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Complex counterpart of variance in quantum measurements for pre- and postselected systems
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The variance of an observable in a preselected quantum system, which is always real and non-negative, appears
as an increase in the probe wave packet width in indirect measurements. Extending this framework to pre- and
postselected systems, we formulate a complex-valued counterpart of the variance called “weak variance.” In
our formulation, the real and imaginary parts of the weak variance appear as changes in the probe wave packet
width in the vertical-horizontal and diagonal-antidiagonal directions, respectively, on the quadrature phase plane.
Using an optical system, we experimentally demonstrate these changes in the probe wave packet width caused
by the real negative and purely imaginary weak variances. Furthermore, we show that the weak variance can be
expressed as the variance of the weak-valued probability distribution in pre- and postselected systems. These
operational and statistical interpretations support the rationality of formulating the weak variance as a complex
counterpart of the variance in pre- and postselected systems.
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I. INTRODUCTION

The outcomes of quantum measurements show probabilis-
tic behavior. This characteristic, which is not observed in
classical systems, has been the root of many fundamental ar-
guments in quantum theory [1]. In the quantum measurement
of an observable Â, the probabilistic behavior of its mea-
surement outcomes is characterized by measurement statistics
such as expectation value 〈Â〉 and variance σ 2(Â). These
values are generally measured using an indirect measure-
ment method [2]. In indirect measurements, the target system
to be measured is coupled with an external probe system
through von Neumann interaction. Regardless of the coupling
strength, the expectation value 〈Â〉 and variance σ 2(Â) in the
target system are obtained from the displacement of the probe
wave packet and the increase in its width, respectively. In
other words, the probe wave packet in an indirect measure-
ment serves as the interface that displays the probabilistic
characteristics of the target system.

Interestingly, when the target system is further postse-
lected, the displacement of the probe wave packet differs
from 〈Â〉. In particular, when the coupling strength is weak
(weak measurement setup), the probe displacement is given
by Re〈Â〉w, where 〈Â〉w := 〈f|Â|i〉/〈f|i〉 in the pre- and post-
selected system {|i〉, |f〉} is called weak value [3]. 〈Â〉w is
complex in general and can exceed the spectral range of Â.
By regarding the weak value as a complex counterpart of the
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expectation value in the pre- and postselected system, new
approaches to fundamental problems in quantum mechanics
involving pre- and postselection have been investigated, such
as various quantum paradoxes [4–10], understanding of the
violation of Bell’s inequality using negative probabilities [11],
the relationship between disturbance and complementarity in
quantum measurements [12–14], verification of the uncer-
tainty relations [15–17], observation of Bohmian trajectories
[18,19], and demonstration of the violation of macrorealism
[20,21].

Similar to the relation between the weak value and expec-
tation value, does there exist a counterpart of the variance in
pre- and postselected systems? To answer this question, we
consider the function of the probe wave packet in indirect
measurement as an interface that displays the characteristics
of the target system. As mentioned earlier, the variance σ 2(Â)
in a preselected system manifests as an increase in the probe
wave packet width in indirect measurement, and owing to the
non-negativity of the variance, the wave packet width never
decreases. However, for pre- and postselected systems, any
counterparts of the variance cannot be observed in the typical
framework of the weak measurement [3], in which the probe
wave packet width does not change because the second- and
higher order terms of the coupling strength are ignored. Here,
we focus on the recent studies reporting that when considering
the second- and higher order terms of the coupling strength,
the probe wave packet width can not only increase but also
decrease under appropriate pre- and postselection conditions
[22,23]. If these reported phenomena are interpreted to result
from a counterpart of the variance in pre- and postselected sys-
tems, it may be possible to formulate an effective variancelike
quantity that can be negative.

In this study, we investigate the general changes in the
width of the probe wave packet during indirect measure-
ments of pre- and postselected systems. We then formulate a
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counterpart of the variance in these systems. This counterpart,
denoted here as weak variance, can indeed be negative and
manifests as the decrease in the probe wave packet width.
Moreover, the weak variance is generally complex and can
be understood by observing the changes in the probe wave
packet width on the quadrature phase plane. To demonstrate
this phenomenon, we conducted an optical experiment for
observing the changes in the beam packet width in proportion
to the real and imaginary parts of the complex weak variance.
In addition, to clarify the concept of weak variance, we ex-
press the weak variance as the second-order moment of the
weak-valued probability distribution [4–13,24–26], which is a
quasiprobability distribution in pre- and postselected systems.
Based on the agreement between the operational and statis-
tical interpretations, our weak variance can be considered a
more reasonable definition of a complex counterpart of the
variance in pre- and postselected systems than previous for-
mulations [27–39]. Furthermore, we formulate a counterpart
of the higher order moment and investigate its operational and
statistical meanings and applications.

II. WEAK VARIANCE APPEARING IN INDIRECT
MEASUREMENT FOR PRE- AND POSTSELECTED

SYSTEMS

The indirect measurements have been made with a Gaus-
sian probe as shown in Figs. 1(a) and 1(d). After reviewing
these measurements, we explain the appearance of a com-
plex weak variance in the pre- and postselected system. The
target system to be measured and the probe system are pre-
selected in states |i〉 and |φ〉, respectively. The initial probe
state |φ〉 can be expanded as |φ〉 = ∫∞

−∞ dXφ(X )|X 〉, where
the wave function φ(X ) is the Gaussian distribution φ(X ) =
π−1/4 exp(−X 2/2) and X is a dimensionless variable.1 The
observable of the dimensionless position X̂ can be spectrally
decomposed as X̂ = ∫∞

−∞ dXX |X 〉〈X |. The time evolution by
the interaction Hamiltonian Â ⊗ K̂ is represented by the uni-
tary operator Û (θ ) = exp(−iθ Â ⊗ K̂ ), where Â = ∑

j a jΠ̂ j

is the observable to be measured in the target system, a j is
an eigenvalue of Â, Π̂ j is the projector onto the eigenspace
of Â belonging to eigenvalue a j , K̂ is the canonical conjugate
observable of X̂ satisfying [X̂ , K̂] = i1̂, and θ is a parameter
with the reciprocal dimension of Â. The coupling strength is
characterized by θ‖Â‖, where ‖Â‖ is the largest eigenvalue
of Â: if θ‖Â‖ � 1 (� 1), the coupling is considered strong
(weak).

Let us consider an indirect measurement of the observable
Â, as shown in Fig. 1(a). Suppose that measurement X̂ in the
probe system is made to the state after the interaction, |�〉 :=
exp(−iθ Â ⊗ K̂ )|i〉|φ〉. The probability distribution P(X ) of
obtaining the result X is

P(X ) = |〈X |�〉|2 =
∑

j

p j |φ(X − θa j )|2, (1)

1The dimensionless variable X is obtained by dividing the posi-
tion variable x by the standard deviation σ of the wave function
π−1/4σ−1/2 exp[−x2/(2σ 2)].

system

Probe

P
ro

ba
bi

lit
y 

de
ns

ity

Variance

(a)

(b)

(c)

(d)

P
ro

ba
bi

lit
y 

de
ns

ity

P
ro

ba
bi

lit
y 

de
ns

ity
P

ro
ba

bi
lit

y 
de

ns
ity

Variance

Variance

Variance

Strong condition

Weak condition

(e)

P
ro

ba
bi

lit
y 

de
ns

ity

P
ro

ba
bi

lit
y 

de
ns

ity

Variance

Weak measurement

Target

system

system

Probe

Target

system

Variance

: Postselection

FIG. 1. (a) Quantum circuit of indirect measurements of the pre-
selected system |i〉. (b) Change in the probe wave packet caused by
interactions in the quantum circuit (a) under the strong coupling con-
dition (θ‖Â‖ � 1). The distribution of probe wave packets after the
interaction reproduces the probability distribution of the outcomes
of projective measurements of Â in |i〉. (c) Change in the probe wave
packet under the weak coupling condition (θ‖Â‖ � 1), where the
horizontal axis has been rescaled from that of (b). The variance of
the probe wave packet after the interaction increases in proportion
to the variance σ 2(Â) and never decreases. (d) Quantum circuit of
indirect measurements of the pre- and postselected system {|i〉, |f〉}
(weak measurement setup). (e) Change in the probe wave packet
in the weak measurement circuit (d). The real part of the weak
variance appears in the variance change of the probe wave packet
after the postselection. Unlike the preselected system (c), the pre- and
postselected system admits a narrowed variance of the probe wave
packet when the real part of the weak variance becomes negative.

where p j := 〈i|Π̂ j |i〉 is the projection probability of |i〉 onto
Π̂ j . If the coupling is strong (θ‖Â‖ � 1), the wave packet
|φ(X − θa j )|2 for each j is well separated from other wave
packets, and P(X ) reproduces the probability distribution
{pj} j [Fig. 1(b)]. However, if the coupling is weak (θ‖Â‖ �
1), the wave packets overlap and P(X ) does not reproduce
{p j} j [Fig. 1(c)]. Nevertheless, regardless of the coupling
strength, the statistics of Â in the target system |i〉, such as
the expectation value 〈Â〉 and the variance σ 2(Â), can be
acquired from the changes in the probe distribution P(X ). The
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expectation value and variance of X in P(X ) are respectively
expressed as

〈X̂ 〉f = 〈X̂ 〉i + θ〈Â〉, σ 2
f (X̂ ) = σ 2

i (X̂ ) + θ2σ 2(Â), (2)

where 〈X̂ 〉i and σ 2
i (X̂ ) are the expectation value and variance

of X̂ in the initial probe state |φ〉, respectively. In this case,
〈X̂ 〉i = 0 and σ 2

i (X̂ ) = 1/2. Therefore the expectation value
〈Â〉 and variance σ 2(Â) can be measured under both strong
and weak coupling conditions. Here, we stress that after the
interaction, the variance of the probe wave packet σ 2

f (X̂ ) never
decreases because the variance σ 2(Â) is non-negative.

