of the bulk and gapless edge modes of topo-
logical phases, such as fractional quantum Hall states with
sharp edges, so I will view the gapless edge modes from
this perspective. In this section, I specifically focus on three
types of experiments that can provide the most direct access to
missing information about the topological order: point contact
tunneling, interferometry, and thermal Hall transport.

1. Point contact tunneling

The first type of edge mode experiments may be performed
using a quantum point contact which allows controllable tun-

neling to occur between two different locations along the
edge. A point contact may be created by deforming the path
of edge modes, e.g., using electrostatic gates, so that distinct
locations along the edge are brought closer to each other in
terms of distance through the bulk. In the weak backscattering
limit, the region within the point contact constriction is to
remain in the same topological phase as the bulk to either side
of the point contact. In this case, the point contact induces
tunneling of quasiparticles through the bulk between the edge
modes. This is in contrast to the strong backscattering limit,
where the point contact essentially pinches off the topological
phase, in which case there is no tunneling of quasiparticles
through the bulk, but one can instead probe tunneling of
constituent particles, e.g., electrons, across nontopological re-
gions. Hence, I will focus only on the weak backscattering
limit, as it is the regime that allows one to probe properties of
the quasiparticles.

In the case of quantum Hall states, and other topological
phases whose edge modes transport electrical charge, one can
probe the tunneling current as a function of temperature and
the voltage applied across the point contact. The expected
tunneling current associated with an edge excitation, in the
appropriate limits, takes the form [55–60]

Itun ∝
{

T 2g−2 V for small eV � kBT
V 2g−1 for small eV � kBT

, (66)

where V is the voltage difference across the point contact, T is
temperature, and g is the tunneling exponent of the tunneling
quasiparticles.

In principle, all possible types of quasiparticle excitations
of the topological order may contribute to the tunneling cur-
rent, so the expression for tunneling current will actually
involve a sum over all possible quasiparticle types, with dif-
ferent prefactors and values of g for each quasiparticle type.
However, in the suitable limit, the tunneling is expected to be
dominated by the excitations whose tunneling operators are
the most relevant (in the renormalization group sense), i.e.,
those with the smallest values of g.

When the system has a single edge mode described by
CFT, the tunneling exponent of a quasiparticle carrying topo-
logical charge a is given by ga = 2ha, twice the conformal
scaling dimension of the corresponding CFT operator associ-
ated with a. The bulk-edge correspondence provides a relation
between the topological twist factors of the quasiparticle and
the conformal scaling dimensions of the edge excitations

θa = ei2πha . (67)

This provides an extraction of the topological twist factors of
tunneling quasiparticles from measurements of the tunneling
current.

When the system has multiple edge modes that all propa-
gate in the same direction, a similar statement holds, though
the topological charge can be written as a multi-component
quantity a = (a1, . . . , an), with each component correspond-
ing to a component of the edge modes, and ha = ∑

j ha j . In
these cases, the tunneling exponent of a quasiparticle is uni-
versal and independent of the edge potentials and interactions.

When there are multiple edge modes that do not all prop-
agate in the same direction, the situation is more complicated
and will depend on the interactions and edge potentials. For
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quantum Hall states, long-range Coulomb interactions and
impurity scattering at the edge are expected to cause the edge
modes to equilibrate into a single electrically charged mode
and the neutral sector modes. In this case, the conformal
scaling dimensions can be written as ha = ha,c + ha,n, where
ha,c and ha,n are projections of the conformal dimensions onto
the charge and neutral components, respectively. In this way,
the tunneling exponent of a quasiparticle can be written in
terms of the charge and neutral sectors as

ga = 2(ha,c + |ha,n|). (68)

When the edge modes all propagate in the same direction,
haj all have the same sign, so ha,n � 0, and this returns the
previously stated result. When there are counter-propagating
edge modes, haj may have different signs, and ha,n can be
negative. In this case, more effort is required to establish
the relation to the topological twist factors. For a fractional
quantum Hall state, it is always the case that

ha,c = Q2
a

2ν̃
, (69)

where ν̃ = ν mod 1 is the fractional part of the filling, and
Qa is the electrical charge (in units where the electron has
Qe− = −1) of the quasiparticle of type a. The electrical charge
of tunneling quasiparticles can be extracted from the tun-
neling shot noise in the same point contact experimental
setup [61–63]. Thus, one can piece together the relation to
infer the topological twist by measuring the electric charge
and tunneling exponent of the tunneling quasiparticles in a
quantum Hall state of known filling. Even though the extrac-
tion of the tunneling exponent does not constitute a direct
probe of the braiding statistics, the ability to yield the values
of topological twist factors potentially makes it a powerful
method for identifying the UMTC.

As an aside, I mention that even though the fractional
electric charge values carried by quasiparticles do not pro-
vide as direct information about the topological order as do
the topological twist factors, they do provide some important
information. In particular, fractional electric charge is a prop-
erty associated with the symmetry fractionalization class of a
topological phase with U(1) charge conservation symmetry.
The manner in which symmetry charges can fractionalize
for quasiparticles are determined by their braiding statistics
with the Abelian quasiparticles of the topological phase [53].
When the quasiparticles that carry topological charge a also
carry fractional electric charge Qa, it implies that the UMTC
includes an Abelian topological charge q (ascribed to the
Laughlin quasihole in quantum Hall states) which has braid-
ing RaqRqa = exp(i2πQa) for any a. It also follows that the
Hall conductance σH (in units of e2/h), which equals the
filling ν for quantum Hall states, satisfies ei2πσH = ei2πQq , so
θq = ±eiπσH [64].

The fractional electric charge of tunneling quasiparti-
cles has been measured through tunneling noise experiments
for quantum Hall states at various filling fractions [65–71],
with results that fairly accurately match predictions for the
expected states. On the other hand, measurement of the tun-
neling exponents appears to be more challenging, and has
only been reported for the states at ν = 7

3 , 5
2 , and 8

3 [69–71],

for which the match to predictions for candidate states is not
definitive.

Perhaps the most significant challenges associated with the
edge mode tunneling experiments have to do with ensuring
that system is exhibiting the desired tunneling behavior. One
aspect of this is constructing the point contact so that the
region within it supports the same topological phase as the
rest of the bulk, as is necessary for the excitations tunneling
to correspond to quasiparticles of the bulk topological order
being probed. Another is aspect is ensuring the edge modes
are fully equilibrated, as otherwise determining the relation
between measured quantities and UMTC information could
be made intractable by the nonuniversal physics. Some of
these issues may be mitigated by improved sample designs,
such as screening well layers that could produce more sharply
defined edges [72,73].

The tunneling behavior may change significantly as system
parameters, such as T and V , are varied [69–71], so it is im-
portant to verify that these are in an appropriate range. Indeed,
Ref. [67] observed a transition of the tunneling quasiparticles’
charge for hierarchy filling fractions (ν = 2

5 and 3
7 ) from what

can be interpreted as minimal charge quasiparticles at higher
temperatures to minimal scaling dimension quasiparticles at
lower temperatures, though the scaling exponent was not ex-
tracted and it is not clear the regimes of Eq. (66) were reached.

Even when the tunneling is behaving as desired, these
experiments will have limited ability to control which quasi-
particle types one can extract information about, as working in
the desired regime will likely give tunneling that is dominated
by one type that has the most relevant tunneling (smallest
tunneling exponent), or maybe a very few number of the most
relevant types. If the most relevant tunneler does not happen
to also be a generating quasiparticle (e.g., the fundamental
quasiparticle), then the information provided by the extracted
twist factor may not be very distinguishing.

In the case of topological phases whose edge modes do not
transport electric charge, the tunneling experiments can still
be performed, but require using nonelectric transport methods,
such as thermal transport, or additional structures that are able
to interface electrical current with the topological phases’ neu-
tral edge modes, such as those considered in Ref. [74]. These
implementations can be expected to be more challenging, as
electrical transport is relatively straightforward to control and
measure.

