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Two-color nonlinear resonances in betatron oscillations of laser accelerated relativistic electrons

M. Lamač ,1,2,* U. Chaulagain ,1 L. Jurkoviˇovc ,1,3 J. Nejdl ,1 and S. V. Bulanov 1

1ELI Beamlines Center, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 25241 Dolní Břežany, Czech Republic
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X-ray radiation from laser wakefield accelerated (LWFA) electrons provides a collimated broadband fem-
tosecond x-ray source with micron-scale source size. However, the photon flux is still inadequate for a range of
applications. By interaction of LWFA relativistic electrons with the second and the third harmonic of the laser
driving the wakefield, we report more than an order of magnitude enhancement of photon flux emitted by the
electrons undergoing betatron oscillations resonant with the harmonics. This phenomenon is demonstrated with
analytical and numerical models, as well as particle-in-cell simulations.
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I. INTRODUCTION

Laser wakefield acceleration (LWFA) has received consid-
erable attention since its conception [1]. Recent experimental
work reports 8 GeV electron bunches being produced in a
20-cm capillary plasma with a petawatt-class laser driver
[2]. Betatron x-ray generation is connected to LWFA within
the blowout regime [3,4]. The plasma cavity acts as a wig-
gler forcing electrons to oscillate and consequently radiate
x rays known as betatron radiation [5,6]. The short duration
of the x-ray pulses, small source size, synchronization with
the driving laser, and all-optical compactness of the betatron
x-ray source provide a competitive alternative to conventional
sources [7–9].

The applications of such ultrafast x-ray sources range
from high-resolution x-ray imaging to ultrafast x-ray science
[9–15]. The hard x-ray source can be also employed in in-
dustrial applications such as x-ray computed tomography of
dense objects [14]. An attempt on measurement of single-
shot ultrafast x-ray absorption spectroscopy of a warm dense
matter has been performed using this broadband x-ray source;
however, the photon flux is a limiting factor that prevents
routine use of the source with single-shot measurements [15].

Features of betatron x-ray radiation depend on the elec-
tron Lorentz factor γ , betatron oscillation frequency ωβ =
ωp/

√
2γ , and betatron oscillation amplitude rβ , where ωp =√

nee2/meε0 is the electron plasma frequency, ne the elec-
tron density, me the electron mass, c the speed of light, ε0

the vacuum permittivity, and e the elementary charge. We
introduce the normalized transverse momentum amplitude
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p̃x = px/mec, known as undulator parameter K [7,16,17],
since p̃x = K = rβkβγ , where kβ is the betatron wave num-
ber. In the wiggler regime, where K � 1, the most important
radiation parameters become the number of emitted photons
per electron per oscillation period Nγ ≈ K/30 and the critical
frequency of the synchrotron spectrum ωc = 3

2 Kγ 2ωβ [7,18].
We see that enhancement of transverse momentum is a crucial
step toward achieving high-energy, high-flux x-ray radiation.

In recent years, many works demonstrating an increase of
high-energy radiation emission from LWFA electrons have
been published [19–25]. However, most of them report on
generation of higher photon energy [19,20,22,24] with a
limited number of works focusing on the photon flux en-
hancement of betatron x-ray radiation in the kiloelectronvolt
range [21,25]. Enhancement of betatron radiation photon flux
in this energy range is critical for many applications such as
single-shot time-resolved x-ray absorption spectroscopy and
ultrafast x-ray diffraction [9,15].

In this paper, we show that the presence of the second
harmonic (SH) and third harmonic (TH) of the fundamental
laser frequency copropagating with the relativistic electrons
enhance the photon flux of betatron x-ray radiation by an order
of magnitude. This enhancement originates from nonlinear
resonances in betatron oscillations induced by two laser pulses
with different frequencies interacting with the electrons. This
resonance results in a boost of the transverse momentum px.
The geometry of two-color betatron resonance is schemat-
ically shown in Fig. 1. The figure depicts a plasma cavity
generated during the process of LWFA in a two-dimensional
(2D) particle-in-cell (PIC) simulation, where a laser pulse
with frequency ωd drives a strong wakefield, causing self-
injected electrons to accelerate and oscillate within the plasma
cavity. Betatron oscillation resonance with frequencies ω1 and
ω2 is achieved when either of the shifted frequencies seen by
the electron ωi matches its betatron frequency ωi ≈ ωβ , where
ωi = (1 − vz/vpi )ω0i is the laser angular frequency seen by
the electron, i = 1, 2, ω0i is the laser angular frequency, vpi

is the phase velocity of the lasers, and vz is the longitudinal
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FIG. 1. Schematic of two-color betatron resonance. Normalized
electron plasma density snapshot in grayscale from particle-in-cell
(PIC) simulation of the two-color case presented in Sec. IV. Reso-
nance is achieved due to the interaction of electrons with lasers of
frequency ω1 and ω2. Laser with frequency ωd drives laser wakefield
acceleration (LWFA).

velocity of the electron. Such resonance results in significant
transverse momentum enhancement [20,26,27].

