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Fourth- and fifth-order virial expansion of harmonically trapped fermions at unitarity
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By generalizing our automated algebra approach from homogeneous space to harmonically trapped systems,
we have calculated the fourth- and fifth-order virial coefficients of universal spin- 1

2 fermions in the unitary limit,
confined in an isotropic harmonic potential. We present results for said coefficients as a function of trapping
frequency (or, equivalently, temperature), which compare favorably with previous Monte Carlo calculations
(available only at fourth order) as well as with our previous estimates in the untrapped limit (high temperature,
low frequency). In addition to the conventional coefficients, we provide estimates for the contributions from
subspaces with varying polarization. We use our results for the virial coefficients, together with resummation
techniques, to calculate the compressibility and spin susceptibility.
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I. INTRODUCTION

At low enough temperatures, or high enough densities,
matter invariably displays its quantum mechanical nature, first
and foremost by virtue of quantum statistics (i.e., particles
are ultimately bosonic or fermionic, at least in three spatial
dimensions) but also due to interaction effects that may alter
the nature of the equilibrium state. As the temperature is
raised, these systems eventually undergo a quantum-classical
crossover (QCC) in which interactions still play a role, but
where quantum mechanical effects are slowly washed out by
temperature fluctuations. This regime is especially interesting
for strongly coupled matter, in particular in cases where a
superfluid phase is present, as the behavior above the su-
perfluid critical temperature (i.e., in the unordered phase) is
still significantly affected by the interactions (e.g., inducing
pairing correlations) but there are no obvious effective theory
descriptions [1–10].

The QCC is governed by the so-called virial expansion
(VE) [11], which breaks the quantum many-body problem
into n-particle subspaces, captured in the so-called virial coef-
ficients (see Ref. [12] for a review). For bulk thermodynamic
quantities the virial coefficients are denoted by bn, and their
change due to interactions is �bn. The calculation of �bn

has a sparse history that started with �b2 in 1937, by Beth
and Uhlenbeck [13] and remained largely quiet until the early
21st century. On the theory side, this quiet period can be
attributed to the well-known fact that the quantum two-body
problem is considerably easier to solve (and to relate to two-
body scattering properties) than its three- and higher-body
counterparts. On the experimental side, these quantum virial
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coefficients became increasingly relevant in the early 2000s
with the rise of ultracold-atom experiments around the world
and their ever-increasing ability to create, manipulate, and
measure atomic clouds [14].

One of the most famous systems studied with ultracold
atoms is the so-called unitary limit of the spin- 1

2 Fermi gas
[15], which represents a universal regime relevant for atomic
and nuclear physics [16–21]. In this work we investigate
the QCC of this universal regime using the VE up to fifth
order for a system confined by a harmonic oscillator (HO)
potential. Previous numerical work calculated �b3 [22–26],
while Ref. [27] presented an essentially analytic calculation
(naturally accompanied by a numerical evaluation of the re-
sulting expressions at the end); notably, Ref. [28] calculated
�b3 analytically for the unitary Bose gas, which requires
three-body forces. Work on �b4 includes Refs. [29–32] (see
also Refs. [33–35]). More recent work [36] studied analytic
expressions in the so-called semiclassical approximation (pre-
viously implemented in a wide variety of situations [37,38],
followed up by [39–42]), which uses a coarse discretization
of imaginary time. On the experimental side, there have also
been attempts to determine �b4 at unitarity in the untrapped
limit, using measurements of the equation of state [43,44].
However, those analyses are numerically challenging because
one must fit a fourth-order polynomial assuming higher-order
contributions are small (which is not necessarily the case, as
shown in Ref. [41]).

In this work we generalize the above calculations to in-
clude �b5 and go far beyond the semiclassical approximation,
extrapolating to the continuous imaginary-time limit. While
we restrict ourselves to the unitary limit in those extrapola-
tions, we provide approximate analytic formulas that apply
to arbitrary interaction strengths, trap frequency, and spatial
dimension. For the purpose of this work, we have generalized
the automated method of Ref. [41] to include a harmonic
trapping potential. As we review below, the resulting ap-
proach is identical in spirit to the free-space case of Ref. [41]
(namely, we automate the evaluation of canonical partition
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functions via Trotter-Suzuki factorization), but its implemen-
tation is very different in practice in the trapped case, which
is best addressed in coordinate space. Crucially, the volume
dependence of the canonical partition functions, which can be
resolved analytically in the untrapped case, must be resolved
numerically when the trap is turned on.

