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In this paper we propose a Rydberg entangling gate scheme which we demonstrate theoretically to have an
order-of-magnitude improvement in fidelities and speed over existing cold atom protocols. It requires a large
Rabi frequency compared to the interaction strength, which is difficult in cold atoms, but natural in donors in
silicon, where it could help overcome the strenuous requirements on atomic precision donor placement and
substantial gate tuning, which so far has hampered scaling. Furthermore, the gate operation would be ultrafast,
on the order of picoseconds. We calculate multivalley van der Waals, induced electric dipole and total Rydberg
interactions for several donor species using the finite-element method and show that they are important even for
low-lying excited states. We show that Rydberg gate operation is possible within the lifetime of donor excited
states with 99.9% fidelity for the creation of a Bell state in the presence of decoherence.
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I. INTRODUCTION

Donor electron spin qubits in silicon are competitive in
most of Di Vincenzo’s criteria for a quantum computer im-
plementation: scalability (and complementary metal oxide
semiconductor, CMOS, compatibility), high-fidelity initial-
ization and readout, as well as extremely long coherence
times [1–5]. However, published experimental results of en-
tangling gates in silicon report only up to 86% [6] or 90% [7]
Bell-state preparation fidelity. Moreover, entangling exchange
interactions can change by orders of magnitude if the distance
between orbital ground-state spins is varied by one lattice
site [8]. Due to the impact on gate durations, this renders
scaling challenging, as even hydrogen lithography cannot to
date perform donor placement accurately to within a single
silicon lattice site [9,10].

In this paper we draw on the analogy between donors
trapped in the silicon lattice and alkali Rydberg atoms trapped
in light fields [12] to propose a Rydberg entangling gate
which is robust to variations in the interqubit distance, with
theoretical fidelities up to 99.9% in phosphorus (Si:P), arsenic
(Si:As), and ionized selenium (Si:Se+) donors in silicon. Ex-
isting protocols make different assumptions about three key
inverse timescales: the rate of damping T −1

1 , the frequency

*e.crane@ucl.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

of driving �, and the strength of the blockade interaction u.
Our gate relies on the enhancement of the Rabi frequency �

and of the interactions u between atoms in an orbital excited
(Rydberg) state |r〉, which leads to rapid gate operations on the
order of hundreds of picoseconds. We show that the theoret-
ical fidelities achievable by our gate protocol are an order of
magnitude higher than existing Rydberg atom schemes. This
is because our gate allows for the excited-state interaction u
to be on the same order of magnitude as the Rabi frequency
� coupling one of the qubit levels |1〉 spin-selectively (see
Fig. 1) to |r〉.

Specifically, we show here that while in cold atoms exci-
tation to high-lying excited states is needed to induce strong
dipole interactions, for donors in silicon the interactions gen-
erated by the low-lying excited states are large enough due
to the large dielectric screening and small effective mass
in silicon. We calculate electric (not magnetic [13]) dipole
and van der Waals interactions between excited states. The
finite-element method (FEM) enables quick and accurate cal-
culations of large numbers of silicon donor wave functions
of high-lying excited states (with or without an electric field)
within the effective mass approximation, required for per-
turbation theory. To predict the fidelities we simulate the
entangling gate operation in the presence of a finite excited-
state lifetime T1, assuming the dephasing time to be twice the
decay time, and show that our proposal outperforms existing
Rydberg schemes. By using the experimentally determined T1

and our numerically determined u, we find that high fidelities
independent of placement errors can be reached in silicon.
Lastly, we show that this gate is robust to variations in donor
energy levels (inhomogeneous broadening) and that it only
requires tuning of a single independent parameter.
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FIG. 1. Rydberg gate in silicon. (a) Illustration of the Rydberg
entangling gate silicon quantum computer showing the global laser
tuned to the |g〉 → |r〉 transition. The entangled qubit pair is selected
by locally Stark shifting all other donors off resonance (red gates).
Global gates (blue) enable use of induced dipolar interactions. Read-
out devices can be placed on the layer below the one shown here.
This scheme can be extended for a surface code quantum computer
similarly to [11]. (b) The ground-state hyperfine levels are used as a
qubit basis, with a higher-lying orbital excited state as |r〉. (c) The
interactions between two atoms in the excited state barely oscillate,
leading to a distance-robust, two-qubit phase acquired after a Rabi
cycle (residual oscillations are due to multivalley interference in the
exchange interaction).

Rydberg entangling gates

Whereas previous gate schemes [14–16] (presented in Ap-
pendix A) required h̄/T1 � � < u, our proposal only requires
h̄/T1 � �, u, allowing for much smaller gate durations and
hence less probability of decay from |r〉, leading to higher
gate fidelities. This is because previous schemes were based
on the blockade, in which the doubly excited state |rr〉 is tuned
out of resonance due to strong interactions induced by � � u.
Therefore the gate duration τ ∼ 1/� is limited to τ � 1/u. In
our protocol, due to � being on the same order of magnitude
as u, the gate duration can be τ ∼ 1/u. We note that in cold
atom platforms � � u is always given, such that our gate
most likely does not yield substantial advantage. However, in
the donor platform u is the limiting parameter, leading to a
substantial improvement.

The pulse sequence, represented in Fig. 2, consists of
acting twice with a pulse with Rabi frequency |�| detuned
from the |r〉 transition on both donors simultaneously for a
duration chosen such that the first pulse returns |01〉 and |10〉
to themselves. The phase ξ of � is then chosen such that |11〉
returns to itself after a second pulse of the same duration and
Rabi frequency |�|. During the two pulses, |11〉 picks up a
two-qubit phase due to the interactions in |rr〉. Lastly, the
detuning � is chosen such that the final phases of all two-qubit
states implement a controlled phase gate. Global addressing
enables parallel entangling gate operations as demonstrated
in Ref. [16]. Conditions for a successful gate implementation
are spin-selective excitation to |r〉 (either leaving the |0〉 − |r〉

FIG. 2. Pulse sequence. (a) Global pulse sequence acting with
|�| on both qubits simultaneously: pulse duration τ chosen such
that the first pulse returns |01〉 to itself (whereas |11〉 is left in an
arbitrary location on the Bloch sphere), ξ is the phase of the second
pulse chosen such that |11〉 returns to itself after the second pulse,
� detuning of the |1〉 to |r〉 transition chosen such that the phases
highlighted in (b) are equal.

transition off resonance or forbidden by a selection rule) and
u,� > h̄/T1. In the following, we show that these two condi-
tions can be fulfilled in both shallow and deep donors.

