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Microscopic theory of magnetoconductivity at low magnetic fields in terms of Berry
curvature and orbital magnetic moment
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Using a microscopic theory for the magnetoconductivity at low magnetic fields, we show how all compo-
nents of the conductivity tensor can be calculated in the low scattering rate limit. In the lowest order of the
scattering rate, we recover the result of the semiclassical Boltzmann transport theory. At higher order, we get
corrections containing the Berry curvature and the orbital magnetic moment. We use this formalism to study the
linear longitudinal magnetoconductivity in tilted Weyl semimetals. We discuss how our result is related to the
semiclassical Boltzmann approach and show the differences that arise compared to previous studies related to
the orbital magnetic moment.
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I. INTRODUCTION

Electric transport in a magnetic field is an extensively
studied topic of great importance in solid-state physics with
a long history. A widely used method to calculate conductiv-
ity is the semiclassical Boltzmann transport theory with the
relaxation time approximation [1–3], which is valid only in
metallic states with definite Fermi surfaces. The Boltzmann
transport theory can be further improved with the use of
anomalous velocity coming from the Berry curvature [4–6].
At finite low magnetic fields the magnetoconductivity can
be discussed with the Boltzmann theory [2,7–9], and if the
anomalous velocity is also included, the magnetoconductivity
was shown to have a contribution coming from the Berry
curvature [10–20]. This gives rise to interesting phenomena
such as the negative magnetoresistance caused by the chi-
ral anomaly in Weyl semimetals [21–24]. It was recently
shown that in the linear order of the magnetic field we can
get anomalous behavior such as the linear longitudinal mag-
netoconductivity [13–15,17–19] and the linear planar Hall
effect [16,18] in topological systems.

However, the Boltzmann transport theory is a semiclassical
approximation, and it is not clear whether all the impor-
tant contributions are included or not. Actually, it has been
shown that, in the case of the orbital magnetic susceptibility,
some coefficients of the contributions obtained in the Boltz-
mann theory with Berry curvature [25] do not agree with
the microscopically obtained results [26,27]. Furthermore, the
Boltzmann transport theory cannot be applied, for example, to
cases with strong disorder where impurity bands play essen-
tial roles and there is no definite Fermi surface. Thus, it is
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necessary to formulate the magnetoconductivity in terms of a
microscopic field theory or in terms of Green’s functions and
Kubo’s linear response theory.

In the absence of a magnetic field Karplus and Lut-
tinger [28] showed that a finite magnetic moment leads to an
anomalous Hall conductivity that is expressed by what we
call Berry curvature nowadays. It was later shown that the
same result can be achieved with the semiclassical Boltzmann
theory with anomalous velocity [29,30]. In the case of no
magnetic field the connection of the microscopic theory to the
Boltzmann theory was discussed in Ref. [31].

Using linear response theory for finite magnetic fields is
more challenging. At high magnetic fields the magnetocon-
ductivity was studied by Abrikosov [32,33]. His theory works
at high fields when only the lowest Landau levels are occupied
and was successful in explaining the linear magnetoresistance
observed in Dirac systems [34,35].

For small magnetic fields a microscopic theory for the
Hall conductivity was developed by Fukuyama [36,37]. In
this theory the magnetoconductivity in the linear order of
the magnetic field is given as a formula containing veloc-
ity operators and Green’s functions. This formula was used
to study the Hall conductivity of two-dimensional massless
fermions [38]. A similar approach was used to calculate the
magnetoconductivity of graphene by Ando [39].

In this paper, we first obtain a formula equivalent to the
Fukuyama’s formula [36,37] but without the explicit bare
mass of the electron. We also generalize it to the other com-
ponents of the σμν conductivity tensor. In the main text we
focus on the Hall conductivity σxy and longitudinal magneto-
conductivity σzz. It is shown that each case can be written as a
one-line formula without the electron bare mass, which is very
important when applied for various effective models. Another
merit of this formalism is that it is able to treat strong disorder,
where the Boltzmann theory cannot be applied.

Then, in the weak-scattering limit we evaluate the formula
in a general manner and show how it gives a normal contri-
bution and an anomalous contribution connected to the Berry
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curvature and orbital magnetic moment, similar to the case
with no magnetic field. In this approach the Berry curvature
and the orbital magnetic moment appear naturally from the
matrix elements of the velocity operator, without assuming
an anomalous velocity connected to the Berry curvature or a
Zeeman shift connected to the orbital magnetic moment.

To show the validity of this formula, we study tilted
Weyl semimetals as an example. We study both the weak-
and strong-scattering cases and compare them to previous
results [15,18,19] that used the semiclassical Boltzmann ap-
proach.

The formalism we discuss in this paper has similarities
to the calculation of orbital susceptibility. A well-known
method to calculate the orbital susceptibility is the Landau-
Peierls formula [40,41]. This description is not complete,
and a complete microscopic formalism was shown to contain
the Landau-Peierls contribution with additional corrections
[26,27,42–49]. This complete formalism is analogous to our
problem, but a big difference is that in the case of orbital sus-
ceptibility the scattering rate can be ignored, while in the case
of magnetoconductivity it is essential to have finite results.

II. FORMALISM

We study systems that can be described with an effective
Hamiltonian in the form of an n × n Bloch Hamiltonian Hk.
The eigenvalues and eigenvectors are denoted as Hk|a, k〉 =
Eak|a, k〉. For simplicity from now on Hk ≡ H , Eak ≡ Ea,
|a, k〉 ≡ |a〉, ∂kμ

≡ ∂μ, and h̄ = 1. The velocity operator is

vμ = ∂μH. (1)

The matrix elements of this operator can be expressed by the
derivative of 〈a|H |b〉 = δabEa [50]:

v
μ

ab = δab∂μEa + (Eb − Ea)〈a|∂μb〉. (2)

We assume the Matsubara Green’s function is diagonal in the
eigenstate basis and can be expressed as

Ga(iεn) = 1

iεn − Ea + μ + i�a(iεn)
, (3)

where �a(iεn) is the scattering rate, which describes the ef-
fects of the disorder. The conductivity is calculated through
the retarded current-current correlation function �R in the
framework of linear response theory [51,52]:

σμν = lim
ω→0

ie2

ω
�R

μν (ω), (4)

where e > 0 is the elementary charge.
In this paper we discuss the conductivity in a magnetic

field up to linear order of the magnetic field. The uniform
magnetic field points in the z direction, and we are interested
in the Hall conductivity σxy and longitudinal conductivity σzz.
For the calculation of the current-current correlation we base
our calculation on the microscopic theory of Hall conductivity
developed by Fukuyama [36,37]. Here the magnetic field is
treated as a perturbation similarly to the electric field. In
the zeroth order in the magnetic field, the current-current

correlation can be expressed as

�(0)
μν (iωλ) = 1

βV

∑
n,k

Tr[vμG+vνG], (5)

where G ≡ G(k, iεn) and G+ ≡ G(k, iεn + iωλ). This order
gives the usual conductivity [51,52] and the anomalous Hall
conductivity connected to the Berry curvature [4,28,53].

