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Exact non-Markovian permeability from rare event simulations
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Permeation of compounds through membranes is important in biological and engineering processes, e.g.,
drug delivery through lipid bilayers, anesthetics, or chemical reactor design. Simulations at the atomic scale
can provide insight in the diffusive pathways and they give estimates of the membrane permeability based
on counting membrane transitions or on the inhomogeneous solubility-diffusivity model described by the
Smoluchowski equation. For many permeants, permeation through a membrane is too slow to gather sufficient
statistics with conventional molecular dynamics simulations, i.e., permeation is a rare event. Recent attempts to
improve the description of the dynamics of such rare permeation events have been based on milestoning, which
allows the study of processes at timescales beyond those achievable by straightforward molecular dynamics. The
approach is not relying on an overdamped description, but, still, it uses a Markovian approximation which is
only valid for small permeants that are not disruptive to the membrane structure. To overcome this fundamental
limitation, we show here how replica exchange transition interface sampling (RETIS) can effectively be used
on this problem by deriving an effective set of equations that relate the outcome of RETIS simulations and
the permeability coefficient. In addition, we introduce two new path Monte Carlo (MC) moves specifically for
permeation dynamics, that are used in combination with the ordinary path generating moves, which considerably
increase the efficiency. The advantage of our method is that it gives exact results, identical to brute force
molecular dynamics, but orders of magnitude faster.
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I. INTRODUCTION

Permeation of compounds through another medium is
essential in both biological and engineering processes. In bi-
ology, the permeation of molecules, nutrients or nanoparticles
through membranes is an integral part of a functioning cell,
and understanding the drug delivery process can aid the de-
sign of new cancer drugs or anesthetics [1–4]. In chemical
engineering, the transport of molecules can play a role in the
selectivity of the molecules [5,6]. In highly complex chemical
systems, it is valuable to unravel the various diffusion path-
ways, which can aid the optimization of a chemical reactor
setup. Despite the existence of spectroscopic methods, such as
fluorescence spectroscopy [7,8] or EPR experiments [9], the
insight in diffusive transport at the molecular scale is difficult
to obtain experimentally. Especially in inhomogeneous media
where the diffusion of permeants is a function of the location,
experiments usually only provide a global effective diffusion
constant, without discerning local differences at the molecular
scale. It is in this respect that molecular dynamics (MD)
simulations can play a major role. MD creates molecular
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trajectories and transport properties are directly observable at
the molecular scale, such as the permeability P.

The permeability of a membrane is the flux through the
membrane as a response to a concentration gradient over the
membrane. A first standard approach to derive the permeabil-
ity P from MD simulations is the counting method, which
is based on measuring the rate of membrane transitions per
unit of time and area [10–12]. Another standard approach
is Bayesian analysis (BA) using the Smoluchowski equation,
which assumes a position-dependent concentration profile as
well as a position-dependent diffusion profile across the mem-
brane [12–17]. The Smoluchowski equation is a pure diffusion
model, where memory effects are not modeled. The serious
limitation of these approaches is that, when the permeability
is low, the statistics provided by MD might be insufficient,
even when the trajectories are extended up to 1 microsecond
of simulation time.

A more recent approach is the extraction of P from mile-
stoning. Milestoning is based on the sampling of many short
trajectories released from equilibrium distributions at hyper-
surfaces (milestones) [18]. Typically, these hypersurfaces are
defined as subsets of configuration space with fixed values of
the reaction coordinate (RC). The milestoning method then
counts from each originating hypersurface how often the left
or right hypersurface is hit first and the time that it takes
to let this happen. These two properties for the different
milestones are then combined such that the dynamics of the
system can be described by a Markovian hopping sequence
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from one surface to the other. Rates, mean-first-passage times
and other relevant dynamic and thermodynamic data can then
be obtained. The central assumption underlying milestoning is
that the set of first hitting points, of the trajectories originating
from one surface with a hypersurface left or right from it,
is again distributed according to the equilibrium distribution.
This leads to conflicting requirements. On the one hand, the
milestones need to be set closely as this guarantees the highest
efficiency boost compared to brute force MD. On the other
hand, they need to be well separated for the central assumption
to be sufficiently satisfied. In addition, for the assumption
to hold, the choice of the RC is crucial and should ideally
coincide with the committor [19]. The committor is generally
an unknown coordinate that not only describes the position of
the permeant relative to the center of mass of the membrane,
but also should include nontrivial membrane deformations.
Obtaining approximate forms of the committor is generally
an immense task [20].

As a way to overcome the limitation of the Markovian
assumption, this work will make use of the transition in-
terface sampling (TIS) framework and of its extension, the
replica exchange TIS (RETIS) formalism [21–23]. (RE)TIS
gives a completely non-Markovian treatment of the interface
hopping probabilities, while still being orders of magnitude
faster than brute force MD. The overall rate is obtained in
a divide-and-conquer mindset, by constructing a series of
conditional probabilities to reach the next interface. Here we
will show how the permeability, as defined in steady-state
nonequilibrium conditions, can be transformed into func-
tional form that depends on the equilibrium path ensemble
properties which can be obtained from RETIS (instead of
the typical canonical, NVT, or isobaric, NPT, phase space
ensembles).

In an extension, we also show how the rates of transition
can be defined in a meaningful way for an infinite system
or a system with periodic boundaries such that it can be
linked to the permeability. When the phase neighboring the
membrane is unbounded, particles have a probability to indef-
initely diffuse in the opposite direction of the membrane rather
than through the membrane. Also when a system has periodic
boundary conditions, it is difficult to detect whether particles
reach the other side of the membrane through the periodic
boundary or through the membrane itself. The permeability
formula will be adapted to treat those cases. In addition, two
additional moves will be introduced in the MC sampling of the
interface ensembles. They will improve the efficiency when
the simulation box contains multiple permeant molecules or
when the membrane is symmetric with respect to the mem-
brane center.

This article is organized as follows. In Sec. II, we review
the existing approaches for obtaining P from MD simulations.
In Sec. III, the (RE)TIS formalism is revised and the path
ensembles are defined. In Sec. IV, the theoretical derivation
of the permeability from (RE)TIS is presented. In Sec. V we
derive the needed adaptation to treat systems with periodic
boundary conditions. In Sec. VI, the two new MC moves
are presented. In Sec. VII, we illustrate the accuracy and
effectiveness of our approach by computing the permeability
of a few basic model test systems. We end with concluding
remarks in Sec. VIII.

II. EXISTING APPROACHES FOR PERMEABILITY
CALCULATIONS

A. Direct counting

The permeability is defined as the ratio of the net flux J
of particles transiting a membrane in the steady-state regime
when imposing a small concentration difference �c over the
membrane,

P = J

�c
. (1)

To compute the permeability, one could consider imposing
the concentration difference at the membrane boundaries,
as suggested by the definition in Eq. (1). However, at the
molecular scale it is troublesome to impose a nonequilibrium
steady-state concentration gradient, especially when periodic
boundary conditions are applied.

A more common approach is therefore to count transitions
in both directions through the membrane in an equilibrium
simulation [10]. At first sight, Eq. (1) is no longer adequate
for the computation of P. Indeed, note that J in Eq. (1) is the
result of both crossings from left to right and from right to
left, corresponding to a positive flux J+ and a negative flux
J−. These fluxes are proportional to the concentrations at the
left and right hand side of the membrane, respectively, and
bear opposite signs. The net flux is, hence, the result that is left
after a partial cancellation of J+ and J−, and in an equilibrium
situation, where �c = 0, the cancellation is complete and the
net flux is zero. Whereas the permeability in this case is no
longer measurable experimentally, in simulations it is still
possible since it is relatively easy to trace the J+ and J− fluxes
individually from the MD trajectories and one can write

P = |J+|
c(−h/2)

= |J−|
c(h/2)

= |J+| + |J−|
2cref

. (2)

Here, z = 0 is considered to be the center of the mem-
brane of thickness h with borders at z = ±h/2, and c(z) is
the concentration profile across the membrane. The refer-
ence concentration is the concentration outside the membrane
cref = c(−h/2) = c(h/2) and corresponds to the concentra-
tion of permeants in the bulk liquid.