This paper is organized as follows: In Sec. II, we show
that, in the case of relativistic electrons close to dephasing
under the paraxial approximation px � pz, the driven elec-
tron oscillations can be described with the Duffing equation,
which reveals the conditions for nonlinear resonances [28].
Section III shows solutions for full equations of motion for
a more general case of a relativistic electron interacting with
two lasers under the paraxial approximation, where the an-
alytic resonance conditions from Sec. II are validated and
the resonance dependency on plasma density ne is explored.
Results from PIC simulations showing a presence of non-
linear resonances in the most general case, where laser and
plasma evolution as well as acceleration are considered, are
presented in Sec. IV. Analysis of emitted x-ray radiation from
PIC results showing an order of magnitude enhancement in
the case of a two-color scheme is presented in Sec. V. In
Sec. VI, we propose an experimental setup capable of pro-
viding multicolor laser interaction in plasma targets based
on our theoretical results with tunable laser polarizations and
delays. Lastly, our results are summarized in the concluding
Sec. VII.

II. TWO-COLOR NONLINEAR RESONANCES
IN PARAXIAL APPROXIMATION

In this section, we derive the equation that reveals the reso-
nances leading to transverse momentum enhancement present
in relativistic electrons oscillating in a plasma channel while
interacting with two laser frequencies. The equations of mo-
tion of an electron are

dp
dt

= −e(E + v × B), (1)

dr
dt

= v = p
meγ

. (2)

The electromagnetic fields of the plasma cavity in the
cylindrical coordinate system (r, θ, z), where r =

√
x2 + y2

is the radial coordinate, are given by the longitudinal electric
field Ez/Ewb = kpξ/2, radial electric field Er/Ewb = kpr/4,
and azimuthal magnetic field cBθ /Ewb = −kpr/4, where
ξ = z − vφt is the wake comoving variable, vφ is the phase
velocity of the wake, kp is the plasma wave number, and
Ewb = mωpc/e is the cold nonrelativistic wave-breaking field
[4,29–31]. The equations of motion for an electron in
such a cavity without any additional fields are then
ṗ = −e(E+v×B) = F‖ + F⊥ ≈ −mω2

p(ξez/2 + rer/2),
where the last expression assumes p⊥/pz � 1 [7].
Furthermore, for electrons near the dephasing point
ξ ≈ 0, we only have the radial component of the force
ṗ ≈ −mω2

perr/2. The laser field in the plane-wave
approximation is given as Elaser = E1 sin(φ1) + E2 sin(φ2),
and the corresponding magnetic field is given as
Blaser = (E1/vp1) sin(φ1) + (E2/vp2) sin(φ2), where Ei is
the electric intensity amplitude, φi = ω0i(t − z/vpi ) + θi is
the laser phase, and θi is the initial phase, i = 1, 2. The laser
field is linearly polarized in the x direction. By restricting the
electron to planar motion [py(t ) = 0], the momentum Eqs. (1)
and (2), with both the cavity and laser fields included, become

d px

dt
= −e[η1E1 sin(φ1) + η2E2 sin(φ2)] − meω

2
p

2
x, (3)

d pz

dt
= −evx

[
E1

vp1
sin(φ1) + E2

vp2
sin(φ2)

]
, (4)

where the factor ηi = 1 − vz/vpi comes from the sum of the
electric field and vector product of velocity and magnetic field
in Eq. (1). Taking the time derivative of Eq. (3) with the use
of normalized transverse momentum p̃ = p/mec gives us the
following equation for a nonlinear oscillator:

d2 p̃x

dt2
+ ω2

β p̃x = ã1 cos(φ1) + ã2 cos(φ2), (5)

where ãi = aiω
2
i , and ai = eEi/(mcω0i ) is the normalized

laser field amplitude, i = 1, 2. By excluding the electrostatic
longitudinal wakefield generated during LWFA in Eqs. (1)
and (2), we restrict ourselves to the case of wakefield
pre-accelerated relativistic electrons with γ � 1 close to
dephasing, at which point the wakefield contribution is neg-
ligible. This description is also applicable for direct laser
accelerated electrons oscillating in self-generated transverse
quasistatic fields of plasma channels generated by long laser
pulses with relativistic intensities [26,32], generalized to the
case when two laser frequencies are present. We are interested
in the dynamics of LWFA ultrarelativistic oscillating electrons
for which the paraxial approximation pz � px with vz ≈ c is
valid, and we have px/pz ≈ vx/c � 1; therefore, vx � c <

vpi, which means that the contribution from the magnetic field
to the transverse momentum px through pz is minor compared
with the electrical field contribution in Eq. (3). In other words,
variables px and x are oscillating fast compared with slowly
varying variables vz and γ [32]. It is therefore reasonable
to assume for slow variables that γ̇ , v̇z, ṗz ≈ 0 on a suitable
timescale, and therefore, pz = pz(0) =: pz0 on the timescale
of betatron oscillations ∼ω−1

β . The Lorentz factor can be then
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approximated as

γ =
√

1 + p̃2
x + p̃2

z0 =
√

1 + p̃2
z0

√
1 + p̃2

x

1 + p̃2
z0

(6)

≈ γ0

(
1 + p̃2

x

2γ 2
0

)
, (7)

where γ0 =
√

1 + p̃2
z0, which is the initial Lorentz factor, and

since we are considering pre-accelerated relativistic electrons
also, γ0 � 1. Further on, we have

