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Effects of coherence on temporal resolution
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Measuring small separations between two optical sources, either in space or in time, constitutes an important
metrological challenge as standard intensity-only measurements fail for vanishing separations. Contrarily, it
has been established that appropriate coherent mode projections can appraise arbitrarily small separations with
quantum-limited precision. However, the question of whether the optical coherence brings any metrological
advantage to mode projections is still a point of debate. Here, we elucidate this problem by experimentally
investigating the effect of varying coherence on estimating the temporal separation between two single-photon
pulses. We show that, for an accurate interpretation, special attention must be paid to properly normalize the
quantum Fisher information to account for the strength of the signal.
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I. INTRODUCTION

In numerous applications, including radar signal process-
ing [1–3], radio acoustic sounding [4,5], ultrasonic testing [6],
and medical imaging [7], one is faced with the challenge of
determining the temporal delay between two closely spaced,
overlapping, ultrashort pulses. There are several efficient
techniques to estimate these small offsets, such as the cross-
correlation, phase-shift, and delay line methods [8]. However,
all of them conspicuously fail when the time delay is signifi-
cantly shorter than the pulse duration.

The same pitfall appears in the spatial domain: The reso-
lution of an imaging system is limited by the size of its point
spread function (PSF), which specifies the intensity response
to a point source [9]. This gives an intuitive picture of the
mechanisms that obstruct resolution, but it is very heuristic.
For example, the Rayleigh limit [10] is defined as the distance
from the center to the first minimum of the PSF. Yet that can
be made arbitrarily small with ordinary linear optics, at the
price of the sidelobes becoming much higher than the central
maximum. This hints that estimating the separation between
two points becomes also a matter of photon statistics [11].

Lately, the resolution limits have been revisited from the
alternative perspective of quantum metrology. The idea is
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to use the quantum Fisher information (FI) and the associ-
ated quantum Cramér-Rao bound (CRB) to assess how well
the separation between two point sources can be estimated
[12–17]. For direct imaging, the classical FI drops to zero
as the separation between the sources decreases, and the
error with which we can determine the separation diverges
accordingly, which has been dubbed Rayleigh’s curse [18].
Surprisingly, when the quantum FI (i.e., optimized over
all measurements allowed by quantum mechanics) is calcu-
lated, it stays constant, evidencing that the Rayleigh limit is
not essential.

These remarkable predictions have fuelled a number of
experimental implementations, both in the spatial [19–22]
and the time-frequency [23] domains. The key behind these
achievements is the use of phase-sensitive projections onto
optimal modes [24] instead of intensity measurements, as the
latter discard the phase information carried by the signal.

The approach has been generalized to more realistic sce-
narios, where the signals may have different intensities. This
involves the simultaneous estimation of separation, centroid,
and relative intensities [25,26]. Still in this multiparameter
case [27–30], optimal quantum-limited measurements have
been worked out [31] and experimentally demonstrated [32].

The discussion thus far assumes incoherence between
the signals. This conforms with the conditions underlying
Rayleigh’s criterion. In the temporal domain, this happens
with, for example, remote clocks [e.g., the Global Positioning
System (GPS)] [33–35], incoherent excitations in biological
samples [36], condensed matter physics [37], and astronomi-
cal observations [38].

A recent heated debate addressed the role of coherence
in the resolution limits [39–46]. Any coherent superposition
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of two time-delayed pulses can be decomposed in terms of
in-phase and antiphase combinations of the two pulses. Yet,
these two channels are not equivalent concerning the strength
of the signal: The antiphase mode does carry the information
about the temporal separation, but the intensity in this mode
vanishes as the time offset decreases. Hence each photon
therein carries a huge amount of information.

However, this effect is not necessarily a metrological ad-
vantage, because the input signal still contains many photons
and thus, on average, the information per photon is limited.

We stress that ignoring the resources required to generate
the input signal might lead one to false conclusions about
the information content of the measurement. In this sense, the
limit of incoherent mixtures represents a bound that cannot be
overcome without prior information coded into the state [47].
Coherence may provide extra benefits by sorting information
for different parameters into different channels. We confirm
here these predictions with an experiment that benefits from
classical and quantum resources, both contained in the quan-
tum FI of the signal.