The remainder of this paper is organized as follows. The
next section details the model Hamiltonian Ĥ and the virial
expansion, whose coefficients are our main objective. Sec-
tion III first explains how to obtain the virial coefficients from
canonical partition functions (which is well known but we
include for completeness) and then outlines the core of our
method, namely, the use of a Trotter-Suzuki factorization of
the quantum Boltzmann weight e−βĤ into Nτ steps in or-
der to access the N-particle transfer matrix, from which the
N-body canonical partition function is obtained, thus complet-
ing the logical sequence that accesses the virial coefficients.
Section IV presents our main results: approximate analytic
expressions for the virial coefficients of trapped fermions in
d dimensions up to fifth order (for Nτ = 1 and 2, the latter
reserved for Appendix B due to the length of the final expres-
sions); virial coefficients of the unitary Fermi gas extrapolated
to the Nτ → ∞ limit; and a simple application to the cal-
culation of the compressibility and magnetic susceptibility.
Finally, Sec. V presents our conclusions and future outlook.

II. HAMILTONIAN AND VIRIAL EXPANSION

In this work we focus on a system of harmonically trapped
spin- 1

2 fermions interacting via a short-range interaction.
Thus, the Hamiltonian is Ĥ = T̂ + V̂ext + V̂ , where

T̂ =
∑

s=↑,↓

∫
d3r ψ̂†

s (r)

(
− h̄∇2

2m

)
ψ̂s(r) (1)

is the kinetic energy operator,

V̂ext =
∫

d3r
1

2
mω2r2[n̂↑(r) + n̂↓(r)] (2)

is the external potential energy operator, and

V̂ = −g
∫

d3r n̂↑(r)n̂↓(r) (3)

is the interaction. Above, m is the mass of the particles, ω

is the isotropic harmonic trapping frequency, g is the bare
coupling, n̂s(r) = ψ̂†

s (r)ψ̂s(r) is the particle density operator
for spin-s particles, and ψ̂†

s (r) and ψ̂s(r) are, respectively,
the creation and annihilation operators for particles of spin s
at position r. We use units such that h̄ = kB = m = 1 from
this point on. Naturally, the noninteracting piece T̂ + V̂ext
can be diagonalized exactly in the single-particle subspace of
the Fock space, which leads to the HO basis we will refer
to below. The contact interaction of Eq. (3) is singular in
three spatial dimensions and must therefore be regularized and
renormalized. To that end, we place the system on a spatial
lattice of spacing � and implicitly take the continuum limit
by transforming spatial sums into integrals at the end. In the
process, we renormalize by tuning the coupling so that the
known two-body answer for the second-order virial coefficient
is reproduced (see below).

The VE accesses thermodynamics by breaking down the
calculation by particle number. Specifically, one expands the
grand thermodynamic potential � in powers of the fugacity
z = exp(βμ) as

−β� = lnZ = Q1

∞∑
n=1

bnzn, (4)

where β is the inverse temperature, Q1 is the single-particle
partition function, and bn is the nth-order virial coefficient.
The bn capture, in a nonperturbative fashion, the contribution
of the n-body problem to the full �. Plugging in the definition
of the grand-canonical partition function Z , namely,

Z = tr[e−β(Ĥ−μN̂ )] =
∞∑

N=0

zN QN (5)

into Eq. (4) and expanding lnZ in powers of z, the bn

can be written in terms of the N-particle canonical partition
functions

QN = trN [e−βĤ ], (6)

where the trace is over the N-particle Hilbert space. As our
system of interest contains particles of two different species,
the N-body problem can be broken up into subspaces with a
particles of one type and b particles of the other type, where
a + b = N (see below).

III. COMPUTATIONAL FRAMEWORK

A. Obtaining virial coefficients from canonical
partition functions.

The interaction-induced change �bn, for n = 2, 3, 4, 5, is
calculated as

�b2 = �b11, (7)

�b3 = 2�b21, (8)

�b4 = 2�b31 + �b22, (9)

�b5 = 2�b41 + 2�b32, (10)

where the subspace contributions are

�b11 = �Q11

Q1
, (11)

�b21 = �Q21

Q1
− �Q11

2
, (12)

�b31 = �Q31

Q1
− �Q21

2
− �Q11

(
Q20

Q1
− Q1

4

)
, (13)

�b22 = �Q22

Q1
− �Q21 − �(Q2

11)

2Q1
+ �Q11Q1

2
, (14)

�b41 = �Q41

Q1
− �Q31

2
− �Q21

(
Q20

Q1
− Q1

4

)

−�Q11

(
Q30

Q1
− Q20 + Q2

1

8

)
, (15)
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�b32 = �Q32

Q1
− �Q31

2
− �Q22

2
− �(Q21Q11)

Q1

−�Q21

(
Q20

Q1
− 3Q1

4

)
+ �

(
Q2

11

)
2

+�Q11

(
Q20 − 3Q2

1

8

)
. (16)

Here, �X represents the change in X induced by the inter-
actions and the Qab are the canonical partition functions for
a particles of spin ↑ and b particles of spin ↓. In the above
expressions, the �bab are intensive quantities, whereas the Qab

themselves scale as V a+b where V is the spatial volume (refer-
ring here to the scaling in the untrapped case). That property
emphasizes the challenge in calculating �bab numerically: the
delicate cancellations must be resolved among the various
terms involving different Qab’s, which becomes especially
difficult in the βω → 0 limit (we comment further on this
technical issue below). It is for that reason that automated al-
gebra methods are advocated here, where those cancellations
can be resolved using arbitrary precision arithmetic, avoiding
stochastic effects.