ω2
β = ω2

p

2γ
≈ ω2

p

2γ0

(
1 − p̃2

x

2γ 2
0

)
= ω2

β0

(
1 − p̃2

x

2γ 2
0

)
. (8)

The paraxial approximation px � pz with vz ≈ c fur-
ther allows us to approximate frequency seen by electrons
as φ̇i = (1 − vz/vpi )ω0i = ηiω0i = ωi ≈ const.; therefore, the
laser phase satisfies φi(t ) ≈ ωit + θi. We note that the relative
laser phase (θ2 − θ1) influences the detailed structure of si-
multaneous resonances, as discussed in Ref. [28]; however,
the maximum attainable transverse momentum amplitude,
which we are interested in, remains the same for all relative
phase shifts. Therefore, we do not concern ourselves further
with this parameter and, for brevity, set θ2 = θ1 = 0. Plugging
Eq. (8) into Eq. (5) gives

d2 p̃x

dt2
+ ω2

β0
p̃x − ω2

β0

2γ 2
0

p̃3
x =

2∑
i=1

ãi cos(ωit ). (9)

Equation (9) has the form of the Duffing equation with
two-frequency forcing [28]. We will summarize the most
important consequences of nonlinear Eq. (9), as discussed
in Ref. [28]. We see that the nonlinearity coefficient of p̃3

x
in Eq. (9), i.e., −ω2

β0
/2γ 2

0 , has a negative sign, indicating
a softening nonlinearity of the system, which means that
the multivalued amplitude-frequency response curve bends
toward frequencies below ωi ≈ ωβ0 . For a fixed γ0, the non-
linearity changes only with electron density ne. In addition,
nonlinearity in Eq. (9) allows for multiple nonlinear res-
onances apart from the primary resonance ωi ≈ ωβ0 . The
condition for these resonances can be generally given as

ωβ0 ≈ m

n
ωi, (10)

where m and n are natural numbers, i = 1, 2, and either
m = n = 1 (primary resonance), m = 1, n 	= 1 (subharmonic
resonances), or n = 1, m 	= 1 (superharmonic resonances).
The strengths and widths of the frequency ranges in which
these resonances occur decrease dramatically for large m, n;
therefore, only small values of m, n are usually observed
[28,33]. We note that harmonic resonances in Eq. (10) arise
even in single-frequency-driven nonlinear oscillations. Multi-
frequency forcing, however, generates additional combination
resonances in nonlinear oscillations. The principal combina-
tion resonances are given by the following conditions:

ωβ0 ≈ | ± 2ωi ± ω j |, (11)

ωβ0 ≈ 1
2 (ωi ± ω j ), (12)

where i, j = 1, 2 [28]. The presence of two forcing terms
also enables simultaneous resonances to occur, i.e., for given
frequencies ωi, the resonance conditions in Eqs. (10)–(12)
may overlap.

The main physical mechanism behind transverse momen-
tum enhancement in two-color forced oscillations is therefore
twofold. First, we have superposed primary, subharmonic, and
superharmonic resonances from respective laser fields given
by Eq. (10). Second, we obtain the combination resonances
Eqs. (11) and (12), which are unique to multifrequency forc-
ing, further enriching the range of possible resonances as well
as enabling simultaneous resonances for oscillating electrons.
The immediate consequence of the presence of such reso-
nances in electron oscillations is the enhancement of betatron
x-ray radiation due to transverse momentum enhancement, as
it is discussed in Sec. I.

We note that this model of forced betatron oscillations
of relativistic electrons close to dephasing with γ � 1 is
qualitatively valid, even when weak longitudinal electrostatic
wakefield is included in the equations of motion in Eqs. (1)
and (2). Such inclusion causes the decrease of the beta-
tron frequency ωβ ≈ γ −1/2 and slow increase of the strength
parameter K ≈ γ 1/4 due to electron energy gain ∼γ on a
timescale much longer than the timescale of betatron oscil-
lations τβ ≈ ω−1

β [7]. To be precise, our description is valid
for slowly varying betatron frequency satisfying the condition
ω2

β � |ω̇β | ≈ 0, for which the nonlinear oscillator model is
not affected by the negligible betatron frequency change. The
previous assumption is further validated for relativistic elec-
trons close to dephasing in Sec. IV, where it is also shown
that the conditions for transverse momentum resonance hold
even in full PIC simulations.

III. SINGLE-PARTICLE SIMULATIONS

The equations of motion in Eqs. (1) and (2), for a relativis-
tic electron oscillating in plasma cavity with a presence of one
or two laser fields in the paraxial approximation, were solved
numerically using the fourth-order Runge-Kutta scheme of
numerical integration with time step small enough to achieve
numerical convergence. The calculation is simplified consid-
erably due to the paraxial approximation px � pz, vz ≈ c,
which allows us to consider the laser phase as φi(t ) ≈ ωit .
Note that, here, we do not consider the approximation ṗz ≈ 0
as in Sec. II. The structure of resonances does not depend on
the choice of initial transverse momentum [28], and therefore,
we set it for all cases as p̃x(0) = 0. We neglect the presence
of the longitudinal wakefield since we consider relativistic
electrons close to dephasing, as discussed in Sec. II. We set
field strengths as a1 ≈ a2 ≈ 1, corresponding to experimen-
tally accessible values for harmonics of the driving laser. We
consider both cases of single and two-color configuration.
Lastly, we conduct simulations for a large range of plasma
densities beyond the ne ≈ 1019 cm−3 that is usually used for
betatron x-ray generation to reveal the structure of resonances
even in the strongly nonlinear regime.