II. REALIZING A RYDBERG GATE IN SILICON

A. Spin-selective excitation to |r〉
The singly ionized deep double donor selenium (77Se+) has

a large hyperfine interaction in the ground state, giving rise to
singlet S0 and triplet T0 states as the qubit basis with T1 = 4.6
hours at around 2 K [17] and a lower bound on T2 of 2 s at
around 4 K [5]. For |r〉 both the ± valley states of 1sT 2�7

with T1 = 7.7 ns around 4 K [17] and 2p0 can be used, as
they are dipole-allowed spin-selective transitions with easily
accessible excitation energies.

For the shallow donors Si:P, Si:As, antimony, and bismuth,
the qubit can be encoded in the hyperfine S0 and T0 states
with a T2 time exceeding 7 s at around 2 K and a splitting
of around 117 MHz in zero field [3]. For |r〉 we take the
2p0 state with a T1 = 0.235 ns up to 5 K [22], which can be
selectively addressed from the hyperfine ground states due to
the negligible hyperfine splitting in the 2p0 state. An alterna-
tive could be using a two-photon excitation via the D0X level
[3,19] or using micromagnets to emulate spin-orbit coupling
for spin-selective excitation to the 2p0 state, as the larger
extent of the 2p0 wave function would lead to a larger Zeeman
splitting in |r〉 than in |g〉 [24]. Higher-lying states would give
rise to larger u, at the cost of a smaller � or the need for a
two-photon excitation, as is the case for cold atoms. For all
proposals we have checked that � > h̄/T1 is feasible with
laser intensities below 1 W/μm2, and we list their parameters
in Table I, and having discussed that spin-selective excitation
of orbital excited states is indeed possible, we now calculate
the interactions between donors in |r〉 to find u.

B. Rydberg interaction u

Entangling gate schemes in donors so far have focused on
harnessing the highly oscillatory and exponentially decaying
ground-state ferromagnetic exchange (J) [6,25]: this inter-
action is negligible in high-lying excited states of Rydberg
atoms, where u is dominated by the electric dipole interaction
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TABLE I. Properties of orbital excited states used in this work.
(a) Calculated using FEM results. (b) From [17]. (c) From [18].
Two-photon excitation via the D0X state could also be envisaged
(d|1〉→|D0X 〉 = 0.04 Debye and d|D0X 〉→|r〉 = 0.003 Debye [19]). (d)
We assume a conservative T1 = 1 ns. (e) From [20]. (f) From [17].
Photoluminescence radiative T1 = 900 ns; however, modulation-
frequency-dependent luminescence direct T1 = 7.7 ns [17] (may be
limited by thermal phonons leaving room for improvements in T1

[21]). (g) From [22]. Dominated by phonon-assisted relaxation. (h)
From [17]. Limited by T1. (j) From [23]. The sample was not isotopi-
cally pure, leaving room for improvements in T2.

Donor Se+ Se+ P/As
|r〉 2p0 1sT 2 2p0

d|1〉→|r〉 (Debye) 0.97a 1.96 b 31 c

h̄ω|1〉→|r〉 (meV) 548 427 34
Theo. T1 (ns) –d – 1.1/1.8 e

Exp. T1 (ns) –d 7.7f 0.235g

Exp. T2 (ns) – 7.7h 0.160j

[14]

Vd = p1 p2 − 3(n · p1)(n · p2)

R3
, (1)

where pi is the dipole operator of atom i, R is the interatomic
distance, and n is the unit vector pointing along the interdonor
axis. In the absence of an electric field, neutral atoms and
donors do not have a permanent dipole moment so Vd only
contributes at second order in perturbation theory: van der
Waals (VVdW) interactions falling off as ∼1/R6 whose strength
is determined by the polarizability which scales with the prin-
cipal quantum number as n11. Contrarily, J is determined by
the size of the wave functions which scale as n2 and decay
exponentially with interdonor distance. Therefore dipolar in-
teractions dominate for large principal quantum number and
distance.

In more detail, in this work we consider the tight-binding
model, with additional dipolar forces due to a donor being
made up of a core plus a valence electron. The tight-binding
model is written

H =
∑
i �= j

a†
iσ ti ja jσ +

∑
ii′ j j′

Uii′ j j′

2
a†

iσ a†
i′σ ′a j′σ ′a jσ , (2)

where t is the single hopping matrix element between neigh-
boring sites and

Uii′ j j′ =
∫

dd r1dd r2 ψ∗
Ri

(r1)ψ∗
R′

i
(r2)V (r1 − r2)

× ψRj (r1)ψR′
j
(r2), (3)

where V is the Coulomb interaction, given by V (r) = V0/r,
where V0 = e2

4πε0εS
, e is the electron charge, and εS = 11.4 is

the dielectric constant of silicon.

1. Intersite Coulomb electron-electron repulsion

The contribution from Uii′ii′ = Wii′ is
∑

i �=i′ Wii′ n̂in̂i′ , where

n̂i = ∑
σ a†

iσ aiσ , which corresponds to the essentially classical
Coulomb interactions between donors on neighboring sites.

From this we get the intersite Coulomb electron-electron re-
pulsion:

W12 = V0

∫∫
dr1dr2

|ψ1(r1)|2|ψ2(r2 − R)|2
|r1 − r2| , (4)

where R = R2 − R1 is the separation vector between the two
donors. The contribution from Uiiii corresponds to the on-site
interaction, which can lead to antiferromagnetic superex-
change which is negligible in our case. We do not include here
electron-core interactions [26,27], as they will cancel in the
expression of the total interaction.

2. Ferromagnetic exchange coupling

The contributions from Ui j ji can be rewritten, making use
of Pauli matrix identities, into

∑
i �= j

Ui j ji

2
a†

iσ a†
jσ ′aiσ ′a jσ = −

∑
i �= j

Ui j ji

(−→
Si · −→

S j + 1

4
n̂in̂ j

)
.

(5)
It corresponds to the ferromagnetic exchange coupling. Note
that for calculating the total interaction for the gate, we are
only interested in the case where both spins are on resonance
with the laser, so both spins are aligned. This leads to

−→
Si ·−→

S j = 1
4 n̂in̂ j . We refer to Ui j ji as Ji j and we have

J12 =
∫

dr1dr2 ψ∗
1 (r1)ψ∗

2 (r2 − R)
V0

|r1 − r2|
× ψ2(r1 − R)ψ1(r2), (6)

where R = R2 − R1 is the separation vector between the two
donors. The leading correction to this electron-only model of
donor interactions is given by dipole interactions.