As the above equations refer to the change due to inter-
actions, we note here for reference and completeness that
the virial coefficients of noninteracting, harmonically trapped
spin- 1

2 fermions in d spatial dimensions are given by

b0
n = (−1)n+1

n

(
sinh(βω/2)

sinh(βωn/2)

)d

. (17)

B. Obtaining canonical partition functions from factorized
transfer matrices

To evaluate the canonical partition functions Qab, we im-
plement a symmetric Suzuki-Trotter decomposition

e−βĤ = lim
Nτ →∞

[
e− τ

2 (T̂ +V̂ext )e−τV̂ e− τ
2 (T̂ +V̂ext )

]Nτ

, (18)

where we split β = τNτ into Nτ time steps. Thus,

Qab = lim
Nτ →∞

trab
[
e−τ (T̂ +V̂ext )e−τV̂

]Nτ

, (19)

where the cyclic property of the trace was used. To proceed,
we calculate the matrix elements of the factors inside the trace
in coordinate space. For a single imaginary-time step, those
matrix elements define the factorized transfer matrix Mab, for
a particles of spin ↑ and b particles of spin ↓.

For example, by examining the 1 + 1 subspace, i.e., a =
b = 1, we obtain

[M11]X,Y = 〈X|e−τ (T̂ +V̂ext )e−τV̂ |Y〉
= ρ(x1, y1)ρ(x2, y2)[1 + Cδ(y1 − y2)], (20)

where X = (x1, x2), Y = (y1, y2), C = (eτg/�3 − 1)�3,

ρ(x, y) = 1

λ3
T

[
βω

sinh(τω)

]3/2

exp[−ZT BZ], (21)

with λT = √
2πβ, ZT = (xT /λT , yT /λT ), and

B = πβω

sinh(τω)

(
cosh(τω)1 −1

−1 cosh(τω)1

)
, (22)

where 1 is a 3 × 3 unit matrix. The function ρ(x, y) in Eq. (21)
is referred to as the Mehler kernel (see also Ref. [36] for
further details) and is simply the coordinate representation of
the transfer matrix of a single particle in the trapping potential.
By taking the trace of M11, we obtain Q11.

While the above example does not involve identical par-
ticles, for the cases that do (e.g., the 2 + 1 subspace of the
three-particle Hilbert space), the (anti)symmetrization can be
carried out at the very end, i.e., after taking the Nτ th power of
the distinguishable-particle transfer matrix M3. This property
was already noted by Lee and Yang in 1959 [45,46] and
is a consequence of the fact that the operators involved do
not change the particles’ statistics. Thus, there is no need to
use (anti)symmetrized intermediate states in the calculation,
which greatly reduces the computational effort. All one needs
is the distinguishable-particle transfer matrices MN . From
there, the following identities are used to obtain the required
canonical partition functions of the spin- 1

2 system:

Q11 =
∑

ab

[
MNτ

2

]
ab,ab, (23)

Q21 = 1

2!

∑
abc

{[
MNτ

3

]
abc,abc

− [
MNτ

3

]
abc,bac

}
, (24)

Q31 = 1

3!

∑
abcd

{[
MNτ

4

]
abcd,abcd − 3

[
MNτ

4

]
abcd,bacd

+2
[
MNτ

4

]
abcd,bcad

}
, (25)

Q22 = 1

(2!)2

∑
abcd

{[
MNτ

4

]
abcd,abcd − 2

[
MNτ

4

]
abcd,abdc

+[
MNτ

4

]
abcd,badc

}
, (26)

Q41 = 1

4!

∑
abcde

{[
MNτ

5

]
abcde,abcde − 6

[
MNτ

5

]
abcde,abdce

+3
[
MNτ

5

]
abcde,badce + 8

[
MNτ

5

]
abcde,acdbe

−6
[
MNτ

5

]
abcde,bcdae

}
, (27)

Q32 = 1

3!2!

∑
abcde

{[
MNτ

5

]
abcde,abcde − 3

[
MNτ

5

]
abcde,acbde

+2
[
MNτ

5

]
abcde,bcade − [

MNτ

5

]
abcde,abced

+3
[
MNτ

5

]
abcde,acbed − 2

[
MNτ

5

]
abcde,bcaed

}
. (28)

In Appendix A we show the factorized form of the above
transfer matrices MN . For our system of interest, these are
written as products of the Mehler kernel of Eq. (21) and
delta functions coming from the interaction (as in the ex-
ample outlined above for 1 + 1 particles). Notably, those
expressions, as well as the above equations for Qab, remain
unchanged as functionals of ρ(x, y) regardless of the form of
the single-particle dispersion relation and trapping potential.
Our formalism is thus straightforwardly generalized to a wide
range of systems, as long as the analytic form of ρ(x, y) is
known (see below).

