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Towards efficient and accurate ab initio solutions to periodic systems via transcorrelation and
coupled cluster theory
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We propose a streamlined combination of the transcorrelation (TC) and coupled cluster (CC) theory, which not
only increases the convergence rate with respect to the basis set but also extends the applicability of the lowest-
order CC approximations to strongly correlated systems. Using the three-dimensional uniform electron gas as a
model for real periodic solids and highly accurate ground-state energies from the state-of-the-art quantum Monte
Carlo methods as benchmark, we show that, with the correct physical insights incorporated, our TC-CC methods
gain drastic improvements in accuracy compared with canonical CC methods, and the errors of our methods
remain ±0.001 Hartree per electron (Ha/electron) across a wide range of densities. With the greatly improved
efficiencies and the balanced and accurate performances at both low and high densities, our methods present
great promise for applications on real solids with weak and strong correlations.
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I. INTRODUCTION

The coupled cluster (CC) methodologies [1–3] at the
level of singles and doubles (CCSD) and perturbative triples
(CCSD(T)) [4] have become the de facto standard of single-
reference ab initio quantum chemistry and can be applied to
systems consisting of hundreds of electrons [5–8]. In the past
few years, these methods have also shown promise in applica-
tions to the solid state [9–14], although significant challenges
remain before they can be routinely applied, as, for example,
density functional theories are. On the one hand, because
of quite steep computational scaling (O(N6) and O(N7) for
CCSD and CCSD(T), respectively), it is desirable to keep
the methods at the lowest possible CC level, namely, CCSD,
while maintaining accuracy. The more accurate CCSD(T),
as a perturbative correction to CCSD, additionally fails for
metals [15]. It is also desirable that the CC methods can
be extended to more strongly correlated systems, where the
single reference nature of these approximations breaks down.
There have been various attempts to develop modified CCSD
methods with a higher accuracy for weakly [16–19] and
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strongly [20–24] correlated systems. The distinguishable clus-
ter singles and doubles (DCSD) [25,26] is one such method,
which has shown promise in improving CCSD in weakly and
strongly correlated molecular systems [27–29].

In a separate development, there has been renewed interest
in so-called transcorrelated (TC) methods [30–44], based on
Jastrow factorization of the electronic wave function, which
result in effective similarity-transformed (ST) Hamiltonians
[40,43]. Although TC methods were originally proposed as
a way to accelerate basis set convergence in electronic wave
functions, it has become apparent that such similarity trans-
formations can also be extremely helpful in the context of
strongly correlated systems. For example, in the repulsive
two-dimensional (2D) Fermi-Hubbard model, it was found
that, with a suitable Gutzwiller correlator, extremely compact
forms of ground-state right eigenvectors of the ST Hub-
bard Hamiltonian could be obtained [42], dominated by the
Hartree-Fock (HF) determinant. Since single-reference CC
methods work best when the wave function is dominated by
the HF determinant, and furthermore, since the CC method
can itself be cast in terms of a similarity transformation of
the Hamiltonian, it is natural to ask if the two concepts—CC
and TC—can be usefully combined into a single framework,
whereby the compactification generated by the TC method is
exploited by the CC method to extend its range of applica-
bility into more strongly correlated systems. The purpose of
this paper is to report such an investigation, applied to the
uniform electron gas (UEG) over a broad range of densities
to assess the accuracy of our new methods at different corre-
lation strengths. In particular, we show that a combination of
the TC method with the DCD method yields highly accurate
energies over the physically relevant range of densities from
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rs = 0.5 − 10, implying that this method has potential for
applications to real solids.

The 3D UEG model assumes that the background is evenly
and positively charged, and that the electrons interact with
each other via the Coulomb interaction. As simple as it is,
the UEG possesses an intricate phase diagram [45,46], which
can only be accurately described by theories that perform
consistently well over a broad range of densities. Historically,
the UEG model has also played an important role in the
development of many useful approximations. For example,
several successful local and gradient-corrected density func-
tionals [47–49] are based on the UEG; the random-phase
approximation (RPA) [50,51] was developed in a pursuit of
understanding metals using the UEG as a model. In recent
years, the UEG has attracted studies from various highly accu-
rate ab initio methods and spurred the development of several
new methods [15,35,40,52–58].