3. Dipole-dipole interactions

Dipole moments of a state can be calculated as the deriva-
tive of the Stark shift of that state (which we study in more
detail in Appendix D 2). Because donors do not have perma-
nent dipole moments, they require electric fields in order to
have dipole-dipole interactions, which take the form

Vdd = −
∑

n′,l ′, j′,m′

〈n′, l ′, j′, m′|Vd |n, l, j, m〉
E|n′,l ′, j′,m′〉 − E|n,l, j,m〉

, (7)

where pi is the dipole moment of atom i, R is the interatomic
distance, and n is the unit vector between the two donors.

4. Van der Waals

A dipole can furthermore be induced by the vacuum,
leading to van der Waals forces, which are calculated in
second-order perturbation theory of Vd , forces

VVdWi j = −
∑

n′,l ′, j′,m′

n′′,l ′′, j′′,m

|〈n′, l ′, j′, m′| ⊗ 〈n′′, l ′′, j′′, m′′|Vd |n, l, j, m〉 ⊗ |n, l, j, m〉|2
E|n′,l ′, j′,m′〉 + E|n′′,l ′′, j′′,m′′〉 − 2E|n,l, j,m〉

.

(8)
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The Hamiltonian we use in this problem therefore corre-
sponds to

H =
∑
i �= j

1

2
(Wi j + VVdWi j − Ji j )n̂in̂ j .

In the presence of an electric field, W is dropped in favor of
VVdd , which becomes the leading contribution.

C. Donor wave functions

In silicon, the six conduction-band minima lead to donor
electron multivalley wave functions. Here, we calculate mul-
tivalley results for J , electron-electron repulsion (W ), and also
VVdW and the induced dipole interaction Vdd in the presence of
an electric field. We employ the FEM to solve the Schrödinger
equation exactly within effective mass theory:
[
− h̄2

2m∗ ∇2 + Uimp(r) + Ucc(r) + UE f (r)

]
ψi(r) = εiψi(r),

where Ucc is a central-cell potential for the S states, which
have a non-negligible probability of being at the core, UE f is
the electric field, εi is the binding energy of the donor, and
m∗ is the effective mass of the electron in the silicon lattice.
Then we couple the result into the six valleys. The FEM
solves for any number of eigenstates, enabling a convergence
check of perturbative calculations. For VVdW interactions, we
typically include ∼40 states. Similarly, we obtain Vdd from the
dipole moment, which we get from the slope of the multivalley
Stark shift. This perturbatively calculated Stark shift does not
contain contributions from the continuum, which we quantify
by comparing to the single-valley energies directly generated
by the FEM while varying UE f (see Appendix B). As the
outermost donor electron is very weakly bound to the core,
we set the maximally applicable electric field (which wouldn’t
ionize |r〉 during its lifetime) by generalizing the method in
Ref. [28] to donors in silicon, see Appendix D 1, consistent
with experimental results.

D. Rydberg interaction u results in donors

In the case of the entangling gate, we are interested in
total Rydberg interaction u, which corresponds to the energy
difference between both donors being excited to the Rydberg
state and none or only a single of the two being excited. We
use the notation E|rr〉 for both spins being excited, E|rg〉 for one
donor being excited, and the other remaining in the ground
state and E|gg〉 for both donors in the ground state:

E|rr〉 = W|rr〉 + VVdW |rr〉 − J|rr〉, (9)

E|rg〉 = W|rg〉, (10)

E|gg〉 = W|gg〉, (11)

where, again, VVdd dominates W in the presence of an external
electric field, and we neglected the extremely small contribu-
tions coming from VVdW and J for |rg〉 and |gg〉. From these
expressions we are able to obtain the expression for u, the
additional energy experienced by the atoms when they are

(a)

(b)

FIG. 3. Rydberg interaction energy (u) and electric fields. (a) In-
teractions in meV between As or P donors in this same setup. u: total
Rydberg interaction, W : electron-electron repulsion, J: ferromag-
netic exchange, VV dW : van der Waals, Vdd : induced dipole interaction
at 0.18 V/μm, see Appendix D 2. “r” and “g” refer to Rydberg and
ground state as defined in Fig. 1. 2p0 wave-function illustration
(blue: negative; red: positive), showing multivalley oscillations along
the polarization direction only. (b) Electrostatic simulation of a de-
vice (assuming a 2D layer with insulators above and below). Top and
bottom global gates apply 0.18 V/μm (very low ionization proba-
bility, see Appendix D 1) between the two central donors, inducing
dipolar interactions. The top and bottom donors are shifted off reso-
nance with the laser due to side gates applying a field of 0.5 V/μm
(as in Fig. 1). Electric field from 0 to 3 V/μm. Polarization parallel
to interdonor axis {0,0,1} in all figures. For more information, see
Appendix D 3.

doubly excited as opposed to singly excited:

u = (E|rr〉 − E|gr〉) − (E|gr〉 − E|gg〉)

≈ W|rr〉 − 2W|rg〉 + W|gg〉 − J|rr〉 + VVdW |rr〉, (12)

J|gg〉,VVdW |gg〉,VVdW |rg〉, J|rg〉 are negligible for the range of
donor separations considered in this work.

Figure 3 shows all interactions between two 2p0 state Si:P
or Si:As donors. The interaction energy is plotted as a map
for the 2p0 and 1sT 2�7 states in Si:Se+ in Appendix C
in Fig. 9. Contrary to the expectation from the ground or-
bital state and despite the small principal quantum number,
both VVdW and Vdd interactions are non-negligible. When two
donors are aligned along the polarization and electric field
axis as is shown in Fig. 3(a), VVdW and Vdd dominate, with an
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oscillatory contribution from J . When aligned along an axis
perpendicular to the polarization, J and VVdW dominate, with
no oscillations due to the 2p0 state not showing multivalley
oscillations in the plane perpendicular to the polarization axis.

We note that the contributions from J are very small. This
means that donors residing on different sublattices (which
heavily affects J but has only a small influence on other
interaction types) has only a very small effect on u, as will
be seen in Fig. 5 in the following section. For the 1sT2�7 state
in Si:Se+, however, the dipole interactions are less dominant
and u is mainly given by J , as we show in Appendix C.

E. Full device operation

For a successful gate operation in a quantum computer,
the interactions u need to be switchable without affecting the
surrounding qubits. Selecting the qubit pair to be excited to
|r〉 requires Stark shifting the donors into resonance with the
laser using electric fields [6,29], analogously to proposals for
Rydberg atoms in optical lattices [30]. Single-qubit operations
can be done in the same way using global microwave illumi-
nation [29]. In Fig. 3(b) we show our electrostatic simulation
of the gate configuration sketched in Fig. 1(a). We found that
the electric gate configuration sufficient for shifting donors
off resonance would not create stray electric fields harmful to
device operation, i.e., would not ionize the donors (see Fig. 10
in Appendix D).