In an equilibrium run, the sum of fluxes |J+| + |J−| is
measured by counting full transitions from −h/2 to h/2 and
vice versa. This approach has the advantage that it is nearly
model-free. However, it is in practice a challenge to measure
the flux at the atomic scale for all but the fastest permeation
events [9,10,16,24–33]

B. Smoluchowski equation

A second common approach is to run equilibrium MD
simulations and to analyze these assuming the validity of
the inhomogeneous solution-diffusivity (ISD) model, where
transport is modeled by position-dependent Brownian dif-
fusion (diffusion profile D(z)) on a free energy landscape
(profile F (z)), as governed by the Smoluchowski equation
[15]. The free energy is related to the permeant concentra-
tion in equilibrium through the Boltzmann probability, c(z) ∼
exp(−βF ), where β = 1/(kBT ) is the inverse temperature, kB

is Boltzmann constant. Given the two profiles F and D, the
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permeability follows directly from solving the Smoluchowski
equation for its steady-state solution in the presence of a fixed
concentration difference �c over the membrane [13,16],

1

P
= e−βFref

∫ h/2

−h/2

1

e−βF (z)D(z)
dz, (3)

where Fref is the free energy at the reference location, usually
at z = − h

2 .
The structure of Eq. (3) shows that the free energy profile

is the dominant contribution to the permeability. Several cases
can now be thought of for F (z): F (z) has a barrier, is flat, or
has a well. The last two cases are rather academic, as realistic
membranes often form a combination of free energy barri-
ers and wells, e.g., for O2 permeation through phospholipid
bilayers [16]. First, when the permeation implies crossing a
high free energy barrier, the integration range in Eq. (3) can
readily be reduced from [−h/2, h/2] to [−h′/2, h′′/2] with
h′, h′′ < h,

1

P
≈ e−βFref

∫ h′′/2

−h′/2

1

e−βF (z)D(z)
dz (4)

if the integrand can be neglected for the outer regions −h/2 <

z < −h′/2 and h′′/2 < z < h/2. Given the exponential depen-
dence on the free energy barrier, the integration boundaries
−h′/2 and h′′/2 can often be chosen rather close to the max-
imum of the free energy barrier as long as Fref is taken in the
bulk region. In the direct counting method, the neglect of the
outer regions in the integration relates to the fact that nearly all
transitions from −h/2 to h/2 contain one and only one single
−h′/2 to h′′/2 transition.

Second, the permeability in a homogeneous medium where
F (z) is a flat profile, equals P = D/h with D the diffusion con-
stant. The permeability halves when doubling the thickness
h. This shows that the integration boundaries and reference
region need to be chosen with some care whenever the free
energy barrier is relatively small. Third, when F shows a free
energy well, the permeants may be trapped in the membrane,
and the integration boundaries should also be chosen with
care.

Besides these conceptual fundamental issues related to the
definition of the permeability, there are also practical issues.
The danger exists that not all regions inside and outside of
the membrane are accurately sampled in the equilibrium MD
simulations. Lastly, slow sampling can also originate from
a low diffusivity [D(z) in Eq. (3)], e.g., for permeants that
are bulky. The challenge of the Smoluchowski approach is
to determine the model parameters, i.e., the F (z) and D(z)
profiles, which can be extracted a posteriori from the MD tra-
jectories in various ways [10,12,15,16,28,29,34]. When MD
is inadequate because of its limited timescale, the approach
can be combined with rare events simulation techniques like
umbrella sampling [35], adaptive bias force [36–38], and bi-
ased diffusion [39,40]. All these free energy methods, with
the aim to compute the permeability via Eq. (3), have how-
ever as a shared limitation that they build on the validity of
the Smoluchowski equation. The validity of this equation is
questionable for many complex systems in which the transfer
of permeants over the barrier involves other types of motion,

like a rotation of the permeant or a local stretch of a membrane
opening [38,41].

C. Path sampling approaches

Path sampling methods seem to provide a natural solution
to the permeation problem since they are designed to maintain
the natural dynamics of the process as much as possible,
while still allowing the sampling of events that happen on
long timescales. Among the different path sampling methods,
applications on the permeation problem have so far mostly
adopted the milestoning method [18]. In this technique, phase
space is divided in domains that are separated by interfaces,
called milestones. Trajectories are initiated at each milestone
and run until they cross another milestone. The statistics over
this set of short trajectories give the mean first passage times
between pairs of milestones, which are then incorporated in
a Markovian rate network model to extract the overall rate.
Cardenas and Elber [42] proposed the formula for the perme-
ability

P = J1 q f

cref q1
, (5)

where J1 is the flux of particles hitting the first milestone per
area and per time in equilibrium, q is the absolute flux vec-
tor of trajectories crossing the milestones, when solving the
Markovian rate model for its steady-state solution with spe-
cific boundary conditions. Cardenas and Elber applied this to
the permeation of a small peptide [42] or water molecule [43]
through a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)
phospholipid bilayer, while Fathizadeh and Elber simulated
potassium permeation through this DOPC membrane [44].
Recently, Votapka et al. derived an alternative formulation for
the permeability based on milestoning [45].

The advantage of milestoning is that the MD trajecto-
ries that need to be generated are very short. However, the
milestoning relies on the Markovian assumption that the sys-
tem loses memory when it hits the next interface/milestone
[18,46]. This assumption is only correct if the milestones
are chosen along the isocommittor lines [19]. Hence, since
the milestones are defined by fixed values of the RC, the
RC should be the committor [47–50]. The committor is
therefore often considered as the ideal RC since the dynam-
ics projected on this one-dimensional coordinate becomes
Markovian and models relying on the Markovian assumption,
like Smoluchowski and milestoning, become exact. Note that
the committor is in principle defined in phase space though by
assuming that the dynamics is overdamped the committor can
be defined in configuration space alone.

Hence, if milestoning is applied with this ideal RC (the
committor) then trajectories released from the same milestone
have the same probability of reaching h/2 before −h/2 re-
gardless the point of origin within that milestone. This RC
should account for all relevant rotations of the permeant,
collective motions, and deformations of the membrane that
could be vital for the permeation process. Including these
motions within a single coordinate is highly nontrivial even if
the committor is assumed to be only configuration space de-
pendent based on the overdamped approximation. In practice,
this is generally not even attempted. Rather, a simple intuitive
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RC is chosen such as the z coordinate of the permeant that
is followed. This pragmatic choice will generally invalidate
the Markovian assumption leading to a systematic error that
can be mild or severe depending on the system. Another path
sampling approach that has similarities with milestoning is the
partial path transition interface sampling (PPTIS) [51]. The
PPTIS method is a Markovian variant of the TIS method.
Still, it uses a less stringent assumption than milestoning
by including more memory in the dynamical description. In
PPTIS, if the system hits an interface, the chance to move to
either its left or right interface depends on the history on the
path i.e., from which interface (left or right) it came from.
Still, no memory is retained before that point. The systematic
error due to the nonideal RC is therefore presumably lower in
PPTIS than in milestoning.

Path sampling methods that include the complete history
dependence of the dynamics, such as transition path sampling
(TPS), transition interface sampling (TIS), forward flux sam-
pling (FFS) [52], adaptive multilevel splitting (AMS) [53],
and replica exchange TIS (RETIS), are exact and independent
of the RC, which is a big advantage in complex systems. The
sampling of complete trajectories will make these methods
generally more computationally intensive than milestoning or
PPTIS, though a quantitative comparison relies on the trade-
off between systematic and statistical error. FFS and AMS
are based on a splitting approach which makes it applicable
for nonequilibrium dynamics as well. On the other hand, the
lack of backward-in-time integration limits the applicability
of splitting methods to stochastic dynamics and leads to a
relatively high risk of producing nonrepresentative transition
trajectories [54]. The other three methods, TPS, TIS, and
RETIS, are all based on a MC sampling procedure in path
space. The original TPS approach for rate calculations is no
longer being used in practice as TIS is both faster and more
accurate than TPS. RETIS is even more efficient than TIS, but
requires a more complex implementation. By the emergence
of open source path sampling libraries like OPS [55,56] and
PyRETIS [57,58] the latter aspect has become less of an issue.

In this paper, we show how RETIS can effectively be used
to compute permeability coefficients equally exact as the di-
rect counting approach, but orders of magnitude faster. In the
next section, we shortly introduce the RETIS approach, then
show how it can be amended for permeability calculations in
Sec. IV, and show in Sec. VI two new path MC moves that
can further enhance ergodic sampling.

III. REPLICA EXCHANGE TRANSITION
INTERFACE SAMPLING

TIS and RETIS are rare event techniques that allow to
compute rate constants k when transitions have to overcome
a high free energy barrier, and thus transitions are unlikely to
be observed in a standard MD simulation. Intuitively the rate
constant k can be expressed as a number of transitions, from
reactant state to product state, per unit time and per amount of
reactants. However, the translation of this phenomenological
rate constant into a computational measurable property is far
from trivial since it requires a microscopic definition of the
reactant state and product state. If a single dividing surface is
used to assign whether a molecular system is in the reactant

(a)

(b)

FIG. 1. Path ensembles in RETIS. (a) Paths shown along the
RC λ and an arbitrary orthogonal coordinate. The free energy as a
function of λ is also shown. All top four paths are part of the [0+]
ensemble containing paths that start at λA = λ0, move in the positive
direction and end at λA or λB. The top three path are part of the
[1+] ensemble. These are like the [0+] paths but should cross λ1

in addition. The top two paths are part of the [2+] path ensemble.
The bottom path is a [0−] path that starts at λA = λ0, moves in the
negative direction and ends at λA. The stable state regions A and B,
and the middle region M (no man’s land) are shown. Points in the
region M can be part of the larger overall states A or B. (b) Reaction
coordinate as a function of time for a hypothetical long equilibrium
MD run. The line is solid green (light: stable state A, dark: region M)
when the system belongs to overall state A. It is dashed blue (bright:
stable state B, dark: region M) when part of overall state B.

state or product state, e.g., based on a geometric observable
being lower or higher than a specific value, it is expected to
observe many correlated recrossings of the dividing surface.
Only when the system has moved far enough beyond the
dividing surface, it can be considered as stabilized to the other
state. To avoid the issue of correlated recrossings, it can be
generally better to consider two separate dividing surfaces left
and right of the barrier, λA and λB, respectively [see Fig. 1(a)].
At the left of λA and at the right of λB, the system is considered
committed to the reactant state and product state respectively.
The disadvantage is that the barrier region between the divid-
ing surfaces is not assigned to either state. A transition from
reactant state to product state needs to cross the no man’s land
between A and B, which makes it difficult to assign for each
transition a specific point in time at which it takes place, which
is essential to avoid overcounting.