When applying CC to the UEG, we work in a plane-wave
basis; momentum conservation then excludes all single exci-
tations from the CC Ansätz, greatly simplifying the resulting
amplitude equations. As a result, the TC Hamiltonian can be
treated with relative ease, allowing us to investigate whether
the CC method can be beneficially applied to the TC Hamilto-
nian. We will investigate the CCD and DCD approximations,
in the context of the TC Hamiltonian, and show that with a
suitable form of the correlator, the basis set convergence can
be greatly accelerated (as expected), but in addition, highly
accurate energies can be obtained across a broad range of
densities 0.5 � rs � 50 covering both the weakly and the
strongly correlated regimes. This gives us confidence that the
method, once suitably generalized to real systems (which will
need to include the singles contribution), will allow a highly
accurate yet efficient methodology for the solid state.

In the rest part of this paper, we review the UEG model,
CC and TC theories in Secs. II A, II B, and II C, respectively;
in Sec. II D, we discuss the important approximations made to
the TC Hamiltonian; we demonstrate our scheme for choosing
the optimal parameters in the correlator in Sec. III; we show-
case and discuss our TC-CCD/DCD results in comparison
with benchmark data in Sec. IV; and finally, we conclude the
paper in Sec. V with some outlooks for future directions.

II. THEORY

A. 3D UEG

The 3D UEG is the simplest model for realistic periodic
solids, of which the Hamiltonian in real space reads

Ĥ = −
∑

i

1

2
∇2

i +
∑
i �= j

1

|ri − rj| + const., (1)

where the const. includes the interactions between electrons
and the homogeneous positive background charge and the
interactions between the electrons and their own periodic
images, which is termed as the Madelung constant and will
disappear as the size of the simulation cell goes to infinity.
Atomic units are used to simplify the equations. When plane-
wave basis functions and a simple cubic simulation cell of
volume � = L3 are used, we can reformulate the Hamiltonian

in a second-quantized form,

Ĥ =
∑

p

∑
σ

1

2
k2

pa†
p,σ ap,σ + 1

2

∑
pqrs

∑
σσ ′

V rs
pqa†

p,σ a†
q,σ ′as,σ ′ar,σ ,

(2)
where for simplicity we use p, q, r, s . . . indices as a compact
form for the general momentum (plane-wave basis function)
indices kp, kq, kr, ks . . . and hereon we use the two terms
plane-wave basis function and orbital equivalently. We stress
that due to momentum conservation, i.e., k ≡ kr − kp = kq −
ks, there are only three free indices among pqrs, and the inter-
actions with the homogeneous positive background charge are
canceled by the divergent Coulomb potential at k = 0, which
is defined as V rs

pq ≡ V (k) = 4π
�k2 . We also ignore the Madelung

contribution in the Hamiltonian which can be added pos-
teriorly to the ground-state energy. The electron density of
the system can be described by the Wigner-Seitz radius rs =
( 3

4πN )1/3L, where N is the number of electrons.

B. Coupled/distinguishable cluster doubles

In the CC Ansätz, we let the many-electron ground-state
wave function to be

� = eT̂ �0, (3)

where �0 is the HF wave function and T̂ is a cluster operator.
In the case of the UEG, we work in a plane-wave basis and
�0 is given by the Fermi sphere. We will investigate the CCD
approximation and its distinguishable variant (DCD) [25,59],
which is based on a modification of the CCD amplitude
equations by neglecting intercluster exchange diagrams and
ensuring the particle-hole symmetry and exactness for two
electrons. Alternatively, DCD can be derived from screened
Coulomb considerations [60]. We start with the canonical
CCD and later highlight the differences between CCD and
DCD.

In CCD, the full cluster operator is approximated by the
doubles excitations only,

T̂ ≈ T̂2 = 1

2

∑
i jab

T i j
ab

∑
σσ ′

a†
a,σ a†

b,σ ′a j,σ ′ai,σ , (4)

where T i j
ab are the doubles amplitudes. Following convention,

we use i, j, k . . . and a, b, c . . . to represent occupied and
unoccupied orbitals in the reference determinant, respectively.
Again, the momentum conservation ensures that only 3 in-
dices of the amplitude tensor are free, saving a great deal in
storing them in the computer memory.