2. Interferometry

The second type of experiments utilizing edge modes that
I focus on is interferometry. Gapless edge modes provide the
capability of establishing coherent superpositions of differ-
ent paths taken by a quasiparticle. When the different paths
involve different braiding topologies, e.g., going around the
left or right side of another stationary quasiparticle, it can
directly probe the braiding statistics between the quasipar-
ticles involved. In particular, this scenario can be realized
by a Fabry-Pérot type interferometer formed using two point
contacts, as indicated in Fig. 8. This configuration generates
interference between the two tunneling paths edge excitations
may travel around a central region. For quantum Hall states,
since the edge excitations that encircle the central interference
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FIG. 8. A two point-contact interferometer may be used for
learning information about quasiparticles’ braiding statistics in a
topological phase with gapless edge modes. The shaded region is
the topological phase and the blue lines indicate the gapless edge
modes. The point-contacts induce tunneling of excitations between
the bottom and top edges with amplitudes t1 and t2. This estab-
lishes an interference loop around the central region between the
two point-contacts. The quasiparticle content in the central region
can be controlled using a gate (red dot) that creates a pinning po-
tential well. The braiding of the edge excitations with the collective
topological charge b of bulk quasiparticles in the central interference
region enters the interference term of the edge current flowing from
the bottom to the top edge. A plunger gate P can be utilized to
modulate the total magnetic flux passing through the interference
loop by changing the area of the central region, which generates
Aharonov-Bohm oscillations in the interference term.

region carry electric charge, it is useful to have a mechanism
for modulating the magnetic flux through the central region,
in order to generate Aharonov-Bohm oscillations in the in-
terference signal. This may be done by varying the magnetic
field or the area of the central region, e.g., through the use of
a plunger gate.

Such interferometers were first proposed and analyzed for
Abelian quantum Hall states in Ref. [75], for the non-Abelian
Pfaffian state expected at ν = 5

2 in Refs. [76–79], and for
general quantum Hall states in Refs. [44,80,81].

For the Fabry-Pérot two point-contact interferometer in
quantum Hall states, the leading order contribution to the
current across the Hall bar due to tunneling of quasiparticles
of type a is

I (a) ≈ I (a)
1 + I (a)

2 + I (a)
12 . (70)

Here, I (a)
1 and I (a)

2 are the tunneling currents that point-
contacts 1 and 2 would individually contribute in the absence
of quantum interference, so they would be expected to have
the same behavior of single point-contact tunneling, as in
Eq. (66). I (a)

12 is the (leading order) interference term between
the two tunneling paths, which takes the form

I (a)
12 ∝ Re[eiQa�M∗

abFa(T,V, L)]. (71)

The first factor is the Aharonov-Bohm phase associated with
the edge excitation a encircling the flux � that passes through
the central interferometry region. The last factor Fa(T,V, L),
which can be computed from the CFT, is a function of the
temperature T , the voltage difference V between the top and
bottom edges, and the length L of the perimeter of the central

region. The factor

Mab = S∗
abS00

S0aS0b
(72)

is the monodromy scalar element, which is due to the braiding
of the edge excitation a around the total collective topological
charge b of the bulk quasiparticles contained in the central in-
terference region. In principle, the quasiparticle content in the
central region, and hence the topological charge b and the fac-
tor Mab in the interference term, may be changed independent
of the other variables. The Aharonov-Bohm term may also be
modulated, e.g., using a plunger gate, nearly independently of
the other variables. With control over the topological charge
b in the central region and the Aharonov-Bohm phase of the
probe quasiparticles around the central, the braiding statistics
encoded in Mab can be extracted from the interference signal
in the tunneling current. Such experiments provide informa-
tion beyond that of the bulk quasiparticle braiding S matrix
experiments because here the phases of the elements of M can,
in principle, be extracted.

Such interferometers have been implemented in
Refs. [72,73,82–88], with varying degrees of success in the
experimental results. In particular, improved sample design,
e.g., involving screening well layers that screen impurities,
suppress charging energies, and yield more cleanly defined
edges have allowed for better behaved experiments [72,73].

The interferometry experiments face many of the same
implementation issues that negatively affect the single point
contact tunneling experiments, as they are based on the same
point contact tunneling technology. Furthermore, the inter-
ferometer must be designed so as to maintain a uniform
topological phase throughout the bulk, inside and outside the
central interference region, as well as within the point con-
tact constrictions, and ensure the interferometer is operating
in the Aharonov-Bohm regime, not the Coulomb-dominated
regime [89]. This must also be balanced by need to keep L
short enough that the interference remains coherent.

As in the case of the single point contact tunneling experi-
ment, there are some limitations in the accessible information,
even when the device is functioning as desired. Since the
tunneling will be dominated by one or very few of the most
relevant types of quasiparticles, with little control over which
these are, one may expect to only determine a single row or
very few rows of the braiding matrix M. Also, calibration of
the device signal to recognize b = 0 may be challenging, in
which case it may only be possible to assess relative differ-
ences in braiding phases, with no “zero” reference point.

While the monodromy matrix M does not provide as much
additional information as the topological twist factors, the in-
terferometry experiments have certain advantages over single
point contact tunneling experiments. One advantage is that the
probe of braiding statistics is more direct, in that the depen-
dence on M in the interferometry experiments are due to the
edge quasiparticles actually moving around the bulk quasipar-
ticles. Another advantage is that the data may be extracted at a
fixed temperature and potential difference between the edges,
rather than being extracted through a scaling relation. Related
to this, nonuniversal edge physics likely only reduces the
visibility of the interference term for interferometry, whereas
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it can render the relation of tunneling scaling to UMTC data
irretrievable.

3. Thermal Hall transport

The third type of edge mode experiments involve mea-
suring the thermal Hall conductivity which relates the
temperature difference between edges to the perpendicular
thermal current carried by the edge modes. As mentioned in
Sec. I, the thermal Hall conductivity of a (2 + 1)D topological
phase is [6–8]

κH = π

6
T c−, (73)

where the chiral central charge c− = cL − cR is the differ-
ence of the positive-valued central charges cL and cR of the
left-moving edge modes and the right-moving edge modes,
respectively. Thus such thermal transport edge mode exper-
iments can provide the chiral central charge. However, this
prediction only applies in the regime where the edge mode
are fully thermally equilibrated (or rather the length scales in-
volved are long compared to the thermal equilibration length).
In the opposite limit, where the edge modes are completely
nonequilibrated, one might expect each edge mode to con-
tribute positively to the thermal transport, regardless of its
chirality, that is κH would equal π

6 T (cL + cR). However, in
this case spurious contributions to κH , such as from edge
reconstruction, may not be assumed to cancel out, and the
thermal Hall conductivity would be expected to depend on de-
tailed, nonuniversal edge physics. Thus, when the edge modes
are not in the fully thermally equilibrated regime, one could
expect any (not necessarily quantized) value κH � π

6 T c−,
which would not indicate much about the topological order.

Reference [90] measured |κH | for integer quantum Hall
states in GaAs heterostructures using methods involving
quantum point contacts designed to separate the heat flow
across edge mode channels from the heat flow to bulk
phonons. Building on these methods, Refs. [9] and [10] per-
formed similar measurements for fractional quantum Hall
states in GaAs heterostructures at ν = 1

3 , 2
3 , 3

5 , and 4
7 , and

ν = 7
3 , 5

2 , and 8
3 , respectively. The reported values of κH for

ν = 1
3 , 3

5 , 4
7 , and 7

3 appear to be in sharp agreement with
the predictions, c− = 1, −1, −2, and 3 for the corresponding
Laughlin [91] and Haldane-Halperin hierarchy [92,93] states.
The reported values of κH for ν = 2

3 and 8
3 appear to be

near, but significantly deviated from the predictions c− =
0 and 2, for these being particle-hole conjugated Laughlin
states. For ν = 2

3 , this is attributed to the diffusive ther-
mal transport expected to occur when c− = 0. The reported
value of κH for ν = 5

2 is far removed from any of the
previously expected candidate states, and argued to be in
agreement with the prediction, c− = 2.5, for the (unexpected)
particle-hole symmetric Pfaffian state, despite theoretical is-
sues with this candidate state. However, various arguments
have been put forth to explain the mysterious occurrence of
this c− = 2.5 value [14–18,22–24] in terms of the previously
expected candidate states, which suggest significant depen-
dence on nonuniversal physics, such as partially equilibrated
edge modes or disorder induced nucleation of domains of
different bulk topological order. It is worth noting that the

experimentally extracted value of κH for ν = 5
2 comes near

the c− = 2.5 value in the temperature range 18–25 mK (only
within error bars at 22 mK), and diverges significantly from
it, increasing as temperature continues to be lowered. This
behavior is posited to result from the equilibration length
increasing as temperature decreases [10] and appear similar to
the temperature dependence behavior observed for the ν = 2

3
state [94]. (The temperature dependence of κH for other ν is
not presented.)