The TIS and RETIS approaches circumvent this problem
by introducing overall states which are history-dependent
state definitions. Using the two dividing surfaces, λA and λB,
the system is part of stable state A if the value of the chosen
RC is below λA and it is part of stable state B if it is higher
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than λB. The overall states are denoted by the curly letters A
and B, and they include the stable states A and B, respectively.
Further, any instance of the system traveling in no man’s land
is assigned to overall state A or overall state B based on the
stable state that was most recently visited.

The advantage is that the system is always assigned to
either overall state A or B, and the overall state regions are
rather insensitive to the placement of the dividing surfaces
λA and λB as long as these are reasonable [23]. In addition,
a transition from A to B is well defined without hindrance
of recrossings and leads to a microscopically measurable net
flux without perturbing the equilibrium conditions. As such,
the phenomenological rate constant can be expressed as

k = lim
�t→0

〈hA(0)hB(�t )〉
〈hA〉 �t

, (6)

where hX (t ) equals 1 when the system is in state X at time
t and 0 when the system is not in state X at time t . The
interpretation of the ensemble average that involves history
dependent functions is given in Appendix A.

The above equation counts the rare crossings from left to
right through the surface λB of points that actually come from
λA (when the equations of motion are followed backward in
time, λA is reached without crossing λB). Since we can assume
equilibrium, the same number of counts per second will be
obtained by considering crossings with λA that after crossing
that interface reach λB without recrossing λA. This allows us
to write the rate k as

k = fAPA(λB|λA), (7)

where fA is the conditional flux (crossings per time) through
λA counting all crossings in the positive direction per time
spent in state A, and PA(λB|λA) is the crossing probability, i.e.,
the chance that a crossing with λA is followed by a crossing
with λB before a recrossing with λA occurs.

fA can easily be computed with MD, as is done in TIS,
since crossing λA is not a rare event. In RETIS, the flux is
computed from the average path lengths of two path ensem-
bles. The crossing probability PA(λB|λA) is generally too low
to be computed by straightforward MD, but can be recast into
the following factorization by defining a set of nonintersecting
interfaces:

PA(λB|λA) = PA(λn|λ0) =
n−1∏
i=0

PA(λi+1|λi ). (8)

Here, PA(λi+1|λi ) is the history dependent conditional prob-
ability that, given there is a crossing with interface λi for
the first time since last λA = λ0 crossing, interface λi+1 will
be crossed before λA. These conditional probabilities are
computed in n − 1 different path sampling simulations. Each
simulation samples a different path ensemble using a set of
different MC moves to generate new paths in the ensembles.
The ensemble [i+] consists of all possible paths that start at
λA and end at λA or λB and have at least one crossing with λi.
The MC approach is tuned such that the same statistical dis-
tribution of paths is generated as the distribution of paths that
would result if these are cut out from a hypothetical extremely
long MD simulation. The fraction of paths in the [i+] path
ensemble that cross λi+1 equals PA(λi+1|λi ). Performance of

TIS is optimal when the number of interfaces and the spacing
between the interfaces are tuned such that each conditional
probability is around 0.2 [59]. The most important MC move
is the so-called shooting move in which a random point of the
previous path is picked, its velocities are randomly modified
to generate a new phase point, and from this phase point the
equations of motion are followed backward and forward in
time to generate a new path. The new path will be accepted
if it fulfills the requirements for the specific ensemble (like
crossing λi in the [i+] ensemble) and, depending on the type
of velocity randomization procedure, an additional Metropolis
acceptance/rejection step will be invoked. In this work, we
applied the aimless velocity modification in which velocities
are regenerated, independent from the old velocities, from a
Maxwell-Boltzmann distribution [60].

Compared to TIS, RETIS has one additional path ensemble
called [0−]. Like the other ensembles, this ensemble contains
paths starting at λ0, but from there the paths move in the
negative direction away from the barrier. The paths are termi-
nated when they cross λ0 again. While the flux fA in Eq. (7)
is computed with straightforward MD in TIS, in RETIS it is
computed from the average path lengths in the [0−] and [0+]
ensembles (see Sec. IV A).

Another difference between RETIS and TIS, is that RETIS
employs additional MC moves. Since RETIS is purely based
on path sampling simulations, instead of MD and path
sampling simulations, replica exchange moves between the
different path ensembles (parallel path swapping [22]) can
be applied throughout the complete RETIS simulation. The
swapping moves enhance the sampling in a similar way as
parallel tempering [61], since the [i+] path ensemble for a
given i tends to contain trajectories moving on a higher energy
surface than the trajectories of the [(i − 1)+] ensemble. The
higher energy trajectories are less likely to get trapped in
specific reaction channels that are separated by free energy
barriers orthogonal to the RC λ [62]. As paths between [(i −
1)+] and [i+] are sometimes swapped, also the [(i − 1)+]
path ensemble will sample these different reaction channels
more easily. The combination of TPS and standard parallel
tempering can provide a similar effect [63], though in RETIS
there are no additional simulations at alleviated temperatures
needed. In contrast, the [(i − 1)+] ↔ [i+] swapping move is
very inexpensive as it does not require any force evaluations.
If the move is accepted, it provides a new path for both
the [(i − 1)+] and the [i+] path ensemble. In addition, the
accepted swapping moves provide generally paths that are
more decorrelated from the previous path than a shooting
move.

The swapping moves between the [0−] and [0+] path en-
sembles are done by exchanging the end and start points of
the paths and extending those forward and backward in time
respectively. Despite not being a free move, the barrierless
diffusion within the reactant well of the [0−] paths, followed
by exchange moves, will basically feed the [0+] ensemble
with fresh initializations. This facilitates the decorrelation of
the MC sampling even further and orthogonal barriers can
be avoided without having to cross them in any of the path
ensembles. An additional advantage is that this method works
in case where parallel tempering is not effective, that is when
barriers are mainly entropic in nature.
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IV. PERMEABILITY FROM RETIS SIMULATIONS

The rate k in Eq. (6) (with unit 1/time) describes the kinet-
ics of a process, while the permeability P of a membrane (with
unit length/time) describes the transport kinetics through the
layer, and clearly a link between k and P is expected. However
not only the units, but also the formalism for permeability and
rates are somewhat different. This paper will derive the correct
connection between the TIS framework for rare events and the
permeability.

The progression of permeation is most easily measured by
the z coordinate orthogonal to the membrane as the RC. De-
spite this simple order parameter choice, some details ask for
attention. In case of periodic boundary conditions, common
in MD simulations of membranes or porous catalytic crystals,
the question arises how it may be detected whether a molecule
crossed the membrane, or whether it simply circled back to the
other side of the membrane through the water phase because
of the periodic boundary condition in the z-direction. There-
fore we first derive the connection between P and k when the
solvent phase is bounded on both sides (e.g., by hard walls as
in Fig. 1) in Sec. IV A, and second we derive a relation for the
unbounded system when either periodic boundary conditions
or an infinite particle bath [64] are applied in Sec. IV B.

A. Connecting permeability and rate

Figure 1(b) shows a hypothetical long MD equilibrium run.
The timescales are not very realistic as we would in practice
expect that thousands of crossings with λA would proceed a
transition to state B. Yet, it will be used to show how we can
subdivide an ensemble average into different regions A, B or
A,B as follows.

The long trajectory can be seen as a series of visited phase
points. Here, we assume that the MD equilibrium run is in
fact sampling the distribution of interest. The MD integrator
is hence coupled to some kind of thermostat or barostat, when-
ever this distribution is different from the NVE ensemble. The
MD integrator gives a trajectory, which is effectively a series
of phase points (time slices) because of the discrete time step
�t in the numerical integration, such as the velocity Verlet
integration algorithm [65]. Given ergodicity, the phase points
will be visited with the correct relative probability when the
trajectory length T goes to infinity. The trajectory phase points
can be divided into subsets corresponding to the regions A, M,
B in Fig. 1(b) based on the value of the order parameter in each
phase point. The ensemble average becomes

〈. . .〉 = pA〈. . .〉A + pM〈. . .〉M + pB〈. . .〉B, (9)

where M is the membrane region, previously referred to as
no man’s land in the context of TIS and RETIS. Here, pX

is the probability that the system is in state X . Given that
the ergodicity makes the time averages respect the relative
probabilities, it follows that pX = TX /T , where TX is the total
time spent in state X , and T = ∑

X TX . In Eq. (9), the notation
〈. . .〉A refers to the ensemble average over all trajectory phase
points associated to A.

