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Deterministic preparation of nonclassical states of light in cavity optomechanics
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Cavity-optomechanics is an ideal platform for the generation non-Gaussian quantum states due to the anhar-
monic interaction between the light field and the mechanical oscillator, but it is exactly this interaction that also
impedes the preparation of pure states of the light field. In this paper we derive a driving protocol that helps to
exploit the anharmonic interaction for state preparation and that ensures that the state of the light field remains
close to pure. This shall enable the deterministic preparation of photon Fock states or coherent superpositions
thereof.
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I. INTRODUCTION

Optomechanical experiments provide accurate control over
the quantum dynamics of mesoscopic mechanical oscillators
and light fields at the single-photon level [1]. In particular,
because the interaction between such oscillators and light
fields is anharmonic, there is great potential to generate non-
classical, non-Gaussian states [2–7] with various applications
including quantum metrology [8–10], quantum cryptography
[11–13], and more [14–17]. A widely pursued goal is the
creation of single-photon Fock states [4,18–22], but also mul-
tiphoton Fock states and superposition of Fock states are of
use in practical applications [23–27].

While the anharmonic interaction is essential for the real-
ization of non-Gaussian states, its flip side is that it results
in the evolution toward quantum states with correlations be-
tween the optical and the mechanical degrees of freedom. The
preparation of a pure state of one of the subsystems can be
achieved in terms of a projective measurement on the other
subsystem [2,3,28]. Such a scheme, however, is intrinsically
probabilistic with a success probability limited by the mul-
titude of possible measurement outcomes. In this work, we
propose a driving scheme for optomechanical systems for the
deterministic preparation of close-to-pure, nonclassical states
of light, and we exemplify the scheme with two-photon Fock
states and the coherent superposition of this state and the
vacuum state.

The main body of the paper is divided into two sections.
In Sec. II, a perturbative solution to the driven evolution of
the system is derived and the optimal driving protocol is
constructed. In Sec. III, numerical results for both the coher-
ent dynamics and the dissipative dynamics are presented and
analyzed.
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II. THEORY

A. System Hamiltonian

We consider a generic model of an optomechanical system
composed of a Fabry-Pérot cavity with one stationary and
one movable mirror, i.e., a mechanical oscillator. The system
Hamiltonian H = H0 + HI consists of the noninteracting part
H0 = ωca†a + ωmb†b with resonance frequencies ωc and ωm

of the optical field and the mechanical oscillator, as well as
corresponding creation and annihilation operators a, b, a†,
and b†. The interaction HI = −g0a†a(b† + b) is cubic in these
operators and thus can overcome the restriction to Gaussian
dynamics that is inherent to quadratic Hamiltonians.

Pumping of the cavity with an external classical light field
is described by the Hamiltonian

Hd = d (t )a† + d∗(t )a , (1)

where the time-dependent function d (t ) characterizes the fre-
quency and any other time dependence of the light field, such
as a temporal modulation.

In the absence of the interaction HI , driving the cavity with
classical light can only result in the creation of a classical
state. It is only the interaction that can result in nonclassical
features, as indicated, for example, by negative values of
the Wigner function [29]. In fact, the interacting system is
equivalent to an anharmonic oscillator with a quartic Kerr
nonlinearity which can be used for the generation of a variety
of non-Gaussian states [30,31]. This nonlinearity, however,
is not a single-body property of the light field, but it is a
property of a collective degree of freedom which is defined
by the polaron transformation e(g0/ωm )a†a(b†−b). This highlights
that the optomechanical interaction will generally result in
correlations between the optical and mechanical degrees of
freedom. Each of these parts of the system alone is then
described by a mixed state, and this mixing typically prevents
the observation of nonclassical effects [32].

A way around this predicament is to perform a measure-
ment on the light field resulting in the projection of the
mechanical oscillator into a pure quantum state. Such a prob-
abilistic method is, however, not easily generalizable to the
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creation of states of light, because the mechanical degree of
freedom is substantially less accessible for a measurement.

For the creation of pure, nonclassical states of light it
is thus highly desirable to ensure that the state of the full
system is given as direct product of the states of each of the
subsystems. It is possible to deterministically create highly
nonclassical states of the mechanical oscillator in terms of
suitably shaped pump profiles [6], but the extension of such
an approach for the creation of states of light is rather chal-
lenging, since the control of the system is realized in terms
of driving the light field, which needs to interact with the
mechanical oscillator before excitations in the mechanical os-
cillator can cause the light field to adopt nonclassical features.
At the same time, the driving tends to create Gaussian features
of the state of light that tend to overshadow nonclassical
effects.

B. Driving profiles

The range of achievable states will strongly depend on
the chosen driving profile d (t ). In particular, strong driving
can modify the system dynamics with great potential for
state preparation, but practical constraints demand sufficiently
weak driving with sufficiently simple spectra.

