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Unveiling the dynamics of optical frequency combs from phase-amplitude correlations
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The noise dynamics of an optical frequency comb based on a mode-locked Ti-sapphire laser is analyzed
in terms of noise modes. A spectrally resolved multipixel homodyne detection enables the simultaneous mea-
surement of the amplitude and phase noises of several optical frequency channels, from which the covariance
matrices of the amplitude and phase quadratures of the laser field are calculated. The decomposition of these
matrices into the four most significant time/frequency modes of the field enables the tracking of the origin of
the noises and the correlations between the noise modes. In particular, the correlations between the amplitude
and phase noises are measured. These measurements are well reproduced by a model taking into account the
correlations between the carrier envelope offset phase noise and the amplitude noise induced by the group
velocity dispersion of the laser cavity.
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I. INTRODUCTION

Mode-locked femtosecond lasers, or optical frequency
combs (OFCs), have become a ubiquitous tool in metrology
for the past 20 years. They were originally used to transfer the
excellent spectral properties of the optical atomic clocks to
the microwave frequency domain [1,2]. They have now found
applications in numerous fields, such as tests of fundamental
physics [3–6], atomic and molecular spectroscopy [7,8], time
or frequency transfer [9–11], ranging measurements [12,13],
and astrophysics [14]. Many of those applications rely on
the stability of the OFC. Furthermore, understanding the dy-
namics of OFCs, i.e., the noises affecting them, is critical to
develop ultrastable sources so they do not limit the precision
of the measurement.

For a single frequency laser, the dynamics is described in
terms of amplitude noise (i.e., variation in the photon num-
ber) and phase noise (i.e., variation in frequency). However,
for an OFC, composed of roughly 105 spectral lines, ampli-
tude and phase noises affect each of them individually. Thus,
such a complete characterization is almost impossible due
to the gigantic number of degrees of freedom. Yet, it has
been theorized that the main dynamics of an OFC can be
reduced to four distinct parameters: the pulse energy, the car-
rier envelope offset (CEO), the repetition rate, and the central
wavelength [15,16], indicating the presence of correlations

*nicolas.treps@lkb.upmc.fr

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

between the different spectral lines. Each parameter is asso-
ciated to a specific time/frequency mode of the electric field.
Thus, investigating those spectral correlations can give access
to information on the laser dynamics. Spectral correlations
have started to draw attention for various applications such as
to track the Raman response of materials [17], for example,
or as in Ref. [18]. In that study, Brajato et al. used those
correlations to measure amplitude and phase noise correlation
matrices with Bayesian filtering for a frequency comb.

On the other hand, the dynamics of OFCs has been widely
studied by measuring the noise on each parameter separately.
A complete description of the noise in passively mode-locked
lasers was developed by Haus and Mecozzi [16] and later
generalized by Paschotta et al. [19–21]. A thorough under-
standing of the dynamics of mode-locked fiber lasers is given
in Refs. [22,23], both theoretically and experimentally. The
intensity-related dynamics of OFCs has drawn a lot of at-
tention. Changes in the lasers parameters under pump laser
modulation is studied in Refs. [24–26]. Those studies indicate
that the main source of noise is the intensity fluctuations of
the pump laser. They are responsible for several features such
as frequency pulling, timing jitter, and phase noise.

In previous studies, different setups were used to access
the noise of the different laser parameters. Characterizing the
intensity noise is the easiest task, as a single photodiode is suf-
ficient. The CEO noise is usually characterized by beating the
comb spectrum with its frequency-doubled counterpart. The
spectrum must be expanded beforehand to cover an octave
[27]. The timing jitter can be measured by various techniques
such as heterodyne beat with an ultrastable laser [28] or by
self-heterodyne with a fiber delay line interferometer [29,30].
Furthermore, most of the studies concentrate on the lower part
of the noise spectrum, from the Hz to tenth of kHz. In this
frequency range, technical noises are dominant.
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In this paper, building on the experimental scheme in-
troduced in Ref. [31] based on the investigation of spectral
correlations, we present an experiment to measure with a
single setup the four noise parameters at the quantum limit,
enabling the full characterization of the laser dynamics. To
do so, a spectrally resolved multipixel homodyne detection is
used to measure the covariance matrices of the amplitude and
phase quadratures of the field. The fluctuations of the laser
parameters are recovered by extraction of the noise in the
corresponding time/frequency mode from those covariance
matrices. We focus our analysis on the frequency range of
the noise spectrum from 200 kHz to 4 MHz. This range has
drawn less attention in the literature. As a matter of fact,
most of the investigations of frequency comb dynamics are for
metrological applications. Those studies focus on the lower
frequency range (a few to a hundred hertz), corresponding
to the long-term stability of the experiment, where the tech-
nical noises dominate. However, at higher frequencies, the
laser is expected to reach the quantum limit and can thus
be used for precise measurements. In this paper, the laser is
found to be shot noise limited around 3 MHz. In addition,
the simultaneous measurement of the amplitude and phase
quadratures gives access to correlations between amplitude
and phase noises. The resulting amplitude-phase correlation
matrices can be studied through singular value decomposi-
tion (SVD). Thus, we confirm that those correlations are a
signature of the intensity-related dynamics of the laser. We
analyze this dynamics thanks to a simple model explaining
the intensity dependence of the CEO frequency. By comparing
the measured CEO frequency noise and the model, we show
that in our laser, the CEO intensity dynamics is induced by the
spectrum center frequency fluctuations via the group velocity
dispersion (GVD) of the laser cavity.