In contrast, Ref. [11] measured |κH | for fractional quantum
Hall states in bilayer graphene at ν = 4

3 , 5
3 , 7

3 , and 8
3 using two-

terminal measurements similar to Ref. [90], though without
the use of quantum point contacts to isolate the edge mode
heat flow from that of bulk phonons. Nonetheless, the heat
flow due to coupling to phonons was observed to become
negligible at sufficiently small temperatures (T � 60 mK).
The reported values of κH appear to be in sharp agreement
with the predictions expected for completely nonequilibrated
edge modes that are entirely free of spurious contributions,
that is cL + cR = 2, 3, 3, and 4, respectively. The authors
posit that these results can be attributed to a sharp confining
potential generating strong interactions and very long thermal
equilibration length.

References [12,13] measured κH for α-RuCl3 using a
straightforward approach. These experiments reported the ob-
servation of c− = 0.5 in certain parameter ranges. However,
they also found the diagonal thermal conductivity κxx to be
much larger than the thermal Hall conductivity, whereas one
naïvely expects it to be much smaller in order to attain quanti-
zation of κH . Attributing the κxx thermal conductivity to bulk
phonons, it was argued that thermalization of the edge modes
interacting with the bulk phonons can lead to approximate
quantization of an effective thermal Hall conductivity [20,21].
The experiments also found to have sample dependence,
where those with smaller κxx failed to exhibit thermal Hall
conductivity indicative of c− = 0.5 [13].

It is not unexpected that thermal Hall conductivity exper-
iments would be more difficult to perform and interpret than
corresponding electrical transport measurements of quantum
Hall states. Indeed, a well-developed quantum Hall plateau
with vanishing diagonal conductivity does not guarantee a
similarly well-quantized thermal Hall conductivity. There ap-
pear to be numerous questions left unanswered regarding
when the systems are operating in a regime where the ex-
periments are actually providing invariant universal data. In
addition to the challenges of isolating the thermal transport
of the edge modes from bulk phonon thermal transport, or
ensuring the interaction and thermalization of the edge modes
and bulk phonons are in a suitable regime, one must ensure
that multiple edge modes are fully equilibrated, that the tem-
perature is sufficiently low (but not too low), and that the
edge length of the system is much larger than the equilibration
length. Different sample quality and design, such as those with
screening wells, may also help mitigate some of these issues.
It is important to also recognize that different materials and
samples may actually favor different topological phases, even
at the same filling fraction, or different edge physics.

Assuming the value of c− is accurately extracted exper-
imentally, it is not, by itself, a very strong indicator of the
topological order. As mentioned in Sec. I, a given value of
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c− can be associated with infinitely many different UMTCs;
for example, all Drinfeld doubles (an infinite set) have c− =
0. Perhaps the most definitive information the chiral central
charge can provide by itself is that a noninteger value is
indicative of a UMTC with non-Abelian quasiparticles. On
the other hand, c− can be much more useful in conjunction
with other, more constricting data, such as the fusion rules.

B. Topological defects

Topological defects in the system, such as symmetry de-
fects (fluxes) or domain walls, may provide further means of
obtaining additional information about the topological order.
In contrast to quasiparticles, such defects are extrinsic objects.
They can only be introduced in the system by altering the
Hamiltonian along a string-like region, not point-like pinning
potentials. As such, they may be viewed as confined objects
in the unmodified Hamiltonian, whose energy depends on
the length of the string connecting defects. However, they
have fusion and braiding behavior that is similar to that of
quasiparticles, though with additional structure.

In the case where a topologically ordered system also has
unbroken global symmetry, the interplay between topology
and symmetry give rise to symmetry enriched topological
phases, which can potentially exhibit different classes of
symmetry fractionalization and defects. The algebraic struc-
ture of (2 + 1)D symmetry enriched topological phases (with
orientation preserving symmetry) is captured by G-crossed
UMTCs, which is a generalization of UMTCs that further
incorporates the symmetry action, fractionalization, and de-
fects [53].

The action of symmetry on the emergent UMTC degrees
of freedom is realized through the topological symmetries,
which are the maps from the UMTC back to itself that can
permute topological charges, but must preserve the basic data,
up to gauge transformations. In other words, the gauge invari-
ant quantities associated with topological charges related by
topological symmetries are identical. For example, when ϕ is
a topological symmetry, θϕ(a) = θa and Sϕ(a)ϕ(b) = Sab.

Symmetry fractionalization arises from the global symme-
try acting on quasiparticles, which manifests in the physical
Hilbert space as a combination of the topological symmetry
action (on the physical manifestation of the UMTC degrees
of freedom) and localized symmetry operators acting in small
regions containing a quasiparticle. The fractionalization pat-
terns are constrained by the symmetry group and action, as
well as the fusion and braiding properties of the UMTC.
Conversely, observation of certain fractionalization patterns
allows information to be inferred about the UMTC, as was
mentioned in Sec. IV A for U(1) symmetry. The symmetry
factionalization class may generally be measured through
some extrinsic quantities that are viewed as fractionalized
symmetry charges or global invariants, e.g., fractional electric
charges carried by quasiparticles or Hall conductance. My
focus in this section is the more direct information about the
UMTC that can be gained from defects, so I will not go into
further detail on the information determined by symmetry
fractionalization.

The fusion and associativity of defects described by a G-
crossed theory are that of a fusion tensor category, as is the

FIG. 9. An experiment that can determine the symmetry action
on topological charges. (a) After initializing the system in a state
that includes a g defect and a quasiparticle with topological charge
a, the quasiparticle is transported once around the defect. (b) After
the braiding operation the topological charge of the quasiparticle is
measured. The resulting topological charge is ρg(a).

case for UMTCs only describing quasiparticles. The only dif-
ferences are that the fusion rules are required to be G-graded,
and they are not required to be commutative, but rather must
be compatible with G-crossed braiding. This does not disrupt
the general fusion category properties, but merely introduces
and modifies some additional constraints. More specifically,
the topological charges associated with symmetry defects
(which are not simply those of quasiparticles) are ascribed the
corresponding labels g ∈ G of the global symmetry group and
their fusion must respect the group multiplication structure,
i.e., ag×bh = ∑

cgh
Nc

abcgh. In this notation, the quasiparticles
are ascribed the trivial group element 0; in other words, the
original UMTC that describes the quasiparticles constitutes
the 0-sector of the G-crossed UMTC. When a g-symmetry
action permutes topological charge types, g-symmetry defects
will necessarily be non-Abelian. Such non-Abelian defects
may be utilized for bulk experiments in a very similar man-
ner to those of Sec. III. Indeed, the fusion and associativity
experiments are essentially identical to those described in
Secs. III A and III B. The only differences are that the defects
cannot be localized by pointlike pinning potentials, but instead
require stringlike modifications of the Hamiltonian, and the
topological charges carry group element labels corresponding
to the types of defects, e.g., ag, bh, ck, egh, fhk, and dghk for
the associativity experiment.

On the other hand, the braiding of symmetry defects in
G-crossed UMTCs is generalized from that of UMTCs. In
particular, defect braiding incorporates the symmetry action
and fractionalization of the corresponding symmetry group
label, giving “G-crossed braiding.” For example, transporting
a quasiparticle of topological charge a0 around a g defect in
the counterclockwise sense transforms its topological charge
to ρg(a0), where ρ : G×C → C is the group action that spec-
ifies how the global symmetries act on the UMTC degrees of
freedom.

This suggests a braiding experiment to determine the
symmetry action through the following the steps, shown
schematically in Fig. 9.

(1) Create the system with a g-defect branch line, which
has g and g−1 defects at the endpoints.

(2) Pair-create quasiparticles carrying topological charges
ā0 and a0 from vacuum, and move them apart.

(3) Move quasiparticle a0 around the g defect once in the
counterclockwise direction.

(4) Measure the topological charge of the quasiparticle,
which now carries topological charge ρg(a0).
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This experiment can also be carried out using defects
instead of the quasiparticle, but doing so will provide informa-
tion about symmetry action on defects, which is not as direct
information about the UMTC describing the topological order.

