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Arbitrary synthetic dimensions via multiboson dynamics on a one-dimensional lattice
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The synthetic dimension, a research topic of both fundamental significance and practical applications, has
been attracting increasing attention in recent years. In this paper, we propose a theoretical framework to construct
arbitrary synthetic dimensions, or N-boson synthetic lattices, using multiple bosons on one-dimensional lattices.
We show that a one-dimensional lattice hosting N indistinguishable bosons can be mapped to a single boson on
an N-dimensional lattice with high symmetry. Band structure analyses on this N-dimensional lattice can then be
mathematically performed to predict the existence of exotic eigenstates and the motion of N-boson wave packets.
As illustrative examples, we demonstrate the edge states in two-boson Su-Schrieffer-Heeger synthetic lattices
without interactions, interface states in two-boson Su-Schrieffer-Heeger synthetic lattices with interactions,
and weakly bound triplon states in three-boson tight-binding synthetic lattices with interactions. The interface
states and weakly bound triplon states have not been thoroughly understood in previous research. Our proposed
theoretical framework hence provides an interesting perspective to explore the multiboson dynamics on lattices
with boson-boson interactions, and opens up a future avenue in the field of multiboson manipulation in quantum
engineering.

DOI: 10.1103/PhysRevResearch.3.033069

I. INTRODUCTION

Dimensionality is one of the most important concepts in
modern physics. In condensed-matter physics, systems with
different dimensionalities exhibit vastly different behaviors.
Notable examples include topological insulators with pro-
tected surface states [1–6] and superconducting electronic
gases confined in quantum structures [7–11], which all exhibit
significant dependence on system dimensionality. To explore
phenomena unique to high-dimensional physics, the artificial
synthesis of extra dimensions in low-dimensional platforms
has attracted great interest in recent years [12–16], partly
because experimental platforms, including dielectrics [17],
plasmons [18,19], atoms [13,20,21], and magnetons [22],
feature relatively convenient fabrication and manipulation in
low dimensions. By connecting internal degrees of freedom
of particles to form apparent artificial lattices [15], one can
successfully construct synthetic dimensions which, together
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with spatial dimensions, make the dimensionality of a physi-
cal system beyond that of real space. This focus on synthetic
dimensions is of fundamental significance in physics, and also
holds promising applications in the field of optical communi-
cation and quantum information processing [23–27].

Quantum many-body physics, as an important research
subject in quantum physics, receives intensive study, with its
counterparts also greatly explored by quantum simulations
in optical platforms [28–30]. As an outstanding example,
repulsively bound boson pairs, also called doublons, have
been unveiled as a result of the Bose-Hubbard Hamiltonian
[31]. Following this important discovery, quantum problems
of two-particle states with one-dimensional (1D) interac-
tive Hamiltonians, such as the tight-binding Bose-Hubbard
model [32]; the tight-binding Bose-Hubbard model with a
parabolic potential [33], with a small impurity potential
[34], and with nonlocal interactions [35–37]; and the Su-
Schrieffer-Heeger (SSH) Bose-Hubbard model with nonlocal
interactions [38–42]; as well as two-particle problems with
Bloch oscillation in an external electrical field [43–45], have
been investigated with very broad interest in both condensed-
matter and optical societies. In particular, when two correlated
indistinguishable boson dynamics is under exploration, the
1D-2D mapping approach [32,34,35,37,41,42,45] has been
used to convert the two-boson dynamics on 1D lattices into
the single-particle dynamics on two-dimensional (2D) lattices.
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This mapping method significantly facilitates the theoretical
analysis and deepens our understanding of two-boson inter-
acting dynamics in the quantum regime.

Inspired by the works mentioned above, in this paper,
we propose to construct arbitrary synthetic dimensions with
multiple bosons in a 1D array, i.e., an N-boson synthetic
lattice, by generalizing the 1D-2D mapping method to a
1D–N-dimensional counterpart. After properly choosing the
symmetry restriction of the wave function, this N-dimensional
synthetic space with N indistinguishable bosons features pe-
riodicity along each of its synthetic dimensions, making it
possible to predict the N-boson dynamics by utilizing the
well-established band structure approach. We also note some
related research [46–49] providing another method of con-
structing synthetic dimensions with multiple bosons. In these
previous works, the extra degrees of freedom originate in the
boson numbers in the system. In our theoretical framework,
however, they come from the lattice site indices of the bosons
in the 1D array. As for demonstrations, we provide examples
exploring multiparticle physics with extended nonlinearity
including the two-boson case supporting the topological in-
terface states, as well as the three-boson case predicting the
boson blockade effects in three dimensions. Our work hence
points out a fundamentally different perspective for studying
many-body dynamics with nonlinearity from a physical pic-
ture with synthetic dimensions, which also shows potential
applications in quantum simulations and quantum information
processing with synthetic dimensions in optical systems.

The remaining parts of this paper are organized as follows.
Section II describes the fundamental theoretical framework of
the N-boson synthetic lattice that will be adopted throughout
this paper. Sections III–V give examples addressing the rich-
ness of various systems where our theoretical framework is
applicable. Section VI discusses some possible experimental
implementations followed by a brief conclusion.

II. THEORETICAL FRAMEWORK

We start to establish our theoretical framework by exam-
ining two indistinguishable bosons on an infinite 1D tight-
binding lattice, and then move on to the N-boson case. The
two-boson case has been addressed in several previous stud-
ies as the 1D-2D mapping approach [32,34,35,37,41,42,45].
Here we first reiterate this approach in a more explicit and
systematic way. The Hamiltonian of the system is

H = g
+∞∑

k=−∞
(b†

kbk+1 + b†
k+1bk ), (1)

where g, a real number, is the coupling strength between
neighboring sites, and bk (b†

k) is the annihilation (creation)
operator of bosons on the kth lattice site as shown in
Fig. 1(a). We take h̄ = 1 throughout the paper for simplicity.
In Schrödinger’s picture, the two-boson state is

|φ(t )〉 = 1√
2

+∞∑
m=−∞

+∞∑
n=−∞

vmn(t )b†
mb†

n|0〉, (2)

where |0〉 is the vacuum state. By substituting Eqs. (1) and
(2) into the Schrödinger equation i|φ̇〉 = H |φ〉, the differential

FIG. 1. The two-boson tight-binding synthetic lattice without in-
teractions. (a) A 1D tight-binding lattice with coupling strength g.
(b) The two-boson synthetic lattice with exchange symmetry restric-
tion on the wave function vmn(t ). (c) 2D band structure of the lattice
in (b) in the first Brillouin zone.

equation satisfied by vmn is derived as

i(v̇mn + v̇nm) = g(vm−1,n + vm+1,n + vm,n−1 + vm,n+1

+ vn−1,m + vn+1,m + vn,m−1 + vn,m+1). (3)

Here, the conventionally standard restriction on vmn is to
follow the exchange symmetry; i.e., we let vmn = vnm. With
this restriction,

〈0|bmbn|φ〉 = 1√
2

+∞∑
m′=−∞

+∞∑
n′=−∞

vm′n′ 〈0|bmbnb†
m′b

†
n′ |0〉

= vmn + vnm√
2

=
√

2vmn, (4)

and the square of the modulus of vmn can then be identified as
the second-order correlation function of the two-boson state:

|vmn|2 = 1
2 〈φ|b†

nb†
m|0〉〈0|bmbn|φ〉 = 1

2 〈φ|b†
nb†

mbmbn|φ〉. (5)

Also, the probability amplitude that one boson is observed
on the mth lattice site and the other on the nth site (m � n) is

umn =
{〈1m1n | φ〉 = √

2vmn = √
2vnm if m < n

〈2m | φ〉 = vmm if m = n
. (6)

Since we have required that vmn = vnm, Eq. (3) simplifies
to

iv̇mn = g(vm−1,n + vm+1,n + vm,n−1 + vm,n+1), (7)

which shows that the dynamics of vmn is mathematically
equivalent to the single-particle dynamics on a 2D tight-
binding lattice. This lattice, referred to as a two-boson
synthetic lattice, is illustrated in Fig. 1(b), and the process of
constructing such two-boson synthetic lattice can be denoted
as 1D-2D mapping.

