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Stochastic periodic orbits in fast-slow systems with self-induced stochastic resonance
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Noise is ubiquitous in various systems. In systems with multiple timescales, noise can induce various coherent
behaviors. Self-induced stochastic resonance (SISR) is a typical noise-induced phenomenon identified in such
systems, wherein noise acting on the fast subsystem causes stochastic resonancelike boundary crossings. In
this paper, we analyze the stochastic periodic orbits caused by SISR in fast-slow systems. By introducing the
notion of the mean first passage velocity toward the boundary, a distance-matching condition is established,
through which the critical transition position of boundary crossing can be calculated. The theoretical stochastic
periodic orbit can be accordingly obtained via gluing the dynamics along the slow manifolds. It is shown that
the theoretical predictions are in excellent agreement with the results of Monte Carlo simulations for a piecewise
linear FitzHugh-Nagumo system even for large noise. Furthermore, the proposed method is extended to the
original FitzHugh-Nagumo system and also found to exhibit consistent accuracy. These results provide insights
into the mechanisms of coherent behaviors in fast-slow systems and will shed light on the coherent behaviors in
more complex systems and large networks.
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I. INTRODUCTION

Nature is intrinsically noisy. While noise is often con-
sidered to be irrelevant to the realization of organized
phenomena, noise does play constructive roles in many sys-
tems, e.g., gene expression [1], climate dynamics [2], neural
spiking [3], etc. In particular, resonance induced by noise is
one of the most intriguing phenomena and is not only of
theoretical interest but also of practical importance. Among
them, stochastic resonance (SR) [4] attracts broad attention
due to its counterintuitive behavior, which was first observed
in the climate system [5]. In stochastic resonance, moderate
intensity of noise can enhance the signal-to-noise ratio for
periodically perturbed random systems. It has been exten-
sively investigated both theoretically and experimentally in
all kinds of disciplines [4,6–8]. In excitable systems, even
without the external periodic signal, the coherence resonance
(CR) [9–11] manifests itself as coherent oscillations for in-
termediate noise. The mechanism of CR has been clarified by
Pikovsky and Kurths via the first passage statistics [11]. Later,
Lindner and Schimansky-Geier [12] considered an analytical
approximation in the limit of large timescale separation and
quantitatively described CR through the marginal probability
density of the reduced system. They applied similar ideas to
the piecewise linear FitzHugh-Nagumo system for both CR
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and SR [13]. More accurate results, such as the rate, coeffi-
cient of variation, and diffusion coefficient, were obtained in
the leaky integrate-and-fire model [14]. For detailed descrip-
tions and quantitative approaches to the coherent behaviors
in excitable systems, the readers are referred to Ref. [15].
On the other hand, Muratov et al. [16,17] found that noise
on excitable systems with largely different timescales can
provide distinct mechanisms of coherence. For noise acting on
the fast variable, the resulting coherent oscillation was named
self-induced stochastic resonance (SISR) [16,17]. SISR has
been shown to account for the mixed-mode oscillations in
a relaxation oscillator [18]. Besides, SISR may also explain
the mechanism of anticoherence resonance for large noise
[19,20]. Recently, Yamakou et al. investigated SISR in mul-
tiplex neural networks and showed its potential application to
optimal information processing [21,22].

Determining the oscillator’s periodic orbit is important for
capturing its dynamical behaviors under perturbations. For
deterministic limit-cycle oscillators, the asymptotic phase can
be correspondingly defined within the basin of attraction of
the limit cycle and the phase reduction approach [23,24]
can be applied to reduce the dimensionality of the system
for weak perturbations. However, it is not an easy task to
determine the periodic orbit for stochastic oscillators. Some
efforts have been made on the CR oscillator [25]. The noise-
induced escape from the fixed point can be approximated by a
jump process. The remaining part of the stochastic trajectory
will be dominated by the noise-free system. Through this
approximation, the phase reduction approach can be corre-
spondingly established on this hybrid system [25]. Compared
with the CR oscillator, the SISR phenomenon is more robust
to parameter variations as the latter does not require the sys-
tem to be close to bifurcation [16]. This gives SISR broader
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coherence ranges with respect to the noise strength. To depict
the stochastic periodic orbit, Muratov et al. [16,17] applied
the large deviation theory to find the critical transition posi-
tion via the timescale-matching condition. Recently, Yamakou
and Jost [26] further clarified the allowed interval for the
potential difference and discussed the connection between in-
verse stochastic resonance and SISR. These analyses required
both the slow timescale and the noise strength to approach
zero.