In the first order of the magnetic field the current-current
correlation function can be expressed as Eq. (A1), obtained
by Fukuyama in Ref. [37]. However, this formula contains
the electron bare mass m, and thus, it is difficult to apply
to effective models that do not have the electron bare mass.
Here we notice that Fukuyama’s formula can be rewritten as
(for details and for the formula for the other components see
Appendix A)

�(1)
xy (iωλ) = − ieB

βV

∑
n,k

Tr[vxG+vyGvxGvyG

− vxG+vyG+vxG+vyG], (6a)

�(1)
zz (iωλ) = − ieB

βV

∑
n,k

Tr[vzG+vzGvxGvyG

− vzG+vyG+vxG+vzG], (6b)

which do not contain m. Therefore, the present formalism
can be applied to various effective models. Furthermore, we
obtained a formula for �(1)

zz which was not considered by
Fukuyama that gives a nontrivial longitudinal magnetocon-
ductivity.

From now on we focus on these two terms that are propor-
tional to the magnetic field.

III. MAGNETOCONDUCTIVITY

Equations (6a) and (6b) obtained for the magnetoconduc-
tivity can be applied for any strength of the scattering rate. In
the following, we evaluate these formulas in the leading and
subleading orders, when the scattering rate is small, which is
the situation where the Boltzmann theory is applied.

We start by discussing the Hall conductivity. Using Eq. (6a)
in the eigenstate basis, the Hall conductivity can be expressed
as

σ (1)
xy = −B

e3

V

∑
k

∑
a,b,c,d

vx
dav

y
abv

x
bcv

y
cdCabcd , (7a)

Cabcd = − lim
ω→0

1

βω

∑
n

G+
a Gd (GbGc − G+

b G+
c ), (7b)

where the iωλ = ω + iη substitution was made and the η → 0
limit was taken in Cabcd . Using the form of the current op-
erator in Eq. (2), we will have five different types of terms
in Eq. (7) based on the number of Kronecker’s δ. A detailed
explanation of how the Matsubara summation can be evalu-
ated is given in Appendix B. The main assumption we use is
that the scattering rate is constant, �a(ε, k) ≡ �, and small.
We keep only terms proportional to 1/�2 (σ norm

xy ) and 1/�

(σ anom
xy = σ

berry
xy + σ

mag
xy ) in the final expression. After several
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transformations the magnetic field dependent part of the Hall
conductivity becomes (σ (1)

xy = σ norm
xy + σ

berry
xy + σ

mag
xy )

σ norm
xy = −Be3τ 2

h̄4V

∑
k,a

f ′
a

{
∂xEa∂x∂yEa∂yEa

− 1

2

[
(∂xEa)2∂2

y Ea + (∂yEa)2∂2
x Ea

]}
,

(8a)

σ berry
xy = Be3τ

h̄3V

∑
k,a

f ′
a∂xEa∂yEa�

a
xy, (8b)

σ mag
xy = Be3τ

h̄3V

∑
k,a

f ′
a

{
∂x∂yEaMa

xy

− 1

2

[
∂xEa∂yMa

xy + ∂yEa∂xMa
xy

]}
, (8c)

where � = h̄/2τ , �a
xy is the z component of the Berry curva-

ture [4,54], and Ma
xy is the z component of the orbital magnetic

moment [4,5]:

�a
μν = i[〈∂μa|∂νa〉 − μ ↔ ν], (9a)

Ma
μν = 1

2i
[〈∂μa|(Ea − H )|∂νa〉 − μ ↔ ν]. (9b)

Quantities in Eq. (9) can be expressed in an easier to
evaluate formula in which the derivatives of eigenstates do not
appear. Using Eq. (2) and the completeness of eigenstates,

�a
μν = i

∑
b�=a

〈a|∂μH |b〉〈b|∂νH |a〉
(Ea − Eb)2

− μ ↔ ν, (10a)

Ma
μν = 1

2i

∑
b�=a

〈a|∂μH |b〉〈b|∂νH |a〉
Ea − Eb

− μ ↔ ν. (10b)

These expressions are useful in the numerical calculations in
which an accurate derivative of the eigenstate with respect to
momentum is difficult to obtain.

We continue with the longitudinal conductivity. Using
Eq. (6b) in the eigenstate basis, the longitudinal conductivity
can be expressed as

σ (1)
zz = −B

e3

V

∑
k

a, b
c, d

vz
dav

z
ab

(
vx

bcv
y
cd Dabcd − v

y
bcv

x
cd D̃abcd

)
, (11a)

Dabcd = − lim
ω→0

1

βω

∑
n

G+
a GbGcGd , (11b)

D̃abcd = − lim
ω→0

1

βω

∑
n

GaG+
b G+

c G+
d . (11c)

Like for the Hall conductivity, we can perform the Matsub-
ara summations (for details see Appendix C) and evaluate
Eq. (11a) in the leading and subleading orders with respect
to 1/� ∝ τ . We find that the longitudinal conductivity is

expressed as (σ (1)
zz = σ norm

zz + σ
berry
zz + σ

mag
zz )

σ norm
zz = 0, (12a)

σ berry
zz = −Be3τ

h̄3V

∑
k,a

f ′
a∂zEa

(
2∇Ea · �a − ∂zEa�

a
z

)
, (12b)

σ mag
zz = −Be3τ

h̄3V

∑
k,a

f ′
a

(
∂zEa∂zM

a
z − ∂2

z EaMa
z

)
, (12c)

where �a
μ = 1

2εμνη�
a
νη and Ma

μ = 1
2εμνηMa

νη.
The σ norm

xy and σ norm
zz terms are the normal contributions

to the magnetoconductivity. These terms are the same as
the ones obtained using the semiclassical Boltzmann trans-
port theory with the relaxation time approximation without
anomalous velocity [2,7–9,37]. The terms proportional to τ

are the anomalous contributions to the magnetoconductivity
(σ anom

μν = σ
berry
μν + σ

mag
μν ). The σ

berry
xy and σ

berry
zz terms contain

the Berry curvature. Introducing the anomalous velocity in
the semiclassical Boltzmann theory, these same terms were
obtained in Refs. [11,13,16–19]. The σ

mag
xy and σ

mag
zz terms

contain the orbital magnetic moment. The effect of the or-
bital magnetic moment is captured in semiclassical theories
with the energy correction caused by the magnetic field cou-
pling to the orbital magnetic moment [4,13,16,17]. The term
containing the derivative of the orbital magnetic moment in
σ

mag
zz was obtained explicitly in Ref. [13]. However, the terms

proportional to the orbital magnetic moment are absent from
these theories.