Armed with the explicit MN ’s, we use automated algebra
to symbolically expand [MN ]Nτ for varying Nτ . For each Nτ ,
one thus obtains high-order polynomials in the dimensionless
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bare coupling C/λ3
T (in three spatial dimensions). For the

purposes of this work, we tune C/λ3
T such that the known �b2

for the unitary limit of the 3D Fermi gas is reproduced, as
given by [12]

�b2 = 1

4
sech

(
βω

2

)
, (29)

which thus renormalizes the interaction for the desired value
of βω. The value of C/λ3

T thus obtained is used to evaluate
the higher-order virial coefficients �bab. Once that is accom-
plished, we extrapolate to the large-Nτ limit.

In the above process, the coefficients of the various
powers of C/λ3

T that appear in Qab are given by multidi-
mensional Gaussian integrals (coming from products of the
Mehler kernel discussed above), which is the crucial property
that enables precise numerical evaluation using modest-size
determinants. The Gaussian integrals actually appear most
naturally in the untrapped case, where one calculates in mo-
mentum space and where the volume dependence of the Qab’s
is resolved and canceled analytically to yield the intensive
quantities �bn. For the trapped case, on the other hand,
the Gaussian integrals appear when calculating in coordinate
space, where the Mehler kernel allows a most direct evalua-
tion. There is no well-defined volume dependence in this case;
rather, the extensive behavior appears as terms that would
diverge in the βω → 0 limit but which cancel each other
out exactly at finite βω. This cancellation is either verified
exactly in fully analytic calculations (e.g., nothing diverges in
the analytic expressions for �bn shown below) or is resolved
numerically (in the high-Nτ results we use for our extrapola-
tions). Thus, although the factorization and automated algebra
approach used here are identical in spirit to the free-space case
of Ref. [41], their implementation is very different in practice
and the trapped case involves the added challenge of resolving
the cancellations mentioned above. Therefore, the technical
aspects of this work represent a considerable advance and
extension relative to those of Ref. [41].

As mentioned above, the formalism presented here remains
unchanged for arbitrary systems, as long as the explicit form
of the kernel ρ(x, y) is known analytically. However, the
appearance of Gaussian integrals referred to in the previous
paragraph is likely limited to the homogeneous and harmon-
ically trapped cases. Still, it may be possible to expand a
complicated ρ(x, y) in a basis of Gaussian functions. In that
sense, our work may be considered as the first step in the
characterization of more general systems.

IV. RESULTS

A. Approximate analytic expressions for �bn

For Nτ = 1, 2, we carry out calculations entirely analyti-
cally in which the coupling strength, the trapping frequency,
and the spatial dimension appear as arbitrary variables (in
principle, it is also possible to take this to even higher order,
but the formulas become extremely long). The resulting for-
mulas for �b3 and �b4 for Nτ = 1, first shown in Ref. [36],
qualitatively (and in some parameter regions quantitatively)
capture the behavior of �bn. These formulas are also useful
as checks for codes that implement higher values of Nτ . Here,

we provide results broken down by subspace for up to five
particles, shown in full detail in Appendix B. For Nτ = 1, one
finds

�b2 = �b11 = 1

2

C

λd
T

[
βω

2 sinh(βω)

]d/2

, (30)

�b21 = − �b2

[2 cosh(βω) + 1]d/2 , (31)

�b31 = 2−d/2�b2

coshd/2(βω)[2 cosh(βω) + 1]d/2 , (32)

and

�b22 = 2−3d/2�b2

coshd/2(βω) coshd (βω/2)

×{1+2d/2�b2[coshd/2(βω) − 2d/2+1 coshd (βω/2)]}.
(33)

From those formulas we learn that (as shown in Fig. 1),
increasing Nτ does not immediately or necessarily improve
the quality of the final answer; rather, the results could move
away from the Nτ → ∞ limit before the asymptotic regime is
reached, usually for Nτ > 2. Simply put, as Nτ is increased the
results may worsen before they improve. Thus, it is important
to investigate as large Nτ as possible, even if low values
are qualitatively correct. In our automated calculations, we
explored up to Nτ = 20 (for �b21), 16 (�b31), 12 (�b22), 12
(�b41), and 8 (�b32), which we used to estimate the full �b3,
�b4, and �b5, extrapolated to Nτ → ∞.

B. Virial coefficients in the unitary limit

As mentioned above, in our approach we calculate �b2 as a
function of the bare coupling C, βω, and Nτ , and renormalize
by tuning C to the known result in the unitary limit given by
Eq. (29). Thus, the second-order VE is reproduced exactly by
virtue of this renormalization condition, such that the line of
constant physics is followed in the extrapolation to Nτ → ∞,
for each βω (see Supplemental Material of Ref. [41]).