In the single-color case, a relativistic electron interacts
only with a single laser field with ω1, which corresponds to
the schematic in Fig. 1 when laser with ω2 is not present.
In Figs. 2(a) and 2(b), we show the frequency response of
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FIG. 2. Single-color case. (a) Frequency response of p̃x for
px (0) = 0. Nonlinearity emerges for higher values of electron plasma
density ne. For ne = 5×1018 cm−3 (red), we see linear response
for resonance conditions in the range (ω1/ωβ0 )2 ∈ (0.8, 1.2) corre-
sponding to initial energies γ0 ∈ (1.5, 2.5)×104, and we see strong
nonlinear response for higher density ne = 5×1019 cm−3 (black)
for (ω1/ωβ0 )2 ∈ (0.8, 1.2) corresponding to γ0 ∈ (1.5, 2.5)×103.
(b) Frequency response of p̃x for varying ne. (c) Normalized energy
gain and (d) transverse momentum evolution for ne = 5× 1018 cm−3,
(ω1/ωβ0 )2 = 0.8, γ0 = 3.2×103 (black), and (ω1/ωβ0 )2 = 0.9, γ0 =
3.6×103 (red). The nonshifted laser wavelength is λ1 = 404 nm.

normalized transverse momentum amplitude, which is the
maximum transverse momentum an electron achieves during
periodic resonant oscillations. The frequency ratio ω1/ωβ0

is tuned by varying the initial electron energy since, for a
fixed laser frequency and density, we have (ω1/ωβ0 )2 ≈ γ0.
We observe the emergence of nonlinear response for increas-
ing plasma density ne featuring up-jump discontinuity and
the bending of the frequency response curve as predicted by
Eq. (9). We note that the initial condition p̃x(0) = 0 leads
to the lower branch of the resonance curve for frequencies
smaller than that corresponding to the up-jump discontinuity
[28]. Larger initial momenta px(0) 	= 0 may lead to upper-
branch amplitudes producing larger transverse momentum
amplitudes left of the jump discontinuity, as is usual in mul-
tivariate frequency responses of nonlinear oscillators. The
structure of the resonances, however, does not depend on the
initial condition as previously noted. Figures 2(c) and 2(d)
show that, within the paraxial approximation, resonant inter-
action leads to substantial energy and normalized transverse
momentum gain even in the single-color case.

In the two-color case, two laser fields are interacting with
electrons, as shown schematically in Fig. 1. The frequency
response of the normalized transverse momentum amplitude
with varying electron plasma density is shown in Fig. 3(a).
We see two primary resonance regions due to ω1 and ω2.
We also see that increasing density leads to stronger nonlin-
earity, as predicted by Eq. (9). For high values of electron
plasma density ne, the emergence of harmonic and simulta-
neous resonances creates detached regions of large transverse
momentum. Figure 3(b) shows a strongly nonlinear region
with ne > 5×1019 cm−3, where complex structures of simul-
taneous, combination, and harmonic resonances emerge. We
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FIG. 3. Two-color case. (a) Frequency response of p̃x for
px (0) = 0 with varying ne. (b) The strongly nonlinear region for
ne > 5×1019 cm−3. (c) Normalized energy gain and (d) transverse
momentum evolution for ne = 5×1018 cm−3, (ω1/ωβ0 )2 = 0.9, γ0 =
3.6×103 (red), and (ω1/ωβ0 )2 = 2.1, γ0 = 8.6×103 (black), and for
ne = 8×1019 cm−3, (ω1/ωβ0 )2 = 0.8, γ0 = 2×102 (blue). White ar-
rows indicate emergence of nonlinear resonances (ω1/ωβ0 )2 =
0.5625, 1.44. The nonshifted laser wavelengths are λ1 = 404 nm
and λ2 = 269 nm.

indicate [white arrows in Fig. 3(b)] emergence of some of
the nonlinear resonances predicted by Eqs. (10)–(12). For
example, since the shifted frequency of the TH is ω2 ≈ ( 2

3 )ω1,
Eq. (12) gives combination resonance [ω1 + ( 2

3 )ω1]/2 = ωβ0 ;
therefore, (ω1/ωβ0 )2 ≈ 1.44 (white arrow on the right). An
interesting feature seen in Fig. 3(a) is that, since for a fixed
electron density ne we have (ωi/ωβ0 )2 ≈ γ0, nonlinearity is
strongly suppressed in the primary resonance region from ω2,
which is positioned at (ω1/ωβ0 )2 = 2.25. This is predicted by
the inverse cube dependence of the nonlinearity coefficient
on high initial electron energy in Eq. (9), i.e., ω2

β0
/2γ 2

0 =
ω2

p/4γ 3
0 . Figures 3(c) and 3(d) show selected resonant evo-

lutions. We draw attention to the benefit of employment of
higher frequency lasers, in this case ω2, since they induce
otherwise unattainable primary resonance for electrons ac-
celerated through LWFA to high energies γ0 ≈ (ω2/ωβ0 )2,
boosting their p̃x.