The braiding experiments of Secs. III C and III C 3 can be
carried out with defects instead of quasiparticles. In this case,
the topological charges will also carry group element labels,
depending on what type of defects they are. The most useful
braiding experiments for determining additional information
about the topological order (specifically, about the UMTC de-
scribing the quasiparticles), are the pure braiding experiments
with defects ag, bh, ch−1 , and dg. In this case, the fusion chan-
nels of b and c correspond to quasiparticles with topological
charges f0. Additionally, the pertinent pure braid operation
takes a simple form, since h and h−1 defects act trivially on
each others’ topological charges, i.e., ρh−1 (bh) = bh, and the
G-crossed version of the ribbon property gives [53]

Rbc
f Rcb

f = θ f

θbθcηb(h, h−1)ηc(h−1, h)
, (74)

where the group labels of charges are left implicit, and the η

symbols are phase factors associated with symmetry faction-
alization. As such, when the ag-bh pair initially had collective
charge egh, the probability of the measurement of this pair
after the braiding having outcome e′

gh will again be given
by Eq. (53). However, the important distinction is that the
defects can support sums over fusion channels f0 that may not
be possible when the experiment only involves quasiparticles.
Different choices of ag may help give more information about
the quasiparticles by allowing the to be probed with different
F symbols and superpositions of f0 fusion channels that enter
these expressions, though it may be most convenient to choose
g = h−1, so that e0 and e′

0 are also in the quasiparticle sector.
Clear examples of defects providing superpositions of

quasiparticle fusion channels that cannot occur with quasipar-
ticles alone are Abelian topological orders with symmetries
that permute the quasiparticle types. A simple example of
this is the toric code D(Z2) topological order with G = Z2

symmetry that interchanges the e and m topological charges
(electromagnetic duality). In this case, there are two types of
symmetry defects, denoted σ+

1 and σ−
1 , which are related to

each other by fusion with a e or m charge. These defects have
fusion rules σ±

1 ×σ±
1 = I + ψ and σ±

1 ×σ∓
1 = e + m. (See

Ref. [53] for the complete G-crossed data.) In this example,
the pure braid experiment involving defects can reveal that
θψ = −1 and θe = θm (the latter is also revealed by the sym-
metry action experiment described in this section), whereas
no information beyond the fusion rules can be gained from
the experiments in Sec. III involving only quasiparticles.

More generally, topological defects do not require a global
symmetry of the Hamiltonian, but may, nonetheless, generate
action of the topological symmetries (i.e., symmetries of the
UMTC, not of the Hamiltonian) on quasiparticles, in a similar
manner. Examples of this include twist defects (lattice dislo-
cations that effect e − m interchange in the toric code) [95],
genons (layer interchanging structures of multilayer topologi-
cal phases) [96], and parafendleyon wires (topological charge
conjugating domain walls, e.g., formed in fractional quantum
Hall gapped by a superconducting proximity effect) [97–99].
As such, the G-crossed formalism provides a useful means of

describing the algebraic structure of the defects’ fusion and
braiding operations, even when there is no global symmetry.

Creating and manipulating the topological defects in the
controlled manner that is needed for these experiments will
likely prove significantly more difficult than creating and ma-
nipulating quasiparticles, since these are extrinsic objects that
require string-like modifications of the Hamiltonian that are
sometimes highly nontrivial. The physical realization of such
defects that have been proposed have challenging obstacles,
such as generating specific interlayer interactions for genons
or interfacing superconductors with quantum Hall systems for
parafendleyon wires. The prospect of furthermore implement-
ing physical transportation of the defects for the purposes of
braiding experiments may seem daunting. In this case, it may
be beneficial to resort to measurement-only methods [34–36]
to effect the braiding transformations of the defects without
actually moving them. However, the limitations described in
Appendix B will also apply to defects, potentially restricting
the information that can be accessed.

I end this section by remarking that if one is able to create
and manipulate topological defects, then one would likely also
be interested in learning information about the defects them-
selves and characterizing the symmetry enriched topological
phase, not just the UMTC describing the quasiparticles. In this
regard, all the experiments of Sec. III can be performed, using
all possible configurations of defects. For this, the expressions
for the predicted probabilities need to be modified to take into
account the more generalize G-crossed braiding.

C. Nontrivial topology and mapping class
group transformations

Another way to access additional information about the
UMTC of a topological phase is by making use of its full
topological nature as described by topological quantum field
theory (TQFT). A TQFT specifies the long-distance, univer-
sal properties of a topological phase when it is manifested
on manifolds with nontrivial topology. For a (2 + 1)D topo-
logical phase, the TQFT can be defined in terms of the
corresponding UMTC. On a surface of nontrivial genus, e.g.,
a torus, a topological phase will generally have a degenerate
ground state space, even without non-Abelian quasiparticles.
These ground state degeneracies are examples of topological
invariants associated with higher genus surfaces, though these
can be expressed in terms of the fusion rules. The TQFT
structure specifies, among other things, these degeneracies
and topological operations on the state space, such as the
action of the mapping class group, i.e., the isotopy equiva-
lence classes of automorphisms of the surface. The mapping
class group transformations can be viewed as “active,” being
attained through adiabatic modification of the microscopic
Hamiltonian, or “passive,” arising as changes of basis which
correspond to different choices of measurements. I focus pri-
marily on the passive approach, since active mapping class
group transformations seem less practical to implement.

In the case of the torus, a basis for the ground state space
can be defined in terms of the topological charge values a ∈ C
together with an ordered pair (l, m) of generating cycles on
the surface, i.e., two homotopy classes of noncontractible
loops whose algebraic intersection number is +1, as shown
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FIG. 10. A basis for the degenerate ground states of a topological
phase on a torus may be specified in terms of the topological charges
a ∈ C together with a generating pair of cycles (l, m). The topologi-
cal flux line a for the basis state |�a〉(l,m) is understood to wind once
around the l cycle, with no winding (twisting) around the m cycle.

in Fig. 10. The ground state degeneracy is |C|, the number
of distinct topological charge types, and the basis states are
denoted as |�a〉(l,m). The state |�a〉(l,m) is defined by the
properties that a topological charge measurement around the
cycle m is found to have value a (i.e., there is a topological flux
a threading the cycle m), and it can be obtained from |�0〉(l,m)

by pair-creating quasiparticles of charge a and ā, transporting
a around l , and then pair annihilating the quasiparticles (which
threads the topological flux a along the path l).

The mapping class group of the torus, also known as the
modular group SL(2,Z), relates any two choices (l, m) and
(l ′, m′) of generating pairs of cycles of the torus as

(l, m) = q(l ′, m′) = (αl ′ + βm′, γ l ′ + δm′) (75)

where α, β, γ , δ ∈ Z and αδ − βγ = 1. With the matrix pre-
sentation

q ∼=
[
α β

γ δ

]
, (76)

of such transformations, the modular group can be generated
by the two elements

s ∼=
[

0 −1
1 0

]
, t ∼=

[
1 1
0 1

]
, (77)

which satisfy the group relations (st)2 = s2 and s4 = 1.
Alternatively, the mapping class groups can always be gen-

erated by “Dehn twists” around a complete set of generating
cycles. For the torus, the modular group can be generated by
the Dehn twists around cycles l and m, corresponding to

tl ∼=
[

1 0
−1 1

]
, tm ∼=

[
1 1
0 1

]
, (78)

which satisfy the group relations tmtl tm = tl tmtl and (tmtl )6 =
1. Clearly, tm = t and tl = sts−1.

The topological S and T matrices of the UMTC provide
projective representations of the corresponding generating
modular transformations, and so the corresponding basis

transformations are

|�a〉(l,m) =
∑

b

Sab|�b〉(m,−l ), (79)

=
∑

b

Tab|�b〉(l−m,m). (80)

For a general modular transformation q that maps (l ′, m′)
to (l, m) = q(l ′, m′), the projective representation of its action
is given by

|�a〉(l,m) =
∑

b

Qab|�b〉(l ′,m′ ), (81)

where Q can be expressed in terms of the S and T matrices
in the same manner that q is generated from s and t. An
experiment that can infer the magnitude of the components
of Q is given by the following steps.

(1) Measure the topological charge around the cycle m of
the torus.

(2) Measure the topological charge around the cycle m′ of
the torus.

(3) Go to step 1.
The probability that the measurement around the cycle m′

will have outcome b, given that measurement around the cycle
m had value a is

pq(b|a) = |Qab|2. (82)

If one were able to use active implementations of mapping
class group transformations, i.e., operations that implement
Uq = Q (up to an overall phase) on the states for a fixed
generating pair basis, the experiment could be perform in the
following steps.

(1) Measure the topological charge around the cycle m of
the torus.

(2) Apply the operations realizing the mapping class group
element q.

(3) Measure the topological charge around the cycle m of
the torus.

(4) Go to step 2.
Equation (82) similarly describes the conditional probabil-

ities of the measurement outcome b after the application of q
in a given round when a was the outcome of the measurement
before applying q.