In Fig. 1 we show our results for (a) �b3, (b) �b4, and
(c) �b5 for a unitary Fermi gas in a harmonic trap as a
function of βω. The error bars represent the uncertainty in
the Nτ → ∞ extrapolation, given by the difference between
the maximum and minimum predictions of polynomial ex-
trapolation schemes (degrees 2 to 5 for �b3 and �b4, and
degrees 2 and 3 for �b5, where the data are more limited;
see Ref. [41]). Our results for �b3 are in superb agreement
with the quantum Monte Carlo data of Ref. [29] as well as
with the homogeneous-limit answer of Ref. [41]. Note that
the homogeneous limit is related to the results shown here by

�bh
n = n3/2�bn(βω → 0) (34)

(see Refs. [12,22,23,47]).
The case of �b4 is less clear-cut: there is good agreement

with Ref. [29] for βω � 1, but a clear difference remains at
low frequencies. We return to this issue below. Finally, we
predict �b5 as a function of βω, which to the best of our
knowledge does not appear elsewhere in the literature. As
the HO potential confines the system, it naturally increases
its kinetic energy, effectively reducing the interaction effects.
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FIG. 1. (a) �b3, (b) �b4, and (c) �b5 as functions of βω, for a
trapped unitary Fermi gas. Our results are shown with blue crosses
and error bars, joined by a blue dotted line. The data by Yan and
Blume from Ref. [29] appear as red circles for (a) �b3 and (b) �b4,
in both cases with error bars. The dashed-dotted line in (b) shows a
high-temperature fit to the data of Ref. [29]. Black stars with error
bars show the results by Hou and Drut from Ref. [41] calculated in
the homogeneous gas limit. The dotted (dashed) line shows the Nτ =
1 (Nτ = 2) results given analytically in Appendix B. The latter show
that, for �b3, increasing Nτ from 1 to 2 shows a clear improvement,
whereas the case of �b4 is a cautionary tale: as Nτ goes from 1 to
2, the results move away from our final answer (blue crosses). In
fact, it is not until Nτ = 5 that �b4 reaches the asymptotic regime
one can use for extrapolation. Reference [30] presented a large-βω

asymptotic formula for �bn, but its validity is well outside the 0 <

βω < 3 region studied here.

This suggests that, for a given interaction strength, the VE
should enjoy better convergence properties when a trapping
potential is turned on (as argued also in Ref. [12]). Indeed,
although our results indicate that �b4 
 �b5 and, moreover,
for 0.3 < βω < 1.4 we find �b5 > |�b4|, we also find that
|�b2| � |�b3| � |�b4|.

To better understand the differences in �b4 between our
results and Ref. [29], we plot in Fig. 2(a) the subspace con-
tributions �b31 and �b22. As pointed out in Ref. [29], these
contributions partially cancel each other out, leading to the
observed increased uncertainty in the final answer. Clearly, the
largest differences arise in the determination of �b22, which

FIG. 2. (a) �b31 (blue diamonds) and −�b22 (green squares)
as functions of βω, compared with the path-integral Monte Carlo
(PIMC) results of Ref. [29] (red circles joined by solid line for �b31

and joined by a dotted line for �b22). The black crosses show the
results at βω = 0 from Ref. [41], and the black circle shows the
corresponding results from Ref. [26]. (b) −�b41 (blue diamonds)
and �b32 (green squares) as functions of βω. The black cross shows
the results at βω = 0 from Ref. [41].

is not unexpected as a contact interaction in that subspace is
less susceptible to Pauli blocking than �b31.

Figure 2(b) shows our results for �b41 and �b32, whose
behavior parallels �b31 and �b22 in that they enter with dif-
ferent signs but similar magnitude, thus leading to increased
uncertainty in the final result for �b5. In spite of those delicate
cancellations, we are able to resolve the fifth-order contri-
bution, as shown already in Fig. 1(b). Nevertheless, the size
of the error bars of �b32 is larger than that of �b41. This
may come as a surprise given the results of Ref. [41], whose
uncertainty at βω = 0 for �b41 is larger than for �b32. Those
results were calculated at the same Nτ = 9 order for both co-
efficients, using an analytic cancellation of volume-dependent
terms. In contrast, in this work we achieved Nτ = 12 for �b41

but only Nτ = 8 for �b32, due to the increasing computational
cost of canceling the volume-dependent terms, which is done
numerically in the trapped case.

C. Applications to thermodynamics

Having obtained the precise form of �b3, �b4, and �b5

as functions of βω for harmonically trapped fermions in the
unitary limit, we apply those results to obtain thermodynamic
information. As an example, we report here the compress-
ibility and magnetic susceptibility, respectively χ+ and χ−,
defined as

χ± = 1

β

∂2 lnZ
∂h2±

, (35)
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FIG. 3. (a) Interaction effects on the compressibility �χ+, in
units of 8π/(λ2

T Q1), as a function of the fugacity z for a harmonically
trapped unitary Fermi gas at βω = 1. The second, third, fourth, and
fifth-order VE results are shown, respectively, with dotted, dashed,
dashed-dotted, and solid lines. The Padé resummed result (with a
[3/2] approximant) is shown as a blue line. (b) Interaction effects
on the magnetic susceptibility �χ− as a function of z, for the same
parameters as in (a). The second-order VE is omitted because it is
identically zero for �χ−.