II. MODAL DESCRIPTION OF THE NOISE

A. The perturbed pulse

Our approach consists of investigating the noise of a single
pulse from an OFC whose complex electric field is written as

E (t ) = E0a(t )e−iωct , (1)

where E0 is the single photon field amplitude [32], ωc is the
carrier frequency, and a(t ) the slowly varying Gaussian enve-
lope of the pulse. This analysis can then easily be extended to
the train of pulses emitted by an OFC according to

Ecomb(t ) =
∑

n

E (t − nτr )e−in�φCEO , (2)

where τr is the repetition rate of the laser and �φCEO is the
CEO phase.

The laser pulses undergo intensity and phase noise due
to various sources such as pump laser intensity fluctuations,
vibrations, or temperature fluctuations. In most cases, the
resulting dynamics of the laser can be reduced to four pa-
rameters, −→p = (δε, δωc, δτCEO, δτr ) where δε stands for
amplitude fluctuations, δωc for carrier frequency fluctuations,
δφCEO = ωcδτCEO for CEO phase fluctuations, and δτr of the
timing jitter. Note that δφCEO represents the fluctuations of
the CEO phase and should formally be noted δ�φCEO. This

notation being too heavy we keep δφCEO to represent the CEO
fluctuations.

Thus, the starting point of our modal description of the
dynamics is to study a single pulse Eq. (1) undergoing a per-
turbation of those four parameters [33]. The perturbed pulse
is therefore written

E (t,−→p ) = E0(1 + δε)a(t − δτr )e−i(ωc−δωc )(t−δτCEO ). (3)

The same expression can be obtained in the spectral domain
by taking the Fourier transform of the previous expression,

E (�,−→p ) = E0(1 + δε)a(� − δωc)ei(ωcδτCEO+�δτr ), (4)

where � = ω − ωc. As those fluctuations are small, the above
expression can be expanded at first order to obtain the fluctu-
ating electric field,

δE (�) = E (�,−→p ) − E (�)

� E0

[
δεa(�) − δωc

∂a(�)

∂�

+ iωcδτCEOa(�) + i�δτra(�)

]
. (5)

Note that the notation δ as in δE (�) implies the dependence
in −→p , i.e., δE (�) = δE (�,−→p ). In the following, we write
a(�) = α(�)eiφ(�) = α0u(�)eiφ(�). α0 is the field amplitude
so α0 = √

N0 with N0 the mean photon number, u(�) is the
mean-field mode normalized as

∫
d�|u(�)|2 = 1 and φ(�)

the spectral phase. For simplicity, we choose it to be con-
stant over � and equal to zero, i.e., eiφ(�) = 1. Without this
simplification, the definition of the quadratures, introduced in
the next section, as the real and imaginary parts of the field
proportional to the amplitude and the phase, would be less
straightforward.

B. Field quadrature fluctuations

The field fluctuations can also be written in terms of
quadratures of the electric field x(�) and p(�), respectively,
proportional to the real and imaginary parts of the field defined
by

E (�) = E0

2
[x(�) + ip(�)]. (6)

Thus, we have

2δE (�) = E0[δx(�) + iδp(�)], (7)

with δx(�) = 2δα(�), proportional to the amplitude fluctu-
ations, and δp(�) = 2α(�)δφ(�), proportional to the phase
fluctuations. By identification with Eq. (5), we find

δx(�) = 2α0

[
δεu(�) − δωc

∂u(�)

∂�

]
, (8)

δp(�) = 2α0[ωcδτCEOu(�) + �δτru(�)]. (9)

In the expressions above, each of the four parameters is asso-
ciated to a particular spectral mode related to the mean-field
one. Let us consider a Gaussian mean-field spectral mode
u(�) = 1

4√2π�ω2
exp(− �2

4�ω2 ), where �ω is the spectral width
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FIG. 1. Experimental setup: The experiment is composed of three parts. (a) Reference filtering, to generate the reference beam via a high
finesse cavity on which the repetition rate of the laser is locked. The CEO is also locked thanks to an f-2f interferometer to ensure maximum
transmission through the cavity. The laser is free running above the locking bandwidth of a few kHz. (b) Spectral phase compensation with a
pulse shaper to ensure a flat phase for all spectral bands. That way, the homodyne is locked on the phase quadrature for all the spectral bands.
(c) Multipixel homodyne detection to measure the amplitude and phase noise in eight different spectral bands. A demodulation stage is used
to acquire noise at a given offset frequency selected by the radio-frequency local oscillator (RF LO) whose frequency can be swept. All data
are acquired by an acquisition card (DAQ) and postprocessed on a computer to recover the covariance matrices.

of the field given by �ω2 = ∫
d�2|u(�)|2. The quadratures

Eqs. (8) and (9) can finally be written as

δx(�) = 2α0

[
δεuamp(�) − δωc

2�ω
ucent−freq(�)

]
, (10)

δp(�) = 2α0[ωcδτCEOuCEO(�) + �ωδτrurep−rate(�)], (11)

with uamp(�) ≡ uCEO(�) = u(�), ucent−freq(�) =
−2�ω∂u(�)

∂�
, and urep−rate(�) = �u(�)

�ω
. Those normalized

spectral modes are named detection modes.
In conclusion, the dynamics of the laser can be recov-

ered by accessing spectral modes in the amplitude and phase
quadratures of the electric field. As a consequence, a spec-
trally resolved detection of the quadratures is needed. This is
provided by a multipixel homodyne detection described in the
next section.