Suitable choices for driving profiles can be identified
from the basic properties of the optomechanical interaction
a†a(b† + b) that couples the absorption and emission of a
phonon to the photon number operator nc = a†a. Since the
number operator is quadratic, and thus does not contribute to
the creation of nonclassicality, it will not be helpful to use
driving that supports the absorption and emission of single
phonons. An effective process, comprised of two successive
interaction events, on the other hand, would involve the oper-
ator n2

c , which is no longer quadratic. We will thus employ a
driving profile that favors the absorption and emission of pairs
of phonons.

A reasonably elementary driving profile satisfying this re-
quirement is given by

d (t ) = iEe−i(ωct−ψ ) cos(2ωmt ), (2)

with a detuning from the optical resonance frequency ωc that
amounts to twice the mechanical frequency ωm. The real-
valued amplitude E and phase ψ are not determined yet, and
the freedom to choose these parameters will be utilized for the
design of suitable driving patterns.

C. System dynamics

Given the cubic character of the interaction, it is not
possible to solve the dynamics of the driven-interacting sys-
tem exactly. Since, however, the noninteracting system is
described by a quadratic Hamiltonian, the dynamics of the
driven, but noninteracting system can be found analytically.
It is thus natural to solve the system dynamics perturbatively
in the interaction strength.

The propagator of the noninteracting system is given by
[33]

U0(t ) = eiξ (t )e−iωcnct e−iωmnmt e f (t )a†− f ∗(t )a , (3)

with the phonon number operator nm = b†b, the time-
dependent scalar function

f (t ) =
∫ t

0
dτ eiωcτ d (τ ) , (4)

and a real, scalar, time-dependent global phase ξ (t ).
The interaction Hamiltonian H̃I = U †

0 HIU0 in the frame
defined by U0 reads

H̃I = −g0[a† + f ∗(t )][a + f (t )][b(t ) + b†(t )] , (5)

with the time-dependent annihilation operator b(t ) = be−iωmt

and creation operator b†(t ) = b†eiωmt of a phonon.
Since the cavity frequency ωc is much larger than the

frequency ωm of the mechanical oscillator, one can take ωc

to be an integer multiple of ωm. In this case, the propagator of
noninteracting system U0 is periodic with period T = 2π/ωm.
Furthermore, the Hamiltonian H̃I also becomes periodic, and
the propagator induced by H̃I thus admits a decomposition
into a periodic part that reduces to the identity 1 after full
periods and a part exp(−iHet ) that is induced by the effective
Hamiltonian He, which fully captures the dynamics of the
system after full periods.

The effective Hamiltonian for the evolution after one me-
chanical period can be constructed perturbatively [34] in
powers of k = g0/ωm. It will be insightful to distinguish
between the parts of the effective Hamiltonian that capture
processes of only the cavity field, processes of only the me-
chanical oscillator, and interaction processes each. That is,
the explicit expansion of the effective Hamiltonian is given
by

He = ωm

2

∑
j

k j
(
MC

j + MM
j + MI

j

)
, (6)

with the symbols C, M, and I referring to cavity, mechanical,
and interaction.

With the explicit driving profile given in Eq. (2), the
lowest-order effective Hamiltonian (linear in k) vanishes ex-
actly, and the second-order contribution is the dominant term.

Also, the second-order term MM
2 of the mechanical os-

cillator vanishes, but the term MC
2 is generally finite and

reads

MC
2 = −2n2

c − 4η2

3
nc + η2

3
(a2e−2iψ + H.c.), (7)

with the scaled driving amplitude η = E/ωm. The second-
order interaction term reads

MI
2 = −

√
2ηPψ (b2 + (b†)2), (8)

with the phase-shifted momentum

Pψ = i√
2

(ae−iψ − a†eiψ ) (9)

of the cavity field.

D. Effective Hamiltonian

The cavity operator MC
2 in Eq. (7) contains several terms

that are very useful for the generation of non-Gaussian states.
The terms (a†)2 and a2 describe the creation and annihilation
of pairs of photons. Those processes alone, however, are still
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within the set of Gaussian dynamics, but the quartic operator
n2

c breaks this restriction. It results in a deviation from the
evenly spaced level structure of the quantum harmonic os-
cillator. The effectively larger spacing between higher lying
levels makes it possible to populate the two-photon Fock state
starting from the vacuum state, while making sure that the
population of the four-photon Fock state and higher-lying
states is sufficiently far off-resonant to be negligible.

On the other hand, in second order there are also processes
that can impede the generation of non-Gaussian states. The
term linear in nc that is contained in the cavity operator MC

2
increases the constant spacing between energy levels of the
quantum harmonic oscillator and thus reduces the effective
anharmonicity resulting from the n2

c term. Furthermore, the
interaction term MI

2 in Eq. (8) results in correlations between
the cavity and the mechanical oscillator to build up.