Note that if the system is time reversal symmetric, Ea(k) =
Ea(−k), ∂μEa(k) = −∂μEa(−k), �a

μ(k) = −�a
μ(−k), and

Ma
μ(k)=−Ma

μ(−k). These relations guarantee that σ
berry
xy =0,

σ
mag
xy = 0, σ

berry
zz = 0, and σ

mag
zz = 0. Thus, in order to see an

anomalous magnetoconductivity we need to break time rever-
sal symmetry. This behavior under time reversal symmetry is
consistent with the Onsager relations that prohibit the appear-
ance of these terms if time reversal symmetry holds [2,9].

IV. TILTED WEYL NODE

To show the validity of our formula, we study the magne-
toconductivity of a tilted Weyl node and compare our results
with those obtained using the semiclassical Boltzmann theory.
We start with a general two-level system with the following
Hamiltonian:

H = h(k) · σ + h0(k)σ0, E± = h0 ± h, (13)

where σα are the Pauli matrices. Using Eq. (10) for the Berry
curvature and orbital magnetic moment, we get

�±
μν = ∓1

2

h · (∂μh × ∂νh)

h3
, (14a)

M±
μν = 1

2

h · (∂μh × ∂νh)

h2
. (14b)

A. No tilting

First, we discuss a single Weyl node without tilting de-
scribed by the Weyl Hamiltonian:

h = vh̄k, h0 = 0, E± = ±vh̄k. (15)
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FIG. 1. The Hall conductivity (19a) and longitudinal magneto-
conductivity (19b) of a tilted Weyl node with tilting t . σh = − vμBe3τ2

6π2 h̄3

is the Hall conductivity at t = 0, and σl = − vBe3τ

4π2 h̄2 .

The Berry curvature and orbital magnetic moment using
Eq. (14) are

�± = ∓1

2

k
k3

, M± = 1

2

k
k2

. (16)

The different components of the magnetoconductivity calcu-
lated from Eqs. (8) and (12) at zero temperature are

σ norm
xy = −vμBe3τ 2

6π2h̄3 , σ berry
xy = 0, σ mag

xy = 0, (17a)

σ norm
zz = 0, σ berry

zz = 0, σ mag
zz = 0. (17b)

Even though the Berry curvature and orbital magnetic moment
are not vanishing, after integration the anomalous contribu-
tions vanish because of the mirror symmetries of the system.

B. Tilting in the kz direction

In order to get a finite anomalous magnetoconductivity we
introduce a small tilting (t < 1) in the kz direction:

h = vh̄k, h0 = vh̄tkz, E± = vh̄(tkz ± k). (18)

The Berry curvature and orbital magnetic moment are un-
changed, but the tilting breaks the mirror symmetry in
the dispersion relation, and the components of the zero-
temperature magnetoconductivity calculated from Eqs. (8)
and (12) become

σ (1)
xy = σh

3 tanh−1(t ) − 3t

t3
, σh = −vμBe3τ 2

6π2h̄3 , (19a)

σ (1)
zz = σl t, σl = −vBe3τ

4π2 h̄2 , (19b)

where σh is the Hall conductivity of the untilted Weyl node in
Eq. (17). The magnetoconductivity as a function of the tilting
parameter is shown in Fig. 1. As a consequence of the tilting
a linear longitudinal magnetoconductivity appears.

This effect for the same model was also studied using the
semiclassical Boltzmann transport theory in Refs. [15,18,19].
The result obtained by Refs. [18,19] is

σ boltz
zz = σl

−3t + 5t3 + 3t5 + 3(t2 − 1)2 tanh−1(t )

3t4
. (20)

FIG. 2. The longitudinal magnetoconductivity (19b) of a tilted
Weyl node with tilting t . The red and blue lines show the contribution
of the Berry curvature and the orbital magnetic moment separately.
σl = − vBe3τ

4π2 h̄2 .

This is different from our result in Eq. (19b), but we find that it
matches exactly the longitudinal magnetoconductivity calcu-
lated with only the Berry curvature contribution in Eq. (12b)
(σ boltz

zz = σ
berry
zz ). This result means that Refs. [18,19] failed to

take into account the contribution from the orbital magnetic
moment. In Fig. 2 we show the longitudinal magnetoconduc-
tivity separated into contributions from the Berry curvature
and orbital magnetic moment, and as we can see, the terms
containing the orbital magnetic moment significantly modify
the result. The qualitative behavior of the result is not affected,
but the quantitative value changes. In Ref. [15] the effect
of the orbital magnetic moment is taken into consideration
through the Zeeman shift of the energy. The result in that
work, that the longitudinal conductivity is proportional to the
tilting, is consistent with our theory.

In real materials Weyl nodes come in pairs with opposite
tiltings and opposite chiralities, and the Hamiltonian of the
second Weyl node can be expressed as [15,18,19]

h = −vh̄k, h0 = −vh̄tkz, E± = −vh̄(tkz ± k). (21)

Because of the sign change of both the tilting and the chirality
the linear longitudinal conductivity persists even in the case
of a pair of Weyl nodes. The total conductivity of two Weyl
nodes will simply be twice that of a single tilted Weyl node:

σ 2W
zz = 2σl t . (22)

This type of linear longitudinal magnetoconductivity has
very unusual properties. The sign of the conductivity changes
with the magnetic field, which can be used experimentally to
distinguish this component from σ (0)

zz and σ (2)
zz . It produces

a negative magnetoresistance (or positive magnetoresistance,
for the opposite sign of the magnetic field) and gives an
alternate mechanism to the chiral anomaly that produces a
negative magnetoresistance. The chiral anomaly is also an
effect that happens when the magnetic field and electric field
are parallel, but the longitudinal magnetoconductivity in that
case is quadratic in the magnetic field and occurs without
any tilting in the Weyl node. The symmetry properties in
the magnetic field can be used to separate these two effects
experimentally.
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In order to estimate the magnitude of the linear longitudinal
magnetoconductivity we can compare it to the conductivity at
zero magnetic field and zero tilting calculated from Eq. (5):

σ (0)
zz = 4π

3

e2

h

μ2τ

h2v
. (23)

Since both quantities are proportional to the relaxation time,
the ratio of σl to σ (0)

zz becomes a τ -independent number:

δ = σl

σ
(0)
zz

= 3

2

h̄v2eB

μ2
. (24)

Assuming realistic parameters such as v = 106 m/s, μ =
200 meV, and B = 1T, the ratio becomes δ ≈ 0.025. The ef-
fect is small but not negligible, and it can be enhanced with a
smaller chemical potential.