For example, the modular transformation s gives

ps(b|a) = |Sab|2. (83)

In this case, the measurements are performed around the cy-
cles m and m′ = −l , respectively (using m′ = l will yield the
same probabilities). An important property of this experiment
is that, assuming the implementation of the system and mea-
surements on the torus are not faulty, it will reveal all the
topological charge types of the UMTC, since Sa0 = S0a = da

D
for all a ∈ C. In other words, there ought to be no inadvertent
restrictions to a subtheory of the full UMTC.

A useful set of modular transformations are stns−1, which
give

pstns−1 (b|a) =
∣∣∣∣∣∑

c

Sacθ
n
c S∗

bc

∣∣∣∣∣
2

. (84)
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TABLE III. All UBTCs with Z2×Z2 fusion rules (see, e.g., Ref. [43]), and their relevant topological quantities (only the diagonal elements
of the T matrix are listed). The first five rows are the UMTCs, also known as toric code, three-fermion model, semion-semion, semion-semion,
and double semion, respectively. The last five theories are not modular (as can be seen from the nonunitary S matrix), but could occur as
subsectors of certain other UMTCs. As such, their chiral central charges and modular transformations are only defined by the full UMTC to
which they belong. For these fusion rules, the full set of topological twist factors of anyons (encoded in the T matrix) completely distinguishes
between all these UBTCs, while the other discussed topological invariants distinguish between certain subsets of the theories.

UBTC c− mod 8 T S ST 2S−1

1
2

⎡⎢⎢⎣
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦D(Z2) 0 [1, 1, 1, −1]

SO(8)1 4 [1, −1, −1, −1]

Z
( 1

2 )
2 � Z

( 1
2 )

2 2 [1, i, i,−1]
1
2

⎡⎢⎢⎣
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦
Z

(− 1
2 )

2 � Z
(− 1

2 )
2 6 [1,−i, −i, −1]

Z
( 1

2 )
2 � Z

(− 1
2 )

2 0 [1, −i, i, 1]

Z(0)
2 � Z(0)

2 ∗ [1,1,1,1] 1
2

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦ ∗

Z(0)
2 � Z(1)

2 [1, −1, 1, −1]

Z(0)
2 � Z

( 1
2 )

2 ∗ [1, i, 1, i] 1
2

⎡⎢⎢⎣
1 1 1 1
1 −1 1 −1
1 1 1 1
1 −1 1 −1

⎤⎥⎥⎦ ∗

Z(0)
2 � Z

(− 1
2 )

2 [1, −i, 1, −i]

Z(1)
2 � Z

( 1
2 )

2 [1, i, −1, −i]

In this case, the measurement cycles are m and m′ = m + nl .
Combined with knowledge of the S matrix, e.g., obtained
from the s experiment and unitarity, this set of experiments
can provide information about the topological twist factors.
The fact that all topological charges can enter the expres-
sion nontrivially, i.e., the torus enables superpositions of all
topological charges, makes this a powerful probe of the twist
values. As was the case for bulk quasiparticle experiments,
there will be redundancies between different experiments in
regard to the information about the UMTC that can be gained,
for example, psts−1 (b|a) = ps(b|a).

Experiments utilizing the mapping class group trans-
formations on higher genus surfaces can be similarly
analyzed using higher genus generalizations, where the
surface can be decomposed into punctured torii and three-
punctured spheres for the purposes of representing states
and mapping class group transformations. I have no con-
crete examples of this providing information about the
UMTC that could not be obtained from the torus or bulk
quasiparticles, so I will not discuss this generalization in
detail.

The obstacles to implementing these experiments may
seem a bit daunting, though some of them may be mitigated.
The first challenge is simply realizing the topological phase
on a system with nontrivial genus. This not only involves
implementing phase on a system with enough curvature to
achieve the nontrivial topology (embedded in 3D real space),
but also ensuring the lengths of all cycles are much larger than

the correlation length, to maintain the topologically protected
degeneracies.

Implementing the topological charge measurements along
nontrivial cycles poses another significant challenge. In gen-
eral, these involve measurements of nonlocal operators, whose
support is a ribbon along the length of the cycle being
measured. One might envision measuring these using some
interferometric measurement or by modifying the Hamilto-
nian along the cycle in some manner, e.g., lowering the gap or
creating boundaries, that allows the topological charge value
of interest to couple to a local observable [100]. The difficulty
of performing such measurements along cycles with multiple
windings around the longitudinal or meridional cycles of the
embedded torus are likely to scale poorly with the complexity
of the cycle.

Active modular transformations that involve adiabatically
modifying the Hamiltonian to perform Dehn twists around
cycles likely require a greater degree of knowledge and con-
trol over the microscopic Hamiltonian than is realistic. Even
if possible, each Dehn twist increases the distance over which
interactions between the microscopic degrees of freedom must
be able to interact (in a controlled manner). Spreading this
out evenly across the system can minimize this to one lattice
step increase in range for each site, but even in this way, the
number of consecutive Dehn twists that can be performed is
likely very small.

Some of the measurement and active mapping class
group transformation difficulties may be mitigated by using
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measurement-only type methods to implement mapping class
group transformations. This strategy utilizes additional genus
as ancillary degrees of freedom, and then employs measure-
ments or tunable interactions along a minimal set of cycles
to generate arbitrary mapping class group transformations on
the subsystem [101]. This removes the need for active im-
plementations of Dehn twists or measurements around very
complicated cycles, at the cost of requiring at least one higher
genus and utilizing a longer sequence of operations (measure-
ments or tuned interactions) to effectively generate the Dehn
twist transformations.

Another strategy that may potentially mitigate many of the
difficulties with implementing these experiments is to utilize
“genons.” As briefly mentioned in Sec. IV B, genons are layer
interchanging defects in a system with two layers realizing the
same topological order [96]. In more detail, the bilayer topo-
logical phase is assumed to have the same UMTC described
by C in each layer, so the combined UMTC describing the
bilayer quasiparticles is C � C. Layer interchange can be asso-
ciated with a Z2 topological symmetry (a global symmetry of
the microscopic Hamiltonian is not strictly necessary). When
a quasiparticle from one layer is transported around a genon,
it ends up in the other layer. Denoting the “bare” genon defect
as X , it has the fusion rule

X × X =
∑
c∈C

(c, c̄). (85)

Up to overall phases that do not depend on the fusion chan-
nels, the bare defects’ F symbols are given by the S matrix of
C and their R symbols are given by the topological twists of
C, that is [

F XXX
X

]
(e,ē)( f , f̄ ) ∝ Se f (86)

RXX
(c,c̄) ∝ θc. (87)

Thus, for bulk defect experiments using a = b = c = d =
X , the associativity experiments of Secs. III B and IV B yield
the measurement probabilities

pX (XX );X (( f , f̄ )|(e, ē)) = |Se f |2 = ps( f |e), (88)

and the braiding exchange experiments of Secs. III C 3
and IV B yield the measurement probabilities

p(n)
XXX ;X ((e′, ē′)|(e, ē)) = |[ST nS−1]ee′ |2 = pstns−1 (e′|e).

(89)
More generally, there is a bijection between genons in a

bilayer system with C � C and systems on nontrivial surfaces
with C. A bilayer system with 2g + 2 genons maps to a surface
with genus g. Fusion and braiding of genons correspond to
the mapping class group transformations on the correspond-
ing surface, e.g., braiding genons correspond to Dehn twist
operations. Again, braiding transformations of genons can
be realized using measurement-only methods [34–36], which
also maps to those applied for surfaces with genus [96].
Though realizing genons and the desired experiments in bi-
layer topological phases would undoubtedly be challenging,
it would likely be significantly less difficult that realizing
topological phases on surfaces with genus and their mapping
class group transformations.

D. Examples

In general, the experiments discussed in this section can
provide additional information about the topological order
that could not be accessed through the bulk quasiparticle
experiments of Sec. III. In addition to revisiting the Ising(ν)

and Fibonacci topological orders (described in Tables I and II,
respectively), it is useful to consider some Abelian topological
orders. For this, Table III lists all UBTCs whose topological
charges have Z2×Z2 fusion rules, together with their twist
factors and S matrix, as well as c− mod 8 and ST 2S−1 for the
modular theories listed.

Though not as direct a probe of the bulk topological order,
since they rely on the bulk-edge correspondence, the edge
mode experiments of Sec. IV A can be very powerful in terms
of the information they provide. In particular, the chiral central
charge c− distinguishes between all the UMTCs within the
Ising(ν) family, between the two chiralities of the Fibonacci
UMTC, and distinguishes all Z2×Z2 UMTCs, except not
between the toric code and double semion theories. The topo-
logical twist factors distinguish between all of these, as well
as all the Z2×Z2 UBTCs, though this is under the assumption
that all twist values can be obtained for these theories, which
may not be true. The interferometry experiments that measure
the monodromy matrix M can only distinguish within the
Z2×Z2 family whether a theory is modular versus nonmod-
ular, and semionic versus nonsemionic, again assuming all
components of M are obtainable.