With the driving profile specified in Eq. (2), it is not
possible to have these undesired terms vanish without also
having terms describing the creation and annihilation of pairs
of photons vanish. The goal of the following analysis will,
therefore, be the construction of a sequence of driven and
undriven intervals such that the effective Hamiltonian Hf for
the dynamics over all these intervals contains the desired
terms, but in which terms describing undesired processes are
no longer present.

The dynamics of each period of driven dynamics is char-
acterized in terms of an effective Hamiltonian He given in
Eq. (6), but since the driving can vary from period to pe-
riod, there is a distinct effective Hamiltonian for each period.
Those effective Hamiltonians can then be taken as a starting
point for the construction of an effective Hamiltonian Hf

that characterizes the dynamics of several individual periods
of driven dynamics. Because of noncommutativity, the ef-
fective Hamiltonian Hf would need to be constructed with
the Baker-Campbell-Hausdorff series. However, because the
leading contribution to the individual effective Hamiltonian
is of order k2, the first nontrivial contribution to the Baker-
Campbell-Hausdorff series is of order k4, which is smaller
than the highest order (i.e., k2) that is included in the individ-
ual effective Hamiltonians so far and smaller than the highest
order (i.e., k3) that will be included later on. Within the given
level of accuracy, the complete effective Hamiltonian Hf is
thus given by the sum of the individual effective Hamiltoni-
ans.

The interaction term MI
2 [Eq. (8)] depends on the phase

ψ of the driving field [Eq. (2)] via the momentum operator
Pψ given in Eq. (9). After N periods of driven dynamics,
with driving strength η j and phase ψ j in period j, the inter-
action term in the full effective Hamiltonian thus contains
the factor

∑N
j=1 η jPψ j . Any series of driving periods satis-

fying
∑N

j=1 η j exp{iψ j} = 0 can thus ensure that there are
no interaction effects in leading order at the end of the
dynamics.

The creation and annihilation of pairs of photons in
Eq. (7), on the other hand, depend on the driving field via
η2 exp{±2iψ}, and one can easily find choices for the driving
fields such that

∑N
j η2

j exp{2iψ j} is finite while the condition∑N
j η j exp{iψ j} = 0 is satisfied. To leading order, this pre-

scription would result in an effective Hamiltonian

Hf = ωm

2
Nk2

[(
ζ

3
a2 + H.c.

)
− 2n2

c − 4

3
χnc

]
, (10)

with

ζ = 1

N

N∑
j=1

η2
j e

−2iψ j , and χ = 1

N

N∑
j=1

η2
j . (11)

This is a viable effective Hamiltonian for the creation of
nonclassical states, with a nonlinearity that breaks the restric-
tion to Gaussian dynamics. Yet, in practice, it is desirable to
have a nonlinearity n2

c that is strong as compared to the linear
term ∝ nc in order to obtain a spectrum of the diagonal part of
Hf in Eq. (10) with strongly un-even spacing between neigh-
boring energy levels. Since the linear part ∝ nc in Eq. (10) is
getting strong as compared to the nonlinear part ∝ n2

c in the
regime of strong driving, it is necessary to find a mechanism
that effectively reduces this linear part.

The central idea that allows this to be achieved is the free
evolution induced by nc results in the type of phase-shift
described by the ψ j . That is, a ramp in the phases ψ j has
approximately the same effect as a true free phase evolution.

In order to formalize this, it is helpful to note that the
effective Hamiltonians MC

2 (ψ ) and MI
2(ψ ) in Eqs. (7) and

(8) satisfy the relation

MC/I
2 (ψ ) = VψMC/I

2 (0)V †
ψ , (12)

with Vψ = eiψnc . The propagator induced by the effective
Hamiltonian can thus be written as

Uψ = e−iHe(ψ )T = Vϕe−iHe(ψ−ϕ)T V †
ϕ , (13)

with a phase ϕ that can be chosen at will.
Because of the identity V †

ϕ j+1
Vϕ j = V †

φ j
, with φ j = ϕ j+1 −

ϕ j , the product of two propagators of consecutive periods
simplifies to

U ( j+1)U ( j) = Vϕ j+1 e−iHe(ψ j+1−ϕ j+1 )T V †
φ j

× e−iHe(ψ j−ϕ j )T V †
ϕ j

. (14)

The full propagator over N periods can thus be expressed as

U = VϕN+1

N∏
j=1

V †
φ j

e−iHe(ψ j−ϕ j )T . (15)

The first factor VϕN+1 describes a free phase evolution after
all the time intervals of driven dynamics. Since this is merely
a rotation in phase space, it has no bearing on the classical or
quantum mechanical character of the final quantum states.