The T2 amplitudes are obtained by solving the projective
doubles amplitude equations,〈

�ab
i j

∣∣e−T̂2 ĤeT̂2 |�0〉 = 0, (5)

where �ab
i j are doubly substituted determinants. To be specific,

a functional form of the residual, which unifies CCD and DCD
for closed-shell systems, can be written as

Ri j
ab =V i j

ab + V cd
ab T i j

cd + I i j
kl T

kl
ab + X c j

al T il
cb + T̃ ik

ac V cd
kl T̃ l j

db

+ P̂ (ia; jb)
[
xc

aT i j
cb − xi

kT k j
ab + χ ci

al

(
T l j

bc − T l j
cb

)
−V ic

kaT k j
cb − V ic

kbT k j
ac + T̃ ik

ac V c j
kb

]
,

(6)
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where we define the permutation operator P̂ (ia; jb)T i j
ab ≡

T i j
ab + T ji

ba and the following intermediates,

I i j
kl =

{
V i j

kl + V cd
kl T i j

cd , CCD
V i j

kl , DCD
(7)

X c j
al =

{
V cd

kl T k j
ad , CCD

0, DCD
(8)

xc
a =

{
f c
a − T̃ kl

ad V dc
lk , CCD

f c
a − 1

2 T̃ kl
ad V dc

lk , DCD
(9)

xi
k =

{
f i
k + T̃ il

cdV dc
lk , CCD

f i
k + 1

2 T̃ il
cdV dc

lk , DCD
(10)

χ ci
al =

{
V cd

kl T ki
da, CCD

0, DCD
(11)

T̃ i j
ab = 2T i j

ab − T i j
ba . (12)

We note that in this case, the Fock matrix f p
q is diagonal,

with the diagonal elements being the orbital energies εp. A
straightforward way to update the T2 amplitudes at iteration
n + 1 will be

�
i j
ab = Ri j

ab

εi + ε j − εa − εb
, (13)

T i j
ab (n + 1) = T i j

ab (n) + �
i j
ab. (14)

Of course, more advanced iterative schemes can be used, e.g.,
DIIS [61,62], to accelerate convergence rate.

Using the converged T2 amplitudes, the correlation energy
is expressed as

Ec = T̃ i j
abV ab

i j , (15)

and the total energy is

E = EHF + Ec, (16)

where EHF = 〈�0|Ĥ |�0〉.

C. TC

In the TC framework the many-electron wave function is
written as

	 = eτ̂�, (17)

where τ̂ = 1
2

∑
i �= j u(ri, rj) is a correlator consisting of pair

correlations u(ri, rj), whose form will be discussed later. The
� should satisfy the similarity-transformed eigenvalue equa-
tion

Ĥtc� = E�, Ĥtc = e−τ̂ Ĥeτ̂ . (18)

It is worth pointing out that at this stage, no approximations
have been made, and the spectra E of Ĥtc are the same as of
the original Hamiltonian. As shown in Ref. [40], the second
quantized form of the Ĥtc in a plane-wave basis is

Ĥtc = Ĥ + 1

2

∑
σσ ′

∑
pqrs

ωrs
pqa†

p,σ a†
q,σ ′as,σ ′ar,σ

+ 1

2

∑
σσ ′σ ′′

∑
pqorst

ωrst
pqoa†

p,σ a†
q,σ ′a

†
o,σ ′′at,σ ′′as,σ ′ar,σ ,

(19)

where momentum conservation requires k ≡ kr − kp, k′ ≡
kq − ks, and ko = kt + k − k′, and we define

ωrs
pq = 1

�
[k2ũ(k) − (kr − ks) · kũ(k)]

+ 1

�

∑
k′

(k − k′) · k′ũ(k − k′)ũ(k′), (20)

ωrst
pqo = − 1

�2
ũ(k)ũ(k′)k · k′. (21)

The TC Hamiltonian has additional two-body and three-body
interactions. Due to one of the additional two-body interac-
tions, the TC Hamiltonian is non-Hermitian. This fact can
pose some difficulties for variational methods, but not so
for projection methods such as full configuration interaction
Monte Carlo (FCIQMC) [9,63] and CC.

D. Approximations to the three-body operator

The additional three-body operator when treated without
approximations will increase the computational scaling of
CCD or DCD from N6 to N7. To seek a good balance between
the computational cost and the accuracy, we include only up to
effective two-body operators arising from normal-ordering the
three-body operator. In this approximation, only the normal-
ordered three-body operator is excluded. We can justify this
approximation by analogy to the HF approximation, which
constructs a mean-field solution by including only the single
and double contractions from the Coulomb operator. In cases
where the mean-field approximation is reasonably good, the
contribution of the missing normal-ordered Coulomb operator
is small, compared with the single and double contractions.
In contrast to the HF approximation, the parameters in the
correlator in general allow a tuning of the strength of the
missing normal-ordered three-body operator, which we will
discuss in the next section.