where h± = (μ↑ ± μ↓)/2 and μs is the chemical potential for
spin-s particles. The interaction effects on χ± are

�χ± = λ2
T

8π
Q1

∞∑
n=3

∑
m+ j=n

(m ± j)2�bm jz
m
↑ z j

↓, (36)

where zs = eβμs is the fugacity for spin-s particles. Our re-
sults, shown in Fig. 3, indicate that the partial sums of the VE
display large variations for �χ± as the VE order is increased,
in particular for z � 1. However, we also see that, using the
high-order coefficients we calculated here, it is possible to
carry out a Padé resummation [and related strategies (see, e.g.,
[48])] to obtain sensible results for static response functions
even as far as z = 3.

V. CONCLUSION AND OUTLOOK

In this work we have determined the frequency depen-
dence of the virial coefficients bn of harmonically trapped
spin- 1

2 fermions at unitarity. We used a discretization of the
imaginary-time direction and a Suzuki-Trotter factorization of
the transfer matrix, together with automated algebra methods,
to calculate canonical partition functions and from them the
interaction-induced change �bn, for n = 3, 4, 5, which we ex-
trapolated to the continuous-time limit. To complement those
numerical results, we provided analytic formulas for �bn in
coarse lattices for arbitrary trap frequency and spatial dimen-
sion. Using our final �bn, we calculate the compressibility

and susceptibility of the unitary Fermi gas and showed that
the VE can be Padé resummed to obtain sensible results even
as far as z = 3.

On the technical side, the above calculations were enabled
by generalizing our former free-space formalism and automa-
tion, developed in momentum space, to the present trapped
case, by making extensive use of the Mehler kernel and au-
tomated evaluation of Gaussian integrals using determinants.
The resulting approach presents a fundamental difference with
its free-space counterpart: the volume cancellations among
canonical partition functions must be resolved numerically,
which is crucial in order to access the �bn as these are in-
tensive quantities.

Our coordinate-space implementation could be generalized
further to other geometries such as highly deformed harmonic
traps, which could in turn be used to explore the dimensional
crossover of the virial expansion. Nonharmonic potentials can
also be addressed, as long as the single-particle kernel ρ(x, y)
is known analytically and can be expanded in a basis of Gaus-
sian functions. Additionally, more complicated interactions,
such as those appearing in nuclear physics, could be imple-
mented by expanding the matrix elements of e−τV̂ in terms of
Gaussians, such that the resulting calculations can always be
reduced to sums of determinants.
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APPENDIX A: TRANSFER MATRICES

In the main text we showed the form of the Suzuki-Trotter
factorized transfer matrix M11 of the 1 + 1 subspace, writ-
ten in the coordinate representation. We show here how to
construct that matrix in more detail and present results for its
higher-body counterparts. We will only consider here the sub-
spaces where the interaction plays a role, as the noninteracting
subspaces (e.g., those with N + 0 particles) are trivial.

We begin by defining the product coordinate and harmonic
oscillator states for two distinguishable particles in d spatial
dimensions

|x1x2) = |x1〉|x2〉, (A1)

|n1n2) = |n1〉|n2〉. (A2)

Using these states, we have

exp(−τV̂ )|x1x2) = [1 + Cδ(x1 − x2)]|x1x2), (A3)

where C = [exp(τg/�d ) − 1]�d , and so we obtain

[M11]X,Y =
∑
n1,n2

e−τε2(n1,n2 )(x1x2|n1n2)(n1n2|y1y2)

×[1 + Cδ(y1 − y2)], (A4)

where

ε2(n1, n2) =
2∑

i=1

ε(ni ) (A5)
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and

ε(n) = ω

d∑
j=1

([n] j + 1/2). (A6)

We can do the sum over n1, n2 using the Mehler kernel:

∑
n1,n2

e−τε2(n1,n2 )(x1x2|n1n2)(n1n2|y1y2) = ρ(x1, y1)ρ(x2, y2),

where the kernel ρ(x, y) is as shown in Eq. (21).

1. Three-particle space

Here we will need

exp(−τV̂ )|X) = {1 + C[δ(x1 − x3) + δ(x2 − x3)]}|X),
(A7)

where X = (x1, x2, x3) is a collective index, and we use |X)
to denote a state of distinguishable particles (i.e., no antisym-
metrization among the xi labels). Thus,

[M21]X,Y = ρ(x1, y1)ρ(x2, y2)ρ(x3, y3)

×{1 + C[δ(y1 − y3) + δ(y2 − y3)]}. (A8)

2. Four-particle space

Here we distinguish the 3 + 1 subspace from the 2 + 2
subspace. For the 3 + 1 case,

exp(−τV̂ )|X)