Each factor V †
φ j

e−iHe(ψ j−ϕ j )T in Eq. (15) is a product of a

term e−iHe(ψ j−ϕ j )T induced by the effective Hamiltonian and
a term of free phase evolution induced by nc. In the limit of
infinitesimally short intervals T → 0, this is equivalent to an
evolution induced by an effective Hamiltonian with a modified
term nc. In practice, the duration T will always be finite, but
the approximation

V †
φ j

e−iHe(ψ j−ϕ j )T � e−i[He(ψ j−ϕ j )T ]+iφ j nc (16)

is sufficiently good for the purpose of state preparation for
realistic values of T .
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Now the effective Hamiltonian for each period contains an
extra term ∝ nc in addition to He, and the freedom to choose
values for the phase angles ψ j and φ j can be used to ensure
that undesired terms cancel. For any choice of the driving
parameters η j and ψ j satisfying

N∑
j=1

η je
−i(ψ j−ϕ j ) = 0 ,

N∑
j=1

η2
j e

−2i(ψ j−ϕ j ) �= 0 , (17)

the effective Hamiltonian after N periods will reduce to

ωm

2
k2N

[(
ζ ′

3
a2 + H.c.

)
− 2n2

c

]
−

−ωm

2

N∑
j=1

[(
4

3
k2η2

j − φ j

π

)
nc

]
+ O(k2φ) , (18)

with

ζ ′ = 1

N

N∑
j=1

η2
j e

−2i(ψ j−ϕ j ). (19)

With the specific choice of φ j = 4/3 πk2η2
j , terms linear in

nc will vanish in the leading order during each period. Since
φ j is the accumulated phase-shift of the driving pattern, this
amounts to the individual phases

ϕ j = 4

3
πk2

j−1∑
l=1

η2
l (20)

that increase by an amount determined by the driving ampli-
tude η j .

E. Driving pattern

While, in principle, it is only required that the effective
Hamiltonian for the dynamics over the entire interval of in-
terest matches the desired Hamiltonian, it is preferable that
such a condition is satisfied at in-between points in time. We
will, therefore, consider driving protocol in which the full time
window of duration NT is divided into N

2 blocks of duration
2T and require that the dynamics over each block is induced
by the desired effective Hamiltonian within the perturbative
approximation.

In each such block, we will consider a constant driving
amplitude, so that the phases

ψ2 j = π + 8

3
πk2

j−1∑
l=1

η2
2l ,

ψ2 j+1 = 4

3
πk2

(
η2

2 j + 2
j−1∑
l=1

η2
2l

)
(21)

of the driving profiles are suitable solutions of Eq. (20). With
this choice the resulting effective Hamiltonian over N periods

of driven dynamics reads

Hg = ωmk2

N
2∑

j=1

{
2

3
η2

2 j[a
2 + (a†)2] − 4n2

c

}
. (22)

This can be taken as a starting point for state preparation, but it
is worth exploring higher-order perturbative corrections, since
this will help to substantially increase the accuracy of state
preparation with only slightly more involved driving patterns.

F. Third-order corrections

The third-order term MC
3 of the cavity vanishes, and the

term MM
3 of the mechanical oscillator reads

MM
3 = yη2

(
b† cos

5π

12
+ b sin

5π

12

)3

+ H.c., (23)

with y = 16
√

6/27 � 1.45.
The third-order interaction term MI

3 is of the form

MI
3 = AψXm + BψPm + XψGm , (24)

with

Aψ =
√

2

15
[36η3Pψ + 35η(ncPψ + Pψnc)] ,

Bψ = 2
√

2iη2[(a†)2e2iψ − a2e−2iψ ],

Gm = 3yi

4
η

(
b† cos

5π

12
− b sin

5π

12

)3

+ H.c. , (25)

and

Xψ = 1√
2

(ae−iψ + a†eiψ ) ,

Xm = 1√
2

(b + b†) ,

Pm = i√
2

(b − b†) . (26)

With the driving pattern derived above in Sec. II E, the
effective Hamiltonian for the dynamics over two periods of
driving with constant driving amplitude is given by

Hp = Hg + ωmk3(MM
3 + B0Pm

)
, (27)

in which Hg is the second-order effective Hamiltonian in
Eq. (22) and B0 is the operator Bψ evaluated at ψ = 0. The
contributions from Aψ and Xψ in MI

3 [Eq. (24)] average out
in the effective Hamiltonian Hp. However, there is still a finite
correction due to the term B0Pm in the interaction MI

3 and a
contribution to the effective Hamiltonian from the term MM

3
of the mechanical oscillator.

In addition to the interaction term B0Pm, it is also desirable
to remove other term MM

3 from the full effective Hamiltonian
because it induces excitations in the mechanical oscillator, and
the impact of interactions on the optical field remaining in
higher-order corrections tends to be increasing with growing
excitations of the mechanical oscillator. Therefore, we devote
the following paragraphs to modifying the driving pattern
such that these terms are reduced as much as possible.
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The basic idea is that half a period of free evolution of
the mechanical oscillator corresponds to a phase-shift of π

in the creation and annihilation operators b† and b. Since
MM

3 + B0Pm is an odd function in b and b†, a sequence of
two periods of dynamics induces by MM

3 + B0Pm with an
in-between half-period of free evolution results in an effec-
tive cancellation. Any driving protocol with alternating driven
dynamics and intervals of free evolution, with the phase of
the driving fields satisfying Eq. (21), and the duration of free
evolution being half a period of free evolution thus realizes the
dynamics described in Sec. II E, and it ensures cancellation
of the dominant terms deviating from the desired effective
Hamiltonian.