In general, we can write our approximated Hamiltonian as

Ĥtc = ẼHF +
∑

σ

∑
p

ε̃p{a†
p,σ ap,σ }

+ 1

2

∑
σσ ′

∑
pqrs

Ṽ rs
pq{a†

p,σ a†
q,σ ′as,σ ′ar,σ }

+ ET +
∑

σ

∑
p

ω̃p{a†
p,σ ap,σ }

+ 1

2

∑
σσ ′

∑
pqrs

w̃rs
pq{a†

p,σ a†
q,σ ′as,σ ′ar,σ },

(22)

where ET refers to the triply contracted three-body operator
contribution, ω̃p is the doubly contracted three-body integral,
and ω̃rs

pq is the singly contracted three-body integral. The curly
brackets indicate that the operators are normal-ordered with
respect to the HF vacuum (Fermi sphere). We emphasize that
in Eq. (22), ẼHF and ε̃p are calculated now with the modified
two-body integrals Ṽ rs

pq = wrs
pq + V rs

pq . For clarity, we outline
the procedures for our TC-CCD/DCD framework.

(1) Evaluating ωrs
pq and V rs

pq and combining them into
Ṽ rs

pq ← wrs
pq + V rs

pq .

(2) Calculating ε̃p = k2
p

2 + ∑
i(2Ṽ pi

pi − Ṽ pi
ip ).
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FIG. 1. A sketch of the Jastrow factor with the proposed correla-
tor as the exponent.

(3) Calculating ẼHF = 2
∑N/2

i ε̃i − ∑
i j (2Ṽ i j

i j − Ṽ i j
ji ) and

ET.
(4) Evaluating ω̃p, and defining εp ← ε̃p + ω̃p.
(5) Evaluating the singly contracted three-body integral

w̃rs
pq and redefining V rs

pq ← Ṽ rs
pq + w̃rs

pq.
(6) Solving the usual CCD/DCD amplitude equations us-

ing εp and V rs
pq for T2 and obtaining Ec.

(7) The total energy is E = ẼHF + ET + Ec.
For details on the mathematical expressions for the con-

tractions of the three-body operator, we refer to the Appendix.

III. CHOICE AND OPTIMIZATION OF THE CORRELATOR

Past experience with the TC method has shown that the
form of the correlator τ̂ is of extreme importance in the TC
method; otherwise, the benefit of TC is lost—� can be sim-
pler than 	 only if the correlator captures the correct physics
of the pair correlations in the system. An inappropriate corre-
lator can actually lead to a harder problem than the original
Schrödinger equation. In our previous study of the exact TC
method in the UEG, we proposed a form of the correlator
(shown below) which was found to work successfully in ac-
celerating convergence to the basis set limit, without changing
the correlation that could be captured with the basis set by
a FCI level � function. In the present study, since we will
be approximating the � with the CC Ansätz, we additionally
require the correlator τ̂ to capture some of the correlation
inside the Hilbert space.

Here we propose a physically motivated correlator that
mimics the behavior of the correlation hole between two
unlike-spin electrons as rs varies in 3D UEG. The correla-
tion hole can be examined by the pair-correlation function
g(r12) in real space, as studied in Ref. [64], which shows that
the correlation hole between two unlike-spin electrons grows
deeper and wider as the Wigner-Seitz radius rs increases or as
the electron density decreases. Figure 1 provides a sketch of
the Jastrow factor with our proposed correlator u(r12) as the
exponent, which captures the desired behavior. We point out
that the functional form of this correlator, which reads in real

FIG. 2. The weights of the HF determinant (Fermi sphere) as a
function of kc extracted from their corresponding TC-FCIQMC sim-
ulations (red dashed line) and that of the normal FCIQMC simulation
(horizontal red solid line). The vertical blue line is set at kc = R1

rs
. The

system consists of 14 electrons with rs = 5 and a basis set including
57 plane waves. 5 × 108 walkers are used in all simulations and the
initiator threshold is set to 3. No approximations are made to the
three-body interactions.

and reciprocal space, respectively, as

u(r) = − r

π

(
si(kcr) + cos(kcr)

kcr
+ sin(kcr)