As mentioned earlier in Sec. III, the trajectory phase points
can also be assigned to either overall state A or B. The as-
signment to A or B is generally not based on the evaluation of

the order parameter in a single phase point but rather based on
the series of phase points in the trajectory (history dependent).
The ensemble average can be divided in two contributions,

〈. . .〉 = pA〈. . .〉A + pB〈. . .〉B. (10)

The notation 〈. . .〉A refers to the ensemble average over all
trajectory phase points associated to A (see Appendix A).

Central to the RETIS methodology are the [i+] path ensem-
bles connected with interfaces at locations λi, i = 0, 1, 2, . . .

and the [0−] path ensemble [see Fig. 1(a)]. Note that any path
in the [i+] ensemble for i > 0 is automatically a valid path
in the [0+] ensemble. The [0−] paths completely lie in state
A except for the first and last points of the trajectories. In
addition, all phase points inside A must lie on a [0−] path.
We can therefore say that state A is equivalent to [0−]. That
is, we can view each path ensemble also as a phase space
ensemble by simply collecting all phase space points that lie
on corresponding paths except for the terminating points. The
[0−] and [0+] ensemble (excluding the end points) are disjunct
and combined they represent all trajectories that pass through
the λ0 interface while not having reached state B yet. The A
ensemble is therefore equal to the combined [0−] and [0+]
ensembles.

As is obvious from Fig. 1(b), an equal number of [0−] as
[0+] trajectories can be cut out from the equilibrium run; each
time the end point of a [0−] path comprises a start point of
[0+] path and, vice versa, each starting point of a [0+] path
relates to an end point of a [0−] path. When NX denotes the
number of paths in the X ensemble that can be cut out from a
long equilibrium MD run, this observation can be summarized
as N[0−] = N[0+] in thermodynamic equilibrium.

Let us compare the three different flux terms: k in Eq. (6),
fA in Eq. (7) and J+ in Eq. (2). Here, fA provides the frequency
of state changes from A to M within the overall state ensemble
A. J+ on the other hand measures all crosses from left to
right along the full region M of all permeants, per time and
per membrane surface area σ . The rate constant k finally also
measures the frequency of full crossings like J+ but with the
same time normalization TA as for fA. In summary,

fA = #(A → M )target

TA
,

k = #(A → M → B)target

TA
,

J+ = #(A → M → B)all perm

T σ
. (11)

One could imagine another flux definition, similar to fA, but
where the denominator is the total time T of the long equilib-
rium run rather than the time spent in A,

f = #(A → M )target

T
= pA fA. (12)

The appearance of the factor pA gives fA the interpretation
of a “conditional” flux compared to f . The flux f is however
not accessible in a RETIS simulation and will not be further
discussed.

If all of the Np permeating particles are identical,

#(A → M → B)all perm. = Np #(A → M → B)target (13)
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and we can relate J+ with fA and k as follows:

J+ = Np
#(A → M → B)target

TAσ

TA
T

= NpkpA
σ

= Np fAPA(λB|λA)pA
σ

, (14)

where PA(λB|λA) is the previously introduced crossing prob-
ability. All terms in Eq. (14) are measurable in a RETIS
simulation except pA, the probability of overall state A.
RETIS simulates the A ensemble (through [0−] and [0+]) but
not the B ensemble; hence TB, T = TA + TB and ultimately
pA = TA/T are not known. Luckily, the factor pA cancels
when we include the cref concentration in order to compute
the permeability based on Eq. (2), as we will show now.

First, let ρref be the one-dimensional probability density to
find a specific permeant (for instance the targeted permeant) at
the reference location zref . We can relate ρref to cref by taking
into account the number of permeants Np in the simulation
box and the cross section area σ ,

ρref = σcref

Np
. (15)

Further, we can use the subdivision in global states in Eq. (10),
giving

ρref = ρ(zref ) = 〈δ(zref − zt )〉
= pA〈δ(zref − zt )〉A + pB〈δ(zref − zt )〉B
= pA〈δ(zref − zt )〉A = pA(ρref )A, (16)

where zt is the z coordinate of the target permeant, and (ρref )A
refers to the probability density within the A ensemble. The
factor 〈δ(zref − zt )〉B is zero, since zref is located in stable state
A and zt does not lie in A for any trajectory phase point that is
assigned to B (see Appendix A). Consequently, we can write

cref = Npρref

σ
= Np(ρref )ApA

σ
. (17)

Substitution of Eqs. (17) and (14) in Eq. (2) gives

P = k

(ρref )A
= fAPA(λB|λA)

(ρref )A
. (18)

This is the first theoretical result connecting P and k. Equation
(18) shows that the B path ensemble needs not be simulated to
find the permeability. In contrast, the direct counting method
of Eq. (2) is based on a long MD run, which includes paths
in both the A and B ensembles. The paths in the A ensemble
are however sufficient for the computation of the permeability
with Eq. (18).

Still, the denominator (ρref )A in Eq. (18) cannot be
computed in a single path ensemble since overall state A
comprises both [0−] and [0+]. Therefore let us first consider
how the probability density at the reference location would
be computed from a long equilibrium MD simulation. We
would need to define a certain interval around zref with a width
�z, [zref − �z/2, zref + �z/2], and (ρref )A is the ratio of the
average time Tref spent in the reference interval region versus
the total time spent in A, divided by �z,

(ρref )A = Tref

TA

1

�z
. (19)

In practice, one would count the number of steps that the z
coordinate is inside the interval, and divide this by �z and
by the total number of steps that the system is part of A
paths, assuming a constant MD integration time step �t . If the
reference location is in a region where the free energy profile
F (z) is flat, then Tref scales linearly with �z, and (ρref )A will
in principle not be affected by the chosen interval length �z.

On the other hand, the conditional flux is the number of
crossings through λA in the positive direction divided by the
time spent in TA,

fA = N[0+]

TA
, (20)

where, as said earlier, N[0+] is the number of [0+] trajectories
that can be cut out from the long equilibrium trajectory. Sub-
stitution of the two previous equations into the permeability
in Eq. (18) makes the TA drop out, and gives a practical
expression for P,

P = N[0+]

Tref
PA(λB|λA) �z. (21)

This is the second expression linking P with RETIS quanti-
ties. It gives the insight that P depends on time spent in the
reference region, but not explicitly on time spent in the [0+]
nor [0−] ensemble.

However, Eq. (21) still refers to the quantities N[0+] and
Tref , which are obtained from a long equilibrium simulation.
In the next last step, the conversion to path ensemble averages
is made. With TX the time spent in a path ensemble X and
NX the number of trajectories in the path ensemble X , the
average path length is given by τX = TX /NX . An advantage
of τX is that it is in principle independent of the simulation
computer time, i.e., if the number of simulated paths in the
ensemble is doubled, the average τX will not change, which
gives τX an intrinsic meaning. We would like to stress that a
path ensemble average like τX is a property that is averaged
over all paths in the path ensemble, and it differs from the
common phase space average, denoted as 〈. . .〉Y , where the
average is taken over all phase points within the ensemble Y .

The conversion to path averages is now simply executed
by introducing factors N[0−], using TA = T[0−] + T[0+], and
exploiting the fact that N[0−] = N[0+] in an equilibrium run.
For the probability density, this gives

(ρref )A = Tref

T[0−] + T[0+]

1

�z

= Tref/N[0−]

T[0−]/N[0−] + T[0+]/N[0+]

1

�z

= τref,[0−]

τ[0−] + τ[0+]

1

�z
, (22)

while the conditional flux is converted to (see Ref. [22])

fA = N[0+]

T[0−] + T[0+]

= 1

T[0−]/N[0−] + T[0+]/N[0+]

= 1

τ[0−] + τ[0+]
. (23)
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Here, τ[0−] and τ[0−] are the average lengths of paths in the
[0−] path ensemble and [0+] path ensemble, respectively,
while τref,[0−] is the average time spent in the [zref − �z/2 :
zref + �z/2] interval per path in the [0−] ensemble.

Again, substituting the previous equations into the perme-
ability in Eq. (18) gives another expression for P,

P = k�z

τref,[0−] fA
= PA(λB|λA)�z

τref,[0−]
. (24)

This is the third theoretical result expressing P in terms of
intrinsic RETIS quantities. Equation (24) is an expression that
can be fully computed in a RETIS simulation since PA(λB|λA)
is standard output of this approach, while τref,[0−] can easily
be obtained from the paths generated in the [0−] ensemble by
histogramming the z coordinate.

Figure 1 is however not typical for an actual membrane
system that has no natural confining energy barrier that pro-
hibits the permeants to drift far away from the membrane. To
deal with the situation of an unconfined system, we derive in
Sec. IV B how a λ−1 interface can be used to constrain the
system in a way that the permeability coefficient can still be
determined exactly, as if the system were unrestrained.

B. The λ−1 interface

The previous section linked the rate constant to a perme-
ability, though the system depicted in Fig. 1 is not exemplary
for a permeation system where we imagine a membrane in a
near-infinite solvent. The rate constant k that follows a single
particle will naturally decrease with the amount of solvent
added to the model system since the target particle will spend
more time away from the membrane. The permeability P is
insensitive to this since it does not depend on the size of
the simulation box. Increasing the solvent while maintaining
constant concentration automatically implies an increase in
the number of permeants. This increase cancels the decrease
of the rate for permeation of the individual particles. Still, as
RETIS computes rates rather than permeation directly, some
confinement is required in practice.