In practice, however, it is not possible to realize an exact
free evolution of the mechanical oscillator because of the
intrinsic interaction between the mechanical oscillator and the
light field. As we will see in the following, an interval of
undriven dynamics can be used to achieve a similar effect.

Following Eq. (3), the propagator for the undriven dynam-
ics over half a mechanical period reads

U T
2

= eπ ik2n2
c e−2

√
2ikncPm e−π inm , (28)

given that the optical resonance frequency is an even multiple
of mechanical resonance frequency. The adjoint of this prop-
agator satisfies the relation

U †
T
2

= U T
2
e−2π ik2n2

c . (29)

Any sequence including two intervals of driven dynamics
and an interval of undriven dynamics before each interval of
undriven dynamics thus results in the propagator

UdU T
2
UdU T

2
= UdU †

T
2
e2π ik2n2

cUdU T
2

� e−iHpT U †
T
2
e2π ik2n2

c−iHpT U T
2

, (30)

where terms of order k4 in the Baker-Campbell-Hausdorff
relation are neglected. Within the same approximation, the
propagator over the four intervals reads

� exp
[−iT

(
Hp + U †

T
2
HpU T

2

) + 2π ik2n2
c

]
. (31)

To leading orders (i.e., k3), the term U †
T
2
(MM

3 + B0Pm)U T
2

reduces to −(MM
3 + B0Pm). The term −MM

3 thus cancels the
corresponding term in Hp so that undesired processes of the
mechanical degree of freedom disappear in leading orders.
For the interaction terms, this cancellation is not perfect, but
there is a residual interaction ωmk3B0Pm/3 in the effective
Hamiltonian. This term, however, is reduced by a factor of
3, as compared to what can be achieved without intervals of
free evolution.

The introduction of half-periods of undriven dynamics
thus permits to improve the accuracy of desired effective
Hamiltonians substantially. It does, however, require a careful
reconsideration of the discussion in Sec. II D, in particular
Eq. (15) that is based on driving protocols in which the driv-
ing amplitude is changed after full periods of driving only.
Because U T

2
commutes with the operator Vφ j in Eq. (14), the

dynamics of any time window of two periods of driven dy-
namics is still described by the propagator Ud = exp(−iHpT )

FIG. 1. Schematic example of a driving pattern of duration
15T = 3T . The protocol is comprised of three intervals of length
T = 5T (long, orange arrows) characterized by a constant value of
the driving amplitude η. Each of these intervals consists of a pair
of time windows of length 2T of driven dynamics, each of which is
followed by half a period of undriven dynamics (short, red arrows).

with Hp defined in Eq. (27), so that the discussion resulting in
Eq. (15) naturally includes the case of half-periods of undriven
dynamics.

With a pair of time windows of length 2T of driven dy-
namics each of which is followed by half a period of undriven
dynamics as sketched in Fig. 1, the effective Hamiltonian for
the dynamics over T = 5T reads

H = ωm[k2H (2) + k3H (3)], (32)

with

H (2) = 2

3
η2[a2 + (a†)2] − 5n2

c ,

H (3) = 2

3
η2[(a†)2 − a2](b − b†) . (33)

While the effective Hamiltonian given in Eq. (22) could have
been taken as a starting point for the subsequent analysis,
the suppression of undesired processes that is achieved with
only a moderately more involved protocol makes Eq. (32) the
preferred choice.

G. Optimization

With the driving profiles devised so far, it is ensured that
undesired processes are largely suppressed, and the amplitude
of the driving field can be chosen in accordance with the state
that is to be prepared. In order to realize high fidelity state
preparations, it is helpful to consider a series of several inter-
vals T of driven dynamics and to optimize over the driving
amplitudes of each of those intervals.

Since such optimizations require the analysis of system
dynamics with several different patterns of driving ampli-
tudes, efficiency in the numerical propagation is essential. We
therefore use the effective Hamiltonian H (2) in Eq. (33). At
this level of approximation, there is no interaction between
the cavity field and the mechanical oscillator, and this permits
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to restrict the numerical propagation to the dynamics of the
cavity field only.

All the pulses discussed in Sec. III are optimized based
on simulations with a Hilbert space for the cavity field that
is truncated to the lowest 60 Fock states and constraints on
maximally admitted driving amplitude η. These constraints
ensure that the obtained solutions are compatible with prac-
tical constraints, and they help to avoid truncation errors.