(kcr)2

)
, (23)

ũ(k) =
{− 4π

k4 , |k| > kc,

0, |k| � kc,
(24)

where si(x) = − ∫ ∞
x

sin(t )
t dt , was first reported in Ref. [40] to

satisfy the cusp condition between two electrons with oppo-
site spins at short interelectron distance and its influence is
reduced to nonexistence as the complete basis set (CBS) limit
is reached. This was done by choosing kc to be the same as the
plane-wave cutoff momentum, kF, which defines how many
plane waves are included as basis functions. In contrast, to
mimic the behavior of the pair-correlation function, as a first
attempt in the present study we choose the parameter in this
correlator such that the first nonzero root of Eq. (23) is fixed to
be at rs, irrespective of the basis set. This is achieved by setting

kc = R1

rs
, (25)

where R1 ≈ 2.322502989. This choice can be rationalized
by the physical picture that at lower densities, electrons
prefer to stay further away from each other. Furthermore,
this correlator, regardless of the choice of kc, retains the cusp
condition for two electrons with unlike-spins at r = 0 [40] and
should increase the convergence rate of the computed energies
with respect to the employed basis set towards the CBS limit.

To further justify the choice of this correlator, we show that
for UEG with 14 electrons at rs = 5, where traditional CCD
exhibits a large error, the most compact expansion of the wave
function in Slater determinant space is reached at this value
of kc. In Fig. 2, we show the weights of the HF determinant
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(a) (b)

FIG. 3. The norm of the amplitudes for excitations of unlike-spin
electron pairs, ‖T ↓↑

2 ‖, as a function of kc, calculated by the TC-DCD
method for (a) the 14-electron and (b) the 54-electron systems. The
14-electron and 54-electron systems use a basis set including 57 and
257 plane waves, respectively. All possible contractions from the
three-body interactions are included, excluding the normal-ordered
three-body interactions. The solid horizontal color lines, each of
which is associated with a rs value indicated by the legend in the
same order, represent the ‖T ↓↑

2 ‖ in the canonical DCD calculations
with the same settings as their TC counterparts.

extracted from TC-FCIQMC simulations using different kc

values, without making approximations to the three-body op-
erator. We note that due to the discrete momentum mesh as a
result of using a finite simulation cell, the possible choices are
kc = 2π

√
n

L , n ∈ N [65], where L is the length of the cubic cell.

In this case, kc = R1
rs

is equivalent to kc = 2
√

2π
L , and for this

choice of kc the exact ground-state wave function of the TC
Hamiltonian has the highest weight on the HF determinant.

However, we find that this intuitive choice of kc is
not always the optimal, especially at extremely low-density
regimes. It is reasonable to expect that the optimal kc for those
systems should deviate slightly from R1

rs
. So we scan a range

of kc values around it to locate the one that minimizes the
norm of the closed-shell amplitudes for double excitations of
electrons with opposite spins, ‖T ↓↑

2 ‖, in the TC-CCD/DCD
calculations with a small basis set, see Fig. 3 [66].

Ideally, two separate correlators should be used for elec-
trons with parallel and anti-parallel spins, and their parameters
should be optimized simultaneously using the norm of the
full amplitudes in a similar manner. For the present study, we
argue that the correlations between two parallel-spin electrons
are dominated by the exchange effects, which are already
captured by the anti-symmetry in the Slater determinants.
Therefore, we focus on capturing the correct physics between
electrons with opposite spins in the correlator, i.e., the chang-
ing depth and width of the correlation hole as a function of rs

[64], and minimizing the corresponding amplitudes in the CC
Ansätze. Indeed, we found in practice the minima in ‖T ↓↑

2 ‖
as a function of kc are more pronounced and thus easier to

FIG. 4. Comparison of the basis set convergence behaviors be-
tween the canonical CCD/DCD and the TC-CCD/DCD methods.
Shown in (a) and (b) is the total energy per electron relative to the
extrapolated value retrieved as a function of 1/M at rs = 0.5 and
rs = 5.0, respectively, where M is the number of plane-wave basis
functions for 3D UEG with 14 electrons. Linear extrapolations to the
CBS limit using the two leftmost points are used in all cases, shown
as the dotted straight lines.

spot than those in the norm of the full amplitudes, ‖T2‖. We
stress that this compact form of wave function at the optimal
choice of kc should greatly benefit approximate methods like
CCD and DCD, whose accuracy relies on the assumption that
the true ground state wave function is compact around the
reference determinant, which is normally chosen to be the HF
determinant.