In all donors and |r〉 studied here, u is on the order of 1–
10 meV, fulfilling u > h̄/T1. Given a large enough laser power,
the interaction scale sets the ultimate limit to gate operation
times, enabling entangling gate durations of a fraction of a
nanosecond, nine to ten orders of magnitude faster than the
qubit lifetime.

III. FIDELITY OF BELL-STATE CREATION IN PRESENCE
OF DECOHERENCE

In order to show that high-fidelity entangling gates are
possible in silicon within the short donor lifetimes (sum-
marized in Table I), we calculate the fidelity of Bell-state
creation F = 〈�+|ρ|�+〉 for various donors in the presence
of decoherence by entering the interactions u calculated in the
previous section. To do this we model a two-donor system
with the Hamiltonian [15]

H =
∑
i=1,2

(
�i

2
|1〉i〈r| + �∗

i

2
|r〉i〈1| − �|r〉i〈r|

)

+ u |r〉1〈r| ⊗ |r〉2〈r|, (13)

and simulate the full pulse sequence for creating the Bell state
|�+〉 = 1√

2
|00〉 + |11〉 within a Markovian Lindblad master

equation given by

∂tρ = − i

h̄
[Heffρ − ρH†

eff ] +
∑

j

L jρL†
j , (14)

where ρ is the two-donor density matrix (with each donor
restricted to the states |0〉, |1〉, and |r〉), Lj are the jump oper-
ators describing decoherence and Heff = H − i

2

∑
j L†

j L j . We
include dephasing between |1〉 and |r〉 with rate γde = 1/(2T1)

and spontaneous emission from the Rydberg state, with rate
γse = 1/T1:

Lde,1 = √
γde[(|r〉〈r| − |1〉〈1|) ⊗ 1], (15)

Lde,2 = √
γde[1 ⊗ (|r〉〈r| − |1〉〈1|)], (16)

Lse,1 = √
γse[|1〉〈r| ⊗ 1], (17)

Lse,2 = √
γse[1 ⊗ |1〉〈r|], (18)

where we assumed spontaneous emission does not bring |r〉 to
|0〉, and we neglect decoherence processes between the qubit
levels, as these are negligible on the timescale of a single two-
qubit gate.

We solve the evolution for arbitrary decoherence rates and
interactions and deduce the necessary interaction strength and
Rabi frequency for a successful gate operation. We start in
the initial state |�0〉 = (|1〉 + |0〉)/

√
2 ⊗ (|1〉 + |0〉)/

√
2 and

entangle the two qubits by numerically solving the time evo-
lution of the pulse sequence. Finally, we apply a single-qubit
phase gate to rotate to |�+〉 [16]. We assume the latter to be
perfect, i.e., we act with the appropriate unitary operator on
the density matrix instead of simulating the pulse. We use
the fidelity of creating |�+〉, defined as F = 〈�+|ρ|�+〉 as
a measure of how much decoherence alters the success of the
gate.

In this paper we propose a “phase accumulation” variant
of the “gate A” discussed in Jaksch et al. [15] and pre-
sented in Appendix A. To do so, we use the same pulse
sequence as in the off-resonant blockade gate discussed in
Levine et al. [16] and presented in Appendix A but reverse
the reasoning—instead of tuning the gate time to the block-
aded Rabi frequency, we use the unblockaded one, given by
τ = 2π/

√
�2 + �2. Hence, the states |01〉 and |10〉 return to

themselves after a single Rabi pulse, as can be seen in Fig. 4.
Accordingly, we tune the phase ξ such that the state |11〉 re-
turns to itself after the second pulse, accumulating a two-qubit
phase due to the nonvanishing probability to populate |rr〉, see
Fig. 4.

That this proposal is advantageous compared to the block-
ade gates may seem counterintuitive at first due to the high
loss rate from occupying |r〉, as opposed to avoiding it with the
blockaded regime. However, in this gate the condition � < u
is relaxed and hence the gate duration and hence the duration
of occupation of |r〉 can be much smaller compared to the
blockade gates, therefore reducing again the loss from |r〉 and
increasing the fidelity.

We optimize the pulse sequence and find that the optimal
Rabi frequency is proportional to the interaction strength.
Furthermore, all other parameters are almost independent of
the interaction strength. We obtain these results numerically
by fixing τ = 2π/

√
�2 + �2 and optimizing �,�, ξ for a

given u/γ , obtaining the optimal pulse parameters shown in
Fig. 4. In the large interaction limit, we find

�/u = 1.457 47, (19)

�/� = 0.287 57, (20)

ξ = 1.5306. (21)
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(b)

(c)

(a)

FIG. 4. Pulse sequence of proposed gate. (a) Bloch-sphere de-
piction of the dynamics of the states |11〉 and |01〉. The |11〉 state
touches the Bloch sphere spanned by |11〉 and |rr〉 at times (n/2)τ
with n = 1, 2, 3, 4. This is more clearly shown in (b), which depicts
the state probabilities when starting in the initial state |ψ (0)〉 =
(|0〉 + |1〉) ⊗ (|0〉 + |1〉)/2. (c) Optimized pulse parameters in the
blockade-inspired off-resonant gate. Note the very weak dependence
on the interaction strength.

Fidelities in the donor platform

In Fig. 5, we analyse the Bell-state creation fidelity for
our proposal and its dependence on the sublattice, the Rabi
frequency, and the inhomogeneous broadening. In Fig. 6, we
compare the Bell-state creation fidelity as a function of the
distance between donors for our proposal and for the previous
schemes proposed in the context of the cold atom platform.
Importantly, fidelities of approximately 99.9% can be reached.
Moreover, the fidelity is only weakly dependent on distance
such that placement errors as large as several nanometers
make little difference. As can be seen on Fig. 5 and Fig. 6,
the following are all well within the width of the “fidelity
resonance”:

(i) Having both donors residing on different sublattices
(which introduces large oscillations in the ferromagnetic ex-
change for schemes using ground-state interactions).

(a)

(b)

(c)

FIG. 5. Dependence of the fidelity on the sublattice, the Rabi
frequency, and inhomogeneous broadening. (a) In the case of Si:P
with |r〉 chosen as 2p0, as is the case in the main text, the fidelity
is robust to donors belonging to different silicon sublattices. Donors
residing on different sublattices only heavily affects the exchange
interaction. Because it is such a small contribution to the final
blockade energy, the different sublattices barely affect the fidelity
results. (b) Dependence of the fidelity on the Rabi frequency for
the blockade-inspired off-resonant gate for some examples of the
interaction strength. (c) Infidelity as a function of interaction strength
scaled by |r〉 lifetime, for a fixed � and interaction strength u. Even
a relatively large inhomogeneous broadening of 0.1� corresponding
to roughly 0.2 meV for Si:P, which is a factor of 2 larger than found
in experiment [23], has very little effect on the fidelity.