However, when the system has different timescales on dif-
ferent branches of slow manifolds as in the FitzHugh-Nagumo
(FHN) model, there can be asymmetry in the noise-induced
transition as shown later. In this study, to accurately obtain
the stochastic periodic orbit in SISR oscillators, we define
the mean first passage velocity and propose a condition that
determines the critical transition position under the assump-
tion that the transition process is continuous. This assumption
differs from the previous studies, where the transition is
considered as instantaneous and determined via the timescale-
matching condition [16,17]. We first employ this condition in
a simplified piecewise linear FHN system and then extend
it to the original FHN model. The theoretical results exhibit
good consistency with the numerics even for large noise
strength. Thus, the method to determine the periodic orbit
proposed in this paper is robust and may have a wide range of
applications.

The structure of this paper is as follows: In Sec. II, the
piecewise linear FitzHugh-Nagumo system is introduced and
its dynamical feature is briefly discussed. Next, the self-
induced stochastic resonance of this system is investigated
in Sec. III and the distance-matching condition is proposed
through which the critical transition positions on the left
and right branches can be identified. Further, the theoretical
stochastic periodic orbit is verified by Monte Carlo simula-
tions. In Sec. IV, the proposed method is extended to the
original FitzHugh-Nagumo system. Finally, conclusions and
discussions are given in Sec. V.

II. PIECEWISE LINEAR FITZHUGH-NAGUMO SYSTEM

To illustrate the main idea of this paper, we choose the
piecewise linear FitzHugh-Nagumo (PWL-FHN) system, also
known as the McKean model [27]. This model preserves the
essential characteristics of neuronal dynamics while assures
computational simplicity. The governing equations are as fol-
lows:

ẋ = fpwl(x) − y,

ẏ = ε(x + a), (1)

and

fpwl(x) =
⎧⎨
⎩

−10x − 15, for x < −1
5x, for − 1 � x � 1
−10x + 15, for x > 1

, (2)

where x and y represent the membrane potential and recovery
variable, respectively. The timescale separation parameter ε is
assumed to be small, which is key to the realization of SISR.
We set ε = 0.05 and a = 0.95 fixed in this paper. Since the bi-
furcation parameter a < 1, system (1) has a stable limit cycle.
This is different from the previous studies [16,17] in which

FIG. 1. Vector field (cyan arrows) and deterministic trajectories
(black lines) of system (1). The blue and red lines are x and y
nullclines, respectively.

the bifurcation parameter was taken in the excitable regime.
Actually, whether the system is excitable or oscillatory is not
important as the SISR phenomenon occurs away from the
equilibrium or the deterministic limit cycle [16,17]. Consid-
ering the oscillatory situation allows SISR to be observed
for small enough noise, which is helpful for the validation
of the theoretical prediction (results for the excitable situa-
tion are also given in Appendix A, which are similar to those
for the oscillatory situation discussed in the main text). The
timescale separation can be observed in the vector field and
the deterministic trajectories as shown in Fig. 1. The trajec-
tory quickly converges to the left or right branches of the x
nullcline. The period of the limit cycle is dominated by the
slow motion along them, which is determined by the slow sub-
system y in system (1). We denote the left, middle, and right
branches of the x nullcline as Bl , Bm, and Br , respectively. For
fixed y ∈ (−5, 5), the fast subsystem x has three equilibrium
points, two of which on Bl and Br are stable and the other on
Bm is unstable.