III. OPTIMIZED STATE PREPARATION

The framework developed in Sec. II permits to identify
driving patterns that result in the desired evolution toward
nonclassical pure states of light in the regime of strong op-
tomechanical coupling. In Sec. III A we will discuss a range
of achievable states and assess the validity of the perturbative
approximation. In Sec. III B we will discuss the impact of
dissipative effects on the achievable states. All simulation
results are computed using the Python toolbox Qutip [35,36].

The accuracy of the state preparation will be assessed in
terms of the fidelities

F (�, ρ) = (Tr
√√

ρ�
√

ρ)2 , (34)

and

F (�, |�〉) = 〈�| � |�〉 (35)

that specify the similarity between the state � and a mixed or
pure state ρ and |�〉.

In order to discriminate between the limited accuracy of
the perturbative expansion and the quality of the optimized
driving profiles, it will be helpful to define three different
fidelities in terms of the numerically exact propagator �n of
the coherent system dynamics, the propagator �l of the dis-
sipative system dynamics, and the second-order perturbative
propagator �p of the system dynamics.

With the cavity and mechanical oscillator initialized in
their ground state and when the system is lossless, the numer-
ically exact final state of the cavity is given by

�n = TrM�n(|0〉 〈0| ⊗ |0〉 〈0|) , (36)

where the symbol TrM denotes the trace over the mechanical
degree of freedom. Similarly, the final state in perturbative
approximation reads

�p = TrM�p(|0〉 〈0| ⊗ |0〉 〈0|) . (37)

Finally, when any system imperfection is involved, the numer-
ically exact final state reads

�l = TrM�l (|0〉 〈0| ⊗ |0〉 〈0|) . (38)

For any given target state |�t 〉 of the cavity, we can thus
define the fidelity

Fn = F (�n, |�t 〉) (39)

that specifies how well the goal of optimization is achieved in
a lossless system, and the fidelity

Fl = F (�l , |�t 〉) (40)

that specifies how well the goal of optimization is achieved
when relevant experimental noises are considered. Last, the

FIG. 2. Plots of populations of Fock states in the cavity. Inset
(a) plots populations of even Fock states and inset (b) plots popula-
tions of odd Fock states. The relative coupling strength is k = 1/26,
the relative driving strengths η are optimized with a maximally
admissible value ηmax = 4, and the length of evolution is t f = 16T .
A data point is plotted after each five mechanical periods T . The final
state is almost a Fock state |2〉.

fidelity,

Fi = F (�n, �l ), (41)

characterizes the impact of the relevant experimental noises
with other imperfections isolated.

A. Coherent dynamics

1. Fock state

Given the suitability of the present control scheme for the
creation of photon pairs, the creation of the Fock state |2〉 of
the light field, starting from the cavity field and the oscillator
in their ground state is a natural task.

Figure 2 depicts the dynamics of the cavity field under
optimized driving for an evolution time of 16T with a max-
imum admissible driving strength ηmax = 4 and the coupling
strength k = 1/26.

The insets in Figs. 2(a) and 2(b) depict the time-dependent
occupation of the lowest 6 Fock states. Due to the suppression
of the creation of single photons, discussed in Sec. II D and
Sec. II E, the populations of odd Fock states remain orders of
magnitudes smaller than the populations of even Fock states.
There is a sizable population of the states |4〉 and |6〉 during
the dynamics; that is, despite the suppression of excitations
to higher-lying states, these states do become occupied. The
numerically optimized driving pattern, however, induces a
dynamics in which these undesired states become unoccupied
in the final state, and a final fidelity Fn = 0.997 is obtained.

In the idealized situation of lossless dynamics, one would
expect to obtain best results in the limit of long evolution times
with weak interactions (i.e., k � 1), since this is the limit in
which the underlying perturbative treatment becomes exact.
In practice, however, it is necessary to restrict the dynamics to
a short time window so that dissipative effects do not affect
the state preparation too strongly. Shorter evolution times
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FIG. 3. Plot of the fidelity Fn against the evolution time in T
when ηmax = 4. (a) For each time point, the coupling strength k is
optimized to achieve the highest possible fidelity. (b) The coupling
strength is fixed to be k = 1/26. (c) The coupling strength is fixed
to be k = 1/13. Whether or not a suitable combination of interaction
strength and evolution time is selected has a great impact on the final
fidelity Fn.

will generally require stronger interactions, and too strong
interactions can become conflicting with the perturbative ap-
proximation.