The procedure for the construction of such synthetic lattice
can be generalized for N-boson states. We consider the tight-
binding Hamiltonian of Eq. (1) operating on an N-boson state:

|φ(t )〉 = 1√
N!

+∞∑
λ1=−∞

· · ·
+∞∑

λN =−∞

[
vλ1,...,λN (t )b†

λ1
· · · b†

λN

]|0〉.

(8)
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From the Schrödinger equation, we can calculate that

i
∑

permu

v̇λ1,...,λN = g
∑

permu

N∑
l=1

(
vλ1,...,λl−1,λl +1,λl+1,...,λN

+ vλ1,...,λl−1,λl −1,λl+1,...,λN

)
, (9)

where
∑

permu (· · · ) denotes the permutation sum by re-
rranging the sequence λ1, . . . , λN . Similarly here, the wave
function is additionally restricted by the exchange symmetry
that vλ1,...,λN remains constant after exchanging any two sub-
scripts λi and λ j . In this case,

〈0|bλ1 · · · bλN |φ〉 =
∑

permu vλ1,...,λN√
N!

=
√

N!vλ1,...,λN , (10)

and the square of the modulus of vλ1,...,λN is the Nth-order
correlation function:∣∣vλ1,...,λN

∣∣2 = 1

N!
〈φ|b†

λN
· · · b†

λ1
bλ1 · · · bλN |φ〉 (11)

Using vλ1,...,λN , the probability amplitude that ξi bosons are
observed on the μi-th lattice site (ξi > 0,

∑
i ξi = N , and μi <

μ j if i < j) can be expressed as

uμ1, μ1, . . . , μ1︸ ︷︷ ︸
ξ1

, . . . , μi, μi, . . . , μi︸ ︷︷ ︸
ξi

, · · ·
︸ ︷︷ ︸

N

= 〈ξ1μ1
· · · ξiμi

· · ·|φ〉

=
√

N!∏
i ξi!

vμ1, μ1, . . . , μ1︸ ︷︷ ︸
ξ1

, . . . , μi, μi, . . . , μi︸ ︷︷ ︸
ξi

, · · ·
︸ ︷︷ ︸

N

.

(12)

Because of the exchange symmetry, Eq. (9) can finally be
simplified to

iv̇λ1,λ2,...,λN

= g
[(

vλ1+1,λ2,...,λN + vλ1,λ2+1,...,λN + · · · + vλ1,λ2,...,λN +1
)

+ (
vλ1−1,λ2,...,λN + vλ1,λ2−1,...,λN + · · · + vλ1,λ2,...,λN −1

)]
.

(13)

Equation (13) is mathematically identical to the coupled-
mode equations [50] for the wave evolution in an isotropic
lattice defined in N dimensions, thus giving the N-boson syn-
thetic lattice with vλ1,...,λN being the lattice sites.

In deriving Eq. (13), we assume that the wave function
vλ1,...,λN satisfies exchange symmetry. For the same quan-
tum state of Eq. (8), other restrictions of the wave function
vλ1,...,λN are also possible. For example, we may also choose
vλ1,...,λN to be equal to zero except in the region λ1 � λ2 �
· · · � λN . With this alternative choice, however, Eq. (13) no
longer holds, and vλ1,...,λN ’s appear to be connected to their
neighboring sites with nonuniform coupling strengths (see
Appendix A). In fact, the uniformity of the lattice as described
by Eq. (13) is closely related to imposing the exchange sym-
metry on the wave function.

The uniformity of the lattice as described in Eq. (13) allows
the definition of a band structure in the synthetic space. The

steady state solution of Eq. (13) corresponds to the following
eigenvalue problem:

εN-dimension
tight-bindingvλ1,λ2,...,λN

= g
[(

vλ1+1,λ2,...,λN + vλ1,λ2+1,...,λN + · · · + vλ1,λ2,...,λN +1
)

+ (
vλ1−1,λ2,...,λN +vλ1,λ2−1,...,λN + · · · + vλ1,λ2,...,λN −1

)]
.

(14)

Since the coupling strengths are uniform in this synthetic
lattice along all of the N dimensions (λ1, . . . , λN ), we can
define an N-boson band structure analytically:

εN-dimension
tight-binding (k) = 2g

N∑
i=1

cos ki, (15)

where k = [k1, . . . , kN ]T and ki is the wave vector along the
λi direction in Eq. (14). The group velocity of the particle
wave packet in the synthetic lattice associated with a spe-
cific N-boson state can be calculated using the band structure
by computing the derivative of the energy spectrum with
respect to the wave vectors. One notices that the band struc-
ture for a 1D tight-binding lattice is ε1D

tight-binding(k) = 2gcos k

[51] so that εN-dimension
tight-binding (k) = ∑N

i=1 ε1D
tight-binding(ki ). This result

is consistent with the physical intuition that, without the
boson-boson interaction, N bosons evolve independently so
the N-boson dynamics can be understood from the single-
boson dynamics. On the other hand, when the boson-boson
interaction is involved, the N-boson dynamics can no longer
be simply derived from the one-boson dynamics. In later sec-
tions of this paper, we shall study examples with nonlinear
boson-boson interactions, where the N-boson synthetic lattice
shows great convenience in predicting some intriguing phe-
nomena.

To confirm the predictions made by the N-boson synthetic
lattice and the corresponding band structure analysis, we can
also perform numerical simulations by solving Eq. (13) in
the presence of external excitation. Based on the input-output
formalism [52], when ξi bosons are excited on the μi-th lattice
site (ξi > 0,

∑
i ξi = N , and μi < μ j if i < j), a source term

η(t ) should be added to the right side of Eq. (13) if λ1, . . . , λN

is a permutation of μ1, μ1, . . . , μ1︸ ︷︷ ︸
ξ1

, . . . , μi, μi, . . . , μi︸ ︷︷ ︸
ξi

, · · · .

Here η(t ), the temporal profile of the boson excitation, takes
the form of a modulated Gaussian envelope,

η(t ) = η0 exp

[
− (t − t0)2

τ 2

]
exp (−i�εt ), t � 0, (16)

where η0 is the normalization coefficient, t0 and τ are the
center and the width of the Gaussian pulse respectively, and
�ε is the excitation energy. Finally, the multiboson excitation
probabilities can be calculated according to Eq. (12), and the
average boson number on the kth lattice site of the hosting 1D
tight-binding chain [Fig. 1(a)] can be determined by

Nk (t ) = 〈φ(t )|b†
kbk|φ(t )〉. (17)

Some typical simulation results of the two-boson dynamics
with Hamiltonian equation (1) are displayed in Fig. 2.

Before ending this section, we note that, for illustration
purposes, the synthetic lattice described in this section is
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FIG. 2. Simulation results of two-boson dynamics in the two-
boson tight-binding synthetic lattice without interactions. (a) Aver-
age boson numbers on lattice sites and (b) the distribution of boson
excitation probabilities when two bosons are excited on the 0th site
simultaneously. �ε = 0, t0 = 2g−1, and τ 2 = 1.5g−2 in this figure.

rather simple with only real-valued, nearest-neighbor cou-
pling and no interaction. However, more complex behaviors
including nontrivial topological and interacting features can
be created in the N-boson synthetic lattice based on the same
theoretical framework as introduced here. To highlight these
more complex features, in the following, we discuss two
bosons on an SSH lattice without/with interactions (Secs. III
and IV), and two/three bosons on a tight-binding extended
Bose-Hubbard lattice (Appendix B and Sec. V).