= {1 + C[δ(x1−x4)+δ(x2−x4)+δ(x3−x4)]}|X),

where X = (x1, x2, x3, x4), and so we obtain

[M31]X,Y = ρ(x1, y1)ρ(x2, y2)ρ(x3, y3)ρ(x4, y4)

×{1 + C[δ(y1−y4)+δ(y2−y4)+δ(y3−y4)]}.
For the 2 + 2 case, on the other hand,

exp(−τV̂ )|X) = {1 + C[δ(x1 − x3) + δ(x1 − x4)

+ δ(x2 − x3) + δ(x2 − x4)]

+C2[δ(x1 − x3)δ(x2 − x4)

+ δ(x1 − x4)δ(x2 − x3)]}|X), (A9)

such that

[M22]X,Y = ρ(x1, y1)ρ(x2, y2)ρ(x3, y3)ρ(x4, y4)

×{1 + C[δ(y1 − y3) + δ(y1 − y4)

+ δ(y2 − y3) + δ(y2 − y4)] + C2[δ(y1 − y3)δ(y2 − y4)

+ δ(y1 − y4)δ(y2 − y3)]}. (A10)

3. Five-particle space

Here we distinguish the 4 + 1 subspace from the 3 + 2 subspace. For the 4 + 1 case,

exp(−τV̂ )|X) = {1 + C[δ(x1 − x5) + δ(x2 − x5) + δ(x3 − x5) + δ(x4 − x5)]}|X), (A11)

where X = (x1, x2, x3, x4, x5), such that

[M41]X,Y = ρ(x1, y1)ρ(x2, y2)ρ(x3, y3)ρ(x4, y4)ρ(x5, y5)

×{1 + C[δ(y1 − y5) + δ(y2 − y5) + δ(y3 − y5) + δ(y4 − y5)]}. (A12)

For the 3 + 2 case, on the other hand,

exp(−τV̂ )|X) = {1 + C[δ(x1 − x4) + δ(x1 − x5) + δ(x2 − x4) + δ(x2 − x5) + δ(x3 − x4) + δ(x3 − x5)]

+C2[δ(x1 − x4)δ(x2 − x5) + δ(x1 − x5)δ(x2 − x4) + δ(x1 − x4)δ(x3 − x5)

+δ(x1 − x5)δ(x3 − x4)]}|X), (A13)

such that

[M32]X,Y = ρ(x1, y1)ρ(x2, y2)ρ(x3, y3)ρ(x4, y4)ρ(x5, y5)

×{1 + C[δ(y1 − y4) + δ(y1 − y5) + δ(y2 − y4) + δ(y2 − y5) + δ(y3 − y4) + δ(y3 − y5)]

+C2[δ(y1 − y4)δ(y2 − y5) + δ(y1 − y5)δ(y2 − y4) + δ(y1 − y4)δ(y3 − y5) + δ(y1 − y5)δ(y3 − y4)]
}
. (A14)

APPENDIX B: ANALYTIC FORM OF VIRIAL COEFFICIENTS IN COARSE TEMPORAL LATTICES

In this Appendix we complement the analytic expressions presented in the main text. For Nτ = 1, we find

�b41 = − 2−d/2�b2

coshd/2(βω)[2 cosh(βω) + 2 cosh(2βω) + 1]d/2 (B1)

and

�b32 = −�b2

[
cosh(βω) − 1

2 cosh2(2βω) − cosh(βω) − 1

]d/2

033099-7



HOU, MORRELL, CZEJDO, AND DRUT PHYSICAL REVIEW RESEARCH 3, 033099 (2021)

+ 2(�b2)2

{
1

[1 + 2 cosh(βω) + 2 cosh(2βω)]d/2
+ 2d

[7 + 8 cosh(2βω)]d/2

− 2d

[11 + 16 cosh(βω) + 8 cosh(2βω)]d/2

}
. (B2)

For Nτ = 2, we find

�b11 = C

λd
T

(
βω

sinh(βω)

)d/2 1

2d/2
+

(
C

λd
T

)2( (βω)2

sinh2(βω/2)

)d/2 1

2d+1
, (B3)

�b21 = C

λd
T

(
βω

sinh(βω)

)d/2 −1

[2 + 4 cosh(βω)]d/2

+
(

C

λd
T

)2( (βω)2

sinh2(βω/2)

)d/2{ 1

2d+1

1

[1 + 2 cosh(βω)]d/2
+ −1

[7 + 8 cosh(βω)]d/2

}
, (B4)

�b31 = C

λd
T

(
βω

sinh(βω)

)d/2 1

2d

1

{[1 + cosh(βω) + cosh(2βω)]}d/2

+
(

C

λd
T

)2( (βω)2

sinh2(βω/2)

)d/2{ 1

[10 + 14 cosh(βω) + 8 cosh(2βω)]d/2
+ −1

4d

1

[2 cosh2(βω/2) cosh(βω)]d/2

+ 1

22d+1

1

{cosh2(βω/2)[1 + 2 cosh(βω)]}d/2

}
, (B5)