(ii) A displacement within the 2 × 3 lattice site physical
limit on the precision placement of hydrogen lithography of
Si:P [9],

(iii) A small diffusion out of plane (usually of around 2 nm
for Si:P and 1 nm for Si:As [10]),

This result implies that a sample made with hydrogen
lithography would not need tuning, assuming the interaction
between donors as a function of distance is known, and for
an ion-implanted sample, a rough scan of the sample with
a scanning tunneling microscope (STM) after fabrication to
determine the locations of the donors would suffice for finding
good pulse parameters. Note that while placement insensitiv-
ity is stronger in the blockade gates, there is still an error in-
troduced by �/u, differing from the optimal value if u varies.

Inhomogeneous broadening refers to a change in the
excited-state energies due to a differing electrostatic environ-
ment of the donor, e.g., caused by randomly distributed silicon
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(a)

(b)
z

FIG. 6. Predicted Bell-state creation fidelities for general Ry-
dberg gates (a) and for Si:P or Si:As (b). (a) Results from the
Lindblad simulation of the pulse protocols from Jaksch et al. [15]
and Levine et al. [16], along with the protocol proposed in this
paper and the experimental data on alkali atoms in optical tweezers
[16,31]. The Rabi frequency is set to the optimal value found for
each u. In particular, they are approximately one order of magnitude
larger than the ones for the Jaksch et al. [15] and Levine et al. [16]
gates. (b) Fidelity map (plotted for 95% and above) as a function
of distance between donors shows that fidelities are insensitive to
donor placement. Experimental lifetime T 1 = 235 ps, as shown in
Table I. |r〉 is the 2p0 state polarized along {0,0,1}. The same fidelity
region appears, diametrically opposed with regard to donor 1. 8-nm
minimum separation for avoiding the molecular limit in the 2p0 state
[32]. The fidelity is robust to donors belonging to different silicon
sublattices, diffusing out of plane (Si:As diffusion <1 nm [10]) or
inhomogeneous broadening.

isotopes. For the Si:P 1s − 2p + − transition, this effect can
result in a variation of excited-state energies by about 0.1 meV
as measured in Ref. [23]. In our gate scheme, not taking into
account this effect leads to an error in the detuning chosen
for the pulse. In order to check that this leads to insubstantial
changes in the gate fidelity, we plot the infidelity for a large
range of detunings around the optimal value in Fig. 5 for a
fixed Rabi frequency � = 1000γ (corresponding to 2.8 meV
for the Si:P lifetime, such that a variation of 0.1 meV in the
detuning corresponds to about 0.04�). The fidelities are not
heavily affected, and we conclude that the gate does not need
tuning to account for inhomogeneous broadening.

IV. CONCLUSION

To conclude, we have proposed a Rydberg gate, adapted
to situations where Rabi frequency and interactions are of the
same magnitude. While this is challenging in cold atoms, we
have shown that they can be implemented in donors in silicon,
reaching fidelities of 99.9% and having a high tolerance for

donor placement error, opening the possibility to implement
entangling gates in solid-state quantum computers with ion
implantation [33]. The insensitivity to variations in the inter-
action strength and the inhomogeneous broadening not only
brings advantages for scalability, but also reduces fine tuning
in device operation and may therefore be advantageous for
other solid-state platforms. We emphasize that the physical
nature of the interactions is irrelevant, in particular, both ex-
change and dipolar interactions may be used. Acceptors do not
have multivalley oscillations [34] and would therefore be ideal
candidates for this robust gate implementation, as their dipolar
interactions may be large enough to obtain high fidelities
over extremely large areas, leading to a robust, long-range
entangling gate in the solid state.
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APPENDIX A: RYDBERG GATES IN THE PRESENCE
OF DECOHERENCE

First, we present the original resonant gate and its op-
timization [15]. Second, we present the recently proposed
ultrafast off-resonant blockade gate [16]. The gate we propose
and discuss in the main text shows much higher fidelities than
the two previous proposals.

1. Resonant blockade gate [15]

The resonant Rydberg blockade gate requires the qubits to
be individually addressable and the laser to be on resonance
with the orbital transition. The pulse sequence (cf. Fig. 7)
applies a π pulse to the first atom, a 2π pulse to the second
atom, and a π pulse to the first atom again. In the initial state
|00〉 the pulse sequence has no effect on the qubits because the
|0〉 state is off resonance with the laser. Due to the Rydberg
blockade, |11〉 acquires the same phase as |10〉, as the second
atom cannot be excited to |r〉, in total implementing the truth
table of a controlled-Z gate.

In the presence of a nonzero decoherence rate γ , there is
an optimum for the Rabi frequency �: if � ≈ γ , the fidelity
is low because the pulses take too long; however, if � ≈ u, the
fidelity is also low as the blockade condition is not well ful-
filled. We hence optimize the Rabi frequency � to maximize
the fidelity F .

In Fig. 7 we show that this intuitive picture is correct,
i.e., there is a clear optimum value for the Rabi frequency.
Interestingly, the optimal Rabi frequencies are rather large,
showing that the gate operation time should be as small as
possible to reduce loss from the excited state. This means that
the hierarchy of scales is given by γ � � < u. Importantly
for the purposes of donor implementation, we also find that for
a given value of the Rabi frequency, the fidelity is only weakly
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FIG. 7. Fidelity of the resonant Rydberg blockade gate. Table:
Summary of the pulse sequence [15] in the ideal case of u/� = ∞
and u/γ = ∞, showing the implementation of the controlled-Z truth
table. (a) Optimal Bell-state |�+〉 fidelity obtained from a Lindblad
simulation of the pulses, as a function of Rabi frequency for a
fixed interaction strength u = 104γse: there is a clear optimal value.
(b) Optimal fidelities as a function of interaction strength, showing
that modest fidelities can be already reached for small values of the
interaction strength.

dependent on the exact value of u. For large u, a plateau
is reached beyond which the fidelity does not increase due
to decoherence processes then being the limiting factor. At
this point, the Rabi frequency should be increased to increase
fidelities further.