III. TWO BOSONS ON AN SSH LATTICE
WITHOUT INTERACTIONS

As the first illustration of interesting topological behaviors
in the N-boson synthetic lattice, here we examine the two-
boson dynamics on a 1D SSH lattice. The 1D SSH model
is perhaps one of the simplest models that exhibit a nontriv-
ial energy band topology [53], and has been widely studied
[54–59]. Here we show that dynamics of two noninteracting
bosons on a 1D SSH lattice can be mapped to a 2D SSH
model. A 1D SSH lattice, as shown in Fig. 3(a), features
alternating coupling strengths of g1 and g2, and consequently

FIG. 3. The two-boson SSH synthetic lattice without interac-
tions. (a) A 1D SSH lattice, where black spots are sites Ck’s, white
spot are sites Dk’s, red lines are intracell coupling g1, and blue lines
are intercell coupling g2. One unit cell contains two sites, shaded in
gray. (b) The two-boson synthetic lattice with the exchange symme-
try restriction on the wave function v2m,2n(t ), v2m,2n+1(t ), v2m+1,2n(t ),
and v2m+1,2n+1(t ). One unit cell contains four sites, shaded in gray.
(c) 2D band structure of the lattice in (b) in the first Brillouin zone
with coupling strengths g1 = 3g, g2 = g.

there are two types of lattice sites on the chain which are
denoted as Ck and Dk in the kth unit cell, respectively. g1 is
referred to as intracell coupling and g2 as intercell coupling.
The corresponding Hamiltonian and the two-boson state under
consideration are expressed by

H = g1

+∞∑
k=−∞

(c†
kdk + d†

k ck ) + g2

+∞∑
k=−∞

(c†
k+1dk + d†

k ck+1),

(18)

|φ(t )〉 = 1√
2

+∞∑
m=−∞

+∞∑
n=−∞

[v2m,2n(t )c†
mc†

n + v2m,2n+1(t )c†
md†

n

+ v2m+1,2n(t )d†
mc†

n + v2m+1,2n+1(t )d†
md†

n ]|0〉, (19)

where ck and dk (c†
k and d†

k ) are annihilation (creation)
operators of bosons on the Ck and Dk sites, respectively.
Substituting Eqs. (18) and (19) into the Schrödinger equation
i|φ̇〉 = H |φ〉, we obtain the differential equations:

i(v̇2m,2n + v̇2n,2m)

= g1(v2m,2n+1 + v2n,2m+1 + v2m+1,2n + v2n+1,2m)

+ g2(v2m,2n−1 + v2n,2m−1 + v2m−1,2n + v2n−1,2m),

i(v̇2m+1,2n+1 + v̇2n+1,2m+1)

= g1(v2m,2n+1 + v2n,2m+1 + v2m+1,2n + v2n+1,2m)

+ g2(v2m+2,2n+1 + v2n+2,2m+1 + v2m+1,2n+2

+ v2n+1,2m+2),

i(v̇2m,2n+1 + v̇2n+1,2m)

= g1(v2m,2n + v2n,2m + v2m+1,2n+1 + v2n+1,2m+1)

+ g2(v2m,2n+2 + v2n+2,2m + v2m−1,2n+1

+ v2n+1,2m−1). (20)

Now we apply the exchange symmetry restriction of
the wave function (vmn = vnm as discussed in Sec. II), and
Eq. (20) can then be transformed into

iv̇2m,2n = g1(v2m,2n+1 + v2m+1,2n)

+ g2(v2m,2n−1 + v2m−1,2n),

iv̇2m,2n+1 = g1(v2m,2n + v2m+1,2n+1)

+ g2(v2m,2n+2 + v2m−1,2n+1),

iv̇2m+1,2n = g1(v2m,2n + v2m+1,2n+1)

+ g2(v2m+2,2n + v2m+1,2n−1),

iv̇2m+1,2n+1 = g1(v2m,2n+1 + v2m+1,2n)

+ g2(v2m+2,2n+1 + v2m+1,2n+2). (21)

Again, this exchange symmetry is not a physically neces-
sary restriction on the wave function, yet it is mathematically
essential in obtaining Eq. (21). Equation (21) gives the two-
boson synthetic lattice as illustrated in Fig. 3(b), which
corresponds to a standard 2D SSH model [60]. Mathemati-
cally, this lattice features translational symmetry along both
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FIG. 4. Projected band structures and eigenstate distributions of
an SSH stripe. (a), (b) Projected band structures of an SSH stripe
with coupling strengths (g1, g2) = (3g, g) or (g, 3g). Edge states are
denoted by red lines in (b). (c)–(f) Eigenstate distributions of (c)
CmCn-type, (d) CmDn-type, (e) DmCn-type, and (f) DmDn-type lattice
sites corresponding to the band structures (b) with km = 0.5π [gray
dash in (b)]. Edge modes are indicated by black arrows. −∞ < m <

+∞ and −15 � n � 15 in this figure.

the m and n axes with period 2, and its band structure can be
analytically obtained as

ε2D
SSH(km, kn) = ±

√
g2

1 + g2
2 + 2g1g2 cos km

±
√

g2
1 + g2

2 + 2g1g2 cos kn, (22)

as plotted in Fig. 3(c) [61]. Four different bands are observed
as one unit cell in the two-boson synthetic lattice contains
four lattice sites: v2m,2n, v2m,2n+1, v2m+1,2n, and v2m+1,2n+1.
The band structure of Eq. (22) can also be expressed as

ε2D
SSH(km, kn) = ε1D

SSH(km) + ε1D
SSH(kn), (23)

where ε1D
SSH(k) = ±

√
g2

1 + g2
2 + 2g1g2 cos k , because no

boson-boson interaction is considered in Hamiltonian
equation (18) [62].

A 2D SSH lattice exhibits topological features since edge
modes exist in the nontrivial phase (g1 < g2) because of
nonzero Berry connection and Zak phase [61]. Here we ex-
amine an SSH stripe which is infinite along the m axis but
has finite width along the n axis (−15 � n � 15). (Strictly

FIG. 5. Simulation results of edge modes in the two-boson SSH
synthetic lattice without interactions. (a), (b) The wave packet evo-
lution after exciting two bosons on sites C0 and D15, respectively,
with g1 = g, g2 = 3g, and �ε = 3.16g. (c), (d) The wave packet
evolution after exciting two bosons on site C0 simultaneously with
g1 = g, g2 = 3g, and �ε = 0. (e), (f) The wave packet evolution after
exciting two bosons on sites C0 and D15, respectively, with g1 = 3g,
g2 = g, and �ε = 0. t0 = 10g−1 and τ 2 = 10g−2 in this figure.

speaking, the trivial/nontrivial phase transition point is not
exactly at g1 = g2, depending on the stripe width, but takes
g1 = g2 in the limit of infinite stripe width [61].) One notes
that such an SSH stripe is not physically implementable by our
platform of two bosons on a 1D lattice, since the wave func-
tion exchange symmetry requires that the lattice should have
reflection symmetry along the m = n axis, yet this SSH stripe
is still a useful mathematical construct for analyzing edge
modes. In Figs. 4(a) and 4(b) the projected band structures
are plotted in the topologically trivial phase (g1 = 3g, g2 = g)
and nontrivial phase (g1 = g, g2 = 3g), respectively. The bulk
modes (drawn in blue) can be viewed as Fig. 3(c) after the
band structure is projected onto the km axis. In the nontrivial
phase, edge modes (red lines) are clearly shown in the band
gaps. Eigenstate distribution analysis further confirms that
these isolated modes are edge modes, since the corresponding
eigenstates are localized at lattice sites whose indices n are
±15, i.e., on the edges of the SSH stripe, as indicated by black
arrows in Figs. 4(c)–4(f).