We next consider that the target system is pre- and post-
selected in states |i〉 and |f〉, respectively [Fig. 1(d)]. The
non-normalized state of the probe system after the postselec-
tion |φ̃f〉 := 〈f|�〉 is represented as

|φ̃f〉 = 〈f|i〉
(

1̂ − iθ〈Â〉wK̂ − θ2

2
〈Â2〉wK̂2

)
|φ〉 + O(θ3). (3)

The expectation value of X̂ in the non-normalized state |φ̃f〉 is
〈X̂ 〉f = 〈φ̃f |X̂ |φ̃f〉/〈φ̃f |φ̃f〉 = Re〈Â〉wθ + O(θ3). The real part
of the weak value 〈Â〉w = 〈f|Â|i〉/〈f|i〉 appears in the dis-
placement of the probe wave packet, as previously reported
for weak measurements [3]. The imaginary part of the weak
value is observed in the displacement of the probe wave packet
in the K̂ basis: 〈K̂〉f = Im〈Â〉wθ + O(θ3) [40]. By introduc-
ing the generalized position operator M̂ := X̂ cos α + K̂ sin α

(α ∈ [0, 2π )), these relations can be summarized as

〈M̂〉f = (cos α Re〈Â〉w + sin α Im〈Â〉w)θ + O(θ3). (4)

The real and imaginary parts of the weak value are also ob-
tained by setting the interaction Hamiltonian to Â ⊗ M̂ and
measuring the expectation values of X̂ and K̂ for the postse-
lected probe state [41].

Now let us examine the change in the probe wave packet
width. The variance of X̂ for |φ̃f〉 is calculated as

σ 2
f (X̂ ) = 〈X̂ 2〉f − 〈X̂ 〉2

f

= σ 2
i (X̂ ) + 1

2 Re
(〈Â2〉w − 〈Â〉2

w

)
θ2 + O(θ3). (5)

The real part of the variancelike quantity appears in the
quadratic term of θ , which is ignored in the conventional weak
measurement context. We define this quantity as the weak
variance σ 2

w(Â) of Â:

σ 2
w(Â) := 〈Â2〉w − 〈Â〉2

w. (6)

The real part of the weak variance is similar to normal vari-
ance in that it appears as a change in the probe wave packet
width in the X̂ basis [Eq. (2)]. However, unlike the normal
variance, the weak variance can be negative, in which case
the wave packet width then decreases as shown in Fig. 1(e).
The decrease in the probe wave packet width reported in
previous studies [22,23] can be reinterpreted as the effect of
the negative weak variance.

We next consider the appearance of the imaginary part of
the weak variance. The variance of the generalized position
operator M̂ for |φ̃f〉 is calculated as (see Appendix A for a
detailed analysis of mixed pre- and postselected states of the

(a) (b)
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0.3

FIG. 2. Wigner functions of the normalized probe states after
postselection, |φ̃f〉/‖|φ̃f〉‖, assuming 〈Â〉w = 0 and neglecting O(θ3)
in Eq. (3). The horizontal and vertical axes represent the observables
X̂ and K̂ , respectively, and the 45◦ and 135◦ axes represent the
observables �̂ and Ξ̂ , respectively. (a) When Reσ 2

w(Â)θ2 = 0.5 and
Imσ 2

w(Â)θ2 = 0, the wave packet spreads along the X axis and nar-
rows along the K axis. (b) When Reσ 2

w(Â)θ2 = 0 and Imσ 2
w(Â)θ2 =

0.5, the wave packet spreads along the � axis and narrows along the
Ξ axis.

target system)

σ 2
f (M̂ ) = 1

2 + 1
2 [cos(2α)Reσ 2

w(Â) + sin(2α)Imσ 2
w(Â)]θ2

+ O(θ3). (7)

This equation indicates that the real and imaginary parts of the
weak variance appear in the changes in the probe wave packet
width in different measurement bases. For example, when
choosing M̂ = K̂ (α = π/2), the variance of K̂ in state |φ̃f〉 is
given as σ 2

f (K̂ ) = σ 2
i (K̂ ) − (1/2)Reσ 2

w(Â)θ2 + O(θ3); that is,
Reσ 2

w(Â) also appears in the width change of the wave packet
in the K̂ basis. To clarify these relations, we plot them on the
quadrature phase plane [Fig. 2(a)]. When Reσ 2

w(Â) > 0, the
wave packet spreads along the X (horizontal) axis, while it
narrows along the K (vertical) axis. This relationship satisfies
the Kennard-Robertson uncertainty relation [42,43] up to the
quadratic of θ : σ 2

f (X̂ )σ 2
f (K̂ ) = 1/4 + O(θ3).

However, when α = π/4, the measured observable be-
comes M̂ = (X̂ + K̂ )/

√
2 =: �̂, which corresponds to the

45◦ axis in the quadrature phase plane of Fig. 2. Through
the relation σ 2

f (�̂) = σ 2
i (�̂) + (1/2)Imσ 2

w(Â)θ2 + O(θ3), the
imaginary part of the weak variance Imσ 2

w(Â) can be ob-
served as the change in the probe wave packet width in
the �̂ basis. Moreover, when α = 3π/4, the measured ob-
servable becomes M̂ = (−X̂ + K̂ )/

√
2 =: Ξ̂ , which is the

canonical conjugate of �̂. This observable satisfies [�̂, Ξ̂ ] =
i1̂ and corresponds to the 135◦ axis in the quadrature phase
plane of Fig. 2. Through the relation σ 2

f (Ξ̂ ) = σ 2
i (Ξ̂ ) −

(1/2)Imσ 2
w(Â)θ2 + O(θ3), Imσ 2

w(Â) also appears in the width
change of the wave packet in the Ξ̂ basis. These relations are
represented on the quadrature phase plane in Fig. 2(b). When
Imσ 2

w(Â) > 0, the wave packet spreads along the � (45◦) axis,
while it narrows along the Ξ (135◦) axis. This relationship
also satisfies the Kennard-Robertson uncertainty relation up
to the quadratic of θ : σ 2

f (�̂)σ 2
f (Ξ̂ ) = 1/4 + O(θ3).

We note that our formalism of the weak variance is recon-
ciled with the claim by Vaidman et al. [44] that the weak value
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Preselection

Postselection
Weak 

interaction

FIG. 3. Experimental setup for observing weak variances. GTP:
Glan-Thompson prism; HWP: half-wave plate; QWP: quarter-wave
plate; SP: Savart plate; CCD: charge-coupled device. (a) Experi-
mental setup for measuring the probe system in the X̂ basis. In the
preselection, the HWP and two QWPs are used to prepare the weak
variance to be (i) negative real and (ii) positive purely imaginary,
respectively. [(b), (c), and (d)] Experimental setups for measuring the
probe system in the �̂, K̂ , and Ξ̂ bases, respectively. The lens (focal
length f = 1 m) and free-space propagation perform a fractional
Fourier transform on the transverse distribution of the beam.

is a robust property of the system and, unlike an expectation
value, is not a statistical property. This can be understood
by considering the changes in the probe wave packet on the
quadrature phase plane. Considering up to the first order of
θ , the probe wave packet after the postselection is displaced
by (θRe〈Â〉w, θ Im〈Â〉w), but its shape is unchanged. The
probe wave packet remains a pure state and can be specified
with one complex parameter, the weak value. In this sense,
the weak value is not statistical and is a robust property of
the system like the eigenvalue. Considering up to the quadra-
ture of θ , the probe wave packet is squeezed/antisqueezed
in the direction specified by the weak variance, as explained
above. The probe wave packet remains a pure state while its
shape changes; therefore, the weak variance does not rep-
resent the statistical nature of the probabilistic mixture of
probe wave packets and hence is consistent with the claim of
Vaidman et al. Considering higher orders of θ , the probe wave
packet undergoes a non-Gaussian transformation specified by
the higher order weak moments 〈Ân〉w, as described at the end
of this paper.