2. Off-resonant blockade gate [16]

In the improved blockade gate as presented and imple-
mented in Ref. [16], only two global pulses with fixed
detuning � �= 0 are needed. The pulse sequence proceeds as
follows:

(1) Evolve for time τ with �1 = �2 = �,
(2) Evolve for time τ with �1 = �2 = � exp(iξ ),

followed by a single-qubit phase gate on both qubits [cf.
Fig. 8(a)]. In the above sequence, the gate time τ is chosen
such that the state |11〉 returns to itself after the first pulse,
i.e., to the time corresponding to a blockaded 2π pulse, τ =
2π/

√
2�2 + �2. Similarly, the phase ξ of the laser in the

second pulse is chosen such that the state |01〉 returns to itself
after both pulses. Finally, the detuning � is chosen such that
the phase acquired by both states differs by π [in the sense that
this phase difference remains after application of the global
single-qubit phase gate, cf. Fig. 8(b)].

In the strongly interacting regime, the parameters were
analytically calculated to be given by [16]

�/� = 0.377 371, (A1)

ξ = 3.902 42. (A2)

103 104 105 106

interaction strength

0.1

0.2

O
p
ti

m
a
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Ω

(a) (b)

(c)

(d)

FIG. 8. Pulse sequence of the off-resonant gate adapted from
Ref. [16]. (a) Global pulse sequence acting with |�| on both qubits
simultaneously: t1 pulse duration chosen such that the first pulse
returns |11〉 to itself (whereas |01〉 and |10〉 are left in an arbitrary
location on the Bloch sphere), ξ phase of the second pulse (evolve
with � exp(iξ )) chosen such that |01〉 and |10〉 return to themselves
after the pulse sequence, � detuning of the |1〉 to |r〉 transition
chosen such that the phases highlighted in (b) are equal. Finally, the
third step is to apply single-qubit phase gates to both qubits, with
phase φ, which corrects for global single-qubit phases built up in the
dynamics. (b) Mapping of the qubit states due to the Cz gate. (c) The
dynamics of the states |11〉 (with Rabi frequency

√
2� in the case

of a perfect blockade) and |01〉 (with Rabi frequency �, leading to a
different path over the Bloch sphere) in terms of two-level systems.
(d) Optimal Rabi frequency in the off-resonant blockade gate as a
function of interaction strength and decoherence time.

This leaves the Rabi frequency as a free parameter, which we
optimize for a given interaction strength u and decoherence
rates γse and γde = 0.5γse. Similarly to the resonant gate, we
find a clear optimal Rabi frequency for a given interaction
strength, which we show in Fig. 8 and find slightly higher
fidelities than for the resonant gate (see main text).

A major limitation for both blockade gate proposals is the
hierarchy of scales γ � � < u, given by the requirement
for the blockade condition to be fulfilled. This limits the
maximum Rabi frequency, setting a lower bound for the gate
duration and leaving more time for decoherence processes
to kick in. Our calculation implies that the experiment in
Ref. [16] operated very close to the optimal Rabi frequency,
in part explaining their improvements over previous results.
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APPENDIX B: FINITE-ELEMENT METHOD
MULTIVALLEY WAVE FUNCTIONS

In the following we explain how to obtain multivalley wave
functions of donor electrons in silicon, which result from cou-
pling the hydrogenic wave functions (envelope functions) into
the manifolds determined by the symmetry group of the sys-
tem. The envelope wave functions can be obtained by solving
the Schrödinger equation for hydrogen, with the appropriate
effective mass. We do this using the finite-element method
[35] (developed in engineering for numerically computing
approximations to solutions to partial differential equations
and recently applied to donors [35]).

In the effective mass approximation states that close to a
band extrema, such as the conduction-band minimum, each
electron can be described by a mean-field Hamiltonian (every
electron experiences the same average periodic potential),
which is that of a single free electron with a modified mass
(the effective mass) in an impurity potential.

Silicon has a face-centered cubic lattice which leads to its
Brillouin zone (its primitive cell in reciprocal space) being a
truncated octahedron. The latter contains six square faces, the
centers of which are called X points. The conduction-band
minima in silicon are positioned at the X points and are all
equivalent. Using the k · p method, the effective mass at a
band extrema, such as the conduction-band minima, can be
determined. The effective mass corresponds to the dispersion
of the energy Ek as a function of momentum k (Ek = h̄2k2

2m ).
In silicon, the conduction-band minima are anisotropic: they
are ellipsoids which lie along the axis linking the center of
the Brillouin zone (� point) to the valley’s X point. In valley-
specific coordinates, we set this to be the z axis. The effective
mass along z is referred to as longitudinal m∗

l = 0.191me,
whereas along x and y it is transverse m∗

t = 0.916me, in ref-
erence to the conduction-band minimum ellipsoid, where m
is the mass of a free electron. The kinetic energy term in
valley-specific coordinates is then

− h̄2

2

(
∂2

∂x2
+ ∂2

∂y2
+ γ

∂2

∂z2

)
, (B1)

where γ = mt/ml .
The impurity potential is the Coulomb potential of the

proton, which at large distances can be approximated as a
point charge at the nucleus, felt by the valence electron:

Vimp(r) = − h̄

4πε0εr

e2

r
, (B2)

where e is the electron charge. However, the valley degree of
freedom in multivalley semiconductors allows the wave func-
tions to have a non-negligible probability of being at the core
where the Coulomb approximation breaks down. To account
for this, we add another potential to the Hamiltonian, widely
referred to as the central-cell potential Ucc(r), which takes the
form of a δ function at the core and which we model using a
Heaviside step function [36]. The value of the central-cell po-
tential is determined using a bisection algorithm by requiring
the energy of the solution of the FEM method to match the
experimentally determined energies for the multivalley states.

It is also possible to add to the Hamiltonian the confining
potential of an external electric field applied along the real-

space z axis (which corresponds to the z axis in valley-specific
coordinates), which is

E f (r) = eE f z. (B3)

The Schrödinger equation, which we will simplify in the fol-
lowing, in the valley-specific coordinates where z is the valley
axis, is

[
− h̄2

2m∗∇2 + Vimp(r) + Ucc(r) + E f (r)

]
ψi(r) = εiψi(r).

(B4)

The wave function is written

ψ (r) = Fi(r)φ(k j, r)αi. (B5)

It is composed of the envelope function Fi(r), where the in-
dices i run over the hydrogenic states; the Bloch wave function
φ(k j, r) = e−ik j ·ruk j (r), which is the product of a plane wave
and a lattice periodic function ukj (r), where j runs over the six
valleys; and lastly, a multivalley parameter αi, which couples
the function into various manifolds according to the Td point
group mentioned above. We use the finite-element method to
obtain Fi(r) and couple it to the Bloch wave function and
into the multivalley manifolds in a second step. As all the
conduction-band minima are equivalent, the solution to this
Schrödinger equation suffices for all the manifolds represent-
ing the Td point group.