C. General tilting

Finally, we study the tilted Weyl node in the most general
manner. We allow tiltings in arbitrary directions in the Hamil-
tonian

h = vh̄k, h0 = vh̄t · k, E± = vh̄(t · k ± k), (25)

where the tilting parameter is now a vector t = (tx, ty, tz ). It
is useful to express the tilting with spherical coordinates t =
t (cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ ).

We will consider all components of the conductivity tensor.
In this way the magnetic field can be chosen in the z direction
without loss of generality. Different directions can be com-
puted by rotating the conductivity tensor. The formulas used
to compute the conductivity tensor are derived in Appendix D.
These formulas can be computed analytically for the Hamil-
tonian in Eq. (25) (for complete results see Appendix E).

For ϑ = 0

σ (1) = σl

⎛
⎝g(t ) 0 0

0 g(t ) 0
0 0 t

⎞
⎠, g(t ) = t − tanh−1(t )

t2
. (26)

For ϑ = π
2

σ (1) = σl

⎛
⎝ 0 0 cos ϕh(t )

0 0 sin ϕh(t )
cos ϕh(t ) sin ϕh(t ) 0

⎞
⎠,

h(t ) = [2t3 − t + (1 − t2) tanh−1(t )]

2t2
. (27)

These results are consistent with the magnetoconductivity
calculated in Refs. [18,19]. The difference is in the exact
functions in t , which is a consequence of neglecting the orbital
magnetic moment in their calculation.

For small tilting t � 1 in the linear order of tilting the
conductivity can be expressed as

σ (1) = σl

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− tz
3

0
2tx
3

0 − tz
3

2ty
3

2tx
3

2ty
3

tz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

With this equation for small tiltings the current density can
be expressed as

j = 2σl

3B
(E · t)B + 2σl

3B
(E · B)t − σl

3B
(B · t)E. (29)

These types of terms also appear in the results of
Refs. [15,19]. The factors before the different type of terms
are different, but that does not affect the qualitative behavior.

V. LARGE SCATTERING RATE

In this section we discuss the large-� case. For this we
have to go back to the form of the longitudinal conductivity
in Eq. (11a). For the scattering rate in the Green’s function (3)
we take

�a(k, ε) = sgn[Im(ε)]�, (30)

where � is constant. The Matsubara summation can be
expressed as line integrals using the steps explained in Ap-
pendix F. At zero temperature these integrals can be evaluated
analytically. The momentum integration is evaluated numeri-
cally. The longitudinal conductivity will be of the form

σ (1)
zz = σl I (X, t ), (31)

where X = μ/� and I is a dimensionless double integral
in momentum space. We evaluated this double integral nu-
merically and found that the longitudinal conductivity is
independent of X . This means that σzz = 2σl t holds for any
value of the scattering rate, which is unexpected in a simple
Boltzmann theory.

VI. DISCUSSION

In this paper we studied the magnetoconductivity at low
magnetic fields. We discussed the conductivity up to linear
order of the magnetic field using linear response theory. We
extended the microscopic formula for the Hall conductivity
developed by Fukuyama [36,37] to all the other components
of the conductivity tensor and evaluated them in a general
manner for small scattering rates. These expressions were
not derived before from microscopic theory using a Green’s
function perturbative approach.

In the two lowest orders of the scattering rate we got terms
of orders O(�−2) (σ norm

μν ) and O(�−1) (σ anom
μν ). In the σ norm

μν

term we recover the magnetoconductivity described by the
semiclassical Boltzmann transport theory without anomalous
velocity [2,7–9,37].

The components of order O(�−1) are expressed in terms of
the Berry curvature σ

berry
μν and orbital magnetic moment σ

mag
μν .

The σ
berry
μν part was previously derived using the anomalous

033076-5



VIKTOR KÖNYE AND MASAO OGATA PHYSICAL REVIEW RESEARCH 3, 033076 (2021)

velocity in the Boltzmann theory [11,13,15–19]. The addi-
tional σ

mag
μν term is present in Refs. [13,15] in a different form,

including only the derivative of the orbital magnetic moment.
In the theory in those studies the orbital magnetic moment
appears through a Zeeman shift in the energy. In contrast, in
our calculation the orbital magnetic moment appears naturally
from the matrix element of the velocity operator.

The σ
berry
μν and σ

mag
μν quantities can be nonzero only if

time reversal symmetry is broken. This behavior under time
reversal symmetry is consistent with the Onsager relations,
in which these types of terms are forbidden if time reversal
symmetry holds. An interesting symmetry property of the Hall
conductivity is that the anomalous contribution is symmetric
for the x ↔ y change, while the normal contribution is anti-
symmetric.

Finally, we studied a tilted Weyl node using the above
formalism. This system was discussed with the semiclassical
Boltzmann theory [15,18,19]. We showed that in a tilted Weyl
node a finite linear longitudinal magnetoconductivity σ (1)

zz is
present which is proportional to the tilting. This term was
also found using the Boltzmann transport theory [18,19], but
only the effects of the Berry curvature were discussed. We
discussed the effects of the orbital magnetic moment on the
magnetoconductivity explicitly and showed that it gives sig-
nificant quantitative corrections but does not affect the overall
qualitative behavior. In Ref. [15] the orbital magnetic moment
was introduced through the energy shift caused by the mag-
netic field coupled to the orbital magnetic moment. This type
of treatment gives a result consistent with ours, a longitudinal
magnetoconductivity that is linear in both the magnetic field
and the tilting.

To study the effects of the scattering rate we calculated
the longitudinal magnetoconductivity at finite �. We showed
numerically that the large-� effects are negligible compared
to the leading order of �−1 even if μ � �. Unlike in
graphene [38], where this effect is relevant, in our case the
lowest-order approximation in the scattering rate is sufficient
to get a good description.

A finite tilting is present in many Weyl semimet-
als [55–58], making this effect relevant experimentally. In real
materials the Weyl nodes come in pairs with opposite chirali-
ties, but they also tilt in opposite directions. As we showed,
this property ensures that the effect of linear longitudinal
magnetoconductivity persists even with two Weyl nodes. As
we discussed, the effect is small but not negligible. The effect
is enhanced for smaller charge carrier densities, larger tiltings,
and larger magnetic fields. The conductivity changes sign with
the magnetic field, making it possible to distinguish it from the
zero-field conductivity.