For any given evolution time, one would thus expect to
find an optimal value of the interaction constant k. Figure 3
depicts the fidelity Fn (solid) obtained with optimized driving
and the interaction strength that was found to be optimal for
any given evolution time. Dashed lines indicate the fidelity Fn

obtained with optimized driving profiles with fixed interaction
strengths k = 1/13 and k = 1/26 that are optimal for the evo-
lution times 2T to 16T . Comparison of dotted and solid lines
highlights the substantial gain in fidelity of state preparation
that can be obtained by selecting a suitable combination of
interaction strength and evolution time. Figure 4 shows the
coupling strength that is optimal for a given evolution time
ranging from 2T to 16T . Even though the range of optimal
coupling strength varies only by a factor of 2, the optimal
choice of the interaction constant has a strong impact on the
achievable state fidelities. For example, a fidelity of 0.990 can
be achieved with an evolution time as short as 10T with the
optimal interaction strengths, while an interaction strength of
k = 1/26 would only result in a fidelity of 0.836 within the
same time.

2. Superposition states

Similarly to the creation of Fock states, the present frame-
work can also be used to find driving patterns for the creation
of coherent superpositions of Fock states. This will be exem-
plified in the following with the target state

|�ϑ 〉 = 1√
2

(|0〉 + eiϑ |2〉) . (42)

In addition to the optimization of the driving profile, the fol-
lowing optimization includes an optimization over the relative

FIG. 4. Plot of the coupling strength that is optimal for a given
evolution time ranging from 2T to 16T when ηmax = 4. Optimal
coupling strength doubles when the evolution time is restricted from
16T to 2T .

phase ϑ , i.e., it identifies the target state that is best suited
among all balanced superpositions of the Fock state |0〉 and
|2〉.

Similar as in the case of Fock states, the driving strengths
are optimized for a maximally admissible driving strength
ηmax = 4 and coupling strength k = 1/26. However, because
the expected number of photons in the cavity is less for
an equal superposition state |�ϑ 〉 than for a Fock state |2〉,
the evolution time can be reduced from 16T to 10T while
keeping the fidelity as high as Fn = 0.998. The dynamics
with given parameters is plotted in Fig. 5, which also shows
negligible occupation of the Fock states that do not contribute
to the desired superposition state.

FIG. 5. Plots of populations of Fock states in the cavity. Inset
(a) plots populations of even Fock states and inset (b) plots popula-
tions of odd Fock states. The relative coupling strength k = 1/26,
the relative driving strengths η are optimized with a maximally
admissible value ηmax = 4, and the length of evolution is t f = 10T .
A data point is plotted after each five mechanical periods T . The final
state is almost an equal superposition state 1/

√
2(|0〉 + e−1.86i |2〉).
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FIG. 6. Plots of the fidelities (a) Fl and (b) Fi against mean
thermal phonon numbers n̄th of initial states. Curves (i), (ii)
and (iii) represent cases when parameters (k, ηmax, t f ) are equal
to (1/26, 4, 16T ), (1/21, 4, 10T ), and (1/16, 4, 5T ) respectively.
All fidelities remain high when n̄th < 1, except for the case of
(1/16, 4, 5T ). The exception is caused by the higher-order entan-
glement that is amplified by excitations in the mechanical oscillator.

B. Dissipative dynamics

The final question to be discussed is the impact of experi-
mental noise on the final state [37]. The two most significant
experimental imperfections are leakage of light from the cav-
ity and thermalization in the mechanical oscillator. The latter
can result in thermal excitations in the initial state of the
mechanical oscillator, and it can result in dissipative dynamics
during the process of state preparation.

In order to analyze the impact of experimental noise,
this section addresses the accuracy of state preparation un-
der various imperfections. This will be exemplified with the
control pulses identified as optimal for the noiseless system
and with the three optimal pairs (1/26, 16T ), (1/21, 10T ),
and (1/16, 5T ) of parameter values of coupling strength and
evolution time. For all three parameter sets, the maximally
admissible driving strength is fixed to be ηmax = 4.

1. Thermal initial states

In this subsection, we consider noiseless, unitary dynam-
ics, but thermal initial state of the mechanical oscillator.
Figure 6 depicts the fidelities Fl and Fi as functions of the
mean thermal phonon number of the initial mechanical state.
Fidelity Fl assesses the overall accuracy of the state prepara-
tion, whereas Fi isolates the impact the thermal excitations.
The difference between these two fidelities becomes best ap-
parent in the case (1/16, 4, 5T ), in which Fn does not reach
the ideal value of unity for vanishing thermal excitations.

In addition to the fact that imperfections reduce the
state fidelities most strongly for strong interactions and fast
protocols, the impact of thermal excitations is also most pro-
nounced in these cases.

This can be explained by the fact that shorter dynamics
require either stronger coupling strengths or stronger driving
strengths, and the increase of either of the two parameters

FIG. 7. Plots of the fidelities (a) Fl and (b) Fi against rela-
tive optical decay rates κ/ωm of the lossy cavity. Curves (i), (ii)
and (iii) represent cases when parameters (k, ηmax, t f ) equal to
(1/26, 4, 16T ), (1/21, 4, 10T ), and (1/16, 4, 5T ), respectively. The
x axis is in log scale while the y axis is in linear scale. The plots
suggest that the fidelity drops dramatically with the increase in opti-
cal decay rate when the decay rate exceeds 10−4ωm, and that shorter
evolution time leads to a more resilient state.

will lead to larger coefficients before undesired terms such
as k3H (3) in the perturbative solution in Eq. (32). These unde-
sired terms including entanglement between the cavity and the
oscillator are further amplified by the nonvanishing phononic
occupation and thus will lead to lower final fidelities.