The experiments using topological defects (Sec. IV B) or
nontrivial topology and mapping class group transformations
(Sec.IV C) are more direct probes of the bulk topological or-
der, though may be more limited the information they provide.
For the Ising(ν) topological phases, the stns−1 experiments
will determine that θσ is a primitive 16th root of unity, as well
as extract the value of Re[θ2

σ ]. This will identify whether ν ∈
{1, 7, 9, 15} or {3, 5, 11, 13}, which also determines the value
of κσ . For the Z2×Z2 UMTCs, the stns−1 experiments will
distinguish between the semionic and nonsemionic theories.
A nontrivial symmetry action permuting quasiparticle types
will distinguish toric code from the double semion theory. As
previously mentioned, the s experiment will also reveal all the
topological charge values, so it will distinguish between the
modular and nonmodular Z2×Z2 theories.

V. DISCUSSION

There is no single experiment that serves as a conclusive
“smoking gun” for determining the topological order of a
topological phase. Any given experiment will provide partial
information that will narrow the scope of possible topolog-
ical orders of the system by a certain amount, so various
experiments must be conducted to piece together a more
complete picture. Moreover, it is useful to conduct different
experiments that provide redundant information obtained in
different manners, as different ways of probing the same in-
formation verifies the consistency of the results and the theory.
Pragmatism demands balancing this voracity for experimental
tests with the need to efficiently utilize limited resources.
In this regard, the importance of bolstering and guiding ex-
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perimental investigation through theoretical arguments and
numerical simulations should be recognized.

In terms of efficient use of experimental resources, the bulk
quasiparticle fusion rules and associativity experiments of
Secs. III A and III B provide very strong information about the
topological order, while remaining relatively simple. Indeed,
UMTCs that share fusion rules and magnitudes of F symbols
can generally be viewed as belonging to a closely related fam-
ily, which have relatively minor differences in their F symbols
and braiding. From the perspective of quantum computational
operations obtained from a topological phase, the computa-
tional gates obtained from a given physical operation appear
to be isomorphic for UMTCs within such a family. (One
may conjecture this to be generally true.) Along these lines,
there is additional incentive to pursuing the bulk quasiparticle
experiments of Sec. III, since the architectures and operations
used for these experiments are the same ones that would be
developed to perform topological quantum computation.
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APPENDIX A: SPLITTING AND FUSING
LOCALIZED ANYONS

In this section, I consider a simple idealized model for the
splitting and fusion operations. The simplest scenario involves
two sites with tunable pinning potential and tunable interac-
tions between the two sites. The tunable pinning potential at a
site j is modeled by an on-site operator

V( j) =
∑
x∈C

E ( j)
x P( j)

x , (A1)

where P( j)
x is a local projection operator that takes value 1 for

any state localizing a quasiparticle carrying topological charge
x at site j, and the value 0 otherwise. The on-site property
for these projectors implies P( j)

x and P(k)
y commute for j 	= k.

(In more realistic models, this property would be true up to
exponentially suppressed corrections.) The projectors can be
written as P( j)

x = |x( j)〉〈x( j)|, with the understanding that it
requires the appropriate anyonic state interpretation, since a
single nontrivial topological charge does not correspond to
a local operator. More specifically, the nonlocal nature of
anyonic states requires

P( j)
x ⊗ P(k)

y =
∑

z

∣∣x( j), y(k); z( jk)〉〈x( j), y(k); z( jk)
∣∣ (A2)

and

P( j)
x + P(k)

y = 2
∑

z

∣∣x( j), y(k); z( jk)
〉〈

x( j), y(k); z( jk)
∣∣

+
∑
q 	= y

z

∣∣x( j), q(k); z( jk)
〉〈

x( j), q(k); z( jk)
∣∣

+
∑
q 	= x

z

∣∣q( j), y(k); z( jk)
〉〈

q( j), y(k); z( jk)
∣∣, (A3)

with further appropriate interpretation as operators on addi-
tional sites are included.

The E ( j)
x are treated as tunable parameters to control which

quasiparticle type is energetically preferred at the jth site. The
terms explicitly written in these pinning potentials are the only
ones that will be allowed to exist below the energy gap � of
the system. Any additional terms that may exist (and make the
model more physically realistic) will be assumed to occur at
energies above the gap, and so can be neglected for the pur-
poses considered here. In this idealized model, superpositions
of different localized topological charge values on a given site
are not prohibited; they simply occur at different energies due
to the pinning potential. However, in physically situations,
superpositions of different localized topological charge values
will rapidly decohere due to local noise.

A representative configuration realizing the “vacuum state”
is obtained by taking E ( j)

0 = 0 and E ( j)
x � � for x 	= 0 for all

j. Chosen in this way, the pinning potentials locally maintain
an energy gap �.

A representative configuration localizing a quasiparticle
with charge a at site 1 and a quasiparticle with charge ā at
site 2, while similarly maintaining an energy gap of � at the
sites, is obtained by taking E (1)

a = 0 and E (1)
x � � for x 	= a

for site 1, and E (2)
ā = 0 and E (2)

x � � for x 	= ā for site 2.
A localized quasiparticle pair-creation process at these two

sites may be implemented by adiabatically tuning from the
vacuum configuration to the a-ā configuration. Focusing on
the corresponding low-energy basis states of the initial and
final configurations, |0, 0; 0〉 and |a, ā; 0〉, respectively, the
effective Hamiltonian during this process takes the form

H0 =
[

E (1)
0 + E (2)

0 �∗
ā

�ā E (1)
a + E (2)

ā

]
, (A4)

with initial and final configurations

H0(ti ) =
[

0 0

0 2�

]
, H0(tf ) =

[
2� 0

0 0

]
. (A5)

Here, �ā is the amplitude for a charge ā to hop from site 1 to
2, or for a charge a to hop from site 2 to 1. (The complex con-
jugate corresponds to the amplitude of the reverse process.)
Such hopping amplitudes arise from topological interactions
between sites 1 and 2, which may be induced by bringing
the two pinning potential close to each other and turning on
a local interaction, or perhaps via some nonlocal effect. Here,
I simply assume the ability to turn it on in a controlled manner.

Presented in this way, the localized quasiparticle pair-
creation process is seen to be locally equivalent to a tuning
process for a two-level system, which is well understood.
As such, it is clear that nonzero �ā is necessary to enable
the mixing of states required to evolve between the two
basis states. Moreover, the hopping amplitude provides an
avoided level-crossing, with gap 2|�ā| when E (1)

0 + E (2)
0 =

E (1)
a + E (2)

ā . Since adiabaticity is defined with respect to the
instantaneous energy gap, the avoided crossing must be large
compared to the rate at which the system parameters are varied
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in order for the state to persist in the instantaneous ground
state, as desired. Satisfying these conditions on tuning the
system parameters, one has a pair-creation process, effecting
evolution from the vacuum state |0, 0; 0〉 to the state |a, ā; 0〉
with localized quasiparticles carrying charge a and ā.

If a is a non-Abelian topological charge, the joint fusion
channel of these two quasiparticles may potentially take any
value z with Nz

aā 	= 0. In this case, the low-energy theory
should also take into consideration the states |a, ā; z〉, which
are also ground states of the final Hamiltonian. However, as
long as sites 1 and 2 do not have topological interactions that
transfer topological charge to other parts of the system, the
collective fusion channel of the quasiparticles at sites 1 and 2
cannot be altered, i.e., the fusion channels constitute superse-
lection sectors that are prevented from mixing by topological
charge conservation. As such, the local Hamiltonian of the
subsystem comprising sites 1 and 2 can be written as a direct
product H = ⊕

z Hz (with the understanding that occupation
of a state with z requires the complementary subsystem to
have charge z̄), which makes it clear that sectors with different
values of z cannot evolve into each other.

I now generalize the pair-creation discussion to a general
splitting process. A representative configuration localizing a
quasiparticle with charge a at site 1 and a quasiparticle with
charge b at site 2, while similarly maintaining an energy gap
of � at the sites, is obtained by taking E (1)

a = 0 and E (1)
x � �

for x 	= a for site 1, and E (2)
b = 0 and E (2)

x � � for x 	= b for
site 2.