III. EXPERIMENTAL DEMONSTRATION
OF WEAK VARIANCES

To verify the effects of the weak variance, we experi-
mentally observed the weak variance in the optical system
shown in Fig. 3. In this setup, the target and probe sys-
tems were the polarization and transverse spatial modes,
respectively, of the laser beam with a central wavelength
of 780 nm (Menlo Systems C-fiber 780). The polarization
mode was a two-state system spanned by (for example)
the horizontal-vertical polarization basis {|H〉, |V〉} or the

diagonal (45◦)-antidiagonal (135◦) polarization basis {|D〉 :=
(|H〉 + |V〉)/

√
2, |A〉 := (|H〉 − |V〉)/

√
2}. The pre- and post-

selection {|i〉, |f〉} in the polarization mode was prepared
using Glan-Thompson prisms (GTPs), a half-wave plate
(HWP), and quarter-wave plates (QWPs). The initial trans-
verse distribution of the beam’s amplitude was prepared as
a Gaussian distribution φ(X ) = π−1/4 exp(−X 2/2), where
X is the dimensionless position variable normalized by the
standard deviation of this distribution. The weak interac-
tion exp(−iθ Â ⊗ K̂ ) was implemented using a Savart plate
(SP), which comprises two orthogonal birefringent crystals
(β-BaB2O4, 1-mm thickness). In our setup, Â was cho-
sen as Â = |D〉〈D| − |A〉〈A| and the SP transversely shifted
the diagonally (antidiagonally) polarized beam by a dis-
tance of θ (−θ ). The probe system was finally measured
in the X̂ , �̂, K̂ , and Ξ̂ bases. In the X̂ basis, the trans-
verse intensity distribution of the beam was measured using
a charge-coupled device (CCD) camera (Teledyne Princeton
Instruments ProEM-HS:512BX3), as shown in Fig. 3(a). The
intensity measurements in the �̂, K̂ , and Ξ̂ bases were imple-
mented by fractional Fourier transforming (see Appendix B
for details) the beam distribution using a lens (focal length
f = 1 m) before X̂ measurement using the CCD camera, as
shown in Figs. 3(b)–3(d).

To independently verify the effects of the real and imag-
inary parts of the weak variance, we chose the pre- and
postselected polarization states {|i〉, |f〉} giving (i) negative
real and (ii) positive purely imaginary weak variances. The
preselected state |i〉 in case (i) was prepared by rotating the
fast axis of the HWP through angle ϑH from the vertical
direction and passing the vertically polarized beam through
the rotated HWP. The output state became |i〉 = cos(2ϑH −
π/4)|D〉 + sin(2ϑH − π/4)|A〉. The postselected state was
fixed at |f〉 = |H〉. The weak value and weak variance respec-
tively became the following real numbers:

〈Â〉w = cos(2ϑH)

sin(2ϑH)
, σ 2

w(Â) = − cos(4ϑH)

sin2(2ϑH)
. (8)

The preselected state |i〉 in case (ii) was prepared by rotating
the fast axis of QWP1 through angle ϑQ from the vertical
direction and passing the vertically polarized beam through
the rotated QWP1 and QWP2 (whose fast axis was fixed in the
vertical direction). The output state became |i〉 = cos(ϑQ −
π/4)|D〉 + e−i2ϑQ sin(ϑQ − π/4)|A〉. The postselected state
was fixed at |f〉 = |H〉, as in case (i). The weak variance
became the following purely imaginary number:

σ 2
w(Â) = 2i

cos(2ϑQ)

sin2(2ϑQ)
. (9)

First, we observed the weak value in the transverse dis-
placement of the beam’s intensity distribution. Figure 4 plots
the measured displacement of the mean of the beam’s in-
tensity distribution in the X̂ basis, given by �〈X̂ 〉 := 〈X̂ 〉f −
〈X̂ 〉i, as a function of ϑH in case (i). When ϑH is small,
the pre- and postselected states are nearly orthogonal and
�〈X̂ 〉 becomes large. The theoretical curve of �〈X̂ 〉 (blue
solid curve in Fig. 4) was fitted to the measured values.
The fitting parameters were the coupling strength θ , visi-
bility V , and the technical error of the rotation angle of
HWP Δ ∈ [−0.5◦, 0.5◦] (for details, see Appendix C). From
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FIG. 4. Measurement results of �〈X̂ 〉 in case (i) negative real weak variance. The solid blue curve is the theoretical fitting to the measured
data (blue dots), and the red-dashed curve plots the theoretical weak value Re〈Â〉wθ (θ = 3.62 × 10−2) vs ϑH. Insets show the intensity
distributions of the beam for several values of ϑH. When ϑH is close to zero, the O(θ3) term in Eq. (4) dominates and the distribution differs
from a Gaussian one.

the fitting, we determined θ = 3.62 × 10−2, V = 1.00, Δ =
(1.57 × 10−3)◦. The weak value Re〈Â〉wθ (θ = 3.62 × 10−2)
versus ϑH is also plotted in Fig. 4 (red-dashed curve). Most
of the measured values were consistent with the theoretical
curve, verifying the measurements of the weak values.

We then observed the weak variance, which manifests as
the changing variance of the beam’s intensity distribution.
Here �σ 2(M̂ ) := [σ 2

f (M̂ ) − σ 2
i (M̂ )]/σ 2

i (M̂ ) denotes the rate
of variance change of the beam’s intensity distribution from
its initial value in the M̂ = X̂ cos α + K̂ sin α basis. Figure 5
plots the measured �σ 2(M̂ ) (M̂ = X̂ , �̂, K̂, Ξ̂ ) as functions
of ϑH and ϑQ in cases (i) and (ii), respectively. When ϑH and
ϑQ were small, the pre- and postselected states were close to
orthogonal and the variance changes were large. The theoreti-
cal curves of �σ 2(M̂ ) (blue solid curves in Fig. 5) were fitted
to the measured values using θ , V , Δ, and the intensity of the
background light N as fitting parameters (due to the visibility
V being less than unity and the nonzero background noise N ,
�σ 2(M̂ ) differs slightly from the ideal weak variance even in
the limit of θ → 0; see Appendix C for details). The theoret-
ical weak variances [cos(2α)Reσ 2

w(Â) + sin(2α)Imσ 2
w(Â)]θ2

(red-dashed curves) are also plotted as functions of ϑH or ϑQ

in Fig. 5. Again, most of the measured values were consis-
tent with the theoretical curves. In case (i), �σ 2(X̂ ) became
negative because the weak variance was a negative real value;
correspondingly, the �σ 2(K̂ ) increased. However, �σ 2(�̂)
and �σ 2(Ξ̂ ) remained almost zero because the imaginary part
of the weak variance was zero. In case (ii), where the weak
variance was positive and purely imaginary, �σ 2(�̂) and
�σ 2(Ξ̂ ) became positive and negative, respectively. How-
ever, �σ 2(X̂ ) and �σ 2(K̂ ) remained almost zero. Thus the
real and imaginary parts of the weak variance appeared as

width changes of the wave packet, in accordance with our
theory.

IV. WEAK VARIANCE AS A STATISTIC OF THE
WEAK-VALUED PROBABILITY DISTRIBUTION

In this section, we interpret the weak variance as a statistic
of the weak-valued probability distribution, which is a pseu-
doprobability distribution in the pre- and postselected system.
This relation is similar to that the variance is expressed as
a statistic of the probability distribution in the preselected
system. This statistical interpretation of the weak variance,
together with the operational interpretation described above,
rationalizes the definition of the weak variance as a counter-
part of the variance in pre- and postselected systems.

We define the weak-valued probability pw j := 〈Π̂ j〉w as
the weak value of each element of the set of projection opera-
tors {Π̂ j} j that satisfy the completeness condition

∑
j Π̂ j = 1̂

[Fig. 6]. Weak-valued probabilities can be any complex num-
ber outside [0,1], but their sum for all j is unity:

∑
j pw j =

1. By regarding the weak-valued probability as a quantity
corresponding to the probability of finding a pre- and post-
selected particle in the eigenspace Π̂ j between the pre- and
postselection, researchers have found a probabilistic approach
to fundamental problems in quantum mechanics [4–10].
Because of their negativity and nonreality, weak-valued prob-
abilities have played an essential role in studies such as
the investigation of the relationship between disturbance and
complementarity in quantum measurements [12,13], the ex-
planation of the violation of Bell inequality using negative
probabilities [11], quantum enhancement of the phase esti-
mation sensitivity via postselection [24], and understanding
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FIG. 5. Measurement results of �σ 2(M̂ ) in the cases of (i) neg-
ative real weak variance and (ii) purely imaginary weak variance. In
(a), (b), (c), and (d), the measurement bases were X̂ , �̂, K̂ , and Ξ̂ ,
respectively. The solid blue lines are the theoretical fittings to the
measured data (blue dots), and the red-dashed curves plot the theo-
retical weak variance [cos(2α)Reσ 2

w(Â) + sin(2α)Imσ 2
w(Â)]θ2 vs ϑH

or ϑQ (the θs were obtained by fitting the blue solid lines to the data).
When ϑH and ϑQ approach zero, the O(θ3) term in Eq. (7) dominates
and the measured data notably deviate from the red-dashed lines.

out-of-time-order correlators as witnesses of quantum scram-
bling [25,26].
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(a) Pre-selected system (b) Pre- and post-selected system

FIG. 6. (a) Probability distribution of the projective measure-
ment of Â in a preselected system, with an expectation value and
variance of 〈Â〉 and σ 2(Â), respectively. (b) Weak-valued probability
distribution of the observable Â in pre- and postselected systems.
The weak-valued probabilities pw j are complex and expressed on
the complex plane. 〈Â〉w and σ 2

w(Â) are also complex but cannot be
depicted on this graph.