Although the band structure analysis shown in Fig. 4 is
based on an infinite SSH stripe, the edge modes still preserve
in a finite two-boson synthetic lattice [i.e., a square-shaped
2D SSH panel as in Fig. 3(b)], which we demonstrate with
numerical simulations in Fig. 5. In simulations, we consider
a 1D SSH lattice with 62 lattice sites (31 unit cells), i.e.,
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−15 � k � 15 in Fig. 3(a). It gives a two-boson synthetic lat-
tice with 62 × 62 sites in two dimensions. For the convenience
of plotting in Fig. 5, lattice site Ck in Fig. 3(a) is labeled as the
2k-th site (i.e., Ck sites have indices 2k = −30,−28, . . . , 30)
and Dk as the (2k + 1)-th site (i.e., Dk sites have indices
2k + 1 = −29,−27, . . . , 31). We numerically solve Eq. (21)
together with the input-output formalism following the pro-
cedures described in Sec. II. The probability amplitude that
two bosons are respectively observed on lattice sites Cm and
Cn (Dm and Dn, and Cm and Dn) in Fig. 3(a) is

(Cm,Cn):λmn(t )

=
√

2 − δmnv2m,2n(−15 � m � n � 15),

(Dm, Dn):μmn(t )

=
√

2 − δmnv2m+1,2n+1(−15 � m � n � 15),

(Cm, Dn):ξmn(t )

=
√

2v2m,2n+1(−15 � m, n � 15), (24)

where δmn is the Kronecker delta function, and the average
boson number on each site of the 1D SSH lattice can be
calculated as

Site Ck:N2k (t ) =
k−1∑

j=−15

|λ jk (t )|2 + 2|λkk (t )|2

+
15∑

j=k+1

|λk j (t )|2 +
15∑

j=−15

|ξk j (t )|2, (25)

Site Dk:N2k+1(t ) =
k−1∑

j=−15

|μ jk (t )|2 + 2|μkk (t )|2

+
15∑

j=k+1

|μk j (t )|2 +
15∑

j=−15

|ξ jk (t )|2. (26)

We plot evolutions of the average boson numbers on the
1D SSH lattice in Figs. 5(a), 5(c), and 5(e), while plotting the
corresponding distributions of the excitation probabilities on
the two-boson synthetic lattice in Figs. 5(b), 5(d), and 5(f),
respectively. In Figs. 5(a) and 5(b), we perform the simula-
tion in the nontrivial phase and apply the external source in
Eq. (16) with �ε = 3.16g to excite two bosons on lattice sites
C0 and D15 (i.e., the 0th and 31st sites in the 1D lattice), which
corresponds to the excitation at the site (0, 31) in the two-
boson synthetic lattice in Fig. 5(b). One clearly sees the edge
modes in the two-boson synthetic lattice in Fig. 5(b), which
features bidirectional propagation because the corresponding
modes A (with a positive slope) and A′ (with a negative slope)
in Fig. 4(b) are both excited by the source. The corresponding
evolution of the average boson numbers in the 1D lattice in
Fig. 5(a) exhibits the same feature, where one boson excited
at the boundary is localized at D15, while the other boson
excited at C0 propagates along both directions in one dimen-
sion. The band analysis based on the two-boson synthetic
lattice is therefore useful for us to understand the evolution
of the boson number distribution along the 1D lattice. As a
comparison, if we excite the bulk site (0, 0) in the nontrivial
phase [Figs. 5(c) and 5(d)], or excite the edge site (0, 31) in

FIG. 6. Two-boson corner modes in the two-boson SSH syn-
thetic lattice without interactions. (a) Eigenenergies of an SSH panel
(−15 � m, n � 15) with coupling strengths g1 = g, g2 = 3g. Bulk
modes are colored blue, edge modes are colored red, and modes with
zero energy are colored green. (b) Zoom-in plotting of (a). (c), (e),
(g) Eigenstate distributions of zero-energy corner modes on an SSH
panel (−15 � m, n � 15) with coupling strengths g1 = g, g2 = 3g.
Eigenstates are localized at (c) site C−15, (e) site D15, and (g) sites
C−15 and D15. (d), (f), (h) Average boson number simulation results
of two-boson corner modes, where (d) two bosons on site C−15, (f)
two bosons on site D15, (h) one boson on site C−15, and the other on
D15 are excited. �ε = 0, t0 = 10g−1 and τ 2 = 10g−2 in (d), (f), (h).

the trivial phase [Figs. 5(e) and 5(f)] in simulations, no edge
modes are observed.

We shall clarify that, as mentioned in Eq. (23), without
boson-boson interaction, the two-boson dynamics on a 1D
SSH lattice can be readily inferred from the single-boson
dynamics on a 1D SSH lattice. For example, in Fig. 5(a),
the two-boson edge mode is in fact one boson localized at
the boundary of the original 1D SSH chain and the other
propagating inside the 1D chain. In another example of Fig. 6,
our two-boson synthetic lattice shows that a two-boson corner
mode is simply the combination of two single-boson boundary
modes, where both bosons are localized on either terminal of
the 1D SSH chain in the nontrivial phase.
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In this section, we utilize a simple example to show that
a perspective from a synthetic lattice helps one to understand
the N-boson dynamics in a 1D lattice. This capability will be
much more important when the interaction between bosons is
introduced, which we will show in the next two sections.

IV. TWO BOSONS ON AN SSH LATTICE
WITH INTERACTIONS

An interacting quantum system certainly shows a far richer
physical behavior as compared with a noninteracting systems.
The study of the N-boson synthetic lattice provides a unique
perspective to explore multiboson problems with interactions.
As an illustration, we consider two bosons on the same 1D
SSH lattice as that in Sec.III, but with boson-boson interac-
tions of the extended Bose-Hubbard type. The corresponding
Hamiltonian is described by

H =
+∞∑

k=−∞
(g1c†

kdk + g2c†
k+1dk + H.c.)

+ U

2

+∞∑
k=−∞

+R∑
s=−R

(c†
k+sc

†
kckck+s

+ d†
k+sd

†
k dkdk+s + 2c†

k+sd
†
k dkck+s), (27)

where U is the interaction strength and R is the interaction
range. Different from previous works [38–41], here we show
the capability of our method to understand the multiboson
problem with long-range nonlocal interactions, and predict
the existence of topological states that have not been explored
before. For this purpose, we take the same two-boson state in
Eq. (19) and apply the Schrödinger equation with the Hamil-
tonian in Eq. (27) (assuming R � 2), and obtain

i(v̇2m,2n + v̇2n,2m)

= g1(v2m,2n+1 + v2n,2m+1 + v2m+1,2n + v2n+1,2m )

+ g2(v2m,2n−1 + v2n,2m−1 + v2m−1,2n + v2n−1,2m )

+ Uδ|m−n|�R(v2m,2n + v2n,2m),

i(v̇2m+1,2n+1 + v̇2n+1,2m+1)

= g1(v2m,2n+1 + v2n,2m+1 + v2m+1,2n + v2n+1,2m )

+ g2(v2m+2,2n+1 + v2n+2,2m+1 + v2m+1,2n+2

+ v2n+1,2m+2) + Uδ|m−n|�R(v2m+1,2n+1 + v2n+1,2m+1),

i(v̇2m,2n+1 + v̇2n+1,2m )

= g1(v2m,2n + v2n,2m + v2m+1,2n+1 + v2n+1,2m+1)

+ g2(v2m,2n+2 + v2n+2,2m + v2m−1,2n+1

+ v2n+1,2m−1) + Uδ|m−n|�R(v2m,2n+1 + v2n+1,2m ), (28)

where δ|m−n|�R = 1 if |m−n| � R and =0 otherwise. Impos-
ing the exchange symmetry on the wave function (vmn = vnm),
we can rewrite Eq. (28) as

iv̇2m,2n = g1(v2m,2n+1 + v2m+1,2n)

+ g2(v2m,2n−1 + v2m−1,2n)

+ Uδ|m−n|�Rv2m,2n,

FIG. 7. The two-boson SSH synthetic lattice with interactions.
(a) The two-boson synthetic lattice with the exchange symmetry
restriction on the wave function, where green spots indicate nonzero
on-site potentials. (b), (c) Projected band structures of the lattice in
(a) with U = 2g, (g1, g2) = (3g, g), or (g, 3g). (d), (e) Eigenstate
distributions of CmDn-type lattice sites corresponding to the band
structures in (b), (c) at k j = 0 [gray dashes in (b), (c)], in topo-
logically (d) trivial and (e) nontrivial phases. Interface modes are
indicated by white arrows. R = 6 and −15 � l � 15 in (b)–(e).

iv̇2m,2n+1 = g1(v2m,2n + v2m+1,2n+1)

+ g2(v2m,2n+2 + v2m−1,2n+1)

+ Uδ|m−n|�Rv2m,2n+1,

iv̇2m+1,2n = g1(v2m,2n + v2m+1,2n+1)

+ g2(v2m+2,2n + v2m+1,2n−1)

+ Uδ|m−n|�Rv2m+1,2n,

iv̇2m+1,2n+1 = g1(v2m,2n+1 + v2m+1,2n)

+ g2(v2m+2,2n+1 + v2m+1,2n+2)

+ Uδ|m−n|�Rv2m+1,2n+1. (29)

Equation (29) therefore again can be mapped to a synthetic
lattice in two dimensions as shown in Fig. 7(a). Here U ap-
pears as the on-site potential on the diagonal with a width
of 2R + 1 in this two-boson synthetic lattice, as a result of
the nonlinear interaction terms in Eq. (27), as indicated by
the green-colored lattice sites in Fig. 7(a). These lattice sites
with nonzero on-site potentials compose the “nonlinear lattice
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region,” while the sites without on-site potentials compose
the “linear lattice region.” Figure 7(a) features translational
symmetry along the j axis [ĵ = (m̂ + n̂)/

√
2], and the cor-

responding wave vector k j is in fact the quasimomentum of
the motion of the center of mass of these two bosons (k j =
km + kn) [31].