This confinement is achieved by introducing an extra in-
terface λ−1. With the introduction of this interface the overall
state A is reduced to the λ > λ−1 region, and is denoted A′.
The same can be done at the product region side, but this is
not essential for the A → B rate calculation. The new state
division is depicted in Fig. 2, where the outer regions are here
called freeze-time zones which will not be accessed in this
adaptation of the RETIS algorithm. A prime is added to show
that the states A′, B′, A′, and B′ contain fewer phase points
than A, B, A, and B, respectively. The ensemble average in
Eq. (10) is updated to reflect the additional freeze-time zones,

〈. . .〉 = pfr-ti〈. . .〉fr-ti + pA′ 〈. . .〉A′ + pB′ 〈. . .〉B′ . (25)

The path ensemble [0−′] resembles the [0−] ensemble, but
contains paths that can start and end at λ−1 in addition to
λ0. The time slices of paths in path ensembles [0−′] and [0+]
fully build up the overall state A′. The freeze-time zone on the
product side does not affect the [0+] ensemble nor the other
[i+] ensembles. The (RE)TIS crossing probability PA(λB|λA)
remains unaffected by the λ−1 interface.

FIG. 2. Illustration of how the freeze-time zones in red are in-
troduced by extra interfaces left of λA (called λ−1) and right of λB

(unnamed). The green and blue regions refer to states A′ and B′,
respectively. The line represents a long equilibrium run (RC λ versus
time T ). Note that in the membrane region (previously called no
man’s land) the color is given by the stable states last visited [like
in Fig. 1(b)]. Whenever the system enters a freeze-time zone, the
time T ′ is stopped and continued whenever it exits this zone. The
trajectories that can be cut out from the [λ−1, λ0] interval constitute
the [0−′] path ensemble. This ensemble is different from the [0−]
ensemble since its paths can start and end at λ−1 in addition to λ0.

Figure 2 shows again a hypothetical unrestrained equilib-
rium MD run just like in Fig. 1(b) with a free energy surface
that is flat at either side of the membrane. Conceptually, the
existence of an equilibrium in such an infinite system is not
obvious as the ergodicity hypothesis implies that for instance
ensemble averages are identical to time averages of an infinite
equilibrium run. However, if the partition function diverges,
even an infinitely long equilibrium run might not visit all
the relevant phase space regions. This issue can be solved
conceptually by taking the infinite limits for space and time
in a controlled way. That is, we consider the potential of
Fig. 2 as a special case of the potential shown in Fig. 1, but
with the vertical-like increase of the free energy occurring
at z = −W and +W . By letting T → ∞ and W → ∞ such
that W 2/(T D) → 0 with D the average diffusion constant,
it can be shown that the ergodicity hypothesis holds. While
this solves the conceptual problem whether we can assume
equilibrium statistics, it does not solve the practical problem
that the rate k is still zero in this limit.

The additional λ−1 interface, however, ensures that the
overall state A′ becomes finite and that anything that happens
in the freeze-time zone can be ignored as if the stopwatch,
measuring T ′, is paused and statistics are not updated each
time that the trajectory enters that region.

Now that the rate k′ and the flux fA′ can be computed
from this long equilibrium run using the new definition for
the overall state A′, the same counting strategy applies: it is a
number of crossings/transitions divided by the time spent in
overall state A′. The only difference is that, besides time spent
in overall state B′, also the freeze-time zone is ignored in the
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normalization. The path ensemble [0−] is however changed
to [0−′], which statistically corresponds to the same ensem-
ble one would obtain by cutting out the trajectory segments
between λ−1 and λ0 from the equilibrium run. Specifically,
it is no longer valid that N[0−′] and N[0+] are equal. We will
therefore introduce the parameter ξ to measure the mismatch
between number of paths in these two path ensembles,

ξ = N[0+]

N[0−′]
= N→R,[0−′]

N[0−′]
= h→R[0−′]. (26)

Here N→R,[0−′] is the number of [0−′] paths ending at the right
side (at λ0) that can be cut out of the long equilibrium run. It is
obvious that N→R,[0−′] = N[0+] from observing the λA interface
in Fig. 2. It follows that ξ < 1.

Similarly, h→R is the characteristic function that for each
path provides the output 1 if the path ends at the right and 0
if the path ends at the left, irrespective of the starting point.
Finally, h→R[0−′] is the average of this function over all paths
in the [0−′] ensemble. This parameter ξ can hence be obtained
from a RETIS simulation by the analysis of the [0−′] path
ensemble.

In order to reformulate the expressions for fA′ and P, we
first update the expressions for TA′ and Tref′ to link them to
average path lengths τX , which are intrinsic quantities of a
given path ensemble.

The time TA′ can be written to be proportional to N[0+] as

TA′ = T[0−′] + T[0+] = N[0−′]τ[0−′] + N[0+]τ[0+]

= N[0+]
(
ξ−1τ[0−′] + τ[0+]

)
. (27)

The time TA′ is smaller than TA since A′ comprises fewer
phase points than A (the clock is stopped). The time Tref spent
in the reference interval is not affected by the presence of
the λ−1 as the reference interval is located between λ−1 and
λA. The associated intrinsic quantity τref,[0−′] can nevertheless
change as N[0−′] might differ from N[0−] (e.g., seven paths
versus four paths in Fig. 2),

Tref = N[0−′]τref,[0−′]

= N[0+] ξ
−1 τref,[0−′] (28)

These two equations have implications for fA′ and P. For
fA′ in Eq. (20), the number of paths N[0+] remains unaltered
according to Fig. 2, but the time TA needs to be updated with
TA′ , leading to

fA′ = N[0+]

TA′
= ξ

τ[0−′] + ξ τ[0+]
. (29)

For P in Eq. (21), the number of paths N[0+] and the cross-
ing probability PA(λB|λA) remain unaltered, and the time Tref

is updated with Eq. (28), leading to the generalized version of
Eq. (24),

P = ξ�z

τref,[0−′]
PA(λB|λA). (30)

The last expression is the central expression that links the per-
meability with thermodynamic averages that can be computed
in a RETIS path sampling simulation. The parameter ξ is
obtained from analyzing the end points of the [0−′] paths, the
crossing probability PA(λB|λA) is a direct output of a (RE)TIS
simulation, �z is a chosen bin width of the reference region

in the flat free energy region to the left of λ0, and τref,[0−′] is
the corresponding time spent per path in the [0−′] ensemble in
this reference bin. The latter can be rewritten as

τref,[0−′] = Tref

TA′

TA′

N[0−′]
= (ρref )A′�z τ[0−′], (31)

which leads to an alternative expression for the permeability

P = ξPA(λB|λA)

(ρref )A′τ[0−′]
. (32)

Equation (32) combines path ensemble averages
(ξ, PA(λB|λA), τ[0−′]) with a phase space average ((ρref )A′ ),
while Eq. (30) is only based on path ensemble averages.

All quantities in Eqs. (30) and (32) are intrinsic, meaning
they are expressed as averages over the paths. This means that
the same expression is applicable when doubling the number
of paths, i.e., running the MC steps in the path ensembles
longer. This will not affect the absolute value of any of the
terms provided in Eq. (30), but will naturally increase the
accuracy of their numerical estimates.

V. RC FOR PERMEATION WITH PERIODIC BOUNDARY
CONDITIONS

In the previous section, we solved the problem to link the
permeability with the rate constant in an infinite system by
introducing the interface λ−1 and the rate constant k′, which
is nonzero unlike k. In most practical simulations the infinite
system is represented by a system with periodic boundary
conditions (PBC) which poses the need to properly determine
the relative position of the permeant with respect to the cen-
ter of the membrane, which defines the RC, λ. The simple
minimum-image convention will generally not work since the
RETIS trajectories can span the full [λ−1, λB] region and a
permeant located at λ−1 might actually be closer to the left
periodic image of the membrane than to the membrane in the
central image.

In order to properly deal with PBC, we first map the zi coor-
dinates of all particles i in the system within the [−Lz/2, Lz/2]
interval, where z = 0 is matched by convention at the center
of mass of the membrane and Lz is the box length in the z
dimension,

zi = (z′
i − z′

mem.) − round

(
(z′

i − z′
mem.)

Lz

)
Lz, ∀i. (33)

Here, z′
i is the z coordinate of particle i provided by the

molecular simulation program. By this operation, the center
of mass of the membrane is set at 0, while the center of
the solvent slab is at ±Lz/2. Here we assume that original
coordinates z′

j of the membrane particles j are constructed
such that the center of mass at the z′ axis can be computed
without the need to add or subtract Lz or multiples of it to any
of the membrane particles. As the membrane is stable, we can
assume that the above remains valid during the full simulation.
That is, membrane particles might move over large distances
only if all membrane particles move in cohort.

The RC is given by the relative position zi of the tagged
permeant i (target) with respect to the membrane. This
implies that if we want to compute the permeability of oxy-
gen through a membrane and our model system contains Np
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oxygen molecules, one of those will be selected and consid-
ered as our target permeant.