The weak value 〈Â〉w and weak variance σ 2
w(Â) of ob-

servable Â = ∑
j a jΠ̂ j can be expressed in terms of the

weak-valued probabilities {pw j} j as follows:

〈Â〉w =
∑

j

a j pw j, (10)

σ 2
w(Â) =

∑
j

(a j − 〈Â〉w)2 pw j

=
∑

j

|a j − 〈Â〉w|2 pw j, (11)

where the second equation in Eq. (11) holds when Â
is Hermitian. These expressions are similar to those of
the expectation value 〈Â〉 = ∑

j a j p j and variance σ 2(Â) =∑
j (a j − 〈Â〉)2 p j , respectively, obtained using probability

distribution {pj} j . In this sense, the weak value and weak
variance can be regarded as the expectation value and vari-
ance of a weak-valued probability distribution, respectively.
In addition, as the weak-valued probability represents the con-
ditional pseudoprobability of the Kirkwood-Dirac distribution
[45,46], the weak value and weak variance are also regarded as
the conditional pseudoexpectation value and conditional pseu-
dovariance of the Kirkwood-Dirac distribution, respectively
(see Appendix D for details). Furthermore, the weak value and
weak variance satisfy the equations similar to the laws of total
expectation and total variance, respectively:

〈Â〉 = 〈i|Â|i〉 =
∑

j

|〈f j |i〉|2〈Â〉w j, (12)

σ 2(Â) =
∑

j

|〈f j |i〉|2σ 2
w j (Â) +

∑
j

|〈f j |i〉|2
(〈Â〉w j − 〈Â〉)2

,

(13)

where 〈Â〉w j := 〈f j |Â|i〉/〈f j |i〉 and σ 2
w j (Â) := 〈Â2〉w j − 〈Â〉2

w j .
Thus far, several definitions of the quantity corresponding

to the variance in pre- and postselected systems have been
considered. Examples are the weak variance expressed by
Eq. (6) [27–31], its absolute value [32,33], its real part [34,39],
and other forms [35–38]. The measurement method (indirect
measurement) and statistical expression (a weak-valued prob-
ability distribution) of our proposed weak variance are similar
to those of the conventional variance. Therefore the weak
variance defined by Eq. (6) can be regarded as a reasonable
counterpart of the variance in pre- and postselection systems.

V. CONCLUSION

We introduced the weak variance σ 2
w(Â) as a complex

counterpart of the variance in pre- and postselected systems.
We theoretically showed that the weak variance appears as
the changing width of the probe wave packet during indirect
measurements of pre- and postselected systems and experi-
mentally demonstrated the weak variance in an optical setup.
We also expressed the weak value 〈Â〉w and weak variance
σ 2

w(Â) as statistics of the weak-valued probability distribution
{pw j} j . These operational and statistical interpretations are
similar to the expectation value 〈Â〉 and variance σ 2(Â) in
preselected systems. Therefore our formulation of the weak
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variance can be considered a reasonable definition of a coun-
terpart of the variance in pre- and postselected systems.

Extending the concept of the weak variance, we then de-
fined the nth order weak moment of the observable Â as
〈Ân〉w. The set of weak moments {〈Âk〉w}n

k=1 fully charac-
terizes the weak-valued probability distribution {pw j}n

j=1. A
similar relation exists between the set of moments {〈Âk〉}n

k=1
and the probability distribution {p j}n

j=1. The nth order weak
moment 〈Ân〉w can be experimentally observed in the indirect
measurement setup by including terms up to the n-th order
of θ in Eq. (3). Although the physical meanings of the weak
moment is as elusive as the weak value, the weak moment
may provide a new perspective on fundamental problems in
quantum mechanics. For example, Scully et al.’s claim that
the momentum disturbance associated with which-way mea-
surement in Young’s double-slit experiment can be avoided
[47] has been justified by the negativity of the weak-valued
probabilities corresponding to the momentum disturbance,
which consequently have zero variance [12,13]. These studies
are implicitly based on the weak variance (second-order weak
moment) concept. Similarly, the weak moment is expected
to play an important role in other problems of this type. In
addition, measurement methods other than weak measure-
ments with Gaussian probes—such as weak measurements

using a qubit probe [48] and methods without a probe [49]—
may find new implications for the weak moments.

Finally, as an application of the weak moments 〈Ân〉w,
we propose controlling the probe wave packet by pre- and
postselection of the target system. In several studies, the
probe wave packet was narrowed by appropriate pre- and
postselection of the target system in the weak measurement
setup [22,23,50]. If the higher order weak moments in
the O(θ2) term of Eq. (3) are properly controlled, we can
configure any waveform of the probe (see Appendix E for
details). For example, our method may represent a new
construction method for the realization of the non-Gaussian
states in the quadrature amplitude of light, such as the cat
state [51,52] and the Gottesman-Kitaev-Preskill state [53],
which play important roles in quantum optics.
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APPENDIX A: CHANGE OF PROBE WAVE PACKET IN INDIRECT MEASUREMENTS OF MIXED PRE- AND
POSTSELECTED SYSTEMS

We calculate the expectation value 〈M̂〉f and variance σ 2
f (M̂ ) of the probe wave packet in indirect measurements, when the

pre- and postselected states are mixed states represented by density operators ρ̂i and ρ̂f , respectively. ρ̂i = |i〉〈i| and ρ̂f = |f〉〈f|
corresponds to the case of the pure pre- and postselected states, and ρ̂f = 1̂/d the case of the preselection alone. The time
evolution of the entire state is calculated as

ρ̂i ⊗ |φ〉〈φ| Interaction−−−−−→ exp(−iθ Â ⊗ K̂ )(ρ̂i ⊗ |φ〉〈φ|) exp(iθ Â ⊗ K̂ )

Post-selection−−−−−−−→ trt
[
ρ̂f exp(−iθ Â ⊗ K̂ )(ρ̂i ⊗ |φ〉〈φ|) exp(iθ Â ⊗ K̂ )

]
= tr(ρ̂f ρ̂i )

[|φ〉〈φ| + (− iθ〈Â〉wK̂|φ〉〈φ| − 1
2θ2〈Â2〉wK̂2|φ〉〈φ|)+ H.c. + θ2ÃK̂|φ〉〈φ|K̂]+ O(θ3)

=: ˜̂ρφ, (A1)

where trt denotes the partial trace in the target system and H.c. represents the Hermitian conjugate of the preceding term.
〈Â〉w = tr(ρ̂f Âρ̂i )/tr(ρ̂f ρ̂i ) is the weak value of Â in the pre- and postselected systems represented by density operators ρ̂i and ρ̂f ,
respectively. We now define Ã := tr(ρ̂f Âρ̂iÂ)/tr(ρ̂f ρ̂i ). When ρ̂i and ρ̂f are pure, Ã = |〈Â〉w|2, and when ρ̂f = 1̂/d (a completely
mixed state), Ã = tr(ρ̂iÂ2) = 〈Â2〉.

The expectation value of M̂ for the non-normalized probe state ˜̂ρφ is expressed as 〈M̂〉f = tr( ˜̂ρφM̂ )/tr( ˜̂ρφ ). The numerator
tr( ˜̂ρφM̂ ) is calculated as

tr( ˜̂ρφM̂ ) = tr(ρ̂f ρ̂i )
[〈M̂〉 + (− iθ〈Â〉w〈M̂K̂〉 − 1

2θ2〈Â2〉w〈M̂K̂2〉)+ c.c. + θ2Ã〈K̂M̂K̂〉]+ O(θ3), (A2)

where c.c. represents the complex conjugate of the preceding term. Because the expectation value of the product of odd numbers
of X̂ or K̂ in our Gaussian probe state becomes zero, for M̂ = X̂ cos α + K̂ sin α, the above equation can be reduced to

tr( ˜̂ρφM̂ ) = tr(ρ̂f ρ̂i )
[(−iθ〈Â〉w〈M̂K̂〉)+ c.c.

]+ O(θ3). (A3)

By a similar calculation, the denominator tr( ˜̂ρφ ) is obtained as

tr( ˜̂ρφ ) = tr(ρ̂f ρ̂i )
[
1 + (− 1

2θ2〈Â2〉w〈K̂2〉)+ c.c. + θ2Ã〈K̂2〉]+ O(θ3). (A4)

Therefore the expectation value 〈M̂〉f is expressed as

〈M̂〉f = tr( ˜̂ρφM̂ )

tr( ˜̂ρφ )
= (−iθ〈Â〉w〈M̂K̂〉) + c.c. + O(θ3), (A5)
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where we have used the following formula:

a0 + a1θ + a2θ
2 + O(θ3)

b0 + b1θ + b2θ2 + O(θ3)
= a0

b0
+ a1b0 − a0b1

b2
0

θ + a2b2
0 − a0b0b2 − a1b0b1 + a0b2

1

b3
0

θ2 + O(θ3). (A6)

Because 〈M̂K̂〉 = (i cos α + sin α)/2 in our Gaussian probe state, we obtain a concrete form of 〈M̂〉f as follows:

〈M̂〉f = 1
2θ〈Â〉w(cos α − i sin α) + c.c. + O(θ3) = θ (Re〈Â〉w cos α + Im〈Â〉w sin α) + O(θ3), (A7)

which matches Eq. (4) in the main text.
The variance of M̂ for the non-normalized probe state ˜̂ρφ is expressed as σ 2

f (M̂ ) = 〈M̂2〉f − 〈M̂〉2
f . The first term is calculated

as

〈M̂2〉f = tr( ˜̂ρφM̂2)

tr( ˜̂ρφ )