For a stripe with finite width along the l axis [l̂ = (n̂ −
m̂)/

√
2, perpendicular to the j axis] and infinite length along

the j axis, we perform a Fourier transform along the j axis
and then plot the projected band structure ε(k j ) with different
combinations of parameters g1, g2, and U. When U = 0, g1 =
3g, and g2 = g, the projected band structure can be viewed
as the 2D SSH band structure after projection along the �-M
direction in the first Brillouin zone and then band folding
[see Figs. 8(c) and 8(d)]. Then we plot the projected band
structure for the case U = 2g, R = 6, g1 = 3g, and g2 = g
(trivial phase) in Fig. 7(b). One can see that, compared to the
plot in Fig. 8(d), some of the bands inside the quasicontinuum
are lifted by 2g, which is equal to the on-site potential U. In
other words, U shifts the potential energy of the sites in the
nonlinear region. This observation is consistent with the re-
sults in Appendix B; i.e., the lifted bands with higher energies
correspond to two-boson bound states (doublons) in the non-
linear lattice region around l = 0, and the unlifted bands with
lower energies correspond to free-particle scattering states in
the linear region. When U = 2g, R = 6, g1 = g, and g2 = 3g
(nontrivial phase), we plot the band structure in Fig. 7(c) and
can see topological effects. The edge mode in the upper band
gap is identified and indicated in red, yet the edge mode in
the lower band gap is overlapped by lifted bulk bands (i.e., the
edge mode “collapses” into scattering bulk modes). Moreover,
there are other isolated bands found around k j = 0 and ε = g.
We plot the eigenstate distributions of CmDn sites with k j = 0
for the trivial and nontrivial phases in Figs. 7(d) and 7(e), re-
spectively. (Other eigenstate distributions of CmCn, DmCn, and
DmDn sites can be found in Fig. 9.) One can see that, for the
nontrivial case, there exists a pair of localized states near ε =
g at the interface between linear and nonlinear lattice regions.
These states are the interface modes. Here the interaction
range R must be large enough so that the isolated bands of in-
terface modes exist and the modes at the two interfaces do not
hybridize.

To see details of the band structure in Fig. 7(c), we fo-
cus on the region around k j = 0 and ε = g in Fig. 10(a).
One can see that these interface modes are composed of two
groups of degenerate bands (bands 1 and 2, and bands 3 and
4) with slightly different energies. Figures 10(b)–10(e) plot
the eigenstate distributions of the corresponding four bands,
respectively, in a two-boson synthetic lattice with parameters
−2 � m, n � 3, and R = 2 for the illustration purpose. The
lower-energy group of bands corresponds to the modes on
the linear side of the interface [bands 1 and 2 in Figs. 10(b)
and 10(c)], while the higher-energy group corresponds to the
modes on the nonlinear side of the interface [bands 3 and 4 in
Figs. 10(d) and 10(e)]. It is shown that, of the two degenerate
bands in each group, one band is symmetric with respect
to the line m = n [Figs. 10(c) and 10(e)] and the other one
is antisymmetric [Figs. 10(b) and 10(d)]. However, only the
symmetric modes can be physically excited because of our
exchange symmetry restriction of the wave function. The pair

FIG. 8. Projection of band structures of multiboson synthetic
lattices. (a) A side view of 2D band structure of the 2D tight-binding
lattice without interactions. (b) Projected band structure of 2D tight-
binding lattice when U = 0, which can be acquired from (a) by
band folding (k j mod2π ). (c) A side view of 2D band structure of
the 2D SSH lattice without interactions. (d) Projected band structure
of 2D SSH lattice when U = 0, which can be acquired from (c)
by band folding (k j mod2π ). (e) Energy isosurfaces of 3D band
structure of the 3D tight-binding lattice without interactions. Blue:
ε = −5g; green: ε = −3g; yellow: ε = 0; red: ε = 3g; gray sur-
faces: k j = km + kn + kp = −2π, π, 0, π, 2π . Plane km + kn + kp =
±π (km + kn + kp = ±2π ) is tangential to isosurface ε = 3g (ε =
−3g) at km = kn = kp = ±π/3 (km = kn = kp = ±2π/3). (f) Pro-
jected band structure of 3D tight-binding lattice when U = 0, which
can be acquired from (e) by projection onto the black solid line
km = kn = kp and then band folding (k j mod2π ).

of antisymmetric interface modes (bands 1 and 3) is an artifact
produced from the 1D-2D mapping method, and does not
physically exist.

We next perform numerical simulations to validate this
interface mode mentioned above. Equation (29) is solved
with R = 6, and the evolutions of the average boson num-
ber distribution along the 1D SSH chain are calculated by
Eqs. (24)–(26). We first consider the case that sites C0 and
D6 are excited by a pair of separate bosons at �ε = g and the
lattice is in the nontrivial, nonlinear phase (g1 = g, g2 = 3g,
U = 2g). In the corresponding plot of the evolution of the
average boson number distribution in Fig. 11(a), one can see
that the interface mode is excited and preserved throughout
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FIG. 9. Eigenstate distributions of interface modes in the two-
boson SSH synthetic lattice with interactions. (a)–(f) Eigenstate
distributions of CmCn-, DmCn-, and DmDn-type lattice sites corre-
sponding to band structures in Figs. 7(b) and 7(c) at k j = 0 [gray
dashes in Figs. 7(b) and 7(c)], in topologically (a), (c), (e) trivial and
(b), (d), (f) nontrivial phases. Interface modes are indicated by white
arrows. R = 6 and −15 � l � 15 in this figure.

the simulation, as the distance between the two bosons keeps
stationary. The boson scattering in Fig. 11(a) is negligible
because the bands of the interface modes are relatively flat, so
the group velocity of the wave packet is small. In Fig. 11(b),
we take the case that C0 and D6 are excited but the lattice
is in the trivial, nonlinear phase (g1 = 3g, g2 = g, U = 2g).
There is no interface mode observed. In Fig. 11(c), the lat-
tice is in the nontrivial, nonlinear phase, but two bosons are
excited simultaneously on site C0, and thus bulk modes are
excited instead. Finally, in Fig. 11(d), C0 and D6 are excited
and the lattice is in the nontrivial phase but U = 0, and no
interface mode is found as expected. The simulations here
prove that, for the Hamiltonian in Eq. (27), the nonzero on-site
potential U, the topologically nontrivial phase (g2 > g1), and
an initial excitation on the linear-nonlinear interface are all
necessary conditions to successfully excite an interface mode
in Fig. 7(c).

The successful demonstration of the interface modes ex-
hibits the capability of our approach, with the two-boson
synthetic lattice and the band structure analysis, to predict
exotic physical phenomena. We also note that several previ-

ous studies used the modified Bethe ansatz and gave explicit
solutions to some specific Hamiltonians with short-range
interactions [32,35,37–39,42], yet these methods still face
challenges when the interactions are arbitrarily nonlocal (R �
2) or the total boson number is large (N � 3). Our theoretical
approach proposed here is more general and, as we show in
Secs. IV and V, is able to deal with multiboson dynamics
with long-range interactions and discover exotic states in these
systems.