If a and b are non-Abelian topological charges, the joint
fusion channel of these two quasiparticles may potentially
take any value c with Nc

ab 	= 0. However, in order to have
c 	= 0, the complement of the subsystem comprising sites 1
and 2 must have collective topological charge c̄ to compensate
and satisfy the overall constraint of the full system having
collective topological charge 0. The simplest way to do this is
with one additional site localizing a quasiparticle with charge
c̄, however this fixes the value c and does not accommodate for
superpositions. The simplest way to allow for superpositions
of fusion channels c is to have two additional sites localizing
quasiparticles carrying topological charges ā and b̄, respec-
tively. I denote the corresponding ground states for the site 1
and 2 subsystem as |a, b; c〉. When there are no topological
interactions between the quasiparticles, the energies of states
|a, b; c〉 with different fusion channels c are degenerate.

Topological interactions between sites j and k correspond
to processes that transfer topological charges between the two
sites with some amplitude. These can be divided into two
classes of interest for the purposes considered here. The first
class of topological interaction are those that transfer topolog-
ical charge between the two sites while leaving the localized
topological charge values at the sites unchanged. For quasi-
particles of charge a and b, this corresponds to the transfer of
topological charge values e ∈ Cab with amplitude �e, where
Cab = {x ∈ C | Na

ax 	= 0, Nb
bx 	= 0}. The effect of such interac-

tion terms is generically to fully split the energy degeneracy of
the fusion channels c, as they lead to fusion channel dependent
shifts in the energy of [102]

Ea,b;c =
∑
e∈Cab

(
�e
[
F aeb

c

]
ab

+ �∗
e

[
F aeb

c

]∗
ab

)
. (A6)

The second class of topological interaction are those that
change the localized topological charge values at the sites,
which can be viewed as hopping terms corresponding to
the transfer of charge values e ∈ C with amplitude �e. The
changes of topological charge in these terms are required to
occur in a manner consistent with the fusion rules. In particu-
lar, such a transfer of topological charge e can only give rise
to transitions between states |a, b; c〉 and |a′, b′; c〉 if Na′

ae 	= 0
and Nb′

be 	= 0. As these terms generate mixing between states
with different localized topological charge values, they play a
crucial role for the splitting process and are the interactions
that need to be controlled in a tunable manner. At a detailed
level, it is useful to consider specific processes where one may
focus only on the terms mixing the states that are taken below
the gap.

I now focus on the process that splits a quasiparticle of
charge c into two quasiparticles of charge a and b, respec-
tively. As discussed, this situation will require additional
quasiparticles elsewhere in the system to allow for the non-
trivial fusion channel c, but those will not interact with the
subsystem comprising sites 1 and 2. The initial configura-
tion will have E (1)

c = 0 and E (1)
x � � for x 	= c for site 1,

and E (2)
0 = 0 and E (2)

x � � for x 	= 0 for site 2. The final
configuration will have E (1)

a = 0 and E (1)
x � � for x 	= a for

site 1, and E (2)
b = 0 and E (2)

x � � for x 	= b for site 2. An
adiabatic tuning between these configurations, while appro-
priately utilizing interactions between the sites allows one to
realize the corresponding splitting operation. The low-energy
basis states for the subsystem during this process are |c, 0; c〉
and |a, b; c〉. While |a, b; z〉 for z 	= c (and Nz

ab 	= 0) should
also be considered to be low-energy states, as they are also
ground states of the final configuration, the initial state cannot
evolve into them, as long as the operations are localized within
the subsystem of sites 1 and 2. Again, this is because some
form of topological interaction between the subsystem and its
complement is required to modify the subsystem’s collective
topological charge, and without such interactions the Hamil-
tonian for subsystem comprising sites 1 and 2 takes the form
H = ⊕

z Hz.
Focusing on the fusion channel c, the model for the two

site subsystem can now be simplified to a two-dimensional
low-energy effective Hamiltonian that can (locally) be written
as

Hc =
[

E (1)
c + E (2)

0 �∗
b

�b E (1)
a + E (2)

b + Ea,b;c

]
. (A7)

Again, the adiabatic quasiparticle splitting process is seen
to be locally equivalent to an adiabatic tuning process for a
two-level system. The fusion channel energy splitting energy
Ea,b;c is unimportant to this process, since the fusion channel is
fixed by topological considerations. As such, I set this splitting
energy to zero (at least for the initial and final configurations,
where interactions are not needed). In order to adiabatically
tune between the initial and final configurations

Hc(ti ) =
[

0 0

0 (2 − δac)�

]
, (A8)
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Hc(tf ) =
[

(2 − δac)� 0

0 0

]
, (A9)

one must turn on the hopping amplitude �b during the process.
More specifically, �b will give rise to an avoided crossing
of size 2|�b|, which must be large compared to the rate at
which the parameters are varied in order to persist in the in-
stantaneous ground state. If one has sufficient control over the
topological interactions and the ability to induce amplitudes as
large as |�b| = �, one could, in principle, fully maintain the
energy gap � throughout the process. Thus, with appropriate
adiabatic tuning of the system parameters, one has a quasipar-
ticle splitting process, effecting evolution from the initial state
|c, 0; c〉 to the final state |a, b; c〉.

I note that this same discussion for the splitting process ap-
plies for transporting a quasiparticle from one site to another.
This is described by setting a = 0 and b = c for the splitting
process, which yields evolution from the initial state |c, 0; c〉
with quasiparticle c at site 1 to the final state |0, c; c〉 with the
quasiparticle at site 2.

One may also consider a quasiparticle fusion process go-
ing from a state with two quasiparticles of charge a and b,
respectively to a single quasiparticle of charge c. The initial
configuration of the system will have E (1)

a = 0 and E (1)
x � �

for x 	= a for site 1, and E (2)
b = 0 and E (2)

x � � for x 	= b
for site 2. If the initial state has the definite value c for the
collective fusion channel of the two quasiparticle, i.e., the
initial state is |a, b; c〉, then the final configuration can be
taken to have E (1)

c = 0 and E (1)
x � � for x 	= c for site 1, and

E (2)
0 = 0 and E (2)

x � � for x 	= 0 for site 2. Simply reversing
the splitting process described above will result in a single
quasiparticle of charge c.

However, for well-separated non-Abelian quasiparticles,
the collective fusion channel is topologically protected, so one
may envision starting with an initial state that has a superpo-
sition of the different fusion channels z ∈ Zab, where I define
Zab = {x ∈ C|Nx

ab 	= 0}. For this, I let the initial state be

|�(ti )〉 =
∑

z∈Zab

�z|a, b; z〉, (A10)

where I have left terms from the complement of the two
site subsystem implicit. In this case, a measurement of the
collective fusion channel should be performed at some point
in the quasiparticle fusion process. Such a measurement can
be included at any point where it is physically possible. If the
measurement can be performed while in the two quasiparticle
configuration, then a post-measurement state of |a, b; c〉 is
obtained with probability p(c) = |�c|2, and the discussion
above for fusing quasiparticles that have a definite fusion
channel value can be applied. It is useful to instead consider
the case where the measurement is performed after the adi-
abatic tuning process, rather than before it. In this case, one
must consider all the fusion channels that occur in the initial
superposition, and the corresponding low-energy Hamiltonian
H = ⊕

z∈Zab
Hz, where

Hz =
[

E (1)
z + E (2)

0 �∗
b

�b E (1)
a + E (2)

b + Ea,b;z

]
. (A11)

The different z sectors do not need to be separated from each
other by an energy gap, as they are prevented from mixing
with each other by topological charge conservation. However,
the process within each z sector should be treated adiabati-
cally, and separated from other states (with the same collective
fusion channel z) in the spectrum by an energy gap. As such, I
assume the final system configuration will have E (1)

z = Ez for
z ∈ Zab and E (1)

x � � for x /∈ Zab for site 1; and E (2)
0 = 0 and

E (2)
x � � for x 	= 0 for site 2. In order to (nearly) maintain the

gap, I let 0 � Ez � � (though it can be done in other ways).
The initial and final configurations for the adiabatic tuning

step can be taken to be

Hz(ti ) =
[

(2 − δaz )� 0

0 0

]
, (A12)

Hz(tfa ) =
[Ez 0

0 2� + (Ea − �) 1Zab (a)

]
, (A13)

where 1Zab is the indicator function for the set Zab. Adia-
batically tuning between these configurations will evolve the
initial state |�(ti )〉 to the final state

|�(tfa)〉 =
∑

z∈Zab

�ze
iφz |z, 0; z〉. (A14)

Here, the relative phases eiφz arise as a result of the different
energies E (1)

z and Ea,b;z associated with the different fusion
channels, and how these parameters are varied during the
process. Their precise values may be computed, in principle,
e.g., using Berry phase methods, but they will not be impor-
tant for the full quasiparticle fusion process that includes a
fusion channel measurement (which is, in fact, the next step).
It is worth reemphasizing that the coherent superposition in
Eq. (A14) will only be maintained in an idealized system.
The inclusion of realistic phenomena, such as local noise, will
cause rapid decoherence of superpositions of different local-
ized topological charges, so the final state would be expected
to actually become a mixed state with density matrix

ρ(tfa) =
∑

z∈Zab

|�z|2|z, 0; z〉〈z, 0; z|. (A15)

The distinction between the coherent and incoherent states is
not important in light of the following fusion channel mea-
surement.