In some cases, it can be advantageous to select a collective
RC such as the maximum value of the z coordinates of all per-
meants. This has the advantage that the rate increases which
makes it less of a rare event and is therefore easier to compute.
In addition, the collective RC facilitates the decorrelation of
the sampling since the target permeant defining the RC can
switch during the simulation. This strategy was for instance
applied to study water dissociation where the RC was defined
as the largest OH bond in the system [66]. Also in a recent
paper on permeation by some of us [67] such an approach was
applied to compute escape rates of permeants being trapped in
a membrane.

The reason that we nevertheless choose here a RC based
on a single target permeant is because the permeation problem
is in some applications less of a rare event than for example
water dissociation. This implies that for a system with many
permeants there is almost always one of them in the membrane
region. In fact, the membrane often does not correspond to a
single peaked free energy barrier, but may have a well in the
middle where permeants get temporary trapped. This makes
a collective RC impracticable for describing stable state A. In
addition, there are technical and theoretical problems associ-
ated to such a collective RC for the calculation of τref,[0−′] that
is needed for Eq. (30). The implementation of the collective
RC would also be more cumbersome with periodic boundaries
than when the RC just depends on a single target permeant.
Instead, we can recover the advantages of the collective RC by
the introduction of the new MC moves discussed in Sec. VI.

Still, also in the target permeant approach, care has to be
taken with periodic boundaries when the relative position of
the target permeant with respect to the membrane has to be
determined. As a start, we obey the convention λ−1<λ0 < λn.

In addition, the RC should change continuously along the
sequence of time slices of a complete path, i.e., it should not
suddenly jump by a value equal to Lz which could lead to
untrue transitions between states. Trajectories end and start
with a time slice outside the [λ−1, λn] region and the RC of
these points define the states at which they start and end, so
the ‘jump-free’ interval needs to be extended slightly beyond
the [λ−1, λn] interval. Based on the above, the safest option is
to allow the jump in the RC to occur in the mid-point between
λn and the periodic image of λ−1 (at λ−1 + Lz). This yields for
the final RC

λ =
{

z if − Lz

2 < z <
λB+λ−1+Lz

2

z − Lz if λB+λ−1+Lz

2 � z � Lz

2

(34)

where z ∈ [−Lz/2, Lz/2] is the z coordinate of the target per-
meant following the convention of Eq. (33).

The RC as a function of the target permeant’s position
within a periodic system is shown in Fig. 3. For NPT simula-
tions with fluctuating box dimensions it might be convenient
to define the RC relative to the box size along z: λNPT = λ/Lz

where λ is still defined by Eq. (34). The only difference is that
Lz is the instantaneous box length, which is a variable instead
of a constant.

FIG. 3. Definition z and λ. Here z′ is the unbounded coordinate
of the target permeant. z is the same coordinate adjusted for the
PBC such that it is 0 at the membrane center and restricted to
[−Lz/2, LZ/2]. The grey dashed line at λ−1 + Lz is the mirror image
of λ−1. The mid-point between the grey dashed line and λB is located
at (λB + λ−1 + Lz )/2 (thin blue line) and sets the switch for the λ

definition such that λ can have values ∈ [(λB + λ−1 − Lz )/2, (λB +
λ−1 + Lz )/2].

VI. NEW MC MOVES IN PATH SPACE

The choice to select a single target permeant instead of a
more collective RC and allowing the target permeant to cross
the membrane in just one direction (left to right) can lead to
a somewhat restrictive sampling speed in comparison with a
more collective RC. In the next two sections, we show how to
remove these restrictions by introducing two new MC moves
for the [0−′] ensemble without the need to alter the definition
of the RC or the setup of interfaces.

A. Target swap move

As discussed above, the RC is determined by the z coordi-
nate of a single target permeant. The other permeants basically
contribute to the environment around the target permeant like
any of the other nonpermeating particles in the system. The
occurrences of these particles crossing the membrane do not
have to be counted as they are part of the natural fluctuations
in the environment.

Especially when the membrane is not uniform containing
different channels through which the permeants could trans-
fer, it would still be advantageous to utilize the contributions
of all the permeants. Some regions in the membrane that are
easier to penetrate could be blocked by a nontagged permeant.
Waiting for a swap through diffusion of both permeants within
the bulk might take a long time. In order to speed up this
process, we design a MC move in path space that allows
for a swap without diffusion, but by simply reassigning the
target.

The target swap move is explained in Fig. 4 and a stepwise
description of the algorithm is given below.

(1) Assume the old path (upper panel in Fig. 4) has length
L(o) (including start and end points) and is represented by time
frames numbered from 1 to L(o).

(2) For each frame (1 to L(o)), count the number of non-
target permeants inside the [λ−1, λ0] interval. The sum over
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FIG. 4. Illustration of target swap move from an old path (shown in top panel) to a new path. Here, three possible new paths that could
have been generated via the target swap move are shown in the lower panels. The numbers inside the circles indicate the frame numbers
(time slices) of the path. Red circles represent the target permeant’s positions at the different time frames, while blue circles represent the
nontargeted permeants. The top panel shows a path of 5 time slices (including start and end points). The position of the target permeant at the
first and last frame lies outside the [λ−1, λ0] interval while the other time frames lie inside, in agreement with the path ensemble’s criteria.
All permeant/time-frames outside the interval are shown by dashed contour lines and cannot be selected in the target swap moves. Possible
selectable permeant/time-frames are: time frames 2, 4, 5 of permeant 1 and time frames 1-5 of permeant 2. Permeant 3 is outside the interval
at all time frames. The present target, permeant 4, cannot be selected. Each of these permenant/time-frames have an equal probability to be
selected, i.e., with a chance 1/8 in this example. Three possible selections are indicated by (i), (j), and (k) in the top figure and the resulting
new trial paths are shown in the lower panels. After a permeant/time frame is selected, the corresponding permeant is the new target and the
path is either lengthened or shortened by going backward and forward in time starting from the selected time frame until the new target has
a frame outside the interval. Deleted time frames can be temporarily stored (indicated by “S”) such that they could be reused if the next MC
move requires extending the path.

all frames will be called Z (o→n)
t . For example, in Fig. 4 top,

we have 5 frames to sum over, of which permeant 1 is 3
times and permeant 2 is 5 times inside the interval, leading
to Z (o→n)

t = 8.
(3) Pick a random integer i from 1 to Z (o→n)

t .
(4) Select the permeant/time-frame combination corre-

sponding to the i-th count at step 2. We will call this the new
target permeant and the frame index at which this count was
registered is from now on called j.

(5) Starting from time slice j, the path is followed (as
detailed below) backward until we detect a frame in which
the new target has a position outside the [λ−1 : λ0] interval.
We call the number of backward steps nb.

(6) Starting from time slice j, the path is followed (as
detailed below) forward until we detect a frame in which the
new target has a position outside the [λ−1, λ0] interval. We
call the number of forward steps n f .

(7) The new path length is nb + n f + 1 which starts with
frame index j − nb (which can be negative) and ends with
frame index j + n f . Renumber all frame indices by adding
− j + nb + 1 to each frame index. The new indices now run
from 1 to nb + n f + 1.

(8) Compute Z (n→o)
t just as in step 2, but using the new

time region and new target permeant. For example, for the
three bottom panels in Fig. 4, it is 5, 5, and 8 (from left to
right).

(9) Compute the number of selectable permeant/time-
frames n(n)

s [see Eq. (35) below] from which the same new
trajectory can be obtained from the old path, and the number
of selectable permeant/time frames n(o)

s at the new path from
which the old path could be reobtained [see Eq. (36) below].

(10) Accept the move with a probability [see Eq. (37)

below]: Pacc = min

(
1,

n(o)
s

n(n)
s

Z (o→n)
t

Z (n→o)
t

)
.
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At steps 4 and 5, the path is followed backward and for-
ward in time starting from the selected time frame. In order
to minimize the number of expensive force evaluations, this
is done via one of the three possibilities that are listed here
in order of preference. (1) Take the previous/next time slice
from the old path, (2) if all time slices of the old path along a
time direction are used, check for possible stored time slices
in that time direction, and (3) create a new time slice by an
actual MD step if no reusuable time slice is available at (1)
or (2).