By including the most important contractions, the error
of neglecting the rest of the three-body interactions are well
under control in that it scales approximately as ũ2(k)k2 ∼ 1

k6 .
We note in passing that if we choose correlators that do not
truncate at small k, such as the Yukawa-Coulomb correlator
in Ref. [67] or the Gaskell correlator in Ref. [68], the
iterative solution of the amplitude equations becomes too
unstable to converge at low densities. We attribute this
instability in these cases to the large missing normal-ordered
three-body interactions, similar to the instability in a HF
self-consistent solution when the missing normal-ordered
Coulomb interactions are large.

The FCIQMC calculations are carried out using the NECI
program [69]. The CCD and DCD along with the TC integrals
are implemented in a Python program using the automatic ten-
sor contraction engine CTF [70] and the NumPy package [71].

IV. RESULTS ON THE 3D UEG

We first examine the basis set convergence behavior of
TC-CCD/DCD compared to the canonical ones. In Fig. 4
we present the total energy per electron relative to the ex-
trapolated value for each method, retrieved as a function of
the inverse of the employed number of plane waves, 1/M.
We use the two leftmost points for linear extrapolations at
all densities, since they exhibit consistent linear behavior
with the third leftmost data points and the energy differences

033072-5
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TABLE I. Total energy (Ha/electron), including the Madelung constant, of the 14-electron 3D UEG using different methods. The TC-
FCIQMC data are from Ref. [40] and the BF-DMC data are from Ref. [54]a.

rs kc ( 2π

L ) CCD DCD TC-CCD TC-DCD TC-FCIQMC BF-DMC

0.5 1 3.41278 3.41252 3.41258 3.41244 3.41241(1) 3.41370(2)
1.0 1 0.56975 0.56909 0.56891 0.56859 0.56861(1) 0.56958(1)
2.0

√
2 −0.00623 −0.00748 −0.00707 −0.00800 −0.00868(2) −0.007949(7)

5.0
√

2 −0.07618 −0.07788 −0.07816 −0.07929 −0.08002(2) −0.079706(3)
10.0

√
2 −0.05137 −0.05289 −0.05420 −0.05509 N/A −0.055160(2)

20.0 2 −0.02924 −0.03035 −0.03136 −0.03201 N/A −0.0324370(8)
50.0

√
6 −0.01261 −0.01323 −0.01350 −0.01384 N/A −0.0146251(3)

aThe BF-DMC data for the 14-electron 3D UEG are obtained via private communication with P. López Ríos in both this work and Ref. [54].
They were used to produce Fig. 1 in Ref. [54]. However, the values of the data are presented in this work for the first time.

between them are smaller than the targeted accuracy of 0.001
Ha/electron. As mentioned before, our correlator satisfies the
cusp condition at the coalescence point of two electrons with
opposite spins. So the accelerated convergence behavior in
the TC methods compared with the canonical ones is not sur-
prising. The acceleration is the most obvious at high-density
regimes, since at low densities the required number of basis
functions to reach convergence in both the TC and non-TC
methods is relatively small. These observations are consistent
with those of the TC-FCIQMC reported in Ref. [40].

The optimal kc values, (TC-)CCD/DCD energies at CBS
and the benchmark data are listed in Tables I and II for the 14-
and 54-electron 3D UEG, respectively. In Fig. 5 we present
the errors of total energies per electron calculated by TC-
CCD, TC-DCD, CCD, and DCD relative to the most accurate
FCIQMC [40,53,56] and backflow DMC (BF-DMC) [54,72]
results on the 14- and 54-electron 3D UEG. The finite basis
set errors in our methods have been carefully eliminated by
extrapolation to the CBS limit.