We write the Hamiltonian in the atomic units aB =
4πε0εR/e2mt and EH = e4mt/(h̄4πε0εR)2:

H = −EH a2
B

2

(
∂2

∂x2
+ ∂2

∂y2
+ γ

∂2

∂z2

)
− EH aB√

x2 + y2 + z2

+ Uccδ(x, y, z) + Eh

aBe
eE f z. (B6)

We make four steps to simplify the Hamiltonian to improve
FEM convergence:

(i) Transform to an anisotropic frame where z′ = √
z to

have a symmetrized Hamiltonian.
(ii) Transform to spherical polar coordinates (the kinetic

energy has spherical symmetry so this is allowed).
(iii) Choose the wave function Fi,m(r) = eimφ f j,m,μ(r, θ ) =

eimφ 1
r Yj,m,μ(r, θ ), where m is the magnetic quantum number,

to obtain a 2D Hamiltonian.
(iv) Transform the semi-infinite plane to a finite rectangle

(tangent space) r = r0 tan η with η ∈ [0, π
2 ] and r0 a scaling

factor which is best chosen comparable to the wave function
of interest [35] for a compressed Hamiltonian. Yj,m,μ(r, θ )
becomes y j,m,μ(η, θ ).

The boundary conditions are then that the wave function
must decay at infinity, which corresponds to α → 0 and
α → π

2 :

y(0, θ ) = y(π/2, θ ) = 0. (B7)

Additionally, for wave functions with parity and magnetic
quantum numbers of opposite parity y(η, θ ) = −y(η, π − θ );
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Rydberg blockade between 77Se+ excited states with polarization {0,0,1}. Row 1: interactions between two 2p0 states and fidelity
assuming a lifetime of 1 ns. Row 2: interactions between two 1sT 2�7 states and fidelity for the experimentally determined lifetime 7.7 ns
[5]. Color labeling identical to Fig. 2 in main text. Reds W : intersite Coulomb electron-electron repulsion (rr: 2p0-2p0, rg: 2p0-1sA, and
gg: 1sA-1sA). Green, J: ferromagnetic exchange (2p0-2p0). Light blue, VVdW : van der Waals (2p0-2p0). Dark blue, VVdd : induced dipole
interaction with nonionizing field (negligible in all cases shown above), u: total interaction calculated from Eq. (12). (a, d) Interdonor axis
parallel to polarization axis. (b, e) Interdonor axis perpendicular to polarization axis. (c, f) Map of total interaction (meV) for one donor placed
at the center of the map and the other to occupy any other position. White: avoiding the molecular limit. (a) Oscillation due to J . (e) Fidelity
dips to 0 at 6 nm because u changes sign, for which one can change the sign of the detuning. Fidelity remains large due to a difference on the
order of 0.1 meV coming from the W terms and the extremely long decay time of the 1sT 2�7 state.

therefore at the boundary

y(η, π/2) = −y(η, π/2) = 0. (B8)

The final symmetrized polar compressed 2D Hamiltonian
reads

H =−EH a2
B

2r0

[
cos2 η

∂

∂η

(
m2 cot2 η

sin2 θ

)

+ cot2 η

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
− EH aBr−1

0 cot η√
1 − (1 − γ ) cos2 θ

+ Ucc
4
3πr3

c

H (r − rc) + √
γ r cos θE f Us(r − rm), (B9)

where H (r) is the Heaviside � function, Us(r) is the unit
step function, and rc and rm the cutoff values. The solutions
obtained via FEM are then numerically normalized using the
Cuba Vegas package [37].

We now describe the coupling to the multivalley manifolds.
Firstly, we reduce the six-valley problem (−x, x,−y, y,−z, z)
to an effective three-valley problem (x, y, z) with x, y and z
∈ [−∞,∞]. We associate to each valley the envelope func-
tion in rotated Cartesian coordinates to ensure consistency
when all the valleys will be coupled; considering we took z
as the valley axis we create a three-part vector corresponding
to the envelope wave function in the three effective valleys:
[Fi(z, x, y), Fi(y, z, x), Fi(x, y, z)].

We transform the six functions of the tetrahedral point
group into the effective three valleys by taking the Bloch wave
function into account and using trigonometric identities to
couple two valleys of opposite sign, each with a plane-wave
factor e−ikix into one with sin 2kix if the manifolds have an
even total sign or cos 2kix if it is odd. For the 1sT 2�7 state,
for example:

Fi(x)e−ikix(1,−1, 0, 0, 0, 0)

= Fi(x)e−ikix − Fi(x)e−ikix

= 2i sin 2kixFi(x).

We then normalize the wave functions.

APPENDIX C: RYDBERG BLOCKADE RESULTS FOR
Si:Se+ DONORS

We study the interactions between two ionized selenium
(Si:Se+) donors in silicon to find out whether they might be
good candidates for Rydberg gates. Si:Se+ donors have direct
transitions in the infrared regime, and their optical character-
istics been studied for decades and have recently undergone
renewed interest in the context of providing a spin-photon
interface for the silicon platform [17].

As can be seen in Fig. 9, oscillations in the exchange
energy can be seen when the donors are aligned along the
polarization axis [Figs. 9(a) and 9(d)] but not when per-
fectly aligned along the axis perpendicular to the polarization
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[Figs. 9(b) and 9(e)]. In the case of the 1sT 2 state, the ex-
change is so small that the oscillations can hardly be seen in
Fig. 9(d). Figures 9(c) and 9(d) are top views of the Rydberg
interactions [also represented in Figs. 9(b) and 9(e)], of direct
use when calculating the fidelity over large physical areas. For
the 1sT 2 state, the Rydberg interaction changes sign due to the
rapid decay of the exchange, which causes a dip in the fidelity.

In Figs. 9(a), 9(b) 9(d), and 9(e), the fidelity of the en-
tangling gate proposed in the main text is also plotted. The
oscillation in the Rydberg interaction caused by the exchange
is so steep that the fidelity has sharp oscillations which are not
very well resolved, despite the 0.1-nm step size of the calcu-
lation. For the 1sT 2γ 7 state, however, the long |r〉 lifetime
of 7.7 ns puts the fidelity extremely high, despite the small
magnitude of u.