III. MEASURING THE MULTIMODE FIELD

The experiment is based on a spectrally resolved ho-
modyne detection represented in Fig. 1(c). Note that the
homodyne detection is not implemented in a standard way. As
will be seen later, we actually measure the noise of the more
intense of the two interfering beams while the weaker one
serves as a reference. This will have consequences later on the
sensitivity of the measurement. After the beam splitter (BS),
the laser spectrum is split in eight spectral slices thanks to a
grating and an array of microlenses. Two detectors, composed
of eight photodiodes each, can then measure the amplitude
and phase quadratures in each of those spectral bands. Con-
sequently, the quadratures are measured in a pixelized basis
with each pixel corresponding to a frequency band. We define
the pixel basis {vi(�)}, i ∈ {1 : 8} with

vi(�) =
{

u(�m) if �i � � < �i+1

0 otherwise, (12)

with �m = (�i + �i+1)/2.

The x and p quadratures of the field in this basis can
be described by vectors −→x = (x1, . . . , x8), −→p = (p1, . . . , p8)
with

xi =
∫

vi(�)x(�)d� , (13)

pi =
∫

vi(�)p(�)d� . (14)

This scheme allows us to measure the spectral covari-
ance matrices in amplitude �x with �x

i j = 〈δxiδx j〉 and in
phase �p with �

p
i j = 〈δpiδp j〉 from which the dynamics of

the laser can be extracted. The following section presents
in detail the experimental setup used and represented in
Fig. 1.

A. Experimental setup

The laser under study is a titanium-sapphire based fem-
tosecond oscillator from Femtolasers company. It delivers 22
fs FWHM pulses with a repetition rate of 156 MHz, resulting
in a 40 nm FWHM wide spectrum centered at 795 nm. The
average power is of the order of 1 W. This laser is pumped
by a 5 W Finesse Pure CEP pump laser at 532 nm from
Laser Quantum. The beam under study is first split in two:
an intense beam, the signal and a weak one, the reference.
The reference is filtered by a high finesse cavity (F � 1200)
to decorrelate the high frequency phase noises of the two
beams. This cavity acts as a low pass filter for the phase
fluctuations with a bandwidth of approximately 125 kHz. To
ensure maximum transmission through the cavity, the CEO
frequency and the repetition rate of the laser are locked. To
do so, the CEO frequency is first measured thanks to an f-2f
interferometer and mixed with a radio-frequency reference
signal to obtain an error signal. This signal is then used to
stabilize the CEO frequency by acting on the pump laser
current via a commercial PI servo controller from New Fo-
cus with a bandwidth of 3 kHz. The repetition frequency is
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FIG. 2. Experimental covariance matrices. (a) Amplitude and (b) phase covariance matrices. The matrices are measured at 500 kHz. The
noise is expressed as noise relative to shot noise (NRSN) on a linear scale. Correlations can be seen between the different spectral bands.
In inset, matrices for noises at 4 MHz. At that frequency, the laser is only affected by the shot noise. (c) Noise on the physical parameters
relative to the shot noise. Projection of the covariance matrices on the modes corresponding to the noise on the CEO, central, and repetition
rate frequencies as well as the mean power. The noises are expressed in dB relative to the shot noise. The shot noise is measured by blocking
the reference beam and taking the difference of the photocurrents.

stabilized by locking the laser cavity length on the high fi-
nesse cavity via a Pound-Drever-Hall (PDH) locking scheme.
The PDH signal is derived from the reflected beam at the
output of the cavity to avoid any modulation on the beam
used for the detection. The error signal is fed to a mirror
mounted on a piezoelectric actuator in the laser cavity via
another PI servo controller with a bandwidth of 1 kHz. A
detailed description of this locking scheme can be found in
Ref. [31]. As both locks have a bandwidth of a few kHz, the
laser is thus free running above those frequencies. Spectral
phase compensation using a pulse shaper is used to ensure
a flat phase across the 40-nm spectrum of the signal beam
at the detection. This compensation is needed to satisfy the
assumption made in Sec. II A, namely, that φ(�) is constant
over �. The reason for this is that if the phase were not flat, the
nature of the measured quadratures would evolve throughout
the optical spectrum. The phase compensation is performed
by a spatial light modulator LCOS-SLM X10468 (liquid crys-
tal on silicon) from Hamamatsu in a 4f configuration [34].
The reference and signal beams are then recombined on a
50-50 BS. Finally, the spectrum is spatially spread and sent
to two multipixel detectors thanks to arrays of microlenses.
Each detector is composed of eight photodiodes. The detected
signals are split into a low frequency component (dc) and
a high frequency one (ac), with a cutoff frequency around
200 kHz. The dc part is used for alignment purpose and to
phase lock the homodyne detection on the phase quadrature.
The 16 ac signals are mixed with a reference signal delivered
by a frequency generator whose frequency is swept, and low
pass filtered with a cutoff frequency of 10 kHz. The resulting
signals are then acquired by a data acquisition card NI-
PXIe 6361 from National Instrument with a sampling rate of
100 kSa/s. The demodulation stage is used to measure noises
at higher frequencies than the 1 MHz bandwidth of the acqui-
sition card but also to prevent the saturation of its dynamics.
The laser being very noisy at low frequencies, acquiring all
the noise spectrum in a single measurement would degrade

the resolution of the spectrum at high frequencies where the
noise is much lower.

This scheme allows us to measure the covariance matrices
at a given offset frequency set by the frequency of the demod-
ulating signal. The data are then processed by a computer.
This processing and normalization procedure to retrieve the
covariance matrices are detailed in the Appendices. Note that
since the photocurrents of both detectors are measured, both
the amplitude and the phase can be recovered simultaneously.
This simultaneous measurement is a cornerstone of our work,
as it allows the investigation of the correlations between am-
plitude and phase, one of the fundamental mechanisms that
governs mode locking.