= 〈M̂2〉 + (− 1
2θ2〈Â2〉w〈M̂2K̂2〉)+ c.c. + θ2Ã〈K̂M̂2K̂〉 + O(θ3)

1 + (− 1
2θ2〈Â2〉w〈K̂2〉)+ c.c. + θ2Ã〈K̂2〉 + O(θ3)

= 〈M̂2〉 +
(

−1

2
θ2〈Â2〉w〈M̂2K̂2〉

)
+ c.c. + θ2Ã〈K̂M̂2K̂〉 + 〈M̂2〉

(
1

2
θ2〈Â2〉w〈K̂2〉 + c.c. − θ2Ã〈K̂2〉

)
+ O(θ3). (A8)

Because the following equations hold for our Gaussian probe state:

〈M̂2〉 = 〈K̂2〉 = 1
2 , 〈M̂2K̂〉 = 1

4 − 1
2 [cos(2α) − i sin(2α)], and 〈K̂M̂2K̂〉 = 3

4 , (A9)

we obtain the following expression:

〈M̂2〉f = tr( ˜̂ρφM̂2)

tr( ˜̂ρφ )
= 1

2
+ 1

2
θ2 cos(2α)Re〈Â2〉w + 1

2
θ2 sin(2α)Im〈Â2〉w + 1

2
θ2Ã + O(θ3). (A10)

The second term 〈M̂〉2
f is calculated using Eq. (A7) as

〈M̂〉2
f = 1

2θ2[(Re〈Â〉w)2 − (Im〈Â〉w)2] cos(2α) + θ2Re〈Â〉wIm〈Â〉w sin(2α) + 1
2θ2|〈Â〉w|2 + O(θ3). (A11)

Therefore we obtain the concrete form of σ 2
f (M̂ ) as

σ 2
f (M̂ ) = 〈M̂2〉f − 〈M̂〉2

f

= 1
2 + 1

2θ2 cos(2α)[Re〈Â2〉w − (Re〈Â〉w)2 + (Im〈Â〉w)2]

+ 1
2θ2 sin(2α)[Im〈Â2〉w − 2Re〈Â〉wIm〈Â〉w] + 1

2θ2(Ã − |〈Â〉w|2) + O(θ3)

= 1
2 + 1

2θ2 cos(2α)Reσ 2
w(Â) + 1

2θ2 sin(2α)Imσ 2
w(Â) + 1

2θ2(Ã − |〈Â〉w|2) + O(θ3), (A12)

where we have used the following formulas:

Reσ 2
w(Â) = Re〈Â2〉w − (Re〈Â〉w)2 + (Im〈Â〉w)2, (A13)

Imσ 2
w(Â) = Im〈Â2〉w − 2Re〈Â〉wIm〈Â〉w. (A14)

In particular, when ρ̂i and ρ̂f are pure, Ã = |〈Â〉w|2, so Eq. (A12) matches Eq. (7) in the main text. However, when ρ̂f = 1̂/d
(preselection only), Ã = 〈Â2〉, 〈Â〉w = 〈Â〉, and σ 2

w(Â) = σ 2(Â) ∈ R; therefore, we have

σ 2
f (M̂ ) = 1

2 + 1
2θ2 cos(2α)σ 2(Â) + 1

2θ2σ 2(Â) + O(θ3). (A15)

When α = 0, we obtain

σ 2
f (M̂ ) = σ 2

f (X̂ ) = 1
2 + θ2σ 2(Â) + O(θ3), (A16)

which equals σ 2
f (X̂ ) in Eq. (2) of the main text but without the O(θ3) term (which vanishes in the full-order expansion in this

case). Note that if the probe state is not a Gaussian wave packet, the expectation value and variance of M̂ for the probe wave
packet after the postselection will differ from Eqs. (A7) and (A12), respectively.
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APPENDIX B: FRACTIONAL FOURIER TRANSFORM AND ITS OPTICAL REALIZATION

1. Definition of fractional Fourier transform

For any real number α, the α-angle fractional Fourier transform of a function φ is defined as

Fα[φ](ω) :=
√

1 − i cot(α)

2π

∫ ∞

−∞
dxφ(x) exp

[
i

(
cot(α)ω2 − 2 csc(α)ωx + cot(α)x2

2

)]
, (B1)

where x and ω are dimensionless variables, cot(α) = 1/ tan(α), and csc(α) = 1/ sin(α). After transforming function φ0 by Fα ,
we obtain a new function φα . When α = π/2, Fα reduces to the standard Fourier transform F

Fπ/2[φ0](ω) = φπ/2(ω) = 1√
2π

∫ ∞

−∞
dxφ0(x)e−iωx = F[φ0](ω). (B2)

The fractional Fourier transforms with α = ±π/4 and α = ±3π/4 are respectively expressed as

F±π/4[φ0](ω) = φ±π/4(ω) =
√

1 ∓ i

2π

∫ ∞

−∞
dxφ0(x) exp

[
±i

(
ω2 − 2

√
2ωx + x2

2

)]
, (B3)

F±3π/4[φ0](ω) = φ±3π/4(ω) =
√

1 ± i

2π

∫ ∞

−∞
dxφ0(x) exp

[
∓i

(
ω2 + 2

√
2ωx + x2

2

)]
. (B4)

We call F±π/4 and F±3π/4 the ±1/2- and ±3/2-Fourier transform, respectively.

2. Relationship between observables X̂ , K̂, �̂, and Ξ̂

The canonical conjugate of an observable X̂ , denoted by K̂ , satisfies the canonical commutation relation [X̂ , K̂] = i1̂. X̂ and
K̂ are spectrally decomposed as follows:

X̂ =
∫ ∞

−∞
dXX |X 〉〈X |, K̂ =

∫ ∞

−∞
dKK|K〉〈K|. (B5)

Their eigenvectors |X 〉 and |K〉 are interrelated through the Fourier transform:

|K〉 = F−π/2[|X 〉](K ) = 1√
2π

∫ ∞

−∞
dX |X 〉eiKX . (B6)

Observables �̂ and Ξ̂ are defined as

�̂ := X̂ + K̂√
2

, Ξ̂ := −X̂ + K̂√
2

. (B7)

They satisfy the canonical commutation relation [�̂, Ξ̂ ] = i1̂. Observables �̂ and Ξ̂ are spectrally decomposed as follows:

�̂ =
∫ ∞

−∞
d��|�〉〈�|, Ξ̂ =

∫ ∞

−∞
dΞΞ |Ξ 〉〈Ξ |. (B8)

The eigenvectors |�〉 and |Ξ 〉 of �̂ and Ξ̂ , respectively, are related to |X 〉 by the −1/2- and −3/2-Fourier transforms,
respectively:

|�〉 = F−π/4[|X 〉](�) =
√

1 + i

2π

∫ ∞

−∞
dX |X 〉 exp

[
−i

(
�2 − 2

√
2�X + X 2

2

)]
, (B9)

|Ξ 〉 = F−3π/4[|X 〉](Ξ ) =
√

1 − i

2π

∫ ∞

−∞
dX |X 〉 exp

[
i

(
Ξ 2 + 2

√
2ΞX + X 2

2

)]
. (B10)

When state |φ〉 is expanded in each basis as |φ〉 = ∫∞
−∞ dXφ0(X )|X 〉 = ∫∞

−∞ d�φπ/4(�)|�〉 = ∫∞
−∞ dKφπ/2(K )|K〉 =∫∞

−∞ dΞφ3π/4(Ξ )|Ξ 〉, the relation between each wave function and basis vector is summarized as

φ0(X )
Fπ/4−−→ φπ/4(�)

Fπ/4−−→ φπ/2(K )
Fπ/4−−→ φ3π/4(Ξ ), (B11)

|X 〉 F−π/4−−−→ |�〉 F−π/4−−−→ |K〉 F−π/4−−−→ |Ξ 〉. (B12)

3. Optical realization of measurement of observables X̂ , K̂, �̂, and Ξ̂

This Appendix describes the optical system for measuring the observables X̂ , K̂ , �̂, and Ξ̂ for a photon beam with a
transverse distribution state |φ〉. To measure the dimensionless transverse-position observable X̂ , we measure the photon’s
transverse position using a photon detector with suitable spatial resolution. To measure K̂ , we optically Fourier-transform
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the photon’s wavefunction φ0(X ) = 〈X |φ〉 and measure the transverse position of the resulting function φπ/2(K ). The optical
Fourier transform is realized by combining a lens passage with free-space propagation. Similarly, �̂ and Ξ̂ can be measured by
optically 1/2- and 3/2-Fourier-transforming φ0(X ) and measuring the transverse positions of the resulting functions φπ/4(�)
and φ3π/4(Ξ ), respectively. In what follows, we derive the optical 1/2- and 3/2-Fourier transform by combining the lens passage
and free-space propagation.