The potential value U (x; y) of the fast subsystem x of sys-
tem (1) can be easily calculated as U (x; y) = − ∫

fpwl(x) −
y dx + C since it is piecewise linear, where y is considered as
a parameter and C is a constant to be determined. Without
loss of generality, we set the potential at the tips of the x
nullcline (i.e., x = ±1) to be zero. Figures 2(a) and 2(b) illus-
trate the potential U (x; y) for fixed y values and on the three
branches of the x nullcline, respectively. The potential differ-
ence between the middle branch and the left or right branch is
monotonically decreasing with the system’s evolution. They
are symmetric to the line y = 0, reflecting the symmetry of
the x nullcline.

III. STOCHASTIC PERIODIC ORBIT
OF PWL-FHN SYSTEM

As shown by Muratov et al. [16,17], the SISR is ob-
served when the noise acts on the fast variable. Therefore, we
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FIG. 2. Potential function U (x; y) for fixed y values and on the three branches of the x nullcline. (a) Potential function U (x; y) for fixed y

values. (b) Potential values on the three branches of the x nullcline of the fast subsystem in system (1) as functions of y (Ul = − y2

20 − 3y
2 − 25

4 ,

Um = y2

10 − 5
2 , and Ur = − y2
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4 denote the potential for the left, middle, and right branches, respectively). The inset shows the potential
differences between the middle branch and the left (dUml = Um − Ul) or right (dUmr = Um − Ur) branch, respectively.

consider a stochastic version of the PWL-FHN system given
as follows:

ẋ = fpwl(x) − y + √
σξ (t ),

ẏ = ε(x + a), (3)

where ξ (t ) is Gaussian white noise with zero mean satisfying
〈ξ (t )〉 = 0 and 〈ξ (t )ξ (τ )〉 = δ(t − τ ). The parameter σ deter-
mines the strength of the noise. Figure 3 illustrates the phase
diagram and the time series for σ = 0.1, which clearly shows
the coherent behavior with a nearly deterministic period. It is
notable that the stochastic periodic orbit caused by the noise
is smaller than the deterministic limit cycle and that the orbit
is not symmetric, namely, the transition to the other branch

FIG. 3. Self-induced stochastic resonance in PWL-FHN system.
The gray line is the stochastic trajectory for σ = 0.1. The inset
shows the time series of the fast variable, which clearly exhibits
coherent oscillations with an almost deterministic period. The red
arrows indicate the asymmetry in the transition positions on the left
and right branches.

occurs earlier on the left branch than on the right branch. This
asymmetry cannot be captured by the conventional timescale-
matching condition [16,17,26], as we will discuss below. The
symmetric transition can only be realized for a = 0, where
the timescales on the two branches are the same owing to the
symmetric vector field.

To determine the critical transition position on each branch,
the conventional timescale-matching condition assumes that
the mean first passage time (MFPT) of boundary crossing and
the recovery timescale matches with each other at the tran-
sition position. Following Muratov et al. [16], the timescale
matching condition is given by

exp

(
�W

σ

)
∼ ε−1, (4)

where �W stands for the quasipotential difference between
the middle and the left or right branches. The quasipotential W
defined by Freidlin and Wentzell [28] is similar to the potential
function in the deterministic system, and the quasipotential
difference �W characterizes the difficulty for the state to
escape from a stable equilibrium. The left-hand side (LHS)
of Eq. (4) denotes the timescale of noise-induced transition of
the fast variable while the right-hand side (RHS) represents
the timescale of recovery of the slow variable. By calculating
the quasipotential difference of the fast subsystem by consid-
ering y as a constant parameter, the critical position y∗ can
be obtained, which predicts the transition position on each
branch. Equation (4) is accurate in the vanishing noise limit
and the slow relaxation limit, i.e., σ → 0 and ε → 0. Thus,
according to this criterion, the critical positions would be sym-
metric with the same absolute value |y∗| on the left and right
branches. However, because ε takes a finite nonzero value, this
prediction is inconsistent with the observation as in Fig. 3.