At step 9, the calculation of n(n)
s and n(o)

s proceeds as
follows. n(n)

s equals the number of selectable permeant/time
frames combinations by which the same new path can be
obtained. The way how it was actually generated, by selecting
the new target permeant and time frame j, is one of the
possible realisations. However, the exact same path might be
generated by selecting time frames earlier and/or later. To
clarify this, we discuss n(n)

s for the three cases shown in the
bottom panels of Fig. 4. In the bottom-left panel, the new path
can only be obtained by selecting time slice number j = 2 and
consequently n(n)

s = 1. The path in the bottom-middle panel
can be obtained in two ways: selecting permeant 1 and either
time slice j = 4 or j = 5 (renumbered as 2 and 3). Hence
n(n)

s = 2 in this case. Finally, the path in the bottom-right panel
could be obtained by any of the 5 time slices when permeant
2 is selected (n(n)

s = 5).
An expression for n(n)

s and n(o)
s is now derived. The number

of time slices earlier than j that, if selected, would result
into the same path, is restricted by either the old path, j − 1
time slices, or the new path, nb − 1 backward steps (the last
backward step is outside the [λ−1, λn] interval and cannot be
selected). So this gives a contribution min( j − 1, nb − 1) to
n(n)

s . Forward in time these numbers are L(o) − j and n f − 1
for restriction by either the old path or the new path, re-
spectively. This yields a contribution of min(L(o) − j, n f − 1).
Including the time slice j itself, this gives

n(n)
s = min( j − 1, nb − 1) + min(L(o) − j, n f − 1) + 1

= min( j, nb) + min(L(o) − j, n f − 1). (35)

For the reverse move, i.e., selecting the old path from the new
one, the same reasoning applies with the roles of the new
and old paths switched. Hence, j − 1 and nb − 1 are replaced
by nb and j − 2, respectively, when computing the selectable
time slices before j. Further, L(o) − j and n f − 1 are replaced
by, respectively, n f and L(o) − j − 1. This gives for n(o)

s

n(o)
s = min(nb, j − 2) + min(n f , L(o) − j − 1) + 1

= min(nb + 1, j − 1) + min(n f , L(o) − j − 1). (36)

Then, using Metropolis-Hastings rule [68,69], the acceptance
probability can be written as

Pacc(o → n) = min

(
1,

p(n)Pgen(n → o)

p(o)Pgen(o → n)

)

= min

(
1,

n(o)
s /Z (n→o)

t

n(n)
s /Z (o→n)

t

)
, (37)

where p(o) and p(n) are the probabilities of the old and
new path, respectively, and Pgen(X → X ′) is the generation

probability to generate path X ′ from X . As the identity of the
target has no effect on the path probabilities, the probabilities
p(o) and p(n) are essentially the same except for stochastic
force terms related to extending or shortening of the path.
However, these terms cancel in Eq. (37) as they are also part
of the generation probabilities [54]. The only remaining terms
that do not cancel are, hence, the selection probabilities for
selecting the permeant/time slice.

B. Mirror move

In the case that the membrane is symmetric, transitions
through the membrane from left to right and from right to
left are statistically indistinguishable within an equilibrium
sampling. It is then favorable to count transitions in both
directions [10,12]. For instance, the direct counting method
described in Sec. II uses this strategy to improve statistics.

One obvious way to include two-directional transitions
could be achieved by defining the RC as the absolute distance
|z| between the target permeant and the center of the solvent
slab (see also Ref. [67]). However, as explained in Sec. V, this
can lead to an overlap in the z-coordinate space. While this
could still be solved by letting the RC value depend on the
history of the path, i.e., the solvent slab’s periodic image to be
considered is determined by the minimum distance image at
the start of the path, this becomes problematic when the path’s
history is not yet fully determined. For instance, this is the
case when a shooting move is carried out or when the target
swap move implies that some backward in time integration is
required.

The mirror move in path space (see Fig. 5) achieves the
same versatility of the two-directional approach in the count-
ing method without having the problems discussed above. The
mirror move in [0−′], which is always accepted, mirrors the
whole system with respect to the membrane center. The z co-
ordinates of every particle are mirrored and the z-component
of the velocities are multiplied with −1. Because of the peri-
odicity, this mirror move is equivalent to mirroring the whole
system with respect to the midpoint between the membrane
and its periodic image, which is, loosely speaking, the mid-
point of the solvent slab. By construction, this midpoint of the
solvent slab lies in the middle of the [λ−1, λ0] interval related
to [0−′].

The mirror move swaps the roles of the λ0 and λ−1 inter-
faces. This requires that λ0 and λ−1 are placed at the same
distance from the mirror plane. To achieve this, consider the
membrane’s center-of-mass position at z = zmem and its left
periodic image at z = zmem − Lz. The distance between λ0 and
membrane should equal the distance between λ−1 and this
left periodic image membrane. In other words, λ−1 should be
placed such that

zmem − λ0 = λ−1 − (zmem − Lz ). (38)

Equivalently, the interfaces λ−1 and λ0 should have the same
distance to the midpoint of the solvent slab at z = zmem −
Lz/2. Since we applied the periodic coordinates z as defined in
Eq. (33), we have zmem = 0 and therefore λ−1 = −(λ0 + Lz ).

Given the positioning of λ−1 and λ0 according to Eq. (38),
the mirror move simply mirrors the z coordinates of every
particle in the system at every time slice with respect to the
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FIG. 5. Illustration of the mirror move. Numbers, line style and
color scheme are the same as in Fig. 4. The move requires a specific
definition of the λ−1 interface that must be symmetrically positioned
with respect to λA, implying that these are equidistant to the center
of the solvent slab. The top panel shows the old path. The bottom
panel shows the new path in which the positions for each time slice
are inverted in the mirror plane centered at the solvent slab (orange
dashed line at (λ−1 + λA)/2). The mirroring is applied to all particles
in the system, not only the permeants.

plane z = −Lz/2. Hence, it proceeds according to the follow-
ing steps.

(1) Let k run over all time slices of the path. This includes
the start and end point of the path and might include stored
time slices (see Sec. VI A).

(2) For the given time slice, let j run over all point-
particles in the system (atoms/coarse-grained particles de-
scribing the permeants, nonpermeating solvent particles,
membrane particles, . . .).

(3) Consider the z′ coordinate of permeant j and its veloc-
ity component at discrete time step k: z′

j (k) and vz, j (k).
(4) Mirror operation: replace z′

j (k) with 2z′
mem. − z′

j (k) −
Lz and replace vz, j (k) with −vz, j (k).

(5) Accept the new path. If the old path started/ended at
λ−1 then the new path will start/end at λ0 and vice versa.

For code-technical reasons we implemented a slightly
different approach where we did not alter the coordinates
or velocities, but instead the definition of the RC function
[Eq. (34) with z replaced by −z]. The system was hence as-
signed an additional flag which indicates whether Eq. (34) has
to be used with the plain z coordinate of the target permeant or
with −z. This pragmatic choice made it easier to use PYRETIS

[57,58] with external MD engines, as these might have very
different ways of altering the coordinates and velocities. The
flag is also exchanged in the replica exchange moves of the
RETIS algorithm.

The new moves are only implemented for the [0−′] en-
semble. For the mirror move, this is because this is the only
ensemble where paths can start at both the left or the right
hand side. In addition, the target swap move is not expected to
give a high acceptance for the [i+] ensemble when crossing λi

is a rare event.

VII. NUMERICAL RESULTS

The theoretical derivation for the permeability calculation
from RETIS has been implemented in the python based open-
source code PYRETIS [57,58]. First, a one-dimensional toy
system was constructed where a Langevin, Brownian, or de-
terministic Newtonian particle permeates through a medium
with or without barrier. For some limiting cases, an analyt-
ical expression for the permeability is available, which can
serve as a validation of the new RETIS permeability formula.
Second, a two-dimensional membrane was simulated with
periodic boundary conditions, where permeants can pass the
membrane through two different permeation channels. This
last system is used to illustrate efficiency of the new Monte
Carlo moves.

A. One-dimensional system setup

For simplicity, the membrane is located symmetrically
around z = 0, in the region |z| < a, with h = 2a as the mem-
brane height. The effect of the membrane is modeled by an
external cosine-shaped potential that acts on a single permeant
particle,

V (z) =

⎧⎪⎨
⎪⎩

1
2V0

(
cos

πz

a
+ 1

)
, |z| � a

0, a < |z| � b
1
2 kharm(|z| − b)2, |z| > b

. (39)

Here, V0 is barrier height. This membrane model ensures that
the force on the particle is continuous at the membrane bor-
ders z = ±a. The harmonic potential 1

2 kharm(|z| − b)2 is added
only to allow the system also to be studied by a reference
simulation without λ−1 interface. In most simulation setups,
the kharm parameter is set to zero, which reflects the real
physical situation for a permeation system that is unbounded
at either side of the membrane. The dynamics of the permeant
is governed by either Langevin dynamics, Brownian motion,
or deterministic dynamics.

In the Langevin dynamics, the permeant experiences both
friction, inertia effects, and random collisions with a degree
that is controlled by the friction parameter γ . The friction
constant γ (unit 1/time) of the particle relates to the particle’s
diffusion constant as D = kBT/(mγ ). Note that some other
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textbooks use a friction coefficient with unit mass/time. This
refers to an alternative definition of the friction coefficient
γ̃ = mγ . The two other types of dynamics can be viewed as
limiting cases of the Langevin dynamics.

A Brownian particle propagates in discrete steps without
memory under influence of a random Gaussian force and the
force −dV/dz exerted by the potential. It can be considered as
the overdamped limit of the Langevin particle, when γ → ∞.

A Newtonian particle on the other hand propagates deter-
ministically in time according to the equations of Newton. It
has inertia but undergoes no friction nor random collisions,
and energy is conserved. In the RETIS algorithm, the effect of
temperature is then only present in the MC moves when a new
constant-energy path is created from an old constant-energy
path. The detailed balance MC procedure allows the energy
to change between paths such that the overall path ensembles
are canonically distributed. This simulation set up reflects a
system that is so weakly coupled to a thermostat that the
dynamics of a single crossing basically occurs at a constant
energy (NVE, microcanonical). However, at the much longer
timescale between crossing events, the energy could change.
The Newtonian particle can be seen as the low friction limit
of the Langevin particle, when γ → 0.