With a single quasiparticle on site 1, the collective topo-
logical charge of the two site subsystem is carried by the
single quasiparticle, and so can be measured by a local probe.
Performing the measurement of the topological charge of this
quasiparticle, represented by the either the state in Eq. (A14)
or (A15), the measurement outcome will find charge c with
probability p(c) = |�c|2, and (assuming projective measure-
ment) will yield the corresponding post-measurement state
|c, 0; c〉.

Following this topological charge measurement, it is desir-
able to tune the system parameters to single out topological
charge c as the only energetically favored state (below the
gap) on site 1. In other words, the final configuration of the
entire fusion process is taken to have E (1)

c = 0 and E (1)
x � �

for x 	= c for site 1, and E (2)
0 = 0 and E (2)

x � � for x 	= 0 for
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site 2. This corresponds to the low-energy Hamiltonian

Hz(tff ) =
[

(1 − δzc)� 0

0 (2 − δac)�

]
. (A16)

The tuning in this step only needs to be adiabatic in the c
sector, as changing the sectors with collective charge z 	= c
are no longer pertinent to the post-measurement state. In
summary, this fusion process evolves (nondeterministically)
from an initial two quasiparticle ground state |�(ti )〉 =∑

z∈Zab
�z|a, b; z〉 to a final single quasiparticle ground state

|�(tff )〉 = |c, 0; c〉 with probability p(c) = |�c|2.

APPENDIX B: MEASUREMENT-ONLY BRAIDING

In this Appendix, I explain why measurement-only braid-
ing applied to quasiparticles carrying distinct topological
charges does not provide access to the same braiding prop-
erties as does transport. For this, I consider two anyons to
be braided a1 and a4, using two ancillary anyons a2 and a3.
Applying the measurement-only protocols [34–36] for this
scenario amounts to generating the following sequence of
projectors

X = C Π(23)
b23

Π(24)
b24

Π(12)
b12

Π(23)
b23

= C

a1 a2 a3 a4

b23

a2 a3

b12

a1 a2

b24

a4a2

b23

a1 a2 a3 a4

(B1)

where C and C′ are constants that give the proper normal-
izations. Projectors with the desired fusion channels may
be generated in these protocols through the use of “forced-
measurements” or tunable interactions.

For this sequence of projectors to reduce to a unitary op-
erator acting on the state subspace of a1 and a4 anyons, the
fusion channels b12, b23, and b24 of the projectors must all
be Abelian topological charges. When these fusion channels
are all Abelian, it implies that the localized quasiparticles’
charges are all related to each other through fusion with
Abelian charges, i.e., they are either the same or closely
related topological charge types. Specifically, a1 = b12×ā2,
a3 = b23×ā2, and a4 = b24×ā2. In this case, the resulting
operator can be written as [36]

X = X̂ (14) ⊗ �
(23)
b23

, (B2)

where the operator on anyons 1 and 4 is

X̂(14) = eiφ

a1 a4

a1 a4

ā2 ā2

b12 b24 (B3)

= eiφ

a1 a4

a1 a4

g (B4)

= eiφ′′ ∑
c

[F a4ga4
c ]a1a1

Ra1a4
c �(14)

c (B5)

= eiφ
∑

c

Rā2 ā2
ĉ �(14)

c , (B6)

where g = b12×b̄24, ĉ = c×b̄12×b̄24, and eiφ , eiφ′
, and eiφ′′

are unimportant overall phase factors (which may depend
on b12 and b24). Thus, instead of generating the R-symbol
Ra1a4

c (or Ra4a1
c ) associated with braiding anyons a1 and a4,

the measurement-only protocol generates the R symbols Rā2 ā2
ĉ ,

which are equivalent to a modification of Ra1a4
c by the phase

factors [F a4ga4
c ]a1a1 .

This analysis shows that: (1) measurement-only methods
of generating braiding transformations are only applicable
to distinct topological charges if they are related through
fusion with Abelian charges, and (2) when the topological
charges are distinct, the resulting measurement-only gener-
ated transformation is not actually that of braiding the distinct
topological charges, but rather of braiding related identical
charges. Generally (though not always), this implies a restric-
tion on the braiding properties that can be extracted from the
experiments using measurement-only methods, as compared
with what may be obtained by actually transporting the quasi-
particles.

APPENDIX C: EXPERIMENTS PROBING
TOPOLOGICAL PROTECTION

The setup of the fusion rules experiment of Sec. III A can
be used to perform an anyonic version of a Rabi oscillation
experiment. Such experiments may be used to verify that the
system is operating in the topological limit by determining
the energy splittings between degenerate ground states and
extracting the related correlation lengths. This is performed
by the following steps.

(1) Pair-create quasiparticles carrying topological charges
ā and a from vacuum, and move them apart.

(2) Pair-create quasiparticles carrying topological charges
b and b̄ from vacuum, and move them apart.

(3) Measure the collective topological charge of the a-b
pair of quasiparticles.

(4) Wait for a time interval of length t .
(5) Go to step 3.
In the ideal topological limit, as long as nothing else is

done other than repeating the measurement, it should always
return the same measurement outcome. However, interactions
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between quasiparticles a and ā and/or between quasiparticles
b and b̄ will split the energy degeneracy of the different fusion
channels of these quasiparticle pairs. Specifically, for topolog-
ical charge values e with Ne

āa 	= 0 and Nē
bb̄

	= 0, the basis states
|ā, a; e〉|b, b̄; ē〉|e, ē; 0〉 will have energies Ee. Generically, the
degeneracy between these different fusion channel states will
be fully split. The resulting time evolution of this energy split-
ting generates rotations between the different fusion channels
of the a-b pair, and will give rise to nonzero probabilities of
observing different measurement outcomes, which depend on
the energy splitting and time intervals between measurements.
In particular, the probability of obtaining a measurement out-
come c′ for the a-b pair following a previous measurement
outcome of c, with time interval t between measurements, is

pab(c′|c; t ) =
∣∣∣∣∣∑

e

[
F āab

b

]
ece−iEet

[
F āab

b

]∗
ec′

∣∣∣∣∣
2

. (C1)

Thus, by repeating this experiment for different values of t ,
one can infer the energy differences between the different
fusion channels e.

Moreover, by varying the distances separating quasipar-
ticles, these experiments may also be used to extract the
topological correlation lengths of the system. The fusion
channel energies may be written as [102]

Ee =
∑
g∈Cāa

(
�(āa)

g

[
F āga

e

]
āa + �(āa)∗

g

[
F āga

e

]∗
āa

)
+
∑
h∈Cbb̄

(
�

(bb̄)
h

[
F bhb̄

ē

]
bb̄ + �

(bb̄)∗
h

[
F bhb̄

ē

]∗
bb̄

)
, (C2)

where �(āa)
g is the tunneling amplitude of a charge g from the

ā quasiparticle to the a quasiparticle, and similarly for �
(bb̄)
h .

The restriction of tunneling charges g to the set Cāa = {x ∈
C | Na

ax 	= 0} is needed for the topological charges of the local-
ized quasiparticles to remain fixed, and similarly for h ∈ Cbb̄.

When a pair of quasiparticles are separated by a dis-
tance r that is large with respect to the correlation length,
the tunneling amplitude of a topological charge g between
these quasiparticles is are exponentially suppressed as �g =
O(e−r/ξg ). Thus, by repeating this experiment for different
values of r, one may extract the correlation lengths ξg.
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[104] There are alternative way of achieving the same desired
three quasiparticle setup; for example, one could pair-
create quasiparticles carrying topological charges a and ā,

b and b̄, and c and c̄, and then bring together quasipar-
ticles ā, b̄, and c̄ and measure their collective topological
charge.
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