To predict the noise-induced transition more accurately, we
propose the following criterion. Using the MFPT Te(y), we
define the mean first passage velocity (MFPV) Ve(y),

Ve(y) = S(y)

Te(y)
, (5)
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FIG. 4. Identification of the critical transition position y∗ (intersection point). (a) Left branch. The thick curve (purple) and the thin line
(green) represent the LHS and RHS of Eq. (8), respectively. (b) Right branch. The thick curve (blue) and the thin line (orange) show the LHS
and RHS of Eq. (8), respectively. The red circle denotes the intersection and the black arrow shows the direction of the system’s evolution.
The vertical coordinate represents the accumulated displacement of the fast variable x toward the boundary [LHS of Eq. (8)] and the distance
between the middle and left or right branches [RHS of Eq. (8)], respectively.

where S(y) represents the distance of the left or right branch
on which the state exits from the boundary (the middle
branch). We expect that the transition occurs at y∗ at time t (y∗)
where the integration of the MFPV gives S(y∗), i.e.,∫ t (y∗ )

t (y0 )
Ve(y(t )) dt = S(y∗), (6)

where y0 is the starting position at time t (y0) of the trajectory
on the branch under consideration. Equation (6) could serve
as a more precise distance-matching condition than Eq. (4)
for solving the critical transition position y∗. This expression
takes into account the slow variation in y during the transition
process; the LHS represents the approximate accumulation
effect on the displacement of the fast variable x as the slow
variable y moves from y0 to y∗, and we assume that this
accumulated displacement matches the distance S(y∗) from
the boundary at the transition position y = y∗.

We employ this idea for the PWL-FHN system. For sim-
plicity, we consider the left branch only. The procedure for
solving the critical position on the right branch is similar. The
mean first passage time can be obtained from the well-known
Kramers rate [29,30]:

Te(y) = 2π√|U ′′
m(xy)|U ′′

l (xy)
exp

(
�W (y)

σ

)
, (7)

where Um(xy) and Ul (xy) represent the potential function at
the middle and left branches of the deterministic fast subsys-
tem of system (1), respectively. The double prime denotes
the second-order derivative with respect to the variable x,
where the subscript y indicates the y position for the calcula-
tion of the potential function. Since system (1) is piecewise
linear, U ′′

m(xy) and U ′′
l (xy) can be easily obtained as −5

and 10, respectively. Because the fast subsystem is one di-
mensional, the quasipotential difference �W = 2�U , where
�U = Um(xy) − Ul (xy) = dUml (see the inset in Fig. 2).

The distance can also be readily obtained by S(y) =
f −1
m (y) − f −1

l (y) for the left branch [S(y) = f −1
m (y) − f −1

r (y)
for the right branch], where the subscript indicates the specific

branch (i.e., m, l, and r for middle, left, and right, respec-
tively). Here, we have omitted the original subscript pwl for
simple notification.

By substituting the distance function S(y) and the MFPT
Eq. (7) into Eq. (6) and by using that dy = ε(x + a)dt and x =
f −1(y), we can rewrite the condition for the critical transition
position y∗ as

∫ y∗

yl

Ve(y)

ε( f −1
l (y) + a)

dy

=
∫ y∗

yl

S(y)
√|U ′′

m(xy)|U ′′
l (xy)

2π
(

f −1
l (y) + a

)
ε exp

(
�W (y)

σ

) dy = S(y∗), (8)

where we approximated y0 by yl = 5 for the left branch. (A
more appropriate, self-consistent choice of y0 is the transition

FIG. 5. Stochastic periodic orbit predicted by Eq. (8) (bold
black) compared with the stochastic trajectory (thin gray). Noise
strength σ = 0.1.
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FIG. 6. Identification of the critical transition position y∗ (intersection point). (a) Left branch; (b) right branch. The black curves and
the blue line show the LHS and RHS of Eq. (8), respectively. The black circles denote the intersection points. Noise strengths are σ =
0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, and 5 (for the left branch, from left to right; for the right branch, from right to left).