V. THREE BOSONS ON A TIGHT-BINDING LATTICE
WITH INTERACTIONS

We have discussed the 2D synthetic SSH lattice induced by
the two-boson physics in Secs. III and IV. In this section, we
demonstrate a three-dimensional (3D), three-boson synthetic
lattice, which is constructed by three indistinguishable bosons
on a 1D tight-binding extended Bose-Hubbard Hamiltonian,
and show that it possesses exotic trimer states.

We consider a Hamiltonian which goes beyond previous
studies [63–65] with nonlocal interactions:

H = g
+∞∑

k=−∞
(b†

kbk+1 + b†
k+1bk ) + U

2

+∞∑
k=−∞

R∑
s=−R

b†
k+sb

†
kbkbk+s,

(30)

and the three-boson state

|φ(t )〉 = 1√
6

+∞∑
m=−∞

+∞∑
n=−∞

+∞∑
p=−∞

vmnp(t )b†
mb†

nb†
p|0〉. (31)

By substituting Eqs. (30) and (31) into the Schrödinger
equation, we get the differential equations for the vmnp’s (R �
2):

i
∑

permu

v̇mnp =
∑

permu

[g(vm−1,n,p + vm+1,n,p + vm,n−1,p

+ vm,n+1,p + vm,n,p−1 + vm,n,p+1)

+ (δ|m−n|�R + δ|n−p|�R + δ|p−m|�R)Uvmnp].

(32)

For this three-boson case, the wave function exchange
symmetry is defined as vmnp = vmpn = vnmp = vnpm = vpmn =
vpnm, and then the permutation sum in Eq. (32) can be re-
moved:

iv̇mnp = g(vm−1,n,p + vm+1,n,p + vm,n−1,p + vm,n+1,p

+ vm,n,p−1 + vm,n,p+1) + (δ|m−n|�R + δ|n−p|�R

+ δ|p−m|�R)Uvmnp. (33)

The first six terms in Eq. (33) correspond to a 3D tight-
binding lattice, which spans the full 3D (m, n, p) space with
equal coupling strengths g, as is shown by the cubic structure
in Fig. 12(a). (If we do not assume the exchange symme-
try, and instead restrict that vmnp = 0 except in the region
m � n � p, Eq. (32) would be translated to the tetrahedron
structure in Fig. 13(c), which does not support the following
band structure analysis.) After ignoring the nonlinearity for
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FIG. 10. Eigenstate distributions of interface modes in the two-boson SSH synthetic lattice with interactions. (a) Zoom-in view of the
projected band structure Fig. 7(c), with g1 = g, g2 = 3g, U = 2g, R = 6, and −15 � l � 15. (b)–(e) Eigenstate distributions of (b) band 1
(antisymmetric band with lower energy), (c) band 2 (symmetric band with lower energy), (d) band 3 (antisymmetric band with higher energy),
and (e) band 4 (symmetric band with higher energy) at k j = 0. The size of the yellowish glow around lattice sites qualitatively represents the
intensity of the eigenstate on the lattice sites, and the brightness (light yellow or dark yellow) represents the plus (light) or minus (dark) sign
of the eigenstate intensity. −2 � m, n � 3 and R = 2 in (b)–(e) for illustration purposes.

the moment (i.e., U = 0), the band structure of the cubic
three-boson synthetic lattice is

ε3D
tight-binding(km, kn, kp) = 2g(cos km + cos kn + cos kp), (34)

which can be shown by the energy isosurfaces in Fig. 12(b).
At the center point of the cubic reciprocal lattice (� point),
ε takes its maximum value of 6g, while at the corners (R
point), ε takes the minimum value of −6g. Now, we consider
the added nonzero on-site potential U on lattice sites around
the line m = n = p [the j axis, ĵ = (m̂ + n̂ + p̂)/

√
3], as

indicated by the green spots in Fig. 12(a). One can perform
Fourier transform along the j axis and obtain the projected

FIG. 11. Average boson number simulation results of interface
modes in the two-boson SSH synthetic lattice with interactions.
(a) The wave packet evolution after exciting two bosons on sites
C0 and D6, respectively, with U = 2g, g1 = g, g2 = 3g, and �ε = g.
(b) The wave packet evolution after exciting two bosons on sites C0

and D6, respectively, with U = 2g, g1 = 3g, g2 = g, and �ε = g.
(c) The wave packet evolution after exciting two bosons on site C0

simultaneously, with U = 2g, g1 = g, g2 = 3g, and �ε = g. (d) The
wave packet evolution after exciting two bosons on sites C0 and
D6, respectively, with U = 0, g1 = g, g2 = 3g, and �ε = 0. R = 6,
t0 = 10g−1, and τ 2 = 10g−2 in this figure.

band structure ε(k j ). Here k j = km + kn + kp. For the linear
case with U = 0, ε(k j ) can be understood from Eq. (34) by a
projection onto the �-R direction and then band folding into
the first Brillouin zone [see Figs. 8(e) and 8(f)].

We then consider the strong-interaction case with U = 12g
and plot the projected band structure ε(k j ) in Fig. 14(a). One
can see that there are four separate quasicontinuum bands.
We find that these bands correspond to different multiboson
states when we plot the eigenstates of these four quasicon-
tinuum bands in the l1-l2 plane, as shown by the diagram in
Fig. 14(b). Here l̂1 = (n̂ − m̂)/

√
2 and l̂2 = (p̂ − m̂)/

√
2

are two linearly independent directions orthogonal to the j
axis in the 3D space, and |l1|, |l2|, |l1 − l2| are actually the
relative distances between each two of these three bosons.
The l1-l2 plane is divided into 19 regions by six lines |l1| =
±R, |l2| = ±R, |l1 − l2| = ±R, classified into four categories,
which are dominated by eigenstates from different bands. In
the blue regions as shown in Fig. 14(b), we find that they
correspond to the band with the lowest energy in Fig. 14(a), as
confirmed by the eigenstate distribution at (k j, ε) = (0, 5.62g)
shown in Fig. 14(c). The areas of the blue regions are infinitely
large if −∞ < l1, l2 < +∞, and none of the three δ functions
in Eq. (33) is equal to 1 in these regions. It should also be

FIG. 12. The three-boson tight-binding synthetic lattice with in-
teractions. (a) The three-boson synthetic lattice with the exchange
symmetry restriction on the wave function vmnp(t ), where green spots
indicate nonzero on-site potentials. (b) Energy isosurface of the 3D
band structure of the lattice in (a) in the first Brillouin zone when
U = 0. Red: ε = 3g; yellow: ε = 0; green: ε = −3g; blue: ε = −5g.
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FIG. 13. The lattice structure formed by the wave function with-
out the exchange symmetry restriction. (a) Two bosons on a 1D
tight-binding lattice without interactions; vmn = 0 except in the re-
gion m � n. (b) Two bosons on a 1D tight-binding lattice with
interactions; vmn = 0 except in the region m � n. (c) Three bosons
on a 1D tight-binding lattice with interactions; vmnp = 0 except in
the region m � n � p. Green spots indicate lattice sites with nonzero
on-site potentials, and double lines indicate coupling strengths that
are not equal to g (the coupling strength in the 1D tight-binding
lattice).