Single-particle simulations reveal the structure of the reso-
nances present in betatron oscillations of relativistic electrons
close to dephasing when interacting with a two-color laser
field in the paraxial approximation. We have shown the emer-
gence of nonlinear resonances in Eqs. (10)–(12) predicted by
Eq. (9). We note that single-particle simulations neglect the
spatial and temporal profile of the laser pulses as well as its
self-focusing and depletion or the presence of accelerating
longitudinal plasma wakefield and its evolution. To account
for full dynamics, we conducted PIC simulations described in
the following section.
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IV. PIC SIMULATIONS

To confirm the presence of two-color nonlinear resonances
beyond the paraxial approximation in full detail throughout
the LWFA process, we performed 2D PIC simulations within
the fully relativistic, massively parallelized PIC code EPOCH

[34]. The approximation of 2D geometry is reasonable since
all lasers are set with the same linear polarization in the x
direction within the x-z plane of the simulation, which forces
the dynamics of the electron oscillations and the associated
resonances induced by the interacting lasers into a 2D plane.
The second-order Yee scheme Maxwell solver was used in
the PIC simulations. To reduce numerical dispersion in the
second-order scheme, the Courant-Friedrichs-Lewy number
was set as c�t/�z = 0.99. The moving window simulation
box was set as 100×70 μm with grid size 6000×1000, which
corresponds to 16 cells per wavelength for the shortest laser
wavelength in the simulation λ2 = 269 nm, ensuring proper
resolution of all wavelengths involved. Furthermore, third-
order interpolation of fields to particles was used to further
suppress numerical heating and time-staggering error [35,36].
The number of macro-particles per cell was two. The lasers
were focused upon the entrance into the 5-mm-long homoge-
neous pre-ionized helium gas target with smooth edges and
plateau value of electron plasma density ne = 4×1018 cm−3.
Such gas targets are routinely used in plasma betatron x-ray
sources [6,17,21]. The value of plasma density was selected
this low to generate a larger bubble and therefore prevent
interaction of the accelerating electrons with the laser tail of
the LWFA-driving frequency ωd . To simplify the analysis,
we focus purely on the dynamics of the electrons and the
laser. We therefore neglect collisions, ionization, or quantum
electrodynamics effects, although we note that interference
effects can play a role in two-color laser ionization injection
[34,37,38].

In the nonresonant case, only the LWFA-driving laser
with ωd shown in Fig. 1 is present with λ0 = 808 nm. Laser
strength was set as a0 = 5.3, full width at half maximum
(FWHM) pulse duration τ0 = 28 fs, and waist diameter d0 =
28 μm. This case corresponds to standard LWFA and betatron
x-ray generation since the laser does not interact with the
accelerating electrons due to low plasma density and conse-
quently large bubble radius.

In the single-color case, the driving laser was set as in
the previous case. The SH was set with λ1 = 404 nm, a1 =
1.2, τ1 = 56 fs, and d1 = 10 μm. To place the peak of the SH
in the interaction region where electrons oscillate, the peak-
to-peak time delay between the two pulses was set to 100 fs.
The time delay was set to place the SH in the interaction re-
gion where electrons accelerate without overlapping with the
electron bubble sheath. This case corresponds to single-color
betatron resonance since the driving laser does not interact
with the accelerating electrons, and resonant oscillations are
induced by the SH ω1. In terms of the schematic in Fig. 1, the
laser corresponding to frequency ω2 is not present.

In the two-color case, the driving laser was as in the
previous cases. The SH had slightly shorter pulse duration
with λ1 = 404 nm, a1 = 1.2, τ1 = 42 fs, and d1 = 10 μm to
compensate for frequency conversion into the TH. The peak-
to-peak time delay to the LWFA-driving laser was 92 fs.

1 500 1000 1500 2000 2500 3000

1010
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1013

Non-resonant
Single-color
Two-color

1560 1580 1600 1620 1640
-1000

-500

0

500

1000
Nonresonant
Single-color
Two-color

(a) (b)

FIG. 4. (a) Longitudinal electrostatic wakefields at 1.6 mm in-
side the gas target for all three cases. (b) Electron spectra at gas target
exit at 5 mm.

The TH was also present with λ2 = 269 nm, a2 = 0.7, τ2 =
56 fs, and d2 = 10 μm, and the peak-to-peak time delay to the
fundamental was 100 fs. This case corresponds to single-color
betatron resonance since the driving laser does not interact
with the accelerating electrons, and resonant oscillations are
induced by the SH ω1. In terms of the schematic in Fig. 1, the
laser corresponding to frequency ω2 is not present. We note
that the field of the harmonics interacting with the electrons
is kept stable due to the plasma cavity generated by the main
driver with ωd . The high-density electron sheath of the cav-
ity acts as a waveguide for the small amplitude harmonics,
which would otherwise diffract in plasma or vacuum over few
Rayleigh lengths.