position on the other branch as obtained in Appendix B via the
convergent method. However, the critical transition positions
obtained by this method are nearly the same as those obtained
by using the above two fixed values of y0 as shown in Fig. 13.
For simplicity, we fix y0 = 5 and y0 = −5 on the left and right
branches, respectively, in the rest of the main text.) By solving
Eq. (8), we can obtain the critical transition position y∗. For
illustration, we set σ = 0.1. The values of the LHS and RHS
of Eq. (8) are shown in Fig. 4(a) as functions of y. From the
intersection of the two curves, the critical transition position
on the left branch is evaluated as y∗ ≈ −3.983. Similarly, the
critical transition position on the right branch is y∗ ≈ 4.392
[see Fig. 4(b)].

It can be easily observed that the MFPV (thus the accu-
mulated displacement in the direction of the fast variable x)
remains nearly zero from the beginning (y = yl ) and quickly
increases when the state approaches the transition position.
This explains the mechanism of very coherent oscillations
for SISR: Before the transition position, the MFPV is nearly
zero; after the transition position, the MFPV increases rapidly,
which results in the noise-induced transition. The degree of
coherence is mainly influenced by the timescale separation
parameter ε. The smaller ε is, the more quickly the distance
[LHS of Eq. (8)] increases with y, and this leads to steeper
curves in Fig. 4(a). Therefore, a small range of y will deter-
mine the transition phenomenon. Furthermore, the left branch
is closer to the y nullcline than the right branch, which makes

FIG. 7. Stochastic periodic orbits predicted by Eq. (8) (bold black) and the stochastic trajectories (thin gray) for different noise strengths
(from left to right, first row: σ = 0.01, 0.02, 0.05, 0.1; second row: σ = 0.2, 0.5, 1, 2).
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the evolution along the former slower than that along the
latter. This causes the slower increase of LHS of Eq. (8) on
the right branch, and thus the transition on the right branch
occurs later than on the left branch as shown in Fig. 4 [this can
also be quantitatively understood from the term f −1

l (y) + a in
Eq.(8)]. In the limiting situation, i.e., for ε → 0, as the other
parts of the integrand in the LHS of Eq. (8) remains finite,
ε exp( �W

σ
) should be of order O(1), which is in fact the result

obtained by Muratov et al. [16,17] as in Eq. (4).
Once we obtain the critical transition positions, the other

parts of the stochastic periodic orbit can be determined by the
deterministic slow dynamics along the left and right branches.
Therefore, by connecting the transition positions, the total
stochastic periodic orbit is obtained as shown in Fig. 5. It
can be seen that the predicted stochastic periodic orbit is in
excellent agreement with the stochastic trajectory obtained
by the Monte Carlo simulation. Besides, it also predicts the
asymmetric transitions on different branches. Following the
same procedure, the critical transition position y∗ can be
calculated for other noise strengths. We compute the results
for σ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, and 5, which are
displayed in Fig. 6. The curves for the left branch are steeper
compared with those on the right branch, which predicts
earlier transition and higher coherence on the left branch.
Note that although we calculated the result for σ = 5, it is
practically impossible to achieve the corresponding transition
positions since for σ = 5 the critical position y∗ on the left
branch is larger than that on the right branch.

To be more intuitive, the theoretical stochastic periodic
orbits and the results of Monte Carlo simulations for various
noise strengths are displayed in Fig. 7 (similar results for the
excitable PWL-FHN system are given in Appendix A). It can
be seen that the theoretical predictions are in good agreement
with the simulation results even for large noise, although the
degree of coherence is deteriorated for increasing the noise
strength. The stochastic periodic orbit becomes smaller as the
noise strength σ is increased, and at σc ≈ 2.733, the critical
transition positions on both branches become equal to each
other. In this case, the stochastic periodic orbit will shrink
into a line segment and the period will approach zero. The
corresponding critical transition position is y∗c ≈ 0.51, which
is different from y∗c = 0 in the case of the vanishing timescale
separation (ε → 0) [26]. This prediction may account for
the large-noise asynchrony in interacting excitable systems
reported in Ref. [31].