In this paper we discussed only the small scattering rate
limit, where the impurities were taken into account through
impurity Green’s functions. In order to have a complete
description the vertex correction should also be taken into
account. The vertex correction in this context was discussed
only for the free-electron gas in Ref. [36]. The treatment for
general Bloch electrons is much more complicated, and for
simplicity we neglected it, similar to Ref. [37]. We expect
the effects of the vertex correction to be quantitative and not
qualitative, but proper treatment of it is out of the scope of this
study.

One of the merits of the present formalism is that we can
discuss, for example, the cases in which the electrons form
an impurity band due to the strong disorder to which the
semiclassical Boltzmann theory cannot be applied. Although
this kind of application remains as a future problem, the
present paper gives a solid basis for further studies using a
microscopic analysis.

ACKNOWLEDGMENTS

We thank H. Matsuura and H. Maebashi for very fruitful
discussions. This work was supported by Grants-in-Aid for
Scientific Research from the Japan Society for the Promotion
of Science (Grant No. JP18H01162) and by the JST-Mirai
Program (Grant No. JPMJMI19A1).

APPENDIX A: CURRENT-CURRENT CORRELATION

In this Appendix we show how the formulas for the current-current correlation in Eqs. (6a) and (6b) are calculated using the
formalism in Refs. [36,37]. In the linear order of the vector potential, the current-current correlation is expressed as [37]

�(1)
μν = − ie

2mh̄

1

βV

∑
n,k,α

Tr[vμG+vαG+G − vμG+GvαG]
(
qαAq

ν − qνAq
α

) − ie

2h̄3

1

βV

∑
n,k,α,β

(
qαAq

β − qβAq
α

)
× {Tr[vμG+vαG+vνGvβG] + Tr[vμG+vνGvαGvβG] + Tr[vμG+vαG+vβG+vνG]}, (A1)

where m is the electron bare mass. The qαAq
β − qβAq

α combination can be expressed as εαβγ Bq
γ since ∇ × A = B and A(r) =

−iAqeiqr. Using B = (0, 0, B), qαAq
β − qβAq

α = εαβzB. For the Green’s functions and the velocity operators the following ward
identity holds [37]:

∂μG = GvμG. (A2)

Using it and partial integrations, for example, the following identity holds:∑
k

vxG+vyGvxGvyG = −
∑

k

(
h̄2

m
vxG+GvxG + vxG+vyG+vyGvxG + vxG+vyGvyGvxG

)
. (A3)

Using other identities similar to this one, we get the Hall conductivity and longitudinal conductivity used in the main text as in
Eqs. (6a) and (6b). The advantage of this form is that the electron mass does not appear explicitly and it can be easily applied to
effective Hamiltonians.
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With the same method we can express all nine components of the conductivity tensor as

�(1)
xx = ieB

2mβV

∑
n,k

Tr[G+vxGvyG − G+vyG+vxG] + ieB

βV

∑
n,k

Tr[vxG+vxGvyGvxG − vxG+vxG+vyG+vxG], (A4a)

�(1)
yy = −�(1)

xx {x ↔ y}, (A4b)

�(1)
zz = − ieB

βV

∑
n,k

Tr[vzG+vzGvxGvyG − vzG+vyG+vxG+vzG], (A4c)

�(1)
xy = − ieB

βV

∑
n,k

Tr[vxG+vyGvxGvyG − vxG+vyG+vxG+vyG], (A4d)

�(1)
yx = −�(1)

xy {x ↔ y}, (A4e)

�(1)
xz = − ieB

βV

∑
n,k

Tr[vxG+vzGvxGvyG − vzG+vxG+vyG+vxG], (A4f)

�(1)
zx = �(1)

xz {G+ ↔ G}, (A4g)

�(1)
yz = −�(1)

xz {x ↔ y}, (A4h)

�(1)
zy = −�(1)

zx {x ↔ y}. (A4i)

APPENDIX B: HALL CONDUCTIVITY

Starting from Eq. (7), we show how the summation over the eigenstates and the Matsubara summations can be evaluated and
how the form of the Hall conductivity in Eq. (8) is reached. Using the form of the current operator in Eq. (2), we have five types
of terms in Eq. (7) based on the number of Kronecker’s δ. The terms containing three Kronecker’s δ will vanish after summation,
so we have to consider only the other four types of terms, σ (1)

xy = σ O
xy + σ I

xy + σ II
xy + σ IV

xy , where the indices represent the number
of Kronecker’s δ. After evaluating the sums over Kronecker’s δ and renaming the indices we get

σ IV
xy = −B

e3

V

∑
k,a

(∂xEa)2(∂yEa)2Caaaa, (B1a)

σ II
xy = −B

e3

V

∑
k,a,b

(Ea − Eb)2[∂xEa∂xEb〈∂ya|b〉〈b|∂ya〉Cabba + ∂yEa∂yEb〈∂xa|b〉〈b|∂xa〉Caabb

+ ∂xEa∂yEa〈∂ya|b〉〈b|∂xa〉(Caaab + Cabaa) + ∂xEa∂yEa〈∂xa|b〉〈b|∂ya〉(Caaba + Cbaaa)], (B1b)

σ I
xy = −B

e3

V

∑
k,a,b,c

(Ea − Eb)(Eb − Ec)(Ec − Ea)[∂yEa〈a|∂xc〉〈b|∂xa〉〈c|∂yb〉(Caacb + Ccbaa)

− ∂xEa〈c|∂ya〉〈a|∂yb〉〈b|∂xc〉(Cabca + Ccaab)], (B1c)

σ O
xy = −B

e3

V

∑
k,a,b,c,d

(Ea − Ed )(Eb − Ea)(Ec − Eb)(Ed − Ec)〈d|∂xa〉〈a|∂yb〉〈b|∂xc〉〈c|∂yd〉Cabcd . (B1d)

The next step is to evaluate the Matsubara summations. Their details are discussed in Appendixes F–H. We are interested in
the low-impurity case, so we assume that the scattering rate is constant, �a(ε, k) ≡ �, and small. Therefore, we neglect terms of
O(�0). It can be shown that σ I

xy = O(�0). Keeping only the terms O(�−2) and O(�−1), only σIV , σII , and σO remain:

σ IV
xy = − Be3

4�2V

∑
k,a

(∂xEa)2(∂yEa)2 f ′′
a , (B2a)

σ II
xy = − 3Be3

4�2V

∑
k,a

∂xEa∂yEa f ′
a

(
�a

xy + �a
yx

) + Be3

2�V

∑
k,a

∂xEa∂yEa f ′
a�

a
xy − Be3

4�V

∑
k,a

∂xEa∂yEa f ′′
a i

(
�a

xy − �a
yx

)
, (B2b)