II. THEORETICAL MODEL

Let us first set the stage for our model. To facilitate pos-
sible generalizations, we phrase what follows in a quantum
language, so that a pulse wave form with complex temporal
envelope ψ (t ) is assigned to a ket |ψ〉, such that ψ (t ) = 〈t |ψ〉.
Here, we understand that an ideal (sharp) measurement of
time would project on the state |t〉 defined by a delta function
in time or, in the frequency representation, by

〈ω|t〉 = 1√
2π

eiωt . (1)

We consider two pulses of identical shape but displaced by
a time offset τ , whose magnitude we want to estimate. We de-
fine the time-shifted versions, |ψ±〉, as ψ±(t ) = ψ (t ± τ/2).
In addition, for convenience, we keep the total intensity nor-
malized to unity:∫ ∞

−∞
dt [|ψ+(t )|2 + |ψ−(t )|2] = 1. (2)

In general, 〈ψ−|ψ+〉 �= 0, so these modes are not orthogonal.
This overlap is at the heart of all the difficulties of the problem,
for it implies that the two modes cannot be separated by
independent measurements.

To capture the essence of the problem, we introduce sym-
metric and antisymmetric (non-normalized) coherent modes

ψs(t ) = 1√
2

[ψ+(t ) + ψ−(t )],

ψa(t ) = 1√
2

[ψ+(t ) − ψ−(t )]. (3)

These coherent modes can be generated by a mode converter
using linear optical transformations. Such an operation is,
for instance, readily implemented by sending the two signals
into different input ports of a balanced beam splitter. The
total intensity is conserved in this process. Physically, the
symmetric mode corresponds to an in-phase superposition of

the time-shifted components, whereas the antisymmetric one
corresponds to an antiphase superposition.

To proceed further, we need to specify the explicit wave
form of the pulse. For simplicity, we will use the standard
choice of a Gaussian profile

ψ (t ) = 1(
2πσ 2

t

)1/4 exp

(
− t2

4σ 2
t

)
(4)

of width σt .
We first consider a fully incoherent mixture of the time-

shifted components. Equivalently, this can be prepared as an
incoherent sum of the in-phase and anti-phase channels; in the
experimental realization this amounts to an equal mixing of
the measurement data for each coherent mode in postprocess-
ing. The situation can be thus represented by the following
density matrix:

�(τ ) = |ψ+〉〈ψ+| + |ψ−〉〈ψ−| = |ψs〉〈ψs| + |ψa〉〈ψa|. (5)

Now, we can directly apply quantum estimation theory. The
pivotal quantity is the quantum FI [48], which is a mathe-
matical measure of the sensitivity of an observable quantity
(pulse wave form) to changes in its underlying parameters
(time delay). Replicating the calculations performed in the
spatial domain [19], one immediately gets that the quantum
FI, denoted by Q, is constant, Q(τ ) = 1/(4σ 2

t ). The asso-
ciated quantum CRB ensures then that the variance of any
unbiased estimator τ̂ of the time delay τ is lower bounded
by the reciprocal of the quantum FI (per single detection
event); viz.,

Var� (̂τ ) � 1

Q(τ )
= 4σ 2

t . (6)

In what follows, it will prove convenient to look at the
problem from a slightly different perspective. As the optimal
measurement attaining the CRB is known, we can calculate
the FI for such a measurement. In fact, the optimal scheme
involves projections onto the successive derivatives (properly
orthonormalized) of the pulse amplitude [24]. For our basic
Gaussian wave form, this reduces to the Hermite-Gauss tem-
poral modes

HGn(t ) = 〈t | HGn〉

= 1

(2πσ 2
t )1/4

1

(2n n!)1/2
Hn

(
t√
2σt

)
exp

(
− t2

4σ 2
t

)
.

(7)

Then, we have the following detection probabilities:

ps(n|τ ) ≡ |〈HGn |ψs〉|2 =
{

pn(τ ) n = 0, 2, 4, . . .

0 n = 1, 3, 5, . . . ,

pa(n|τ ) ≡ |〈HGn |ψa〉|2 =
{

0 n = 0, 2, 4, . . .

pn(τ ) n = 1, 3, 5, . . . .

(8)

Here, pα (n|τ ) (α ∈ {a, s}) denotes the probability density for
a detection when projecting the symmetric (antisymmetric)
coherent mode |ψs〉 (|ψa〉) onto the mode HGn, conditional
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on the value of the time delay τ , and we have defined

pn(τ ) = 1

n! 16n

( τ

σt

)2n
exp

(
− τ 2

16σ 2
t

)
. (9)

Due to the limitations of the experimental setup described
later, we cannot generate incoherent signals directly. However,
we can generate coherent in-phase and antiphase superposi-
tions, which directly correspond to the output ports of the
beam splitter (3). Mixing the measurement data for both su-
perpositions in postprocessing allows for realizing an arbitrary
amount of coherence between the two signal pulses.