The period of the stochastic oscillation, a fundamental
quantity for its characterization, can also be predicted by
using the proposed criterion. Because of the timescale sep-
aration, the period is dominated by the slow motion along
the left and right branches. Therefore, the period of the
stochastic periodic orbit can be approximated by the following
equation:

TLC =
∫ yl

yr

dy

ε
(

f −1
l (y) + a

) +
∫ yr

yl

dy

ε
(

f −1
r (y) + a

) , (9)

where yl and yr represent the predicted critical transition
positions on the left and right branches, respectively. The
theoretical period of the stochastic periodic orbit for different
noise strengths together with the results of Monte Carlo simu-
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FIG. 8. Period of stochastic periodic orbit vs noise strength. The
black line denotes the theoretical prediction by Eq. (9), and the red
circles are the results of Monte Carlo simulations, with the error bar
showing the standard deviation.

lations are illustrated in Fig. 8. We can see that the prediction
is in excellent consistency with the simulation results even
for large noise. Besides, the small standard deviation demon-
strates that the coherent oscillations persist over a broad range
of noise strength, which is a significant feature of SISR that
cannot be observed in CR [16].

IV. STOCHASTIC PERIODIC ORBIT OF
FITZHUGH-NAGUMO SYSTEM

To verify the validity of our theory in a more realis-
tic model, we apply the proposed condition to the original
FitzHugh-Nagumo system, i.e.,

ẋ = x − x3

3
− y + √

σξ (t ),

ẏ = ε(x + a), (10)

where parameters are ε = 1e − 4 as in Ref. [17] and a = 0.8.
The Gaussian white noise ξ (t ) is the same as that used in
system (3). Following the previous procedure, the theoretical
stochastic periodic orbits for different noise strengths can
be numerically obtained via Eq. (8). They are illustrated in
Fig. 9, which also shows excellent consistency with the results
of Monte Carlo simulations. In the numerical simulations,
to reduce the computational cost, we rescaled the equations
by introducing a slow time τ = εt , which yields the noise
strength multiplied with a coefficient

√
ε, i.e.,

ε
dx

dτ
= x − x3

3
− y + √

εσξ (τ ),

dy

dτ
= x + a. (11)

In a similar way to the PWL-FHN system, the period of the
stochastic periodic orbit of the FHN system can be calculated
as in Fig. 10. Again, the theoretically predicted period of the
stochastic orbit in the FitzHugh-Nagumo system (11) shows
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FIG. 9. Stochastic periodic orbits of the FitzHugh-Nagumo system (11) predicted by Eq. (8) (black) and the stochastic trajectories obtained
by the Monte Carlo simulations (gray) for different noise strengths (from left to right, first row: σ = 0.005, 0.01; second row: σ = 0.05, 0.1).
The insets display the corresponding timeseries of the fast variable x(τ ), where the slow time τ = εt is used.

excellent agreement with the results of Monte Carlo simula-
tions.

V. CONCLUSIONS AND DISCUSSION

In summary, we have investigated the stochastic periodic
orbit in the SISR oscillator. By introducing the notion of the
mean first passage velocity, the distance-matching condition
is established, through which the critical transition position
on each branch can be determined. The theoretical stochastic
periodic orbit is obtained by gluing the motions along the
slow manifolds. By comparison with the results of Monte
Carlo simulations, the theoretical predictions of the critical
transition positions and periods of stochastic oscillations are
proved to have good accuracy even for large noise. One of the
main differences between the timescale-matching condition
by Muratov et al. [16] and our proposed condition is that the
transition in the former is assumed to be instantaneous while
it is considered to be continuous in the latter. As observed
in Figs. 7 and 9, the fluctuations of the stochastic trajectories
along x axis gradually increase as they approach the transition

point. This is due to slow change in the slow variable during
the transition process and our condition approximately incor-
porates this effect.