σ O
xy = − Be3

2�V

∑
k,a

f ′
ai

(
�a

xy − �a
yx

)(
�a

xy + �a
yx

)
, (B2c)
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where fa = [exp β(Ea−μ) + 1]−1 is the Fermi-Dirac distribution and, using the completeness of the eigenvectors (
∑

b |b〉〈b|=1),

�a
xy =

∑
b

(Ea − Eb)〈∂xa|b〉〈b|∂ya〉, (B3a)

�a
xy = i(〈∂xa|∂ya〉 − x ↔ y). (B3b)

Here �a
xy is the z component of the Berry curvature [4,54]. The quantity �a

xy can be transformed to

�a
xy = 〈∂xa|∂yH − ∂yEa|a〉. (B4)

Using ∂x∂yH = 0 and the derivative of 〈a|∂yH |a〉 = ∂yEa, we can show the following (similar to Ref. [46]):

�a
xy + �a

yx = ∂x∂yEa. (B5)

The imaginary part of �a
xy is the orbital magnetic moment [4,5]:

Ma
xy = 1

2i

(
�a

xy − �a
yx

) = Im〈∂xa|(Ea − H )|∂ya〉. (B6)

Using partial integrations and separating terms proportional to 1/�2 and 1/�, we reach the form of the Hall conductivity in
Eq. (8).

In order to get σyx we can use Eq. (A4), and we get σ norm
yx = −σ norm

xy and σ
berry/mag
yx = σ

berry/mag
xy .

APPENDIX C: LONGITUDINAL CONDUCTIVITY

Starting from Eq. (6b), we show how the summation over the eigenstates and the Matsubara summations can be evaluated
and how the form of the longitudinal conductivity in Eq. (12) is reached. The derivation is similar to that of the Hall conductivity
in Appendix B.

After summation over Kronecker’s δ we get

σ IV
zz = −B

e3

V

∑
k,a

(∂zEa)2∂xEa∂yEa(Daaaa − D̃aaaa), (C1a)

σ II
zz = −B

e3

V

∑
k,a,b

(Ea − Eb)2[∂zEa∂xEb〈∂za|b〉〈b|∂ya〉Dabba + ∂zEa∂yEb〈∂xa|b〉〈b|∂za〉Daabb

+ ∂xEa∂yEa〈∂za|b〉〈b|∂za〉Dbaaa + ∂zEa∂zEa〈∂xa|b〉〈b|∂ya〉Daaba + ∂xEa∂zEa〈∂ya|b〉〈b|∂za〉Daaab

+ ∂yEa∂zEa〈∂za|b〉〈b|∂xa〉Dabaa − (x ↔ y, D ↔ D̃)], (C1b)

σ I
zz = −B

e3

V

∑
k,a,b,c

(Ea − Eb)(Eb − Ec)(Ec − Ea)[∂yEa〈a|∂zc〉〈b|∂xa〉〈c|∂zb〉Dcbaa − ∂xEa〈a|∂yb〉〈b|∂zc〉〈c|∂za〉Dcaab

+ ∂zEa〈a|∂xc〉〈b|∂za〉〈c|∂yb〉Daacb − ∂zEa〈a|∂zb〉〈b|∂xc〉〈c|∂ya〉Dabca − (x ↔ y, D ↔ D̃)], (C1c)

σ O
zz = −B

e3

V

∑
k,a,b,c,d

(Ea − Ed )(Eb − Ea)(Ec − Eb)(Ed − Ec)[〈d|∂za〉〈a|∂zb〉〈b|∂xc〉〈c|∂yd〉Dabcd − (x ↔ y, D ↔ D̃)]. (C1d)

The Matsubara summation is evaluated the same way as for the Hall conductivity (for details see Appendix H), and we get

σ IV
zz = −B

e3

4�2V

∑
k,a

(∂zEa)2∂xEa∂yEa f ′′
a , (C2a)

σ II
zz = −B

e3

4�2V

∑
k,a

f ′
a∂zEa[∂xEa∂y∂zEa + ∂yEa∂z∂xEa + ∂zEa∂x∂yEa]

− B
e3

2�V

∑
k,a

∂zEa

{
f ′
a∇Ea · �a + f ′′

a ∇Ea · Ma + i f ′
a

∑
b

[(∂xEb〈∂ya|b〉〈b|∂za〉 − z ↔ y) − x ↔ y]

}
, (C2b)
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σ I
zz = −B

ie3

2�V

∑
k,a

f ′
a∂zEa

{
∂z∂xEa〈a|∂ya〉 − ∂y∂zEa〈a|∂xa〉 −

∑
b

[(∂xEb〈∂ya|b〉〈b|∂za〉 − z ↔ y) − x ↔ y]

+ [(〈∂ya|∂xH |∂za〉 − y ↔ z) − x ↔ y]

}
, (C2c)

σ O
zz = −B

e3

2�V

∑
k,a

f ′
a

[
∂z∂xEaMa

x − ∂y∂zEaMa
y

]
. (C2d)

Using partial integrations, the longitudinal conductivity will also have terms proportional to τ 2 and τ , and it can be expressed
as in Eq. (12). One of the partial integrations is not trivial, so we show it schematically here:∑

k,a

∂zEa f ′′
a ∇Ea · Ma = −

∑
k,a

∂zEa f ′′
a ∂zEaMa

z + 2 f ′
a∂z

(
∂zEaMa

z

) + f ′
a∂x

(
∂zEaMa

x

) + f ′
a∂y

(
∂zEaMa

y

)
. (C3)

Using equations like ∂x∂z[(Ea − H )|a〉] = 0, this equation can be transformed and used to cancel some of the terms in Eq. (C2).

APPENDIX D: OTHER COMPONENTS

In this Appendix we give the formulas for all other components of the conductivity tensor calculated from the current-current
correlations in Eq. (A4). We also show the results after Matsubara summations similar to Eqs. (B2) and (C2).