2. Optical loss

Leakage of photons from the cavity at a rate κ can be
modeled with the Lindbladian

L(�) = κD[a](ρ) =≡ κ
(
a�a† − 1

2 {a†a, �}), (43)

which, together with the system Hamiltonian defines a master
equation.

Figure 7 depicts the fidelities Fl and Fi as functions of
the optical decay rate κ . Just like in Fig. 6, the fidelities Fl

remain smaller than 1 for κ → 0, but, in contrast to the case of
initial thermal excitations, the faster protocols in systems with
stronger interactions become favorable with stronger optical
decay. Figure 7(a) thus indicates at what values of κ the
coherent imperfections outweigh the incoherent imperfections
and helps to identify the coupling strength and corresponding
duration that is best adopted for a given level of optical loss.

In order to reach fidelities over 0.9, the optical decay rate
may at most be on the order of 10−4ωm. The best value
achieved by the current state of the art [38] in the strong cou-
pling regime is still approximately two orders of magnitude
away from the required value, but given the steady pace over
the past decades, the regime may eventually be reached in the
future.

3. Mechanical thermalization

Finally, systems with vanishing optical decay rates but with
finite mechanical decay rates γ are considered. The thermal-
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FIG. 8. Plots of the fidelities (a) Fl and (b) Fi against rel-
ative mechanical decay rate γ /ωm of the oscillator. Curves (i),
(ii) and (iii) represent cases when parameters (k, ηmax, t f ) equal
to (1/26, 4, 16T ), (1/21, 4, 10T ), and (1/16, 4, 5T ), respectively.
Solid, dashed, and dotted curves represent cases when the thermal
bath contains on average n̄b = 1, n̄b = 10 and n̄b = 100 phonons
respectively. The x axis is in log scale and the y axis is in linear
scale. The plots suggest that the infidelity resulting from mechanical
imperfection is negligible compared to that from optical imperfection
when the thermal phonon number n̄b � 100, but becomes noticeable
otherwise.

ization of the mechanical oscillator can be modeled with the
Lindbladian [39]

L(�) = γ (n̄b + 1)D[b − ka†a](ρ)

+ γ n̄bD[b† − ka†a](ρ)

+ 4γ k2

log
(
1 + 1

n̄b

)D[a†a](ρ), (44)

with n̄b being the mean thermal phonon number of the envi-
ronment. The unusual shift of the mechanical annihilation and
creation operators depending on the photon number operator
a†a and the dephasing term depending on the temperature
of the oscillator result from the nonvanishing value of the
coupling strength k.

The fidelities Fl and Fi are plotted in Fig. 8 as functions
of the mechanical decay rate γ . The plot indicates that faster

protocols that require stronger optomechanical interactions
are slightly favorable for higher Fi, but the advantage is not
significant when taking into account the fact that faster proto-
cols have lower Fn in the dissipationless case.

When the thermal bath contains 10 or less phonons, the
effect of mechanical thermalization is completely negligible
as compared to the effect of optical decay when, as observed
experimentally [1], the mechanical decay rate γ is smaller
than the optical decay rate κ . Especially when n̄b � 1, a fi-
delity Fi > 0.95 can be achieved with γ < 10−2ωm, which can
be realized under several existing experimental setups [1,38].
However, for systems that cannot maintain a low thermal
phonon number n̄b � 100, the mechanical decay γ is required
to be at least smaller than 10−3ωm to reach a fidelity of 0.9.

IV. CONCLUSIONS AND OUTLOOK

The tools for state preparation developed here help to
overcome the low success rates of probabilistic protocols.
Even though the nonlinear interaction between light field and
mechanical oscillator tends to result in growing entanglement
between the two degrees of freedom, the present driving pat-
terns achieve close-to-perfect unitary dynamics of the light
field while ensuring that the benefits of the nonlinear interac-
tions are preserved for the realization of non-Gaussian states.

The extra freedom of pulse shaping gives access to a va-
riety of quantum states of light, beyond the two-photon Fock
state and superposition states discussed here in more detail.
The high fidelities that can be obtained in the presence of
optical loss and mechanical heating highlight the experimen-
tal feasibility of deterministic state preparation in upcoming
generations of optomechanical experiments with increasing
coupling strength between optical and mechanical compo-
nents.

While the driving protocols derived here are based on the
coherent optomechanical dynamics only, the formalism can
be generalized to dissipative dynamics. This would enable
the optimization of the interplay of driving and environment
engineering [40–42] and to include the process of coupling
light outside the cavity [43].
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