The total number of accelerated electrons is comparable
in all three cases. This is understandable since the SH with
a1 = 1.2 does not overlap with the electron plasma sheath,
and the TH with peak strength a2 = 0.7 overlaps with the
sheath only in the region where a2 ≈ 0.3, which means that
the ponderomotive force ∼∇a2 has negligible effect on the
evolution of the wake driven by the fundamental harmonic
with a0 = 5.3. In Fig. 4(a), we show that the accelerating
wakefields for all cases vary <5% at 1.6 mm inside the target,
where the first injected electron bunches are accelerated.

It is also important to consider possible dimensional ef-
fects of the wake evolution. It has been shown that, in 2D
simulations, the wakefield plasma bubble is elongated, and
the focusing fields are stronger than in the case of three-
dimensional (3D) simulations of plasma wakefield, while the
structure of the accelerating field inside the cavity remains

(a)

(b)

FIG. 5. p̃x and γ evolutions for electrons that reach γ > 1800.
(a) Nonresonant case, where no electrons are interacting with a laser.
(b) Two-color case.
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FIG. 6. Shifted laser frequencies ω1,2 seen by a representative
electron (left axis, colored), betatron frequency harmonics nωβ (left
axis, black, orders highlighted by red number), and absolute value of
normalized transverse momentum px/mec (right axis, gray).

unchanged in both cases [39]. The reduction of the bub-
ble in the realistic 3D case can be simply compensated by
changing group delays of the harmonics with respect to the
LWFA driver. Weaker focusing fields in 3D geometry also
imply possibly larger efficiency of our scheme since weaker
focusing fields reduce the oscillator stiffness of the cavity,
and therefore, betatron frequency ωβ is reduced, which for
oscillator systems leads to enhancement of resonant ampli-
tude [28]. The effect on the wake by ponderomotive force of
the harmonics due to increasing field strength a0 is analyzed
further in Sec. V. Figure 4(b) shows the electron spectra for all
three cases at the gas target exit. The total injected charge of
electrons accelerated to energy >100 MeV varies by <0.1%
when comparing nonresonant and two-color resonant cases,
showing negligible effect of the harmonics on the overall
electron injection.

In Fig. 5, we show normalized transverse momentum and
γ evolution of the most energetic electrons for the nonreso-
nant and two-color cases. For an electron interacting with an
electromagnetic wave in a vacuum, the normalized transverse
momentum amplitude is limited by the value p̃x < a0. The
peak amplitudes of harmonics satisfy a1,2 ≈ 1, and we see that

the amplitude of normalized momentum reaches p̃x ≈ 100 in
the two-color case, while in the nonresonant case, we see
that the natural betatron oscillations are limited to normalized
transverse momentum of p̃x ≈ 30. This proves the presence of
the resonance phenomenon. A more careful analysis showing
the presence of nonlinear resonances is presented in Fig. 6,
where we show the evolutions of laser frequencies seen by
a representative electron, betatron frequency, and normalized
transverse momentum of the electron for all three cases.
The nonresonant case shows that Eq. (10) is not satisfied
throughout the evolution, and there is no associated growth
of transverse momentum amplitude. The single-color resonant
case shows primary resonance ω1 ≈ ωβ and the associated
transverse momentum growth between 4 and 5 mm from the
entrance of the target. The two-color resonant case shows
nonlinear resonances for both shifted frequencies seen by the
electron ω1, ω2 with harmonic orders n = 1, 2, 3, 4, 6. We see
that the strongest resonant growth reaching p̃x ≈ 90 corre-
sponds to simultaneous harmonic resonance when 3ωβ ≈ ω1

and 4ωβ ≈ ω2 around 4.8 mm from the entrance of the target.

V. X-RAY RADIATION ANALYSIS

To see the effect of two-color resonance on x-ray radiation
emitted by the accelerated electrons, we have calculated the
on-axis photon flux for all three PIC cases according to the
radiation integral [18]

d2W

d
dω
= e2

16π3ε0c

∣∣∣∣
∫ ∞

−∞

n × ((n − β) × β̇)
(1 − n · β)2

× exp

[
iω

(
1 − n · R

c

)]
dt

∣∣∣∣
2

, (13)

where R is the distance vector between the radiating electron
and the observer, n is the normalized vector pointing from the
electron toward the observer, and β = v/c is the normalized
velocity. We extracted the electron trajectories from the PIC
simulation results to calculate the radiation emitted according
to Eq. (13). The knowledge of acceleration of the particle
β̇ is necessary, which was calculated by interpolating the
individual particle trajectories with a time step sufficiently
small to achieve numerical convergence in Eq. (13). The re-
sults are presented in Fig. 7. We observe enhancement in the
single-color case. However, a larger enhancement of more
than an order of magnitude in peak photon flux and up to
two orders of magnitude enhancement in the hard x-ray re-
gion is present in the two-color case, when compared with
nonresonant betatron x-ray generation. The critical energy for
the nonresonant case is calculated as h̄ωc ≈ 25 keV, while for
the two-color resonant case is h̄ωc ≈ 31 keV. We see that the
number of photons is enhanced almost uniformly across the
whole energy spectrum, with a stronger boost in the hard x-ray
region.