From the derived distance-matching condition Eq. (8), we
can see that the timescale separation parameter ε is signifi-
cant to the observation of the SISR phenomenon. Because it
controls the slope of the integration curve given by the LHS
in Eq. (8), the smaller ε corresponds to the larger slope and
thus induces more coherent stochastic oscillations. This mech-
anism is briefly discussed in Appendix C. However, for the
effect of noise strength on the degree of coherence, the slope
of the integration curve does not give similar conclusions.
This can be noticed by comparing the results in Figs. 6 and
8, where larger slopes do not imply higher coherence. This
is because increasing noise strength will not only increase
the slope of the integration curve [this can be inferred from
Eq. (8), similar to ε] but also increase the amount of fluctua-
tions. The competition between these two impacts determines
the effect of noise strength on the degree of coherence.

The definition of the mean first passage velocity in Eq. (5)
is a natural extension of the mean velocity in the deterministic
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FIG. 10. Period of stochastic periodic orbit vs noise strength for
the FitzHugh-Nagumo system (11). The blue line denotes the theo-
retical prediction by Eq. (9), and the black squares are the results by
the Monte Carlo simulations, with the error bar showing the standard
deviation. The slow time τ = εt is used.

system. Instead of Eq. (8), we may also consider different but
similar conditions. For example, the distance function S(y)
can be replaced by a constant 1 in Eq. (8), and then the mean
first passage velocity will be replaced by the mean passage
frequency and the corresponding matching condition will give
the critical position for the first transition. Another possibility
is to replace S(y) with the quasipotential difference �W (y),
though the physical meaning may be not so intuitive. We have

tested these two matching conditions and obtained similar
predictions [although not as good as the distance-matching
condition in Eq. (8) as shown in Appendix D, wherein the
comparison with the results via the timescale-matching con-
dition (4) is also displayed].

For higher dimensional systems, the computation of the
quasipotential would be a major obstacle. Recent advances in
the numerical methods for solving the quasipotential [32,33]
would offer the possibility for the application of the proposed
method to more complex situations, such as the prediction of
inverse stochastic resonance [34].
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APPENDIX A: STOCHASTIC PERIODIC ORBITS OF THE
EXCITABLE PWL-FHN SYSTEM

In the main text, it is explained that whether the system
is excitable or oscillatory is not important for our predic-
tion. However, since the original work by Muratov et al.
[16] considered the excitable case, it is interesting to see that
the proposed distance-matching condition works also for this
situation. We consider the PWL-FHN system (3) and set the

FIG. 11. Stochastic periodic orbits predicted by Eq. (8) (bold black) and the stochastic trajectories (thin purple) for the excitable PWL-FHN
system (a = 1.05) with different noise strengths (from left to right, first row: σ = 0.001, 0.02, 0.05, 0.1; second row: σ = 0.2, 0.5, 1, 2).
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FIG. 12. Illustration of the lower bound of noise strength (σ ≈
0.01) for the excitable PWL-FHN system (a = 1.05). The red dashed
line indicates the position of the equilibrium. The blue curve and the
black line show the LHS and RHS of Eq. (8), respectively. Below
this noise strength, the LHS and RHS of Eq. (8) cannot intersect
before the system state reaches the equilibrium. The system is at-
tracted by the equilibrium before a transition to the other branch can
occur. Consequently, spike initiation becomes rare and the resulting
stochastic oscillations are no longer coherent.

bifurcation parameter at a = 1.05 while keeping the other
parameters unchanged as in the main text. The stochastic
periodic orbits predicted by utilizing the distance-matching
condition (8) are shown in Fig. 11, which are also in good
agreement with the Monte Carlo simulation results.

Unlike the oscillatory case, for the excitable system, when
noise is small enough, the state will converge to the equilib-
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FIG. 13. Comparison between the critical transition positions on
left and right branches for fixed starting positions (solid) (y0 = 5 on
the left branch and y0 = −5 on the right branch) and those obtained
by the convergent method (dashed). Parameters are the same as in
Fig. 6.