FIG. 14. Projected band structure and eigenstate distributions
of the three-boson tight-binding synthetic lattice with interactions.
(a) Projected band structure of the three-boson synthetic lattice with
U = 12g. (b) Regional diagram of eigenstate distributions. Blue area:
bands of lowest energy; cyan area: bands of second-lowest energy;
orange area: bands of second-highest energy; red area: bands of
highest energy. (c)–(f) Representative eigenstate distributions corre-
sponding to the band structure at k j = 0 [gray dash in (a)] and at
(c) ε = 5.62g, (d) ε = 17.84g, (e) ε = 28.85g, and (f) ε = 41.79g.
R = 6 and −15 � l1, l2 � 15 in this figure.

noted that, although in Fig. 14(c), only the left-top and right-
bottom corners of the l1-l2 plane are occupied, the eigenstate
distributions at other eigenenergies in the lowest-energy band
fill up the rest of the blue regions in Fig. 14(b). These states
are three-boson scattering states where bosons are not bound
to each other and do not interact with each other via the
nonlinearity. In the infinite cyan regions, one of the three δ

functions in Eq. (33) is equal to 1, and these states consist of
a doublon and a free particle [see the eigenstate distribution
at (k j, ε) = (0, 17.84g) shown in Fig. 14(d)], residing in the
second-lowest energy band in Fig. 14(a). Moreover, the red
region denotes the tightly bound triplon states [see the eigen-
state distribution at (k j, ε) = (0, 41.79g) shown in Fig. 14(f)]
with the strongest interaction (consequently the highest en-
ergy) in Fig. 14(a). Nevertheless, the most intriguing result
discovered here is the hexagramlike, weakly bound triplon
state [see the eigenstate distribution at (k j, ε) = (0, 28.85g)
shown in Fig. 14(e)] in the orange regions. Such an exotic
state in Fig. 14(e) has not been thoroughly understood pre-
viously in the model without the nonlocal interaction [63].
In this state, compared to the tightly bound trimer in the red
region, the relative distances between each two of these three
particles cannot all be smaller than R, while compared to the
dimer-monomer states in the cyan regions, none of the relative
distances between each two of these three particles is allowed
to be larger than 2R, albeit there is no artificial discontinuity
at 2R in the Hamiltonian in Eq. (30). This “virtual potential
wall” at 2R is entirely attributed to the boson-boson blockade
effect. Therefore, in this fascinating state in Fig. 14(e), three
bosons are loosely localized together, neither too close to nor
too far from one another.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we propose a theoretical framework to treat
the multiboson dynamics in a one-dimensional lattice as
an N-boson synthetic lattice by applying exchange symme-
try restrictions to the wave function. In such an artificially
constructed N-boson synthetic lattice, one can mathemat-
ically perform band structure analysis and the resulting
N-dimensional band structure provides a unique perspective
to analyze the multiboson dynamics on 1D lattices. We show
that, for complicated Hamiltonians with boson-boson interac-
tions, projected band structures could be understood from the
full N-dimensional band structure, and nontrivial multiboson
states (such as interface modes in Sec. IV and weakly bound
triplon states in Sec. V) can be successfully predicted. In addi-
tion, the 1D lattice required in this paper to hold these multiple
bosons can be in either real or synthetic dimensions per se. If
this 1D lattice itself is in synthetic dimensions (e.g., formed
by exploiting boson frequencies, orbital angular momenta,
etc. [15]), our theory suggests that this multiboson approach
might enable the construction of arbitrarily multidimensional
systems on an otherwise zero-dimensional platform, together
with conventional strategies of synthetic dimensions. Math-
ematically, if N bosons are excited on a platform with D
real dimensions and M synthetic dimensions, the system can
be eventually expanded to (D + M )N dimensions (with ex-
change symmetry restrictions).
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We also briefly suggest several possible experimental plat-
forms for exploring N-boson dynamics in the 1D lattices
where our proposed approach can be conducted. For lattices
in the real space, coupled photonic waveguides and cavities
[44,45,66–74], cold bosonic atoms in optical lattices [75–79],
and superconducting circuits [80–83] are state of the art
technologies for implementations. For example, the coupled
waveguide array fabricated to study the two-photon quan-
tum walks in a 1D SSH lattice [74] gives an experimental
demonstration of our discussions in Sec. III. In such a pho-
tonic waveguide configuration, evanescently coupled parallel
waveguides are fabricated by direct laser writing, to form a
1D lattice in the real space. The coupling strengths can be
tuned by the distances between neighboring waveguides. The
temporal evolution of quantum states is mapped to the light
propagation along the waveguide axes (z direction), so the
interactions might be simulated by changing the refractive
indices of the waveguides. This can be achieved by altering
the laser power during fabrication. In cold atom configura-
tions, traps formed by an optical standing wave serve as the
lattice in the real space. The coupling strengths, or the atoms’
tunneling probabilities between neighboring traps, are tunable
by the profile of the optical standing wave. The interactions
of atoms are also more prominent than those of photons
[84,85], yet the experimental setups of optical lattices are
less compact and may not be as amenable for miniaturization
as the photonic systems because of the nano-Kelvin tem-
perature regime required [86]. Finally, our proposed model
can also find potential experiment platforms in acoustics
[56,87].

As for the synthetic space, a 1D tight-binding model and
SSH Hamiltonians without interactions are readily accessible
via synthetic frequency dimensions in few-ring resonators
with electro-optic modulation [17,58,88–90]. When the mod-
ulation frequency coincides with the free spectral range of
the resonator, neighboring longitudinal modes are coupled to
form a 1D lattice. For a silicon resonator with a 200 μm ra-
dius operating in the telecommunication band, the modulation
frequency should be ∼50 GHz, which is achievable using
lithium niobate modulators [91,92]. Artificial boundaries of
the lattices along frequency dimensions could be achieved by
incorporating group velocity dispersions in ring resonators or
introducing lossy absorbers at particular frequencies [71,93].
Group velocity dispersions in silicon resonators can be en-
gineered within a broad range of values by designing the
cross-sectional geometry of the waveguide [94,95], and loss
mechanisms may include the absorptions of atoms [96–99],
plasmons [100,101], semiconductors [102–104], and the res-
onances of other coupled cavities [93,105–107]. Interactive
terms in Hamiltonians can be constructed from four-wave-
mixing processes with the nonlinear effect [108], where local
(nonlocal) interactions correspond to the process of self-
phase (cross-phase) modulation. In a 200 μm radius silicon
resonator, the coupling strengths g along the frequency di-
mension are ∼1 GHz (modulation depth divided by round-trip
time). Although it is challenging to provide a comparable
interaction strength U in silicon resonators, other nanopho-
tonic platforms have the potential to further enhance the
nonlinear effects. For example, high-density atom gases
confined in waveguides may significantly increase photon

interactions [109–112]. In Ref. [110], a third-order suscepti-
bility as large as ∼10−12m2/V2 is calculated, which gives U ∼
1 GHz when the effective mode volume is ∼103μm3 . Addi-
tionally, arbitrarily long-range coupling in synthetic frequency
dimensions is also possible by special designs of the electro-
optic modulation profile [113].

In conclusion, we systematically develop a theoretical
framework on the creation of the N-boson synthetic lattice that
enlightens insights into the studies of both synthetic dimen-
sions and the physics of multiple interactive indistinguishable
bosons. The connection between multiple bosons and multiple
dimensions is highlighted. Through band structure analysis,
interesting dynamics of multiboson states is unveiled, and
can be confirmed by numerical simulations. Our study hence
points out an alternative way towards the studies of boson-
boson interactions and multiboson dynamics on lattices, and
also holds potentials for exploring important multiboson ma-
nipulations together with nonlinearity, nontrivial topology,
and/or boson entanglements with possible applications in the
fields of quantum computations, quantum simulations, and
quantum information processing.

ACKNOWLEDGMENTS

The research is supported by National Natural Science
Foundation of China (11974245), National Key R&D Pro-
gram of China (2017YFA0303701), Shanghai Municipal
Science and Technology Major Project (2019SHZDZX01),
and Natural Science Foundation of Shanghai (19ZR1475700).
L.Y. acknowledges support from the Program for Professor
of Special Appointment (Eastern Scholar) at Shanghai In-
stitutions of Higher Learning. X.C. also acknowledges the
support from Shandong Quancheng Scholarship (Award No.
00242019024). This work was also partially supported by the
Fundamental Research Funds for the Central Universities.