B. Amplitude and phase covariance matrices

An example of matrices acquired this way is shown in
Fig. 2. Figures 2(a) and 2(b) reproduce the covariance matri-
ces for the amplitude and phase fluctuations, respectively, for
an offset frequency of 500 kHz. The inset displays the same
matrices for an offset of 4 MHz. The matrices are expressed in
units of shot noise (noise relative to shot noise, NRSN), which
is the standard quantum limit in sensitivity for amplitude and
phase noise. The shot noise is a white and uncorrelated noise
corresponding to the level of noise associated to a coherent
state. Therefore, the level of noise displayed by the covariance
matrices must be understood as an excess of noise compared
to a coherent state of the same mean power. The shot noise is
measured experimentally by blocking the reference beam and
measuring only the signal beam with the homodyne system. It
is represented in Fig. 2(c) as a function of the frequency.

The amplitude covariance matrix measured at 4 MHz
is diagonal with elements equal to one. It proves that the
laser is only affected by the shot noise at this offset fre-
quency. In this case, the laserfield can be approximated by a
coherent state. On the contrary, the amplitude and phase ma-
trices at 500 kHz display correlations between spectral bands
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indicating that classical noise affects the laser dynamics. The
next section presents how some information is extracted from
those matrices.

It can be noted that the phase matrix at 4 MHz is not purely
diagonal as is the case for the amplitude one. This is a result
of the limited sensitivity of the detection for the phase noise.
Indeed, in a standard homodyne detection, the phase measured
is the one of the weak beam. However, in our experiment,
the weak beam is filtered and we aim at measuring the phase
noise of the intense beam. Consequently, the normalization
introduces losses in the detection, resulting in a decreased
sensitivity as explained in Appendix C.

IV. EXTRACTING THE NOISE

To retrieve the noise spectrum of the laser parameters,
the covariance matrices are measured at offset frequencies
from 200 kHz to 4 MHz by sweeping the frequency of the
demodulating signal. We note �x,p( f ) the amplitude and
phase covariance matrices calculated at the offset frequency
f . Measuring the covariance matrix is enough to recover all
the information on the dynamics, assuming that the noises
under study are Gaussian, which is a reasonable assumption
in our experiment. Consequently, the noise relative to the shot
noise for each of the four laser parameters, (δε, δωc, δφCEO =
ωcδτCEO, δτr), defined in Sec. II A., can be extracted by
mathematically projecting the covariance matrices on the cor-
responding modes defined in Eqs. (10) and (11). To do so,
the noise modes need to be pixelized similarly to Eq. (13)
for quadratures. We note those modes −→u mode. They are rep-
resented in Fig. 2(c). The resulting noise spectra are given by

δε( f ) = [−→u T
amp · �x( f ) · −→u amp

]1/2
,

δωc( f ) = [−→u T
cent−freq · �x( f ) · −→u cent−freq

]1/2
,

(15)
δφCEO( f ) = [−→u T

CEO · �p( f ) · −→u CEO
]1/2

,

δτr ( f ) = [−→u T
rep−rate · �p( f ) · −→u rep−rate

]1/2
,

where −→u T
mode is the transposed mode.

As the covariance matrices are normalized to the shot
noise, all the fluctuations in the expressions above are ex-
pressed in units of shot noise. Figure 2(c) represents those
fluctuations in dB relative to the shot noise as a function of
the offset frequency, thus corresponding to the spectrum of
the noise of each parameter. It can be seen that the domi-
nant noises in this frequency range are the phase ones and
mainly the noise on the CEO phase. The laser reaches the
shot noise level around 3 MHz, meaning that technical noises
are no longer affecting the laser. The peak around 1 MHz
corresponds to the relaxation oscillations of the laser. One
can notice a discrepancy with respect to the shot noise at high
frequency for the phase noises even though the phase noise is
expected to reach the shot noise level at high frequencies. It is
the consequence of the limited sensitivity of the measurement
due to the renormalization, as explained before.

To further investigate the dynamics of the laser, the noise
spectra represented in Fig. 2(c) can be converted into physical
units. From Eqs. (10) and (11) and from the expressions of
the NRSN Eq. (15), we thus obtain the following expressions

for power spectral densities of the relative intensity noise
[RIN( f )], the central frequency noise [Sωc ( f )], the CEO fre-
quency noise [S fCEO ( f )], and the timing phase noise [Sφt ( f )],
with φt ( f ) = 2π frδτr ( f ), together with their units:

RIN( f ) =
(

δε( f )√
N0

)2

Tm
[
Hz−1

]
,

Sωc ( f ) =
(

�ω√
N0

δωc( f )

)2

Tm
[
rad2s−2/Hz

]
,

(16)

S fCEO ( f ) =
(

fr

4π
√

N0
δφCEO( f )

)2

Tm
[
Hz2/Hz

]
,

Sφt ( f ) =
(

π fr

�ω
√

N0
δτr ( f )

)2

Tm
[
rad2/Hz

]
,

where N0 corresponds to the number of photons hitting the
detector during the acquisition duration. It is given by N0 =
PTm/h̄ωc, where P is the optical power before the BS of
the homodyne detection (P � 5.5 mW), and Tm = 1/BW the
acquisition time with BW the bandwidth of the low-pass filter
used in the detection chain after the demodulation (BW =
10 kHz). The spectra obtained are reproduced in Fig. 3. As
a comparison, the timing phase noise and the RIN of a mode-
locked laser have been determined theoretically in Ref. [20],
where similar noise levels have been found. Those spectra
offer a quantitative measurement of the noise affecting the
OFC, derived from a single measurement. These quantities are
used in Sec. VI to track the origin of the noises, in particular,
the intensity related dynamics of the CEO frequency.