Note that measuring the output of the interference between
two signals is relevant for many applications, such as stellar
interferometry, and thus not just a convenient theoretical ap-
proach. In consequence, we have now

pincoh(n|τ ) = ps(n|τ ) + pa(n|τ ) = pn(τ ). (10)

The classical FI about τ from these mode projections on
in-phase and antiphase states is

Fincoh(τ ) =
∑

n

1

pincoh(n|τ )

[
∂ pincoh(n|τ )

∂n

]2

. (11)

Since in-phase and antiphase detection happen in even and
odd mode projections, respectively, no information is lost
in this process, and the incoherent FI does saturate the
quantum bound:

Fincoh(τ ) = 1

4σ 2
t

. (12)

The incoherent mixture is given either by a sum of time-
delayed Gauss components or by a sum of un-normalized
in-phase and antiphase superpositions as in (3). The FI for the
sum of probabilities in pincoh saturates the ultimate limit for
time localization of input components ψ±, and the beam split-
ter action (3) is a unitary process, preserving information. The
Hermite-Gauss projections do saturate the quantum bound si-
multaneously for both in-phase and antiphase superpositions.

Let us now consider the opposite case of fully coherent
signals. The estimation of the time shift τ requires projections
applied to in-phase and anti-phase states; the results are

Fs(τ ) = 1

8σ 2
t

−
(

1

8σ 2
t

− τ 2

32σ 4
t

)
exp

(
− τ 2

8σ 2
t

)
,

Fa(τ ) = 1

8σ 2
t

+
(

1

8σ 2
t

− τ 2

32σ 4
t

)
exp

(
− τ 2

8σ 2
t

)
. (13)

If we detect both outputs, we have

Fcoh(τ ) = 1

4σ 2
t

, (14)

which also saturates the quantum bound. Note, though, that
for small separations, τ → 0, we have

Fs(τ ) 
 0, Fa(τ ) 
 1

4σ 2
t

, (15)

that is, almost all the information resides in the antiphase
channel, Fa. However, in this limit the intensity available in
this channel becomes

∑
n pa(n|τ ) → 0. Nonetheless, we must

remember that a constant amount of input intensity is spent

on generating the antiphase superposition for any separation.
In a sense, the beam splitter acts as an information sorter
that directs the information about the timing separation to the
weak antiphase channel. The majority of the signal intensity is
sent to the in-phase output, where other parameters (e.g., the
timing centroid) can be simultaneously accessed. In the case
of complete incoherence, no interference on the beam splitter
occurs: The measured intensity in the antiphase output is half
of the input intensity, regardless of the timing separation. In
this case, a simple intensity measurement is insufficient to
resolve the separation of the two signals. It is known, however,
that mode projections are ideal and, in fact, remain optimal for
any degree of coherence.

A PSF-independent formulation can be provided by
defining a modified quantum FI for states with parameter-
dependent norm N (τ ) = 〈ψ (τ )|ψ (τ )〉; it reads [47]

Q̃(τ ) = 4〈∂τψ (τ )|∂τψ (τ )〉 + 1

N (τ )
[〈ψ (τ )|∂τψ (τ )〉

− 〈∂τψ (τ )|ψ (τ )〉]2. (16)

Applying this to the superpositions (3) confirms the optimality
of Hermite-Gauss projections.

As we said before, partial coherence has been the subject of
a recent controversy [39–44]. Actually, we maintain that par-
tial coherence just redistributes the information into two (or
more) interfering channels. Information is carried both by the
norm (i.e., intensity modulated by the estimated parameter)
and the underlying normalized quantum state. However, total
information is preserved and can be extracted with a suitable
measurement.

For all degrees of coherence and to remove the impact
of an intensity-dependent norm in the experiment, we realize
partially coherent states as mixtures of two coherent detection
schemes with s and a channels interchanged. We quantify
coherence with the parameter γ of such convex combinations,
where γ = 0 means fully coherent and γ = 1/2 means fully
incoherent. The projections on the same temporal Hermite-
Gauss modes of in-phase and antiphase channels are

Pγ
s (n|τ ) =

{
(1 − γ )p(n|τ ) n = 0, 2, 4, . . .

γ p(n|τ ) n = 1, 3, 5, . . . ,

Pγ
a (n|τ ) =

{
γ p(n|τ ) n = 0, 2, 4, . . .