APPENDIX A: EXCHANGE SYMMETRY
AND LATTICE UNIFORMITY

In the main text, we show that Eq. (9) is converted by the
exchange symmetry to Eq. (13) which features translational
symmetry. Here, we consider another symmetry restriction
of the wave function that vλ1,...,λN = 0 except in the region
λ1 � λ2 � · · · � λN , so that the number of vλ1,...,λN variables
with nonzero values is minimum. We claim that with this
restriction, Eq. (13) does not hold. Actually, by assigning λi =
λ0(1 � i � N−1) and λN = λ0 + 1, we obtain from Eq. (9)
that

iv̇λ0,λ0,...,λ0,λ0+1

= g(N − 1)!
(
2vλ0,λ0,...,λ0+1,λ0+1 + vλ0,λ0,...,λ0,λ0+2

+ Nvλ0,λ0,...,λ0,λ0 + vλ0−1,λ0,...,λ0,λ0+1
)
. (A1)

On the other hand, if Eq. (13) were still valid, it should take
the form

iv̇λ0,λ0,...,λ0,λ0+1 = g
(
vλ0,λ0,...,λ0+1,λ0+1 + vλ0,λ0,...,λ0,λ0+2

+ vλ0,λ0,...,λ0,λ0 + vλ0−1,λ0,...,λ0,λ0+1
)
. (A2)

Immediately one notices that Eqs. (A1) and (A2) are con-
tradictory.
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FIG. 15. The two-boson tight-binding synthetic lattice with interactions. (a) The two-boson synthetic lattice with the exchange symmetry
restriction on the wave function vmn(t ). Green spots indicate nonzero on-site potentials. (b), (c) Projected band structures of the lattice in (a)
with U = 6g or 10g. (d)–(g) Eigenstate distributions corresponding to the band structures in (b), (c), with U = 6g or 10g and k j = 0 or 0.75π

[gray dashes in (b), (c)]. R = 10 and −30 � l � 30 in (b)–(g).

For the two-boson case (N = 2), if we require that vmn = 0
when n < m, Eq. (3) in the main text is simplified to

iv̇mm = g(vm−1,m + vm,m+1),

iv̇m,m+1 = g(vm−1,m+1 + 2vm+1,m+1 + 2vmm + vm,m+2),

iv̇mn = g(vm−1,n + vm+1,n + vm,n−1 + vm,n+1)

if n � m + 2, (A3)

while with this restriction Eq. (7) states that

iv̇mm = g(vm−1,m + vm,m+1),

iv̇m,m+1 = g(vm−1,m+1 + vm+1,m+1 + vmm + vm,m+2),

iv̇mn = g(vm−1,n + vm+1,n + vm,n−1 + vm,n+1)

if n � m + 2. (A4)

The discrepancies in Eqs. (A3) and (A4) are irrecon-
cilable, which indicates that Eq. (7) is incorrect when we
choose vmn = 0 (n < m). Without the translational symme-
try in Eq. (7), the Fourier transform cannot be performed
mathematically, and thus the band structure analysis in the
two-boson synthetic lattice fails. As an additional illustration,
Fig. 13(a) shows the lattice structure related to Eq. (A3),
where the coupling strengths are not uniform throughout the
lattice.

APPENDIX B: TWO BOSONS ON A TIGHT-BINDING
LATTICE WITH INTERACTIONS

Consider the following extended Bose-Hubbard Hamilto-
nian involving a nonlocal, nonlinear interactive term:

H=g
+∞∑

k=−∞
(b†

kbk+1 + b†
k+1bk )+U

2

+∞∑
k=−∞

R∑
s=−R

b†
k+sb

†
kbkbk+s.

(B1)

The two-boson state is the same as Eq. (2), and the dy-
namics of the vmn’s derived from the Schrödinger equation
i|φ̇〉 = H |φ〉 reads (assuming R � 2)

i(v̇mn + v̇nm) = g(vm−1,n + vm+1,n + vm,n−1 + vm,n+1

+ vn−1,m + vn+1,m + vn,m−1 + vn,m+1)

+ Uδ|m−n|�R(vmn + vnm), (B2)

where δ|m−n|�R is defined as in Eq. (28). If the restriction
that vmn = 0 when n < m is used, Eq. (B2) is mapped to the
nonuniform lattice structure in Fig. 13(b); if the exchange
symmetry (vmn = vnm) is applied, nevertheless, Eq. (B2) is
converted to

iv̇mn = g(vm−1,n + vm,n−1 + vm+1,n + vm,n+1)

+ Uδ|m−n|�Rvmn. (B3)

Equation (B3) corresponds to the two-boson synthetic lat-
tice in Fig. 2(a), which possesses translational symmetry
along the j axis (m = n direction) and the wave vector k j =
km + kn. The projected band structure ε(k j ) can be plotted for
different parameters g and U. The case of U = 0 is shown in
Fig. 8(b), which can be viewed as the 2D tight-binding band
structure [Fig. 8(a)] after projection along the �-M direction
in the first Brillouin zone and then band folding. Figures 15(b)
and 15(c), respectively, show the projected band structure
when U = 6g and U = 10g. It is obvious that compared to
the case of U = 0, when U > 0, some of the bands located
around energy ε = 0 are lifted to higher-energy positions, and
when U > 8g, the lifted and unlifted bands do not overlap,
thus forming a “band gap” in between. The eigenstate distri-
butions are further explored at different values of U and k j ,
and the results are displayed in Figs. 15(d)–15(g). It is shown
that the lifted bands at higher energy correspond to eigenstates
located in the nonlinear region around l = 0 (or equivalently
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FIG. 16. Simulation results of the collapse/isolation of two-
boson bound states and scattering states in the two-boson tight-
binding synthetic lattice with interactions. (a), (b) The wave packet
evolution after exciting two bosons on the 0th site simultaneously
with U = 6g and �ε = 3g. (c), (d) The wave packet evolution af-
ter exciting two bosons on the −10th and 10th sites, respectively,
with U = 6g and �ε = 3g. (e), (f) The wave packet evolution after
exciting two bosons on the 0th site simultaneously with U = 10g
and �ε = 5g. (g), (h) The wave packet evolution after exciting two
bosons on the −10th and 10th sites, respectively, with U = 10g and
�ε = 5g. R = 10, t0 = g−1, and τ 2 = 0.375g−2 in this figure.

the m = n direction, usually referred to as two-boson bound
states), and the unlifted bands correspond to the linear region
(referred to as scattering states). This further confirms that the
nonlinear interactive term in Eq. (B1) renders an on-site po-
tential added to a stripe |m−n| � R in the two-boson synthetic
lattice [Fig. 15(a)].

The appearance of a band gap is a reminder here that
the dynamics of two-boson states might be influenced by the
value of U/g. To be more specific, it might be predicted that
when U = 6g, the bound (nonlinear) and scattering (linear)
states are “connected” by the eigenstates whose energies are
within the overlapping range U−4g < ε < 4g, so that the
bound states and scattering states may collapse into each
other. (Interestingly, only the collapse from bound states into
scattering states was mentioned in previous studies [37], while
the collapse process in the opposite direction was not paid
attention to.) When U = 10g, the linear and nonlinear regions
in the lattice are isolated because of the existence of a band
gap. Any state with an energy inside this band gap is forbid-
den. This prediction is confirmed by our numerical results of
Nk (t ), the average boson number on the kth site of the 1D
tight-binding chain, as well as |umn(t )|2, the probability to
find one boson on the mth site and the other on the nth site
(Fig. 16). In Fig. 16, Eq. (B3) is solved under input-output
formalism with R = 10. When U = 6g and lattice site (0, 0)
is excited with energy �ε = 3g, as shown in Fig. 16(b), the
two-boson bound state “leaks” into the linear region above
the white dashed line. When U = 6g and the excitation source
is placed at (−10, 10), which is in the linear lattice region,
significant excitation probabilities on nonlinear sites are also
clearly observed [Fig. 16(d)]. When U = 10g, however, the
excited two-boson state is strictly localized in the region
where it is initially excited, since the lifted and unlifted bands
do not overlap. In fact, U = 8g is the collapse/isolation thresh-
old of two-boson bound states and scattering states. Finally, it
should be pointed out that the differences of simulation results
between U = 6g and U = 10g are not significant if only the
average boson numbers on lattice sites [Nk (t )] are resolved
[Fig. 16(a) vs 16(e), 16(c) vs 16(g)], suggesting that two-
boson correlated detection [direct measurement of |umn(t )|2]
might be necessary to reveal the distinctions between U = 6g
and U = 10g.
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