We assume that the beam is propagating in the z direction and define x, k, and kx as the transverse position, total wave number,
and x component of the wave vector, respectively. We apply the paraxial approximation and assume that k does not depend on kx

because kx � k. We then define the dimensionless variables X := xk and Kx := kx/k. Free-space propagation through distance
d is represented in wave-number space by the following transfer function:

H free
D (Kx ) ∝ exp

(
−i

DK2
x

2

)
, (B13)

where D := dk is the dimensionless distance. In position space, free-space propagation is represented by a convolution with the
following function:

hfree
D (X ) ∝

∫ ∞

−∞
dKxH free

D (Kx )eiKxX ∝ exp

(
i
X 2

2D

)
. (B14)

Meanwhile, passage through a lens with focal length f is represented in the position space by the following transfer function:

hlens
F (X ) ∝ exp

(
−i

X 2

2F

)
, (B15)

where F := f k is the dimensionless focal length. In wave-vector space, passage through this lens is represented by a convolution
with the following function:

H lens
F (Kx ) ∝

∫ ∞

−∞
dXhlens

F (X )e−iKxX ∝ exp

(
i
FK2

x

2

)
. (B16)

If a photon with a transverse wave function φ0(X ) sequentially passes through a lens with focal length f , propagates in free
space through distance d , and passes through another lens with focal length f , the resultant wave function is calculated as

φ0(X )
lens f−−−→ φ0(X ) exp

(
−i

X 2

2F

)
(B17)

free-space propagation d−−−−−−−−−−−−→
∫ ∞

−∞
dX ′φ0(X ′) exp

(
−i

X ′2

2F

)
exp

[
i
(X − X ′)2

2D

]
(B18)

lens f−−−→
∫ ∞

−∞
dX ′φ0(X ′) exp

(
−i

X ′2

2F

)
exp

[
i
(X − X ′)2

2D

]
exp

(
−i

X 2

2F

)

=
∫ ∞

−∞
dX ′φ0(X ′) exp

[
i
(F − D)X 2 − 2FXX ′ + (F − D)X ′2

2FD

]
. (B19)

If we choose D = F , we obtain the standard Fourier transform of φ0:

Eq. (B19) =
∫ ∞

−∞
dX ′φ0(X ′) exp

(
i
−XX ′

F

)
∝ Fπ/2[φ0]

(X

F

)
= φπ/2

(X

F

)
. (B20)

After the Fourier transform, the scale of the wave function can be adjusted by adjusting the focal length F . If we choose
D = (1 − 1/

√
2)F , then

Eq. (B19) =
∫ ∞

−∞
dX ′φ0(X ′) exp

[
i
X 2 − 2

√
2XX ′ + X ′2

(2 − √
2)F

]

=
∫ ∞

−∞
dX ′φ0(X ′) exp

⎧⎨
⎩ i

2

⎡
⎣
⎛
⎝ X√

(
√

2 − 1)F

⎞
⎠

2

− 2
√

2

⎛
⎝ X√

(
√

2 − 1)F

⎞
⎠
⎛
⎝ X ′√

(
√

2 − 1)F

⎞
⎠+

⎛
⎝ X ′√

(
√

2 − 1)F

⎞
⎠

2⎤
⎦
⎫⎬
⎭

∝ Fπ/4
[
φ−

0,F

]⎛⎝ X√
(
√

2 − 1)F

⎞
⎠ [

φ−
0,F (X ) := φ0

(
X
√

(
√

2 − 1)F

)]

= φ−
π/4,F

⎛
⎝ X√

(
√

2 − 1)F

⎞
⎠, (B21)
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where φ−
0,F (X ) is a scaled wave function of φ0(X ). In this manner, we obtain the 1/2-Fourier transform of φF,0(X ). Similarly, if

we choose D = (1 + 1/
√

2)F , the 3/2-Fourier transform is obtained as follows:

Eq. (B19) =
∫ ∞

−∞
dX ′φ0(X ′) exp

[
−i

X 2 + 2
√

2XX ′ + X ′2

(2 + √
2)F

]

=
∫ ∞

−∞
dX ′φ0(X ′) exp

⎧⎨
⎩− i

2

⎡
⎣
⎛
⎝ X√

(
√

2+1)F

⎞
⎠

2

+ 2
√

2

⎛
⎝ X√

(
√

2 + 1)F

⎞
⎠
⎛
⎝ X ′√

(
√

2 + 1)F

⎞
⎠+

⎛
⎝ X ′√

(
√

2 + 1)F

⎞
⎠

2⎤
⎦
⎫⎬
⎭

∝ F3π/4
[
φ+

0,F

]⎛⎝ X√
(
√

2 + 1)F

⎞
⎠ [

φ+
0,F (X ) := φ0

(
X
√

(
√

2 + 1)F

)]

= φ−
3π/4,F

⎛
⎝ X√

(
√

2 + 1)F

⎞
⎠, (B22)

where φ+
0,F (X ) is a scaled wave function of φ0(X ).

Note that the second lens, which causes phase modulation in the position space, does not affect the measured intensity
(projection) in the position basis. Therefore, in the experiment (see main text), the intensities of the beam’s transverse distribution
in the X̂ , �̂, K̂ and Ξ̂ bases were measured by inserting only one lens followed by free-space propagation.

APPENDIX C: THEORETICAL DERIVATIONS OF THE EXPECTATION VALUE AND VARIANCE
IN OUR EXPERIMENTAL PROBE SYSTEM

First, we derive the exact formulas of the weak value and weak variance in our experimental setup. In the experiment, we
assumed the preselected state |i〉, postselected state |f〉, and the observable Â as

|i〉 = cos
ϑi

2
|0〉 + eiϕi sin

ϑi

2
|1〉, |f〉 = 1√

2
(|0〉 + |1〉), Â = |0〉〈0| − |1〉〈1|. (C1)

The weak value and weak variance are calculated as

〈Â〉w = cos ϑi − i sin ϑi sin ϕi

1 + sin ϑi cos ϕi
, (C2)

σ 2
w(Â) = 2 sin ϑi(sin ϑi + cos ϕi ) + i sin(2ϑi) sin ϕi

(1 + sin ϑi cos ϕi )2
. (C3)

In our experiment, we used the following values:

ϑi =
{

4ϑH − π/2 [case (i)]
2ϑQ − π/2 [case (ii)] , ϕi =

{
0 [case (i)]
−2ϑQ [case (ii)] . (C4)

Substituting these terms into Eqs. (C2) and (C3), we obtain Eqs. (8) and (9), respectively.
Next, we derive the theoretical curves of the expectation value and variance of the probe wave packet demonstrated in our

experiment. The state of the entire system after the interaction is

exp(−iθ Â ⊗ K̂ )|i〉|φ〉 = cos
ϑi

2
|0〉 exp(−iθ K̂ )|φ〉 + eiϕi sin

ϑi

2
|1〉 exp(iθ K̂ )|φ〉. (C5)

For notational simplicity, we denote the first and second terms on the right-hand side of Eq. (C5) by |Φ0〉 and |Φ1〉, respectively.
Considering the decrease in visibility V ∈ [0, 1], the state of the entire system after the interaction is expressed by the following
density operator:

ρ̂ := |Φ0〉〈Φ0| + |Φ1〉〈Φ1| + V (|Φ0〉〈Φ1| + |Φ1〉〈Φ0|). (C6)

After postselecting the target system onto |f〉, the non-normalized probe state becomes ˜̂ρf := 〈f|ρ̂|f〉. The initial probe
state is assumed as a Gaussian distribution 〈X |φ〉 = φ(X ) = π−1/4 exp(−X 2/2). The expectation value of the observable
M̂ = X̂ cos α + K̂ sin α for ˜̂ρf is calculated as

〈M̂〉f = tr( ˜̂ρfM̂ )

tr( ˜̂ρf )
= θ

cos α cos ϑi + V sin α sin ϑi sin ϕie−θ2

1 + V sin ϑi cos ϕie−θ2 . (C7)
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TABLE I. Results of fitting θ , V , Δ, and N to σ 2
f (M̂ ) (“-” denotes a fixed parameter).

Case (i) Case (ii)

Measurement basis θ V Δ N θ V Δ N

X̂ – – – 2.11 × 10−6 5.56 × 10−2 1.00 0.482◦ 8.21 × 10−7

�̂ 5.96 × 10−2 1.00 0.185◦ 0.00 5.41 × 10−2 1.00 −0.161◦ 0.00
K̂ 4.92 × 10−2 1.00 0.500◦ 0.00 2.34 × 10−2 0.999 −0.456◦ 0.00
Ξ̂ 5.24 × 10−2 0.999 −0.108◦ 0.00 5.39 × 10−2 0.999 0.407◦ 2.49 × 10−6

To obtain the theoretical curve of the expectation value of X̂ in case (i), we substitute Eq. (C4) and α = 0 into Eq. (C7) as

〈X̂ 〉f = θ
sin(4ϑH)

1 − V cos(4ϑH)e−θ2 . (C8)

Here we assume a technical error in the rotation angle of the HWP ϑH Δ ∈ [−0.5◦, 0.5◦] that occurs in the experiment;
accordingly, the fitting function is given as

〈X̂ 〉f = θ
sin[4(ϑH + Δ)]

1 − V cos[4(ϑH + Δ)]e−θ2 . (C9)

Fitting this function to the measured data with θ , V and Δ as the fitting parameters, we obtained θ = 3.62 × 10−2, V = 1.00,
and Δ = 1.57 × 10−3.