Our results can be compared with previously published
works focusing on betatron x-ray enhancement mentioned in
Sec. I, for example, by longitudinal and transverse density
modulation in Ref. [21], where an order of magnitude en-
hancement was achieved in the hard x-ray region and a factor
of ∼2–3 in peak photon flux. In Ref. [20], a shift of critical
energy into the millielectronvolt range due to the resonant
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FIG. 7. On-axis photon flux of radiated x rays in log scale. Non-
resonant case (purple), single-color case (red), and the two-color case
(black).

interaction of LWFA electrons with the laser tail of the driving
laser was observed without peak photon flux enhancement.
A peak photon flux enhancement due to resonant interaction
with the laser tail from ionization injected electrons by a
factor ∼3 compared with results in Ref. [20] was reported
in Ref. [27]. An order of magnitude enhancement was also
achieved within the mildly nonlinear regime by steering the
plasma wakefield driven by a laser with a0 = 1.6 by introduc-
ing a slanted plasma target [25], where the betatron strength
parameter K in the reference betatron case without steering
was K ≈ 2.1. We note that this is more than an order of
magnitude less than our reference nonresonant case with giga-
electronvolt range electrons reaching K ≈ 30. We further note
that the only requirement of our method is frequency conver-
sion of the LWFA-driving laser into its harmonics, implying
its potential compatibility with various plasma targets.

As mentioned in Sec. IV, the interacting laser field
strengths ai cannot be too strong since the ponderomotive
force scales as ∼∇a2, which adversely affects wake evolution,
resulting in poor electron injection and acceleration. To show
this in terms of radiated x rays, we performed four different
PIC simulations with the same parameters as in the two-color
resonant case discussed earlier, except we did not include the
SH and only kept the TH overlapping with the plasma sheath.
In Fig. 8, we see the radiated energy where the fundamental
laser acts as a LWFA driver, and the TH induces betatron
resonance in oscillating electrons. We have varied the field
strength of the TH for values a0 = 0.4, 0.7, 1, 1.5. The re-
sults show that x-ray photon flux starts dropping when a0

approaches and surpasses the value a0 ≈ 1, indicating mod-
ified wake dynamics by ponderomotive force and inefficient
resonant oscillations. We note, however, that even in this
inefficient case where a0 = 1.5, the peak photon flux is still a
factor of 2.5 larger than the standard betatron x-ray generation
denoted above as the nonresonant case. We see that, for the
settings presented above, the value of a2 = 0.7 is optimized
for efficient radiation generation.

Lastly, we evaluate the practical energy efficiency of the
two-color scheme. Let us consider a 7 J energy laser pulse

1 20 40 60 80
0

0.5

1

1.5

2

2.5 106

a0 = 0.4

a0 = 0.7

a0 = 1

a0 = 1.5

FIG. 8. On-axis photon flux of betatron x rays in linear scale
showing decrease in radiated energy due to perturbation of the wake
through increasing ponderomotive force of the third harmonic (TH).
The laser fields present in the particle-in-cell (PIC) simulation are
only the fundamental laser wakefield acceleration (LWFA) driver
with wavelength λd = 808 nm and the TH with ω2.

having the same spatial and temporal parameters as dis-
cussed for the LWFA driver with fundamental wavelength
λd = 808 nm. This results in the field strength a0 ≈ 6. We
denote this case nonresonant, 7 J. If we consider splitting off
1.9 J laser energy from the main 7 J beam and converting it to
the SH and TH with conversion efficiency ∼11%, where we
take into consideration both parametric efficiency and other
losses as discussed in Sec. VI, we may obtain the SH and TH
with respective pulse energies of ∼0.2 J, which corresponds to
the spatial and temporal pulse parameters and field strengths
of the harmonics as presented in the two-color resonant case.
Here, we denote this case two-color, 5.5 J. In Fig. 9, we show
that the photon flux of the second case with 5.5 J in total laser
energy divided among the ωd (5.1 J), ω1 (0.2 J), and ω2 (0.2 J)
is still significantly larger than for the case with the whole
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FIG. 9. On-axis photon flux of betatron x rays in log scale
showing energy efficiency of the two-color betatron resonant x-ray
generation.
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FIG. 10. Experimental setup design for realization of two-color
resonant betatron x-ray generation.

7 J of energy in the LWFA driver ω. This result indicates
that the enhancement from two-color betatron resonance is
highly efficient, and even when considering losses of 1.5 J,
we still get almost an order of magnitude enhancement in
peak on-axis photon flux and more than an order of magnitude
enhancement in the hard x-ray region. This shows that the
enhancement from two-color betatron resonance cannot be
reasonably replaced by boosting field strength a0 in standard
betatron x-ray generation. Crucially, we also point out that the
nonresonant 7 J case results in 21% more injected total charge
than the 5.5 J two-color case; however, not even this fact
offsets the strong photon flux enhancement due to transverse
momentum nonlinear resonances.