σ 3I
xx = e3B

4m�2V

∑
k,a

f ′
a∂xEa∂yEa, (D1a)

σ 3O
xx = e3B

2m�V

∑
k,a

f ′
aMa

z , (D1b)

σ IV
xx = e3B

4�2V

∑
k,a

(∂xEa)3∂yEa f ′′
a , (D1c)

σ II
xx = − e3B

4m�2V

∑
k,a

f ′
a∂xEa∂yEa + e3B

4�2V

∑
k,a

f ′
a∂xEa[2∂xEa∂x∂yEa + ∂yEa∂x∂xEa]

+ e3B

2�V

∑
k,a,b

i f ′
a∂xEa∂xEb(〈∂xa|b〉〈b|∂ya〉 − x ↔ y), (D1d)

σ I
xx = − e3B

2�V

∑
k,a,b

i f ′
a∂xEa∂xEb(〈∂xa|b〉〈b|∂ya〉 − x ↔ y) + e3B

2�V

∑
k,a

f ′
a

(
(∂xEa)2�a

z − ∂xEa∂xMa
z

)
, (D1e)

σ O
xx = e3B

2�V

∑
k,a

f ′
aMa

z

[
∂x∂xEa − 1

m

]
. (D1f)

Adding these terms together, we get

σ norm
xx = 0, (D2a)

σ berry
xx = Be3τ

h̄3V

∑
k,a

f ′
a∂xEa∂xEa�

a
z , (D2b)

σ mag
xx = Be3τ

h̄3V

∑
k,a

f ′
a

{
∂2

x EaMa
z − ∂xEa∂xMa

z

}
. (D2c)

Similarly,

σ norm
yy = 0, (D3a)

σ berry
yy = Be3τ

h̄3V

∑
k,a

f ′
a∂yEa∂yEa�

a
z , (D3b)

σ mag
yy = Be3τ

h̄3V

∑
k,a

f ′
a

{
∂2

y EaMa
z − ∂yEa∂yMa

z

}
. (D3c)
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For the off-diagonal components after Matsubara summations we get

σ IV
xz = − e3B

4�2V

∑
k,a

(∂xEa)2∂yEa∂zEa f ′′
a , (D4a)

σ II
xz = − e3B

4�2V

∑
k,a

f ′
a∂xEa[∂yEa∂x∂zEa + 2∂zEa∂x∂yEa] + e3B

2�V

∑
k,a,b

i f ′
a∂xEa∂xEb(〈∂za|b〉〈b|∂ya〉 − z ↔ y)

− e3B

2�V

∑
k,a

f ′
a∂xEa∂yEa�

a
y + f ′′

a ∂xEa∂yEaMa
y , (D4b)

σ I
xz = − e3B

2�V

∑
k,a,b

i f ′
a∂xEa∂xEb(〈∂za|b〉〈b|∂ya〉 − z ↔ y) − e3B

2�V

∑
k,a

f ′
a(∂xEa)2�a

x (D4c)

− e3B

2�V

∑
k,a

f ′
a∂xEa

(
∂yMa

y + ∂zM
a
z

)
, (D4d)

σ O
xz = − e3B

2�V

∑
k,a

f ′
a

[
∂x∂yEaMa

y − ∂x∂zEaMa
z

]
. (D4e)

Adding these terms together, we get

σ norm
xz = −Be3τ 2

h̄4V

∑
k,a

f ′
a{∂xEa∂x∂zEa∂yEa − (∂xEa)2∂y∂zEa}, (D5a)

σ berry
xz = −Be3τ

h̄3V

∑
k,a

f ′
a∂xEa

(
∂xEa�

a
x + ∂yEa�

a
y

)
, (D5b)

σ mag
xz = Be3τ

h̄3V

∑
k,a

f ′
a{∂x∂zEaMa

z − ∂xEa∂zM
a
z }. (D5c)

The other off-diagonal components can be calculated using the relations in Eq. (A4):

σ norm
zx = −σ norm

xz , (D6a)

σ berry
zx = σ berry

xz , (D6b)

σ mag
zx = σ mag

xz , (D6c)

σ norm
yz = Be3τ 2

h̄4V

∑
k,a

f ′
a{∂yEa∂y∂zEa∂xEa − (∂yEa)2∂x∂zEa}, (D7a)

σ berry
yz = −Be3τ

h̄3V

∑
k,a

f ′
a∂yEa

(
∂xEa�

a
x + ∂yEa�

a
y

)
, (D7b)

σ mag
yz = Be3τ

h̄3V

∑
k,a

f ′
a

{
∂y∂zEaMa

z − ∂yEa∂zM
a
z

}
, (D7c)

σ norm
zy = −σ norm

yz , (D8a)

σ berry
zy = σ berry

yz , (D8b)

σ mag
zy = σ mag

yz . (D8c)

APPENDIX E: MAGNETOCONDUCTIVITY OF A GENERALLY TILTED WEYL NODE

Here we list the exact analytic results for the magnetoconductivity calculated using the formulas in Appendix D for the
Hamiltonian in Eq. (25) at zero temperature. The different components of the magnetoconductivity are

σ (1)
xx = σl

cos ϑ

4t2
[t − tanh−1(t )][4 − t2 − t2(cos 2ϕ − 2 cos2 ϕ cos 2ϑ )], (E1)

σ (1)
yy = σl

cos ϑ

4t2
[t − tanh−1(t )][4 − t2 − t2(− cos 2ϕ − 2 sin2 ϕ cos 2ϑ )], (E2)

033076-10



MICROSCOPIC THEORY OF MAGNETOCONDUCTIVITY AT … PHYSICAL REVIEW RESEARCH 3, 033076 (2021)

σ (1)
zz = −σl

cos ϑ

2
[t cos 2ϑ − 3t + 2 tanh−1(t ) sin2 ϑ], (E3)

σ (1)
xy = −σl

cos ϑ

2
[t − tanh−1(t )] sin 2ϕ sin2 ϑ, (E4)

σ (1)
xz = σl

sin ϑ cos ϕ

2t2
{t3 − t + tanh−1(t ) − t2 cos 2ϑ[t − tanh−1(t )]}, (E5)

σ (1)
yz = σl

sin ϑ sin ϕ

2t2
{t3 − t + tanh−1(t ) − t2 cos 2ϑ[t − tanh−1(t )]}. (E6)

The rest of the components obey σ (1)
μν = σ (1)

νμ .

APPENDIX F: MATSUBARA SUMMATION
WITH BRANCH CUTS

The Matsubara summations in this paper are all in the
form of

I (iωλ) = 1

β

∑
n

g(iεn, iεn + iωλ), (F1)

where the function g contains Green’s functions with
arguments iεn or iεn + iωλ. A simple example is

g(iεn, iεn + iωλ) = Ga(iεn)Gb(iεn + iωλ). (F2)

In general there can be any number of Green’s functions with
any kind of index. Because of the sign-changing properties
of the scattering rate at Imε = 0, g has two branch cuts, and
this type of summation can be transformed to four ordinary
integrals using the residue theorem (for more details see
Ref. [51]):

IR(ω) = −
∫ ∞

−∞

dε

2π i
f (ε)[gRR(ε, ε + ω) − gAR(ε, ε + ω)

+gAR(ε − ω, ε) − gAA(ε − ω, ε)],

(F3)

where f (ε) = [exp β(ε − μ) + 1]−1 and we performed the
analytic continuation in the frequency iωλ = ω + iη. The up-
per indices of g show the retardedness of the Green’s function
with the corresponding argument. In our simple example,

gXY (ε, ε + ω) = GX
a (ε)GY

b (ε + ω), (F4)

GR/A
a (ε) = 1

ε − Ea ± i�a(ε)
. (F5)

The transformation of the Matsubara summation to integrals
can be seen in Fig. 3.