V. UNVEILING THE DYNAMICS FROM XP
CORRELATIONS

The experimental scheme allows the measurement of
the amplitude and the phase quadratures simultaneously by
taking, respectively, the sum and difference of the photocur-
rents of the 16 photodiodes after acquisition. Consequently,
it is also possible to access the correlation matrix �

xp
i j =

〈δx(�i )δp(� j )〉 between amplitude and phase. An example of
such a matrix is represented in Fig. 4(a) for an offset frequency
of 500 kHz (4 MHz in inset).

These matrices show spectral correlations between the
amplitude and the phase up to the MHz domain and no cor-
relations above. To analyze this matrix, a SVD is performed.
From this decomposition, the Schmidt number can be calcu-
lated. It is given by K = (

∑
n λ2

n)2/
∑

n λ4
n, where the λn’s are

the singular values [35]. This parameter provides some infor-
mation on the number of significant modes involved in the
process. It is represented in Fig. 4(b) as a function of the offset
frequency. The Schmidt number is equal to one up to 1 MHz,
meaning that only one pair of modes, one in phase and one in
amplitude, is necessary to reconstruct the correlations. Those
two modes, represented in the same figure, are the singular
modes. Because only one pair of modes is involved, we can
assume that only one noise source is responsible for those
correlations. As has been shown in various papers [24,26], it
is expected to come from the fluctuations of the pump laser
intensity. This is investigated in the next part.
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FIG. 3. Noise in physical units (a) CEO frequency noise, (b) timing jitter noise, (c) mean power noise, and (d) spectrum center frequency
noise. The spectral mode corresponding to each quantity is reproduced in each plot. The shot noise is plotted as a dashed black line.

A qualitative understanding of the underlying processes
can be obtained through the projection of the singular modes
on the detection modes introduced earlier. The projection of
the amplitude singular mode on the mean power and spec-
trum center frequency detection modes and the projection
of the phase singular mode on the CEO and repetition rate
detection modes are represented in Fig. 4(c). It can be seen
that mainly three modes are coupled. In phase, only the CEO
detection mode is coupled to the amplitude ones. Indeed, this
was expected as it is well-known that intensity fluctuations,
induced by pump power fluctuations, have a huge impact on
the CEO of the laser and are even used to control it [36] as
it is the case in this study. In amplitude, the singular mode is
a linear combination of the mean power and spectrum center
frequency modes. The dominant contribution comes from the
fluctuations of spectrum center frequency. Despite the fact
that there is a strong coupling between the CEO and the
mean power fluctuations due to the Kerr effect, this contri-
bution can be exceeded by the fluctuations of the spectrum
center frequency. This is the case when there is a non-

negligible residual GVD inside the laser cavity [24]. In the
next section, we investigate those correlations with a simple
model describing the intensity related dynamics of the CEO
fluctuations.

VI. INTENSITY RELATED DYNAMICS: RECOVERING
THE CEO FLUCTUATIONS

As previously demonstrated, the dominant noise is the
CEO frequency fluctuations. Moreover, only one noise source
is expected to induce correlations between amplitude and
phase as suggested by the SVD applied in the previous
section. As a consequence, following the idea developed in
Ref. [24], the intensity-related dynamics of the CEO fre-
quency is investigated.

The CEO frequency is defined as follows:

fCEO = fr

2π
�φCEO = ωc

2π

(
1 − vg

vφ

)
, (17)

FIG. 4. Phase and amplitude correlations: (a) Correlation matrix between amplitude and phase at an offset frequency of 500 kHz. In inset
the same but at 4 MHz where the correlations vanish. (b) Schmidt decomposition of the correlation matrices. The Schmidt number as a
function of the offset frequency is plotted together with the amplitude and phase singular modes for the frequencies where it is equal to one.
(c) Projection of the amplitude and phase singular modes on the detection modes.
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where ωc is the carrier frequency and vg and vφ the average
group and phase velocities defined by

c

vg
= n + ωc

dn

dω
, (18)

c

vφ

= n. (19)

These velocities are averaged over the cavity length and con-
tain the refractive index n = n0 + n2I , which is itself averaged
over the cavity and includes the Kerr effect. An important
point to note is that n depends on the intensity I and on ωc,
due to the dispersion, which itself depends on I . The cen-
tral frequency can be affected by intensity fluctuations when
an asymmetry between the gain and the loss profiles exists
[16,25]. In that configuration, a change in the gain results in
a frequency-pulling effect due to a shift of the equilibrium
frequency.

Thus, the intensity dependence of the CEO frequency is
given by

dfCEO

dI
= 1

2π

[
dωc

dI

(
1 − vg

vφ

)

+ ωc
vg

vφ

(
1

vφ

dvφ

dI
− 1

vg

dvg

dI

)]
. (20)

The model is derived with respect to the intracavity peak in-
tensity I , which we calculate for a Fourier transformed limited
pulse (the effect of dispersion is included later). However, in
practice, we measure the fluctuations of the parameters with
respect to the laser mean output power P. The conversion from
I to P is given by

dI

dP
= 2 × 0.88

frTcoupler�tpulseπw2
. (21)

This quantity is determined from the parameters of the ex-
periment: fr = 155 MHz, Tcoupler = 0.28 the transmission of
the output coupler, �tpulse = 22 fs the pulse duration, and
w = 10 μm the waist in the crystal. The factor 0.88 comes
from the hyperbolic secant shape of the pulse. Given those
data, we find dI/dP � 5.8 × 10−15 m−2.
From Eqs. (20) and (21), the CEO frequency fluctuations are
given by

δ fCEO = 1

2π

[
δωc

((
1 − vg

vφ

)
+ ωc

v2
g

vφ

GVD − ωc
vg

c

∂n

∂ω

)

+ δP
dI

dP

ωcvg

c

(
vg

vφ

ωc
∂n2

∂ω
− n2

(
1 − vg

vφ

))]
, (22)

where GVD is the average group velocity dispersion inside
the cavity given by GVD = d

dω
( 1
vg

).
From this expression, it is clear that the noise on the CEO

frequency arises from the noise on the central frequency δωc

and from the mean power fluctuations δP. The factor coupling
the CEO frequency and the central frequency is composed of
three terms. The first one comes from the dispersion in the
laser, (1 − vg

vφ
), the second one from the GVD, and the last

one is due to the dispersion of the Kerr effect ∂n
∂ω

. On the other
hand, the term coupling the CEO frequency to the intensity

is mainly due to the Kerr effect, as expected, via n2 and its
dispersion.