Meanwhile, the theoretical variance curve of the observable M̂ for ˜̂ρf , σ 2
f (M̂ ), is calculated as follows. The non-normalized

probability density distribution of the signal ˜̂ρ in the measurement basis M̂ = ∫∞
−∞ dMM|M〉〈M| is given by Isignal(M ) =

〈M| ˜̂ρ|M〉. We now consider the effect of background light on the measured variances. The background light is modeled as
the following rectangular function with intensity N and width 2L:

Ibackground(M ) =
{

N (M ∈ [−L, L])
0 (otherwise), (C10)

where L = 5.6 in our experimental setup. The normalized probability density distribution of the summed background and signal
intensities is given by

Itotal(M ) = Isignal(M ) + Ibackground(M )∫∞
−∞ dM[Isignal(M ) + Ibackground(M )]

. (C11)

Using Itotal(M ), the theoretical curve of σ 2
f (M̂ ) is calculated as follows:

σ 2
f (M̂ ) =

∫ ∞

−∞
M2Itotal(M ) −

[∫ ∞

−∞
MItotal(M )

]2

= 1

2
+ θ2 sin ϑi

{(
cos2 α − V 2 sin2 αe−2θ2)

sin ϑi + Ve−θ2
[cos(2α) cos ϕi + sin(2α) cos ϑi sin ϕi]

}
(1 + V sin ϑi cos ϕie−θ2 + 4LN )2

+ 4LNθ2 cos2 α − Ve−θ2
sin2 α sin ϑi cos ϕi

(1 + V sin ϑi cos ϕie−θ2 + 4LN )2 + 2

3
LN

2L2 − 3

1 + V sin ϑi cos ϕie−θ2 + 4LN
. (C12)

The fitting functions in cases (i) and (ii) are derived by substituting Eq. (C4) into Eq. (C12) and replacing ϑH and ϑQ with
ϑH + Δ and ϑQ + Δ (Δ ∈ [−0.5◦, 0.5◦]), respectively. These functions were fitted to the measured data with θ , V , Δ, and N
as the fitting parameters. The fitting results are summarized in Table I. When fitting the X̂ measurement in case (i), N was the
only fitting parameter. The other parameters were fixed at θ = 3.62 × 10−2, V = 1.00, and Δ = (1.57 × 10−3)◦ because the
experimental settings were unchanged from those of the 〈X̂ 〉f measurements.

APPENDIX D: WEAK VARIANCE AS A CONDITIONAL PSEUDOVARIANCE OF THE KIRKWOOD-DIRAC DISTRIBUTION

We show that the weak values and weak variances can be interpreted as conditional pseudoexpectation values and conditional
pseudovariances of the Kirkwood-Dirac (KD) distribution [45,46], respectively. The ( j, k) component of the KD distribution of
state |i〉 can be expanded in two orthonormal bases {|a j〉} j and {|a′

k〉}k as

D(a j, a′
k|i) := tr(|a j〉〈a j |a′

k〉〈a′
k|i〉〈i|). (D1)

The KD distribution is a joint pseudoprobability distribution representing the quantum state |i〉 and is generally a complex
number. The KD distributions of states with indices j, k sum to unity:

∑
jk D(a j, a′

k|i) = 1. The marginal distribution of the KD
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distribution summed over one index becomes the projection probability distribution of |i〉 in the other basis:∑
j

D(a j, a′
k|i) = |〈a′

k|i〉|2,
∑

k

D(a j, a′
k|i) = |〈a j |i〉|2. (D2)

When we choose |aj〉 = |f〉, the conditional pseudoprobability D(a′
k|i, f) of the KD distribution becomes

D(a′
k|i, f) := D(f, a′

k|i)∑
k D(f, a′

k|i)
= 〈f|a′

k〉〈a′
k|i〉

〈f|i〉 = p′
wk, (D3)

where {p′
wk}k is the weak-valued probability distribution of the pre- and postselection system {|i〉, |f〉} in the orthonormal basis

{|a′
k〉}k . Therefore the weak value 〈Â′〉w and weak variance σ 2

w(Â′) of observable Â′ := ∑
k a′

k|a′
k〉〈a′

k| are represented as the
conditional pseudoexpectation values and conditional pseudovariance of the KD distribution, respectively, as follows:∑

k

a′
kD(a′

k|i, f) =
∑

k

a′
k p′

wk = 〈Â′〉w, (D4)

∑
k

(a′
k − 〈Â′〉w)2D(a′

k|i, f) =
∑

k

(a′
k − 〈Â′〉w)2 p′

wk = σ 2
w(Â′). (D5)

APPENDIX E: CONTROL OF THE PROBE WAVEFUNCTION BY PRE- AND POSTSELECTING THE TARGET SYSTEM

In indirect measurements of pre- and postselected systems, the probe state after the postselection can be controlled by
appropriately choosing the pre- and postselected target system. The wave function φ̃(K ) in the K̂ basis of the probe state after
the postselection |φ̃〉 [Eq. (3) in the main text] is expressed for all orders of θ as

φ̃(K ) = 〈K|φ̃〉 = 〈K|
[
〈f|i〉

∞∑
n=0

(−iθ )n

n!
〈Ân〉wK̂n|φ〉

]
= 〈f|i〉

∞∑
n=0

(−iθ )n

n!
〈Ân〉wKnφ(K ). (E1)

Let φ�(K ) be the wave function in the K̂ basis of the desired probe state. To realize φ�(K ) (except for a constant multiple), we
can choose the weak moments {〈Ân〉w}n so that

∞∑
n=0

(−iθ )n

n!
〈Ân〉wKn ∝ φ�(K )

φ(K )
. (E2)

When the target system is d-dimensional and Â has full rank, we can independently choose the values of d weak moments 〈Ân〉w.
Therefore, by appropriately fixing the weak-moment values of the low-order terms of θ (n = 1, · · · , d), which considerably
affect the waveform, we can approximate the desired wave function.

[1] J. A. Wheeler and W. H. Zurek, Quantum Theory and Measure-
ment (Princeton University Press, 2014).

[2] J. von Neumann, Mathematical Foundations of Quantum Me-
chanics: New Edition (Princeton university press, 2018).

[3] Y. Aharonov, D. Z. Albert, and L. Vaidman, How the Result of a
Measurement of a Component of the Spin of a Spin-1/2 Particle
can Turn Out to Be 100, Phys. Rev. Lett. 60, 1351 (1988).

[4] Y. Aharonov and L. Vaidman, Complete description of a quan-
tum system at a given time, J. Phys. A 24, 2315 (1991).

[5] K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Experimental
realization of the quantum box problem, Phys. Lett. A 324, 125
(2004).

[6] J. S. Lundeen and A. M. Steinberg, Experimental Joint Weak
Measurement on a Photon Pair as a Probe of Hardy’s Paradox,
Phys. Rev. Lett. 102, 020404 (2009).

[7] K. Yokota, T. Yamamoto, M. Koashi, and N. Imoto, Direct
observation of hardy’s paradox by joint weak measurement with
an entangled photon pair, New J. Phys. 11, 033011 (2009).

[8] T. Denkmayr, H. Geppert, S. Sponar, H. Lemmel, A. Matzkin, J.
Tollaksen, and Y. Hasegawa, Observation of a quantum cheshire

cat in a matter-wave interferometer experiment, Nat. Commun.
5, 4492 (2014).

[9] R. Okamoto and S. Takeuchi, Experimental demonstration of a
quantum shutter closing two slits simultaneously, Sci. Rep. 6,
35161 (2016).

[10] A. Danan, D. Farfurnik, S. Bar-Ad, and L. Vaidman, Asking
Photons Where They Have Been, Phys. Rev. Lett. 111, 240402
(2013).

[11] B. L. Higgins, M. S. Palsson, G. Y. Xiang, H. M.
Wiseman, and G. J. Pryde, Using weak values to experi-
mentally determine “negative probabilities” in a two-photon
state with bell correlations, Phys. Rev. A 91, 012113
(2015).

[12] H. M. Wiseman, Directly observing momentum transfer in
twin-slit “which-way” experiments, Phys. Lett. A 311, 285
(2003).

[13] R. Mir, J. S. Lundeen, M. W. Mitchell, A. M. Steinberg, J. L.
Garretson, and H. M. Wiseman, A double-slit ‘which-way’
experiment on the complementarity-uncertainty debate, New J.
Phys. 9, 287 (2007).

033077-13

https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1088/0305-4470/24/10/018
https://doi.org/10.1016/j.physleta.2004.02.042
https://doi.org/10.1103/PhysRevLett.102.020404
https://doi.org/10.1088/1367-2630/11/3/033011
https://doi.org/10.1038/ncomms5492
https://doi.org/10.1038/srep35161
https://doi.org/10.1103/PhysRevLett.111.240402
https://doi.org/10.1103/PhysRevA.91.012113
https://doi.org/10.1016/S0375-9601(03)00504-8
https://doi.org/10.1088/1367-2630/9/8/287


OGAWA, ABE, KOBAYASHI, AND TOMITA PHYSICAL REVIEW RESEARCH 3, 033077 (2021)

[14] Y. Xiao, H. M. Wiseman, J.-S. Xu, Y. Kedem, C.-F. Li, and
G.-C. Guo, Observing momentum disturbance in double-slit
“which-way” measurements, Sci. Adv. 5, eaav9547 (2019).