�b22 = C

λd
T

(
βω

sinh(βω)

)d/2 1

4d

1

[cosh2(βω/2) cosh(βω)]d/2

+
(

C

λd
T

)2( (βω)2

sinh2(βω/2)

)d/2{ 1

23d+1

1

[cosh4(βω/2)]d/2
+ −1

[32 cosh2(βω/2) cosh(βω)]d/2

+ 2

{cosh2(βω/2)[16 + 32 cosh(βω)]}d/2
+ −2

[10 + 14 cosh(βω) + 8 cosh(2βω)]d/2

}

+
(

C

λd
T

)3( (βω)3

sinh3(βω/2)

)d/2{ −4

[24 cosh(βω/2) + 16 cosh(3βω/2)]d/2

+ 2

[64 cosh3(βω/2)]d/2
+

[
sinh(βω/2)

8 sinh(2βω)

]d/2}

+
(

C

λd
T

)4( (βω)4

sinh4(βω/2)

)d/2{ −1

[16 + 32 cosh(βω)]d/2
+ 3

4

1

[64 cosh2(βω/2)]d/2

}
, (B6)

�b41 = C

λd
T

(
βω

sinh(βω)

)d/2 −1

{4(1 + 2 cosh[βω) + cosh(2βω) + cosh(3βω)]}d/2

+
(

C

λd
T

)2( (βω)2

sinh2(βω/2)

)d/2{ −1

[13 + 20 cosh(βω) + 14 cosh(2βω) + 8 cosh(3βω)]d/2

+ 1

[4(3 + 6 cosh(βω) + 4 cosh(2βω) + 2 cosh(3βω)]d/2

+ −1

[23 + 40 cosh(βω) + 24 cosh(2βω) + 8 cosh(3βω)]d/2

+ 1

2

1

[4 cosh2(βω/2)(4 + 8 cosh(βω) + 8 cosh(2βω)]d/2

}
, (B7)

�b32 = C

λd
T

(
βω

sinh(βω)

)d/2 −1

[6 + 12 cosh(βω) + 8 cosh(2βω) + 4 cosh(3βω)]d/2

+
(

C

λd
T

)2( (βω)2

sinh2(βω/2)

)d/2{ 1

{4 cosh2(βω/2)[4 + 8 cosh(βω) + 8 cosh(2βω)]}d/2
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+ 1

{cosh2(βω/2)[28 + 32 cosh(2βω)]}d/2
+ −1

{cosh2(βω/2)[44 + 64 cosh(βω) + 32 cosh(2βω)]}d/2

+ −2

[23 + 40 cosh(βω) + 24 cosh(2βω) + 8 cosh(3βω)]d/2
+ 1

{cosh2(βω)[28 + 32 cosh(βω)]}d/2

+ 2

{8 cosh2(βω/2)[3 + 3 cosh(βω) + 4 cosh(2βω)]}d/2
+ −1

{[1 + 2 cosh(βω)]2[7 + 8 cosh(βω)]}d/2

+ 1

2

1

{4(3 + 6 cosh(βω) + 4 cosh[2βω) + 2 cosh(3βω)]}d/2

}

+
(

C

λd
T

)3( (βω)3

sinh3(βω/2)

)d/2{ 1

{cosh(βω)[8 + 32 cosh(βω)]}d/2

[
sinh(βω/2)

sinh(βω)

]d/2

+ −2

{76 cosh(βω/2) + 16[3 cosh(3βω/2) + cosh(5βω/2)]}d/2
+ −2

{16 cosh(βω/2)[1 + 2 cosh(βω) + 2 cosh(2βω)]}d/2

+ 2

{4 cosh(βω/2)[5 + 12 cosh(βω) + 8 cosh(2βω)]}d/2
+ 6

{8 cosh(βω/2) cosh(βω)[7 + 8 cosh(βω)]}d/2

+ −4

{4 cosh(βω/2)[15 + 22 cosh(βω) + 8 cosh(2βω)]}d/2
+ 1

{32 cosh3(βω/2)[1 + 4 cosh(βω)]}d/2

}

+
(

C

λd
T

)4( (βω)4

sinh4(βω/2)

)d/2{ −3

[60 + 88 cosh(βω) + 32 cosh(2βω)]d/2

+ 3

[41 + 72 cosh(βω) + 32 cosh(2βω)]d/2
+ 1

[33 + 40 cosh(βω) + 32 cosh(2βω)]d/2

+ 1

2

1

{16[1 + 2 cosh(βω) + 2 cosh(2βω)]}d/2
+ −1

{4[1 + 4 cosh(βω)]2}d/2

+ −2

[20 + 48 cosh(βω) + 32 cosh(2βω)]d/2
+ 2

{32 cosh2[βω/2)(1 + 4 cosh(βω)]}d/2

+ −1

2

1

{[7 + 8 cosh(βω)]2}d/2
+ 1

2

1

[25 + 48 cosh(βω) + 32 cosh(2βω)]d/2

}
.
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