To apply this formula, a few quantities need to be
taken from the literature. We have n = 1.00116, n2 =
1.8 × 10−23 m2W−1, ∂n0

∂ω
= 3.5 × 10−21 s, and ∂n2

∂ω
= 3 ×

10−39 sm2W−1 [24]. Finally, the GVD of the laser needs to
be estimated. Just after the output coupler, the duration of the
pulse is 36 fs for a 40-nm spectrum, showing that the pulse is
chirped. To have an estimation of the GVD inside the cavity,
the passage through the output coupler needs to be taken into
account. We estimate the dispersion introduced by 4 mm of
silica of dispersion β2 = 36 fs2/mm. After the output coupler,
the pulse duration is found to be 24 fs. The passage through
the crystal also needs to be taken into account. However, as we
derived the expression Eq. (22) of the fluctuations averaged
over the cavity, this quantity varies, depending on where the
noise arises in the laser cavity. Consequently, an uncertainty
can be associated to the estimation of the GVD. Because the
cavity is linear, each pulse goes through the crystal twice per
round trip. Thus, to estimate the dispersion and its uncer-
tainty, we calculate the GVD for one trip in the crystal and
calculate the uncertainty associated to a pulse which has not
yet traveled through the crystal or which has done a double
pass. The crystal is made of 3 mm of sapphire of dispersion
β2 = 58 fs2/mm. The resulting calculated GVD is −280 fs2

and the uncertainty is ± 50 fs2. The calculation to estimate the
GVD is detailed in the Appendices.

The model can now be applied to our measurements. We
use the fluctuations of the mean power, δP, and of the cen-
tral frequency, δωc, measured experimentally thanks to our
setup. For each offset frequency, the expected CEO frequency
fluctuation is calculated using those values as well as the
estimated GVD. This gives a spectrum for the CEO frequency
fluctuations, which can be compared to the one measured
with the setup. The resulting trace is reproduced in Fig. 5
alongside the measured CEO frequency fluctuations given by
δ fCEO = √

S fCEO . Good agreement is found between the model
and the measured traces. The experimental data almost en-
tirely fall in the uncertainty area up to 1 MHz. This agreement
proves that the CEO dynamics is indeed related to the intensity
fluctuations of the laser and that this feature is sufficient to
explain it almost entirely. It confirms what was found with the
SVD: the Schmidt number is equal to one as one noise source

FIG. 5. Experimental versus model for the CEO noise: In dashed
blue, the model from Eq. (22), the shaded zone corresponds to the
uncertainty on the GVD determined in the laser. Plain line: Measured
CEO frequency fluctuation given by δ fCEO = √

SfCEO from Eq. (16).
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TABLE I. Expressions and value of the ratio of contributions of the model to the measured CEO fluctuations. This ratio is averaged over the
frequency range where the model is the most accurate, from 200 kHz to 500 kHz. The first three lines are the contributions from the spectrum
center frequency and the last one the contribution from the power fluctuations.

Contribution Expression ratio |c j/δ fCEO,exp|

Group velocity dispersion c1 = 1
2π

δωc

(
ωc

v2
g

vφ
GVD

)
9 × 10−1

Kerr effect dispersion c2 = 1
2π

δωc(ωc
vg

c
∂n
∂ω

) 4 × 10−2

Dispersion c3 = 1
2π

δωc(1 − vg

vφ
) 5 × 10−3

Kerr effect c4 = 1
2π

δP dI
dP

ωcvg

c

(
vg

vφ
ωc

∂n2
∂ω

− n2

(
1 − vg

vφ

))
2 × 10−6

is responsible for the main dynamics. It also demonstrates the
coupling between the CEO and the central frequency fluctua-
tions which was found by the projection of the singular modes.
Nonetheless, the model does not seem accurate above 1 MHz.
One explanation is that the model does not take into account
the shot noise and describes only the correlations between
CEO and the amplitude modes. However, above 2 MHz the
amplitude noises get really close to the shot noise. This is
particularly true for the noise of the center spectrum which
turns out to be the main contribution to the CEO fluctuations
as discussed later. Hence, the model is no longer relevant
above 2 MHz. This could also be due to some additional
filtering coming from the laser cavity or the detection scheme
not taken into account in the model.