[15] M. Ringbauer, D. N. Biggerstaff, M. A. Broome, A. Fedrizzi,
C. Branciard, and A. G. White, Experimental Joint Quantum
Measurements with Minimum Uncertainty, Phys. Rev. Lett.
112, 020401 (2014).

[16] F. Kaneda, S.-Y. Baek, M. Ozawa, and K. Edamatsu, Exper-
imental Test of Error-Disturbance Uncertainty Relations by
Weak Measurement, Phys. Rev. Lett. 112, 020402 (2014).

[17] L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar,
and A. M. Steinberg, Violation of Heisenberg’S Measurement-
Disturbance Relationship by Weak Measurements, Phys. Rev.
Lett. 109, 100404 (2012).

[18] S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin,
L. K. Shalm, and A. M. Steinberg, Observing the average tra-
jectories of single photons in a two-slit interferometer, Science
332, 1170 (2011).

[19] D. H. Mahler, L. Rozema, K. Fisher, L. Vermeyden, K. J. Resch,
H. M. Wiseman, and A. M. Steinberg, Experimental nonlo-
cal and surreal bohmian trajectories, Sci. Adv. 2, e1501466
(2016).

[20] J. Dressel, C. J. Broadbent, J. C. Howell, and A. N. Jordan,
Experimental Violation of Two-Party Leggett-Garg Inequalities
with Semiweak Measurements Phys. Rev. Lett. 106, 040402
(2011).

[21] M. E. Goggin, M. P. Almeida, M. Barbieri, B. P. Lanyon, J. L.
O’Brien, A. G. White, and G. J. Pryde, Violation of the leggett-
garg inequality with weak measurements of photons, Proc. Natl.
Acad. Sci. U.S.A. 108, 1256 (2011).

[22] B. L. Bernardo, W. S. Martins, S. Azevedo, and A. Rosas,
Uncertainty control and precision enhancement of weak mea-
surements in the quadratic regime, Phys. Rev. A 92, 012109
(2015).

[23] F. Matsuoka, A. Tomita, and Y. Shikano, Generation of phase-
squeezed optical pulses with large coherent amplitudes by post-
selection of single photon and weak cross-kerr non-linearity,
Quantum Stud.: Math. Found. 4, 159 (2017).

[24] D. R. M. Arvidsson-Shukur, N. Y. Halpern, H. V. Lepage, A. A.
Lasek, C. H. W. Barnes, and S. Lloyd, Quantum negativity
provides advantage in postselected metrology, Nat. Commun.
11, 3775 (2020).

[25] N. Yunger Halpern, B. Swingle, and J. Dressel, Quasiprobabil-
ity behind the out-of-time-ordered correlator, Phys. Rev. A 97,
042105 (2018).

[26] J. R. González Alonso, N. Yunger Halpern, and J. Dressel,
Out-of-Time-Ordered-Correlator Quasiprobabilities Robustly
Witness Scrambling, Phys. Rev. Lett. 122, 040404 (2019).

[27] B. Reznik and Y. Aharonov, Time-symmetric formulation of
quantum mechanics, Phys. Rev. A 52, 2538 (1995).

[28] B. Reznik, Interaction with a pre and post selected environment
and recoherence, arXiv:quant-ph/9501023.

[29] A. Tanaka, Semiclassical theory of weak values, Phys. Lett. A
297, 307 (2002).

[30] A. Brodutch, Weak measurements of non local variables,
arXiv:0811.1706.

[31] A. D. Parks, Weak energy: Form and function, Quantum The-
ory: A Two-Time Success Story (Springer-Verlag, Mailand,
2014), pp. 291–302.

[32] Y. Aharonov and L. Vaidman, Properties of a quantum system
during the time interval between two measurements, Phys. Rev.
A 41, 11 (1990).

[33] A. D. Parks, Weak covariance and the correlation of an observ-
able with pre-selected and post-selected state energies during
its time-dependent weak value measurement, Quantum Stud.:
Math. Found. 5, 455 (2018).

[34] M. R. Feyereisen, How the weak variance of momentum can
turn out to be negative, Found. Phys. 45, 535 (2015).

[35] H. F. Hofmann, Characterization of decoherence in a quantum
channel using weak measurements, in Proceedings of the Inter-
national Quantum Electronics Conference and Conference on
Lasers and Electro-Optics Pacific Rim 2011 (Optical Society of
America, Sydney, 2011), p. I260.

[36] H. F. Hofmann, On the role of complex phases in the quan-
tum statistics of weak measurements, New J. Phys. 13, 103009
(2011).

[37] A. K. Pati and J. Wu, Uncertainty and complementarity rela-
tions in weak measurement, arXiv:1411.7218.

[38] Q.-C. Song and C.-F. Qiao, Uncertainty equalities and uncer-
tainty relation in weak measurement, arXiv:1505.02233.

[39] P. P. Hofer, Quasi-probability distributions for observables in
dynamic systems, Quantum 1, 32 (2017).

[40] R. Jozsa, Complex weak values in quantum measurement, Phys.
Rev. A 76, 044103 (2007).

[41] J. Dziewior, L. Knips, D. Farfurnik, K. Senkalla, N. Benshalom,
J. Efroni, J. Meinecke, S. Bar-Ad, H. Weinfurter, and L.
Vaidman, Universality of local weak interactions and its appli-
cation for interferometric alignment, Proc. Natl. Acad. Sci. 116,
2881 (2019).

[42] E. H. Kennard, Zur quantenmechanik einfacher bewe-
gungstypen, Z. Phys. 44, 326 (1927).

[43] H. P. Robertson, The uncertainty principle, Phys. Rev. 34, 163
(1929).

[44] L. Vaidman, A. Ben-Israel, J. Dziewior, L. Knips, M. Weißl,
J. Meinecke, C. Schwemmer, R. Ber, and H. Weinfurter, Weak
value beyond conditional expectation value of the pointer read-
ings, Phys. Rev. A 96, 032114 (2017).

[45] J. G. Kirkwood, Quantum statistics of almost classical assem-
blies, Phys. Rev. 44, 31 (1933).

[46] P. A. M. Dirac, On the analogy between classical and quantum
mechanics, Rev. Mod. Phys. 17, 195 (1945).

[47] M. O. Scully, B.-G. Englert, and H. Walther, Quantum optical
tests of complementarity, Nature (London) 351, 111 (1991).

[48] S-.J. Wu and K. Mølmer, Weak measurements with a qubit
meter, Phys. Lett. A 374, 34 (2009).

[49] K. Ogawa, H. Kobayashi, and A. Tomita, Operational formula-
tion of weak values without probe systems, Phys. Rev. A 101,
042117 (2020).

[50] A. D. Parks and J. E. Gray, Variance control in weak-value
measurement pointers, Phys. Rev. A 84, 012116 (2011).

[51] B. Yurke and D. Stoler, Generating Quantum Mechanical
Superpositions of Macroscopically Distinguishable States via
Amplitude Dispersion, Phys. Rev. Lett. 57, 13 (1986).

[52] W. Schleich, M. Pernigo, and F. L. Kien, Nonclassical state
from two pseudoclassical states, Phys. Rev. A 44, 2172
(1991).

[53] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an
oscillator, Phys. Rev. A 64, 012310 (2001).

033077-14

https://doi.org/10.1126/sciadv.aav9547
https://doi.org/10.1103/PhysRevLett.112.020401
https://doi.org/10.1103/PhysRevLett.112.020402
https://doi.org/10.1103/PhysRevLett.109.100404
https://doi.org/10.1126/science.1202218
https://doi.org/10.1126/sciadv.1501466
https://doi.org/10.1103/PhysRevLett.106.040402
https://doi.org/10.1073/pnas.1005774108
https://doi.org/10.1103/PhysRevA.92.012109
https://doi.org/10.1007/s40509-016-0091-9
https://doi.org/10.1038/s41467-020-17559-w
https://doi.org/10.1103/PhysRevA.97.042105
https://doi.org/10.1103/PhysRevLett.122.040404
https://doi.org/10.1103/PhysRevA.52.2538
http://arxiv.org/abs/arXiv:quant-ph/9501023
https://doi.org/10.1016/S0375-9601(02)00384-5
http://arxiv.org/abs/arXiv:0811.1706
https://doi.org/10.1103/PhysRevA.41.11
https://doi.org/10.1007/s40509-018-0158-x
https://doi.org/10.1007/s10701-015-9885-6
https://doi.org/10.1088/1367-2630/13/10/103009
http://arxiv.org/abs/arXiv:1411.7218
http://arxiv.org/abs/arXiv:1505.02233
https://doi.org/10.22331/q-2017-10-12-32
https://doi.org/10.1103/PhysRevA.76.044103
https://doi.org/10.1073/pnas.1812970116
https://doi.org/10.1007/BF01391200
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRevA.96.032114
https://doi.org/10.1103/PhysRev.44.31
https://doi.org/10.1103/RevModPhys.17.195
https://doi.org/10.1038/351111a0
https://doi.org/10.1016/j.physleta.2009.10.026
https://doi.org/10.1103/PhysRevA.101.042117
https://doi.org/10.1103/PhysRevA.84.012116
https://doi.org/10.1103/PhysRevLett.57.13
https://doi.org/10.1103/PhysRevA.44.2172
https://doi.org/10.1103/PhysRevA.64.012310