APPENDIX D: ELECTRIC FIELDS

1. Ionization rates

The ionization rate for a hydrogen atom in an excited state
is given in [28] to be

1

τ
= n−3[n2!(n2 + |m|)!]−1

(
n3 E f

4

)−2n2−|m|−1

e
3(n1−n2 ) −2

3n3E f ,

(D1)

with n, m, n1, and n2 are the principal, magnetic, and parabolic
quantum numbers, respectively (in this paper we consider the
2p0 state, which has n1 = 1, n2 = 0), and E f is the applied
field strength in atomic units. We scale the results for the
hydrogen atom by using experimental results acquired by [38]
on Si:P in the ground state to determine the atomic units for
the electric field used in Eq. (D1). For an atom in the ground
state Eq. (D1) reduces to

1

τ
= ωα

F
exp

[
− α

F

]
, (D2)

originally given in [39], with α = 4
√

2mt E
3/2
f /(3eh̄) the

atomic field and ω = 12Eb/h̄, where Eb is the binding energy,
e is the electron mass, and mt is the tunneling mass. The
tunneling mass depends on the direction in which the electric
field is applied, with the [111] direction yielding the slowest
tunneling times [38]. The 2D Hamiltonian which enables us
to use the FEM for investigating induced dipolar interactions
in this paper requires us to consider applying the electric field
along [100]. The minimum ionization rate is given by the Bohr
period τB = 2π h̄/Eb [38], on the order of 10−13 s for Si:P and
10−14 s for Si:Se+.

The results of these formula comply with experimental
results for the Si:P 1sA state [38]. The classical ionization
threshold for Si:P 2p0 is at 0.28 V/μm. In order to reduce
the ionization probability during the 2p0 lifetime of 235 ps,
we can see from Fig. 10 that the electric field should be on the
order of 0.2 V/μm.

The results for the theoretically calculated ionization rates
for Si:Se+ can be found in Fig. 10. The 2p0 result was
obtained by inserting the 1sA α and ω values into Eq. (D1).
The result for 1sT 2 (n1 = 0, n2 = 0) coincides with the result
obtained when calculating α and ω values from the binding
energy of 1sT 2 and directly using Eq. (D2). In order to reduce

(a)

(b)

z
z

FIG. 10. Ionization probability within experimentally deter-
mined lifetimes. (a) Ionization probability within 200 ps for various
Si:P states and electric field directions. Checked against experimental
data from [38]. (b) Ionization probability within 7.7 ns for theoretical
values for Si:Se+ 2p0 (blue),1sT 2�7 (orange), 1sA (green). Electric
field applied along [100].

the ionization probability during the 1sT 2 experimentally
measured lifetime of 7.7 ns, we can see from Fig. 10 that the
electric field should be on the order of 8 V/μm for 1sT 2 and 1
V/μm for 2p0. In effect, these electric fields yield negligible
dipolar forces, as can be seen from Fig. 3.

2. Stark shifts

In this paper we propose a simple way to calculate the exact
single-valley Stark shift of donors using the FEM by including
a slope corresponding to the electric field in the Schrödinger
equation in Eq. (B4). This single-valley Stark shift enables us
to check our multivalley, perturbatively calculated Stark shift
because it includes contributions from the continuum. This is
only possible for a field applied along the polarization axis as,
when applied perpendicular the Schrödinger equation, it no
longer reduces to a 2D Hamiltonian.

Multivalley oscillations are on the same scale as the single-
valley wave function for the singly ionized donor Se+, in
which the valence electron is tightly pulled in towards the
core. All Stark shifts are plotted in Fig. 11 and are very close
in magnitude for both methods, single valley or multivalley,
for electric fields smaller than the ionizing electric fields for
the donor-excited-state lifetimes previously determined.

The perturbatively calculated single-valley calculations in-
clude single s states with no central-cell corrections (ccc) in
the 2p0 calculations and with a ccc for the 1sT 2�7 calculation
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(a)

(b)

(c)

FIG. 11. Stark shifts for Ef smaller than the ionization limit
determined in Fig. 10. The FEM result includes contributions from
the conduction-band states not included in the perturbative results.
(a) Si:Se+ 2p0 Stark shift. (c) Si:Se+ 1sT 2�7 Stark shift. (b) Si:P
2p0 Stark shift.

in order to be able to compare directly to the FEM results.
We can see both results are close, despite the perturbative
results not including contributions from the continuum. The
multivalley calculations include, for the ground as well as for
higher-lying s states, A, E, and T manifolds, each with their
own ccc.

For the 2p0 states of both donors, the main contributing
state is 2s in the single-valley case, and 2sE and 2sA in the

multivalley case. For Se+ 1sT 2�7 in both single and multi-
valley cases, the main contributions to the Stark shift parallel
to the polarization of the state come from the p0 states and
perpendicular to the polarization comes from the p+ states.

Considering these Stark shifts, with laser linewidths be-
low 0.1 meV and Rabi frequencies on the order of 1 meV,
small electric fields would suffice to shift the donors on and
off resonance. Large fields could even be applied to all the
ground-state donors not contributing to the gate to fully ensure
they are of-resonance with the laser exciting to the Rydberg
state, because ground-state donors can resist far larger fields
than the excited states, which have a short lifetime and higher
ionization probabilities.

3. Stray electric fields

In this section we show that the stray electric fields from the
gates local to the surrounding donors (Stark shifting them off
resonance with the laser) do not interfere with the gate opera-
tion. In order to reduce the probability of the laser exciting a
transition, the detuning must be increased proportional to the
Rabi frequency, for example, for a 0.1 probability, � = 4�.
For realistic Rabi frequencies between 108 and 1011 Hz, de-
pending on the experimental laser power, this sets an upper
bound on � of around 0.4 meV.

The 2p0 state in Si:P ionizes in relatively small fields, as
can be seen in the previous section entitled Ionization rates
and Stark shifts. A 0.4-meV Stark shift would require an
electric field of 0.5 V/μm, which we calculated using the mul-
tivalley perturbation theory method described in that section.

As is shown in the figure in the main text, we use the finite-
element method to solve for the electric fields in the proposed
geometry. We find that if the left local gates of donors not
participating in the entangling operation are held at –0.0025 V
and the right ones at 0.0025 V, with the gates surrounding the
central donors all held at 0 V, and the top global gate at –
0.015 V and the bottom one at 0.015 V, then the donors not
participating in the entangling operation will get shifted off
resonance with the laser with a field of 0.5 V/μm, and the
two donors participating in the readout, in the case of Si:P
2p0 being chosen as |r〉, will get a small field parallel to the
interdonor axis due to the global gates, of around 0.18 V/μm,
which will not ionize them within the excited-state lifetime
but will induce dipolar interactions. We conclude that with
this proposed geometry, there are no unwanted stray electric
fields.
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