(1 − γ )p(n|τ ) n = 1, 3, 5, . . . .
(17)

Notice that for γ = 1/2, we obtain two identical sets of
probabilities P1/2

a (n|τ ) = P1/2
s (n|τ ), which upon adding we

recover the incoherent probabilities pincoh(n|τ ). Naturally, the
total FI again saturates the quantum bound for any γ and all
separations

F γ
s (τ ) = (1 − γ )Fs(τ ) + γ Fa(τ ),

F γ
a (τ ) = γ Fs(τ ) + (1 − γ )Fa(τ ), (18)

and consequently,

F γ (τ ) = F γ
s (τ ) + F γ

a (τ ) = Fincoh(τ ) = 1

4σ 2
t

. (19)

From the discussion thus far, it should be clear that
Hermite-Gauss temporal modes are optimal for any degree of
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FIG. 1. Schematic of the experimental setup. Inset: In-phase and
antiphase input signals. The in-phase and antiphase input pulses
with different time shifts τ are derived from a broadband OPO at
1540 nm and attenuated to the few-photon levels using a commercial
pulse shaper. Gating pulses at 860 nm with Hermite-Gauss profiles
are shaped with an in-house pulse shaper. The input and gating
pulses copropagate through a PPLN waveguide. A sum-frequency
process generates green output photons at 551 nm which are band-
pass filtered and subsequently counted using a silicon avalanche
photodiode (SiAPD).

coherence. Of course, any other complete mode decomposi-
tion with even or odd temporal symmetry will do the same job
[24]. However, these projections require sophisticated equip-
ment. Intensity detection is still the cut-and-dried method used
in the laboratory. As the dominant part of the information
about separation is contained in the norm of the antiphase
superposition, total intensity represents a valuable source of
information.

For incoherent states, intensity detection leads to
Rayleigh’s curse, and it is not optimal. For full coherence,
however, intensity detection is one optimal solution. This can
be readily shown by calculating the FI for the intensity profiles
of in-phase and antiphase channels, whose probabilities of de-
tection are Pα (t |τ ) = |ψα (t )|2, with α ∈ {a, s}, whence we get

F int
α (τ ) =

∫
dt

1

Pα (t |τ )

[
∂Pα (t |τ )

∂τ

]2

= Fα (τ ), (20)

with Fα (τ ) given by (13). Therefore F int
s (τ ) + F int

a (τ ) = 1/σt ,
and there is no need for sophisticated mode projections when
working with a fully coherent signal. However, the temporal
resolution can be strongly improved by these detections for
partially coherent and incoherent signals, especially in the
limit τ → 0, which is precisely the regime of interest.

III. EXPERIMENTAL RESULTS

The key building block in our experiment for the im-
plementation of the optimal Hermite-Gauss temporal-mode
projections is a quantum pulse gate (QPG) [49,50]. It is
based on group-velocity matched sum-frequency generation
between a strong gating pulse and a weak signal pulse in
a nonlinear waveguide. Detecting the upconverted photons
then realizes projective measurements, in which the temporal-
mode projections are defined by the shapes of the gating pulse.

The detailed scheme of our experimental setup is sketched
in Fig. 1. A titanium-sapphire (Ti:Sa) laser and an op-
tical parametric oscillator (OPO) provide the gating and
the input pulses with a repetition rate of 80 MHz, respec-
tively. The gating pulses are carved from a laser spectrum
centered at 860 nm with a full width at half maximum

(FWHM) bandwidth of 7.25 nm. The gating pulses are shaped
into user-defined Hermite-Gauss temporal modes with a
home-built pulse shaper, composed of a spatial light modu-
lator at the Fourier plane of a 4 f line arrangement.

The input pulses are derived from the OPO, delivering light
at 1540 nm with an FWHM bandwidth of 23 nm. A com-
mercial fiber-coupled pulse shaper prepares the input signal
that consists of coherent superpositions of two time-shifted
Gaussian pulses of 1.26 ps width with equal (in-phase) or op-
posite (antiphase) phase. As shown in the inset of Fig. 1, one
receives a positive time shift of τ/2, and the other one receives
a negative time shift of −τ/2 with respect to a reference that
is set at zero without loss of generality. In our experiment,
seven different time shifts ranging from 0 to στ are realized
for both in-phase and antiphase inputs by programming the
pulse shaper. Moreover, the input pulses are attenuated to a
few photons per pulse.

The shaped gating and the input pulses are combined on a
dichroic mirror and then coupled into a home-built QPG—
a 3.5-cm-long periodically poled lithium niobate (PPLN)
waveguide with a poling period of 4.4 μm. The waveguide
is designed for spatially single-mode propagation of the input
signal, whereas the propagation of the gating beam in the fun-
damental spatial mode is ensured via optical mode matching.
The sum-frequency process yields a green output at 551 nm
that undergoes tight spectral filtering in a 4 f line to discard the
phase-matching sidelobes, resulting in an FWHM bandwidth
of 40 pm. The filtered output is detected with a fiber-coupled
silicon avalanche photodiode (SiAPD). Finally, we record the
single counts using a commercial time tagger. We record data
for 16 ms for each setting of the input and gating pulses and
repeat the measurement 100 times for the statistical analysis
of the data.