In the case of the conductivity only the ω → 0 limit is
important, and it can be expressed as

C = − lim
ω→0

IR(ω)

ω

=
∫ ∞

−∞

dε

2π i
f ′(ε)[gAR(ε, ε) − gAA(ε, ε)]

+ f (ε)∂ω[gRR(ε, ε + ω) − gAA(ε, ε + ω)]|ω=0. (F6)

APPENDIX G: INTEGRALS OF GREEN’S FUNCTIONS

From now on we assume �a(ε) ≡ � and � → 0. This
assumption means that we keep only the highest-order terms

in � and neglect anything O(�0). We substitute the infinite
integral in Eq. (F6) with a contour integral on the upper com-
plex plane as in Fig. 4. The integrand will have several poles
coming from the Fermi-Dirac distribution and poles coming
from the advanced Green’s functions inside the contour. After
collecting the residues coming from the Fermi distribution and
performing the � → 0 limit, we see that these contributions
disappear since for � = 0 the difference between advanced
and retarded Green’s functions disappears; thus, in the com-
binations gAR − gAA and gRR − gAA the singularities from the
Fermi-Dirac distribution can be neglected in the order of
O(�0). This means that the integral can be substituted with
the residues coming only from the advanced Green’s functions
in the upper plane. This same argument can be done with
the lower half plane and retarded Green’s functions, and the
results do not change.

Since only the upper plane is considered it means immedi-
ately that the term gRR can be neglected. It can also be shown
that gAA can have only contributions of O(�0). In order to
have a higher-order term two poles with the same energy but
with different retardednesses are necessary. In this case in the
residue a 1/(Ea − Ea + 2i�) type of term appears which is

FIG. 3. The left side shows the contour integral equivalent to the
Matsubara summation. The right side shows this same integral trans-
formed to four ordinary integrals. The crosses show the singularities
of the Fermi-Dirac distribution. The dashed lines show the branch
cuts of g in Eq. (F1).
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FIG. 4. Contour integration on the upper half plane. The crosses
show the singularities of the Fermi-Dirac distribution and the Green’s
functions.

of O(�−1). With higher-order poles higher orders of �−1 can
also appear. Since in gAA all the poles are on one side, the
contribution is O(�0).

In this way C can be calculated as

C =
∑

i

Res{ f ′(ε)gAR(ε, ε), εi}, (G1)

where εi are the singular points on the upper half plane of only
gAR. Taking our simple example in the case of b = a,

C = Res
{

f ′(ε)GA
a (ε)GR

a (ε), Ea + i�
} = f ′(Ea)

2i�
. (G2)

This is exactly the same result as using the usual
GA

a (ε)GR
a (ε) = πδ(ε − Ea)/� approximation. But in cases

where there are more Green’s functions, this approximation
cannot always be used. Our method provides a systematic
approach to evaluate these types of integrals. It is important
to note that here f ′(Ea + i�) ≈ f ′(Ea) was used since we
are neglecting terms of O(�0). In cases with more Green’s
functions the Taylor expansion of f is necessary to get a
proper result, as we will see in Appendix H.

APPENDIX H: RESULTS FOR Cabcd AND Dabcd

Here we detail the summations Cabcd and Dabcd . We start
with Caaaa and then list the results for the rest. gAR in this case
is

gAR = GR
a GA

a

(
GA

a GA
a − GR

a GR
a

)
. (H1)

Using Eq. (G2),

Caaaa = 1

2

(
f ′GR

a

)′′∣∣∣ε=Ea+i� − f ′(GR
a

)3
∣∣∣
ε=Ea+i�

= − f ′′(GR
a

)2
∣∣∣∣ε=Ea+i� + 1

2
f ′′′GR

∣∣∣∣
ε=Ea+i�

= f ′′(Ea + i�)

4�2
+ f ′′′(Ea + i�)

4i�

≈ f ′′(Ea)

4�2
+ f ′′′(Ea)i�

4�2
+ f ′′′(Ea)

4i�

= f ′′(Ea)

4�2
. (H2)

All the other integrals can be done in a similar way. The
following are the results for the C summations:

Caaaa = f ′′
a

4�2
+ O(�0), (H3a)

Cabba = O(�0), (H3b)

Caabb = 1

2i�

f ′
a − f ′

b

(Ea − Eb)2
+ O(�0), (H3c)

Cabab = Caabb, (H3d)

Caaab = 1

4�2

f ′
a

Ea − Eb
+ i

2�

f ′
a

(Ea − Eb)2

− i

4�

f ′′
a

Ea − Eb
+ O(�0), (H3e)

Cabaa = 1

2�2

f ′
a

Ea − Eb
+ O(�0), (H3f)

Caaba = Cabaa, Cbaaa = C∗
aaab, (H3g)

Caacb = f ′
a

2i�

1

Ea − Eb

1

Ea − Ec
+ O(�0), (H3h)

Caacb = Cabac = −Ccbaa = −Cbaca, (H3i)

Cabca = O(�0), Ccaab = O(�0), (H3j)

Cabcd = O(�0). (H3k)

The calculation of D is done in a way similar to that for C:

Caaaa = Daaaa − D̃aaaa, (H4a)

Dabba = 1

2i�

f ′
a

(Ea − Eb)2
+ O(�0), (H4b)

Dabba = D̃abba = Daabb = D̃aabb = Dabab = D̃abab, (H4c)

Dbaaa = O(�0), D̃baaa = O(�0), (H4d)

Daaab = 1

4�2

f ′
a

Ea − Eb
+ i

2�

f ′
a

(Ea − Eb)2

− i

4�

f ′′
a

Ea − Eb
+ O(�0), (H4e)

D̃aaba = −D∗
aaba, (H4f)

Daaab = Daaba = Dabaa, (H4g)

D̃aaab = D̃aaba = D̃abaa, (H4h)

Daacb = f ′
a

2i�

1

Ea − Eb

1

Ea − Ec
+ O(�0), (H4i)

Daacb = D̃aacb = Dabca = D̃abca = Dabac = D̃abac, (H4j)

Dcbaa = O(�0), D̃cbaa = O(�0), (H4k)

Dcaab = O(�0), D̃caab = O(�0), (H4l)

Dbaca = O(�0), D̃baca = O(�0), (H4m)

Dabcd = O(�0), D̃abcd = O(�0). (H4n)
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