In general the accuracy of the TC methods is greatly
improved compared with their canonical counterparts, espe-
cially in regions (rs = 5 − 50) where the latter exhibits the
largest errors. More importantly, the improved accuracy is
retained when going from the 14- to the 54-electron sys-
tem. We highlight that the TC-DCD achieves an accuracy of
� 0.001 Ha/electron across a wide range of densities, i.e.,
rs = 0.5 − 50 for the 14-electron and rs = 0.5 − 20 for the
54-electron 3D UEG, with an exception at rs = 10 for the
latter where it drops slightly out of the 0.001 Ha/electron
accuracy. We argue that with the next possible smaller value

of kc = √
6, which yields a marginally higher ‖T ↓↑

2 ‖, instead
of the current choice of kc = 2

√
2, the 0.001 Ha/electron

accuracy at rs = 10 can be regained. The discrete grid of the
k-mesh makes it hard to pick the optimal kc in Fig. 3(b).
However, as the system gets larger and the k-mesh gets finer,
the ‖T ↓↑

2 ‖ as a function of kc will also be smoother, and the
choice of the optimal kc will become more definite. We use
colorful shaded areas in Fig. 5 to reflect the uncertainties due
to the possible choices of kc which yield similar ‖T ↓↑

2 ‖ values
in Fig. 3.

At high densities, i.e., rs = 0.5 − 2, the canonical DCD is
already very accurate, and the main benefit from TC there
is in accelerating the basis set convergence. Overall, DCD
exhibits smaller errors than CCD, which agrees with earlier
comparative studies between DCSD and CCSD [25–27].

V. CONCLUSIONS

We demonstrated that the correlator Eq. (23), used with
TC-CC theory, drastically improves the accuracy of approx-
imate methods, i.e., CCD and DCD, for 3D UEG across a
wide range of densities. The basis set convergence rate is
also improved thanks to the fact that the correlator satisfies
the cusp condition at the coalescence point of two unlike-
spin electrons. We have explored the mechanism behind the
improved accuracy of the TC-CCD and TC-DCD methods,
which is related to a compactification of the many-electron
wave function in Slater determinant space when the domi-
nant pair correlations between electrons with unlike-spins are

TABLE II. Total energy (Ha/electron), including the Madelung constant, of the 54-electron 3D UEG using different methods. TC-FCIQMC
data are from Ref. [40] and the BF-DMC data are from Ref. [72].

rs kc ( 2π

L ) CCD DCD TC-CCD TC-DCD TC-FCIQMC BF-DMC

0.5
√

2 3.22079 3.22052 3.22077 3.22071 3.22042(2) 3.22112(4)
1.0

√
2 0.53069 0.53001 0.52982 0.52968 0.52973(3) 0.52989(4)

2.0 2 −0.01162 −0.01286 −0.01324 −0.01379 N/A −0.01311(2)
5.0

√
5 −0.07492 −0.07655 −0.07750 −0.07837 N/A −0.079036(3)

10.0 2
√

2 −0.05016 −0.05157 −0.05230 −0.05322 N/A −0.054443(2)
20.0 3 −0.02846 −0.02925 −0.03055 −0.03113 N/A −0.032047(2)
50.0 4 −0.01223 −0.01267 −0.01263 −0.01281 N/A N/A
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FIG. 5. Errors in energy per electron relative to benchmark data on the 3D UEG using TC-CCD, TC-DCD, CCD, and DCD methods.
(a) Results for 14 electrons. For rs = 0.5 − 5, TC-FCIQMC data [40] are used and for the rest BF-DMC data [54] are used for benchmark.
(b) Results for 54 electrons. For rs = 0.5 − 1, TC-FCIQMC data [40] are used and for the rest BF-DMC data [72] are used for benchmark.
The horizontal gray shaded areas stand for the ±0.001 Ha/electron accuracy relative to the reference data. The colorful shaded areas around
the data lines reflect the uncertainties in the TC-CCD and TC-DCD energies due to slightly different choices of the kc values.

directly included in the correlator. The optimization of the
parameter in the correlator is seamlessly incorporated within
the TC-CCD/DCD framework, without requiring an external
algorithm. We notice that a range-separation scheme of CCD
can also achieve similar accuracy in 3D UEG, but without
improving the basis set convergence rate [54]. Comparatively
speaking, our methods are systematically improvable, in that
a more flexible form of the correlator can be designed by
a combination of a series of functions [43] or by a general
function approximator, e.g., an artificial neural network, to
include further correlation effects such as nucleus-electron
correlations and correlations between two parallel-spin elec-
trons in more complicated systems. Other systematic ways
of optimizing the correlator in combination with VMC [43]
can also be explored. When going to real periodic solids,
TC-CCSD and TC-DCSD will be needed; extra efforts are
also required to compute the additional integrals besides the
Coulomb integrals, where the most computationally demand-
ing part is the singly contracted three-body integrals which
scales like O(N2

o N4
v ), where No and Nv are the number of

occupied and unoccupied orbitals, respectively. Fortunately,
the computation of the extra integrals scales no worse than
the CCSD or DCSD algorithm and it can be compensated by
the accelerated convergence rate towards CBS limit in the TC
framework. These perspectives will be important in extending
the encouraging performance of the current TC-CCD and
TC-DCD methods from the UEG to real periodic solids with
moderate to strong correlation.