In our experiment, different coherence strengths are
achieved in postprocessing by controlled mixing of the mea-
sured data for the in-phase and the antiphase input signals:
Each of them separately corresponds to the fully coherent
case; their equal mixing leads to the incoherent case, and
unequal mixing corresponds to the partial coherence. Rather
than using the theoretical projections, we determine the ac-
tual input-output relations of the implemented imperfect QPG
device, enabling the construction of an unbiased estimator
of the time separation despite the limited selectivity of the
device [23].

For each coherence setting, this is achieved by fitting the
average responses of the first four Hermite-Gauss projections
with fourth-order polynomials in τ . The resulting measure-
ment matrix is then used to process the individual detections
taking the generalized least-squares estimator constrained by
the condition τ̂ � 0. Estimator statistics are calculated from
100 repeated measurements for each combination of τ and γ

parameters.
We had to take special care to avoid unwanted temporal

drift between the signal and gating fields that mainly orig-
inates from thermal fluctuations. To remove the effect of
residual drift, the two fields are recentered by software control
after every ten measurement runs of each setting.

Figure 2 shows the statistics of the experimental esti-
mates of τ for incoherent, coherent, and partially coherent
superpositions. Mean values are plotted with standard devi-
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FIG. 2. Estimates τ̂ vs true separations τ , both in units of the
pulse width σt for the three values of the coherence indicated
in the key.

ation bars. The true values are inside the standard deviation
intervals for all separations, and the estimator bias is
negligible.

Figure 3 shows the estimation errors (quantified by the
variance) for five different mixtures ranging from fully co-
herent to incoherent. Coherent estimates saturate the quantum
bound for small separations: We experimentally resolve tem-
poral offsets ten times smaller than their pulse duration, with
a tenfold improvement in precision over the intensity-only
CRB. When coherence is reduced, we see an increase in the
experimentally determined variances, especially for the small-
est measured time separations. This effect is a consequence

FIG. 3. Variance of the estimator τ̂ as a function of the true
time offset τ for several values of the coherence parameter γ : 1/2
(blue crosses), 3/8 (orange pluses), 1/4 (green triangles), 1/8 (red
squares), and 0 (purple circles). The ultimate limit given by the
quantum CRB is given by the red solid line, whereas the classical
incoherent detection limit is the dashed blue line. The inset shows a
zoomed-in version where we can better appreciate the behavior.

FIG. 4. Estimation errors for fully coherent signal (γ = 0) per
single total detection (purple circles, as in Fig. 3) and per single
antisymmetric (ψa) detection (brown squares). The quantum (red
solid line) and classical incoherent (blue dashed line) limits are
also shown.

of a tiny, yet non-negligible, cross talk between the odd
and even Hermite-Gauss projections. Leakage of the strongly
populated HG0 mode of the symmetric channel towards odd
projections, upon mixing the channels as in (17), degrades the
information carried by the weaker odd modes (and, in partic-
ular, the mode HG1) of the antisymmetric channel. However,
even with these imperfections, we are still much below the
intensity-only CRB.

Finally, in Fig. 4 we show the same errors for fully coherent
superposition both per single total detection and per single
detection in the antisymmetric (ψa) channel. The informa-
tion carried by one such copy seemingly diverges at τ → 0
and violates the incoherent quantum CRB (QCRLB) (brown
squares). However, a proper resource counting, in this case
the total single counts, leads to the correct quantum-limited
estimation error (purple circles). This is another way of ex-
pressing our previous statement that coherence acts as an
information sorter condensing information about separation
in the dark antisymmetric channel.

IV. CONCLUDING REMARKS

By resorting to mode-selective measurements, sub-pulse-
width separations can be estimated with quantum-limited
precision for a full range of temporal coherence. Seemingly,
coherence by itself does not provide a direct metrological
advantage in time resolution; incoherent superpositions set the
ultimate limits in all cases.

However, we stress that coherence can be exploited as
an information sorter, distributing information about different
parameters into different channels. In our case, for small-time
delays, all information is accessible from vanishing intensity
in the antisymmetric channel while the bulk of the intensity
goes into the symmetric channel, left available for measure-
ments of other relevant physical parameters.
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