VI. EXPERIMENTAL SETUP DESIGN

To complement our theoretical results, we propose the
experimental setup, shown in Fig. 10, for realization of
two-color resonant betatron x-ray generation. Standard be-
tatron x-ray generation involves a single ultraintense I �
1018 Wcm−2 femtosecond laser pulse from a Ti:sapphire laser
system centered at 808 nm and either a gas cell or a gas
jet, where the gas is usually helium with a small percentage
of some noble gas added to trigger ionization injection and
achieve greater beam stabilization [40]. The advanced beta-
tron scheme presented here requires the generation of the SH
and TH of the fundamental 808 nm wavelength with pulse en-
ergy ∼200 mJ and pulse duration ∼50 fs. Frequency tripling
can be achieved directly in materials with strong third-order
susceptibility with conversion efficiencies up to 6% [41].
However, due to higher conversion efficiency, a more com-
monly used method is of sum-frequency generation, which
benefits from high values of second-order nonlinearity in crys-
tals [42]. For Ti:sapphire frequency conversion, the widely
used crystals for both frequency doubling and tripling are
BBO and KDP [43]. For pulse duration of tens of femtosec-
onds, BBO crystals have the advantage over KDP in an almost
six-times-higher effective nonlinear coefficient [44,45], but
its spectral acceptance caused by group delay dispersion is
roughly three times worse than in KDP crystals. The damage

threshold for BBO crystals is on the order of hundreds of
gigawatts per square centimeter for femtosecond pulses [46].
Combined with the difficulties involved in manufacturing of
large aperture crystals, it is almost impossible to use BBO for
few-joule femtosecond pulses.

To relate to the theoretical results, a 7 J, 28 fs FWHM
infrared (IR) laser pulse produced from a Ti:sapphire laser
system is considered in the experimental setup; therefore,
KDP crystals are considered further. The necessity of delay
control between the IR LWFA driver and its harmonics leads
to a two-arm experimental setup, where one arm has variable
time delay. This requires micrometer-precise spatial synchro-
nization and stability of the two differently focused beams
[47]. In the proposed setup, a pellicle beamsplitter extracts
a 1.9 J portion of the beam into the harmonic generation
arm without any changes in the transmitted beam due to its
thinness. The first KDP is a 1-mm-thick type-1 crystal used
for efficient SH generation (SHG). The efficiency for hun-
dreds of femtosecond pulses can reach as high as 80%, as
discussed in Ref. [48]. However, we consider pulse lengths
on the order of ∼50 fs in our PIC simulations. Thus, the
efficiency will be reduced due to group velocity dispersion.
Calcite 1 is negative uniaxial crystal used for compensation
of group delay between IR and SH pulses originated in KDP
as well as in the half-waveplate. The temporal overlap of
IR and SH pulses is crucial in the second KDP crystal used
for TH generation (THG). A thin, zero-order half-waveplate
for IR wavelength also serves as a λ waveplate for the SH,
which assures parallel polarization for both the IR and SH
to ensure THG type-1 phase matching in the second KDP
crystal. This is to exploit the higher conversion efficiency of
type-1 over type-2 THG [42,43]. THG in this configuration
can lead to conversion efficiency up to 11%, as discussed
in Ref. [43]. Calcite 2 is used (similarly to Calcite 1) for
group delay compensation between the residual SH and the
generated TH. A dual-band waveplate is optimized as λ/2 for
the SH and λ for the TH to rotate polarizations of the SH and
TH to be parallel, it can be easily moved out to switch to a
configuration where the TH is perpendicular to the SH. Group
delay from the dual-band waveplate is also compensated by
Calcite 2.

The proposed setup has the possibility to easily switch off
THG (THG on-off) with a motorized linear stage and there-
fore easily go between single-color, two-color, or two-color
with a single harmonic, where resonance is achieved due to
a long-pulse LWFA-driving laser and a SH with tunable laser
polarizations. A dichroic mirror is optimized for reflectance of
the TH and SH and therefore transmits the residual IR pulse
into the beam dump. According to discussed efficiencies, this
system should be capable of delivering three-color interaction
into the target composed of 5.1 J IR, 200 mJ SH, and 200 mJ
TH ultrashort pulses. For higher energy laser systems, even
greater range of optimization is possible with more energy in
the IR beam and possibly the harmonics as well, if crystals
of large enough aperture are available. The advantages of this
setup are the full control over the laser polarizations and the
delays between the IR and SH as well as between the SH
and TH and separate focusing for the harmonics through an
off-axis parabola with a hole. The conversion efficiency can
be tuned with crystal angle tuning.
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VII. CONCLUSIONS

In summary, we have presented theory and numerical re-
sults exploring two-color nonlinear resonances in betatron
oscillations and an experimental setup design for realiza-
tion of our scheme. We have shown that the dynamics of
relativistic electrons reduce to nonlinear oscillations with two-
frequency forcing, which causes the emergence of nonlinear
resonances in transverse momentum. PIC simulations for ex-
perimentally accessible parameters reveal two-color betatron
resonance behavior beyond the paraxial approximation, show-
ing strong enhancement of electron transverse momentum.
The radiation emitted by electrons undergoing such resonant
oscillations is enhanced by more than an order of magnitude in

peak photon flux and up to two orders of magnitude in the hard
x-ray region when compared with standard betatron x-ray
generation.
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