To further explore the model, the ratio of the contribu-
tions of the center frequency and mean power fluctuations,
calculated from the model, to the measured CEO fluctuations
are reported in Table I. It can be seen that the dominant
contribution is the one coming from the spectrum center fre-
quency. More precisely, it is the spectrum center frequency
via the GVD which seems to be the dominant contribution.
This is in agreement with the results found in Sec. V. The
center spectrum detection mode has a higher contribution to
the amplitude singular mode as it is directly coupled to the
CEO frequency fluctuations via the GVD. This decomposition
indicates that the mean power fluctuations have a really small
direct effect on the CEO frequency. Note that in Fig. 4(c)
there is still a significant contribution to the amplitude singular
mode from the mean power because the fluctuations of center
frequency are also coupled to the intensity fluctuations due to
an asymmetry between the gain and loss profiles as explained
before. Thus, the intensity has a significant impact on the
CEO frequency only when there is a residual GVD inside the
laser cavity. This has also been identified in Refs. [22,24]. The
knowledge of this process can help improve the performance
of frequency combs. To achieve a lower CEO noise, the noise
of the pump laser can be reduced or the GVD of the laser
cavity can be reduced so this intensity noise has a lower
effect. In practice, the first option is probably the easiest to
implement. Alternately, a better lock of the CEO frequency
can be achieved by using a laser cavity with an appreciable
amount of GVD.

VII. CONCLUSION

We have presented a method enabling the characterization
of the dynamics of an OFC with a single setup. From the

amplitude and phase covariance matrices, the fluctuations of
the laser parameters have been measured at the shot noise
limit. The noises are also expressed in physical units to be
compared to other studies. The noise levels measured are
similar to what can be expected from the literature on OFC
dynamics. In addition, we measured the amplitude-phase cor-
relation matrix. Thanks to SVD, the underlying processes
can be studied. We show that those correlations are mainly
induced by the pump laser intensity fluctuations. Our analysis
permits the identification of the coupling mechanisms. The
fluctuations of the spectrum center frequency induced by the
pump noise via frequency pulling is the main driving force of
the CEO frequency noise. This is due to the GVD of the laser
cavity which was estimated to be −280 fs2.

Using such a setup could help for the design of low
noise frequency combs by characterizing their dynamics. This
scheme could also be improved to implement feedback on the
laser pump current as it is the main source of noise. Another
improvement is to use a fiber-optic delay line to decorrelate
the phase noise of the two arms of the homodyne detection.
This scheme is easier to implement and can give access to
noise at lower frequencies where the technical noise can be
investigated.
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APPENDIX A: DETERMINATION OF THE LASER’S
DISPERSION

The aim is to determine the GVD parameter in the laser.
The starting point is Eq. (2.118) in Ref. [37],

{(Dg + iD)
d2

dt2
+ (g − l − iψ ) + (γ − iδ)|a(t )|2}a(t ) = 0,

(A1)
with g the gain per round trip and �2

g the width of the gain
in amplitude so Dg = g/�2

g, l the losses per round trip, γ

the automodulation coefficient in amplitude, δ the self-phase
modulation coefficient, D the GVD, and ψ the dephasing per
round trip. We also use U = 2a2

0tp the pulse energy as well as
the normalized quantities Dn = D/Dg, tpn = Utp/2Dg.
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The solution of the equation for the mode-locked laser is a
chirped hyperbolic secant:

a(t ) = a0

[
sech

(
t

tp

)]1+iβ

. (A2)

By putting Eq. (A2) in Eq. (A1), we find

g − l − iψ + (1+iβ )2

t2
p

(Dg + iD) = 0

(Dg + iD) 2+3iβ−β2

t2
p

= (γ − iδ)a2
0.

(A3)

By multiplying the second equation by Dg/t2
p and identifying

the real and imaginary parts, we have

2 − β2 − 3βDn = γ tpn

3β + 2Dn − β2Dn = −δtpn.
(A4)

From the second equation, we have the GVD depending on
the duration of the pulse and its chirp:

D = Dn × Dg = Dg
−(δtpn + 3β )

2 − β2
. (A5)

Consequently, to determine the GVD, the duration of the pulse
and its chirp in the cavity need to be known. At the output
of the laser, the pulse duration has a duration of 36 fs and
a spectrum of 40 nm corresponding to a Fourier transform
spectrum of 22 nm. Consequently, the chirp parameter of the
pulse is β0 =

√
(36/22)2 − 1 = 1.3. The chirp parameter is

defined so the electric field of the chirped pulse is given by
E (t ) = E0exp(− 1+iβ

2
t2

�t0
). The evolution of the duration and

chirp of a chirped pulse going through z mm of a dispersing
medium of dispersion β2 is given by

�t (z) = �t0

√(
1 + β2zβ0

�t0

)2

+
(

β2z

�t2
0

)2

, (A6)

β(z) = β0 + β2zβ2
0

�t2
0

+ β2z

�t2
0

. (A7)

APPENDIX B: HOMODYNE DETECTION

The fields E (+)
± at each output of the BS can be expressed

as

E (+)
± (t ) = E (+)

s (t ) ± E (+)
ref (t )√

2
, (B1)

where E (+)
s (t ) = E0as(t )e−iω0t is the field coming from the in-

tense beam and E (+)
ref (t ) = E0aref(t )e−iω0t from the weak one.

The instantaneous intensity detected at each BS output, S±,
given according to I (t ) = 2ε0nc|E (+)(t )|2 in (J/s/m2), is

S±(t ) = Is(t )

2
+ Iref(t )

2

± ncε0{E (+)
s (t )E (−)

ref (t ) + E (−)
s (t )E (+)

ref (t )}. (B2)

At this point, it is more convenient to work in the frequency
domain. The intensity at each output can thus be written

S± = Is

2
+ Iref

2
± E2

0 ncε0{as(�)a�
ref(�) + a�

s (�)aref(�)}.
(B3)

The envelope of the field can be decomposed in a modulus
and phase term,

aref(�) = |aref(�)|eiφref (�) = αref(�)eiφref (�), (B4)

as(�) = |as(�)|eiφs (�) = αs(�)eiφs (�), (B5)

where φ j (�) is the phase of the reference or signal pulse.
Summing the signal from both detectors gives access to

an amplitude measurement of the signal. Indeed, because the
signal field is stronger than the reference one, the intensity
fluctuations measured are mainly the signal beam ones. The
signal I+ = S+ + S− can be written as

I+(�) = Is + Iref

= 2ε0ncE2
0

(|as(�)|2 + |aref(�)|2)
= 2ε0ncE2

0

(
α2

s (�) + α2
ref(�)

)
.