ACKNOWLEDGMENTS

We thank A. Grüneis and N. Masios for helpful discussions
and P. López Ríos for providing the BF-DMC data for the 14
electron UEG. The authors gratefully acknowledge funding
from the Max Planck Society.

The authors declare that they have no competing financial
interests.

APPENDIX: INTERNAL CONTRACTIONS IN THE
THREE-BODY INTEGRALS

The three-body integrals can be written as an asymmetric
form

Ŵ3 = − 1

2�2

∑
σσ ′σ ′′

∑
kk′rst

ũ(k′)ũ(k)k′ · k

× a†
r−k,σ a†

s+k′,σ ′a
†
t+k−k′,σ ′′at,σ ′′as,σ ′ar,σ , (A1)

where the indices are defined in the main text and conservation
of momentum is used. In the following subsections, we will
show the specific mathematical expressions for all contrac-
tions. The expressions are derived by using the Goldstone
diagrams (not shown).

1. Single contractions

There are four types of different single contractions, which
are

Ŵ S1
3 = − Ne

2�2

∑
σσ ′

∑
krs

ũ(k)2k2{a†
r−k,σ a†

s+k,σ ′as,σ ′ar,σ },

Ŵ S2
3 = 1

�2

∑
σσ ′

∑
krs

{a†
r−k,σ a†

s+k,σ ′as,σ ′ar,σ }

×
∑

i

(i − r + k) · kũ(k)ũ(i − r + k),

Ŵ S3
3 = 1

�2

∑
σσ ′

∑
krs

{a†
r−k,σ a†

s+k,σ ′as,σ ′ar,σ }

×
∑

i

(r − i) · kũ(k)ũ(r − i),
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Ŵ S4
3 = 1

�2

∑
σσ ′

∑
krs

{a†
r−k,σ a†

s+k,σ ′as,σ ′ar,σ }

×
∑

i

(r − i − k) · (r − i)ũ(r − i)ũ(r − i − k),

(A2)

where the curly brackets refer to normal-ordering with respect
to the reference determinant. Now we can define the ω̃rs

pq by
the following relation

1

2

∑
σσ ′′

∑
pqrs

ω̃rs
pq{a†

p,σ a†
q,σ ′as,σ ′ar,σ }

= Ŵ S1
3 + Ŵ S2

3 + Ŵ S3
3 + Ŵ S4

3 . (A3)

However, we notice that this effective two-body integral is
not symmetric with respect to the exchange of two electrons,
due to the fact we used an asymmetric form of the three-body
integral. So we need to symmetrize it as follows:

ω̃rs
pq ← 1

2

(
ω̃rs

pq + ω̃sr
qp

)
. (A4)

2. Double contractions

The double contractions in the three-body integrals result
in the ω̃p in the main text. It is a sum of five types of double
contractions, which reads

ω̃p = Ne

�2

(∑
i

ũ2(p − i)(p − i)2

)

− 1

�2

(∑
ij

(p − i) · (p − j)ũ(p − i)ũ(p − j)

)

− 1

�2

(∑
ij

(i − j) · (i − p)ũ(i − j)ũ(i − p)

)

− 1

�2

(∑
ij

(j − i) · (p − i)ũ(j − i)ũ(p − i)

)

+ 1

�2

(∑
ij

(i − j)2ũ2(i − j)

)
. (A5)

3. Triple contractions

There are two types of triple contractions which contribute
to ET mentioned in the main text:

ET = Ne

2�2

∑
σ

∑
ij

ũ2(i − j)(i − j)2

− 1

�

∑
σ

∑
ij

(
1

�

∑
k

(i − k) · (i − j)ũ(i − j)ũ(i − k)

)
.

(A6)
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[2] J. Čižek and J. Paldus, Correlation problems in atomic
and molecular systems III. Rederivation of the coupled-pair
many-electron theory using the traditional quantum chemical
methodst, Int. J. Quantum Chem. 5, 359 (1971).
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