FIG. 14. Illustration of the influence of the timescale sep-
aration parameter on the degree of coherence for the PWL-
FHN system (3). The blue curves (from left to right, ε =
0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001) and the black
line show the LHS and RHS of Eq. (8) (left branch), respectively.
The noise strength is σ = 0.01.

rium before the transition. There is a lower bound of noise
strength (σ ≈ 0.01, see Fig. 12), below which the stochastic
orbit is no longer coherent or even difficult to initiate spikes
(see Fig. 11 for σ = 0.001).
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FIG. 15. Period of stochastic periodic orbit of the PWL-FHN
system (3) via different methods. The black solid curve and the
red circles with error bars are the same as in Fig. 8. DMC (black
solid) stands for the proposed distance-matching condition Eq. (8).
TMC (blue dotted) represents the timescale-matching condition by
Muratov et al. [16]. The green dashed and orange dot-dashed curves
show the results by replacing the distance function S(y) in Eq. (8) by
constant 1 and quasipotential difference �W , respectively. The inset
displays the local magnification. Other parameters are the same as in
Fig. 8.
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APPENDIX B: CONVERGENT METHOD FOR CRITICAL
TRANSITION POSITIONS

For computing the critical transition position using Eq. (8),
we approximated the starting position y0 by yl = 5 for the left
branch. However, a more accurate and self-consistent choice
of y0 would be the critical transition position on the right
branch. Similarly, for the right branch, a more accurate choice
would be the critical transition position on the left branch.
We here calculate these self-consistent transition points and
compare the results with our approximation.

To obtain the final critical transition positions on both
branches, we can apply a convergent method as follows. First,
we start at y0 = 5 on the left branch and obtain the candidate
transition position y∗l . We utilize this value as the starting
position y0 on the right branch and calculate the candidate
transition position on the right branch y∗r . Then, y∗r will be
chosen as the starting position on the left branch to compute
the next candidate transition position. We continue this pro-
cess until the difference between adjacent candidate transition
positions on each branch is less than a tolerance value (e.g.,
0.001).

The results are shown in Fig. 13. It can be seen that the
critical transition positions obtained by fixed starting positions
(y0 = 5 on the left branch and y0 = −5 on the right branch)
almost coincide with those obtained by the convergent method
explained above. Only negligibly small differences can be
observed when the transition positions on both branches are
close enough. This result can be similarly explained as in the
main text that only a small range of y interval contributes to
the integration of the LHS of Eq. (8). In general, the fixed
starting positions used in the main text are enough to assure
the accuracy of the transition position.

APPENDIX C: INFLUENCE OF THE TIMESCALE
SEPARATION PARAMETER ON THE DEGREE

OF COHERENCE

It is intuitive that decreasing the timescale separation pa-
rameter ε increases the degree of coherence of the SISR
oscillator. Figure 14 illustrates the influence of ε on the in-
tegration curve, i.e., LHS of Eq. (8) of the PWL-FHN system
(3) for the left branch. It is shown that smaller ε corresponds
to a larger slope (absolute value) at the intersection point. For
the same range of distance �S, a larger slope implies a smaller
range �y. This means that a smaller range of y determines the
transition process, and therefore the stochastic orbits exhibit
higher coherence. Similar results also hold for the right branch
of Eq. (8). Note that this mechanism is for fixed noise strength.
The influence of noise strength on the degree of coherence is
complex as explained in the main text.

APPENDIX D: COMPARISON BETWEEN DIFFERENT
METHODS ON THE PREDICTION OF STOCHASTIC

PERIODIC ORBITS

As is discussed in Sec. V, there are two other replace-
ments of the distance function S(y) in the distance-matching
condition Eq. (8), i.e., the constant 1 and the quasipotential
difference �W (y). We test them in the PWL-FHN system (3)
by computing the period of the stochastic orbits as shown
in Fig. 15. For comparison, we also apply the timescale-
matching condition (4) by Muratov et al. [16], where the
critical transition positions on the left and right branches can
be easily obtained as y∗ = ±[−5 +

√
30
3

√
σ ln(ε−1)]. It can be

seen that the distance-matching condition used in the main
text is more accurate than the others.
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