Consequently, the fluctuations of the sum of the signals are
given by

δI+(�) ∝ αs(�)δαs(�) ⇒ δI+(�) ∝ αs(�)δxs(�). (B6)

Taking the difference of the signals leads to a measurement
of the relative phase between the two fields. With the de-
compositions Eqs. (B4) and (B5), the difference of the output
intensities is

I−(�) = αs(�)E2
0 ncε0{αref(�)eiφ(�) + αref(�)e−iφ(�)},

(B7)
where φ(�) = φs(�) − φref(�) is the relative phase between
the two pulses.

In what follows, we are interested in studying the phase
fluctuations of the signal. To do so, the field’s (E (+)(�) =
E0α(�)eiφ(�)) fluctuations, δE , can be expanded to the first
order:

δE (+)(�) = E0eiφ(�)(δα(�) + iδφ(�)α(�)). (B8)

As the signal is intense, the amplitude fluctuation can be
neglected and the field expressed by its mean value αs. With
expressions Eq. (B8), the fluctuations of the difference of
output intensities can be written:

δI−(�) = 2αsE2
0 ncε0{δαref(�) cos φ(�)

−αref(�)δφ(�) sin φ(�)}. (B9)

The phase difference between the reference and the signal
needs to be the same for all frequencies and set to ±π

2 by
locking the relative path of the two arms. This locking point
ensures retrieving the phase fluctuations when the difference
of the signals is taken. Finally, as we are interested in the
signal phase fluctuations only, the phase fluctuations of the
reference have to be low. This can be accomplished by filter-
ing the reference field so δφ(�) = δφs.

Taking into account all those effects, the final signal is
given by

δI−(�) ∝ αs(�)αref(�)δφs(�) ⇒ δI−(�) ∝ αs(�)δpref.

(B10)
With this detection scheme, the phase and amplitude fluctua-
tions can be retrieved. To measure both amplitude and phase
fluctuations at the same time to study their correlations, they
are measured by collecting the signal of each detector and
numerically calculating the sum and difference.
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APPENDIX C: NORMALIZATION COVARIANCE
MATRICES:

Once the data are acquired, they need to be normalized
before interpretation. The first step is to normalize the data
with respect to the shot noise.

According to Eq. (B6) and taking into account the dark
noise as well as a pixel-dependent gain, the measured intensity
can be expressed as

δI+,i = giδxs,i + di, (C1)

where gi is a variable gain, di the dark noise, and i is the
pixel’s index. Taking the covariance of the measured intensity,
assuming no correlations between the signal and the dark
noise, leads to

cov[δI+]i, j = gig jcov[δxs]i, j + cov[d]i, j . (C2)

To determine the gain factor, the variance of the signal is
calculated at a high frequency so the only noise measured is
the shot noise, i.e., var[δxs]i,shot = 1. Thus, gi is given by

gi =
√

var[δI+]i,shot − var[d]i. (C3)

Finally, the amplitude quadrature is given by

cov[δxs]i, j = cov[δI+]i, j − cov[d]i, j

gig j
. (C4)

The normalization is slightly more complicated for the
phase quadrature. As seen in Eq. (B10), the phase fluctuations
measured, δI−,i ∝ αs,iαref,iδφs,i, are proportional to the num-
ber of photons in the reference field, which is weaker than

the signal ( α2
s

α2
ref

� 50). Consequently, the phase fluctuations

measured are not directly the fluctuations from the signal but
the ones from the reference. It can be seen as the signal fluctu-
ations measured after a loss channel. Those losses can easily
be modeled by a BS where one input is the signal and the other
one the vacuum. This BS would have a reflectivity ri = αref,i

αs,i

and a transmission ti =
√

1 − α2
ref,i

α2
s,i

. Thus, the measured phase

fluctuations and signal ones are related by

δpref,i = αref,i

αs,i
δps,i +

√
1 − α2

ref,i

α2
s,i

δpv,i = riδps,i + tiδpv,i,

(C5)
where δpv are the phase fluctuations of the vacuum.

As previously, the intensity fluctuations are related to the
phase ones by

δI−,i = giδpref,i + di, (C6)

where, here again, gi is a variable gain and di the dark noise.
They are not necessarily the same as for the amplitude fluctu-
ations but the same notation is used for simplicity.

Using the previous expression for δpref, the intensity fluc-
tuations can be written as

δI−,i = giriδps,i + gitiδpv,i + di. (C7)

As none of those contributions are correlated, the covariance
is given by

cov[δI−]i, j = gig jrir jcov[δps]i, j
+ esgig jtit jcov[δpv]i, j + cov[d]i, j . (C8)

Once again, to determine the gain factor, the variance of the
signal is measured at a high frequency so var[δps]i,shot =
1. Furthermore, var[δpv]i = 1, as the vacuum is uncorre-
lated. Finally, knowing that r2

i + t2
i = 1, the same equation as

Eq. (C3) is found for gain:

gi =
√

var[δI−]i,shot − var[d]i. (C9)

Eventually, the covariance matrix for the signal phase fluctua-
tions is given according to

cov[δps]i, j = cov[δI−]i, j − cov[d]i, j

gig jrir j
− tit j

rir j
Id, (C10)

where Id is the identity matrix. As a matter of fact, the covari-
ance of the vacuum fluctuations is the identity matrix because
no correlations exist between the different frequency ranges.
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