The driver for solving the equations of motion was the
internal MD-engine of PYRETIS in our toy system [57]. It is
also possible to let PYRETIS manage the path ensembles book
keeping, while it calls simulation programs, such as GROMACS,
OPENMM, or LAMMPS, to drive the molecular dynamics [58].
Throughout Sec. VII, reduced units are used in which mass
m, the Boltzmann constant kB, and temperature T are equal to
unity (m = kB = T = 1 in reduced dimensionless units). Po-
tentially, several physically realistic systems could be mapped
on the model presented in Eq. (39) by tuning appropriate units
of energy, length and mass.

We examined the model system Eq. (39) using the follow-
ing parameters: a = 0.1 (h = 0.2), kharm = 100 or 0, m = 1,
T = 1, and integration time step �t = 0.002. The friction
coefficient γ had values 0.1, 5, 10, 20, 40, 60, 80, or 100. The
Brownian dynamics propagates through configuration space
at discrete steps with a displacement that is governed by a
step-size parameter. This step-size parameter can be associ-
ated to a �t in an equivalent Langevin simulation for a given
mass and friction. In our case, the step-size parameter was set
such that the time between steps was the same as �t of the
corresponding Langevin simulation with γ = 100.

In the RETIS simulations, the number of cycles was set
to 20 000 (this is the number of MC moves in the path
ensembles), the RETIS swapping move frequency was 0.1,
the shooting frequency 0.45, and the time reversal move fre-
quency 0.45. The position z was used as the order parameter
λ. Three interfaces were used, λ0, λ1, λ2, which were chosen
at λ = −0.1, 0, and 0.1. The additional interface λ−1 was
chosen at λ = −0.2 and varied to a few other locations in
the calculations of Table I. The chosen reference region is
[−0.12,−0.1].

B. Analysis of permeability

For the flat potential membrane [V0 = 0 in Eq. (39)], we
examined the effect of the λ−1 interface versus a system that

TABLE I. Numerical results (reduced units) for permeability P
and the three contributing factors ξ , τref/�z, and PA(λB|λA). RETIS
simulation of Langevin particle with γ = 5 and flat potential mem-
brane (V0 = 0). On first line, τref refers to [0−], on other lines to [0−′].
The reported error is based on block averaging and error propagation
rules assuming independence of the different path ensemble simula-
tions. As the latter assumption is not fully valid due to the replica
exchange moves (Ref. [22]), we also estimated the error on P via 10
independent realizations, shown in the last column.

λ−1 ξ τref/�z PA(λB|λA) P

- 1.000 (0%) 2.49 (1%) 0.662 (2%) 0.266 (2.2,2.0%)
−0.2 0.493 (0.3%) 1.22 (1%) 0.674 (2%) 0.274 (2.4,2.9%)
−0.15 0.504 (0.2%) 1.26 (1%) 0.641 (2%) 0.256 (2.1,2.4%)
−0.3 0.507 (1%) 1.28 (1%) 0.661 (2%) 0.261 (2.3,2.9%)

is bounded by a harmonic potential [kharm = 100 in Eq. (39)]
for Langevin dynamics with γ = 5. Table I shows that the
change in τref/�z is compensated by the ξ factor. The perme-
ability further remains fairly unaffected when changing the
λ−1 position. The time spent per path per length is about 1.22
to 1.28 in [0−′], which lies close to the analytical value 1.253
of the deterministic particle (see Appendix B). The time spent
per path per length would become larger when the friction
increases. The crossing probability is lower than for the de-
terministic particle, which makes the Langevin permeability
lower than the deterministic value 0.399 (see Appendix B).

Figure 6 compares the computed permeability for the po-
tential Eq. (39) with V0 = 0 (flat), 0.5, and 1 (cosine barrier
membrane) for the three types of particle dynamics. In the Ap-
pendix we derived analytical expressions for P based on the
Smoluchowski equation and Kramers’ expression for Brow-
nian dynamics and Langevin dynamics, respectively. These
theoretical curves are shown in the same graphs. The analyti-
cal result for deterministic dynamics can be obtained by taking
the limit of Kramers’ expression for γ → 0. The validity of
these theoretical results relies on different kind of approxi-
mations. The Smoluchovski expression [Eq. (B1)] is reliable
for high friction and low to high barriers, while Kramers’
theoretical result [Eq. (B6)] is the reliable reference for high
barriers and low to high friction. There is henceforth a blind
spot in system parameter space: dynamics with low friction
and low barriers is poorly described by both theories.

Indeed, consider the flat potential membrane (V0 = 0) in
Fig. 6(a). It shows good agreement between the theoretical
Smoluchowski curve, P = D/h, and the simulated Langevin
results for the large γ values. Also the computed values for
Brownian and Langevin at γ = 100 agree, as Brownian dy-
namics can be seen as the high friction limit of Langevin
dynamics. However, for low friction, the Smoluchowski curve
and the numerical Langevin results deviate. The Kramers
prediction of the permeability is zero for any γ > 0 and thus
also fails to approximate the Langevin numerical results. Only
the limiting case γ → 0 with γ 2/V0 → 0 has a nonzero solu-
tion equal to

√
kBT/(2πm). The Kramers curve in Fig. 6(a)

actually shows the theoretical results for V0 = 10−4 to vi-
sualize this limiting case. The deterministic

√
kBT/(2πm)

limit to the permeability is indicated by the dashed horizontal
line. Our numerical data on deterministic dynamics and the
Langevin result with γ = 0.1 agree with this limit.
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FIG. 6. Permeability P versus friction coefficient γ for V0 = 0
(a), 0.5 (b), and 1 (c). The purple and green solid lines refer to the the-
oretical Smoluchowski expression Eq. (B1) and Kramers expression
Eq. (B6), respectively. The Kramers curve in (a) actually shows the
function for V0 = 10−4 instead of V0 = 0 to visualize a limiting case
of this expression in which V0 → 0, γ → 0 and with γ 2/V0 → 0.
The dashed horizontal line in the top panel shows the deterministic
limit for the permeability in the flat potential. The filled blue circles
refer to the numerical Langevin results. The open red square and
open gold circle at γ = 0 and 100 show the results for deterministic
dynamics and Brownian dynamics, respectively. Error bars based on
a single standard deviation are mostly within symbol size.

Figured 6(b) and 6(c) show the numerical and theoretical
curves for systems with a membrane barrier, V0 = 0.5 and
1.0, respectively. For these membranes, the two theories agree
in the large friction regime. In the low friction regime, the
Smoluchowski expression is not a good approximation of
the Langevin dynamics. The numerical Langevin simulations
agree with the Kramers’ curve for all values of γ . The de-
terministic and Brownian dynamics simulations also agree
with Kramers’ expression in the limiting γ = 0 and γ = 100,
respectively.

C. Two-channel membrane system setup

A two-dimensional system is constructed that mimics
a membrane barrier through which particles can permeate
through two competing pathways. It could for instance repre-
sent a membrane with two transmembrane protein channels.
Three noninteracting Langevin particles are subjected to the
potential

V (y, z) = e−cz2

(
V1 + A + A sin

2πy

Ly
+ B + B cos

4πy

Ly

)
,

A = (V2 − V1)/2, (40)

B = Vmax/2 − V1/4 − V2/4.

FIG. 7. The potential energy V (y, z) represents a two-channel
membrane. Interfaces λ0, . . . , λ11 indicated with vertical dashed
lines. Reduced units.

The membrane is located in the center of the unit cell around
z = 0, while V (y, z) is approximately zero far away from the
center due to the factor e−cz2

(see Fig. 7). Periodic boundary
conditions are applied, where the system is made periodic in
the z direction with a period [−Lz/2, Lz/2] and in the y di-
rection the period is Ly. Particles can permeate the membrane
through two channels: one channel at about y = −0.25Ly with
barrier height V1 and another channel at about y = 0.25Ly with
barrier height V2. The maximum barrier height is Vmax.

Reduced units are used as in the one-dimensional case. The
parameters in our simulations were V1 = 10, V2 = 11, Vmax =
20, c = 1, and Lz = Ly = 6. The PYRETIS simulations were
run with three Langevin particles with settings �t = 0.02,
γ = 5, T = 1, and m = 1.

The order parameter is the reduced z coordinate of the
target permeant: λ = z j if permeant j is tagged ( j = 1, 2, 3).
While the z coordinates lie in the interval [−3, 3], the period-
icity of λ is shifted to the interval [−4.65, 1.35] (see Fig. 3).
Twelve interfaces are located at λ = −1.5, −1.3, −1.15, −1,
−0.9, −0.8, −0.7, −0.6, −0.5, −0.4, −0.2, and 1.2. The
λ−1 interface is located at λ = −4.5. The reference region
for τref,[0−′] is chosen as [−3.2,−2.8]. Three simulations are
performed.

(1) TIS: In TIS, there are no swapping moves between the
path ensembles. The MC moves are the shooting move and
time reversal move, with equal frequency 0.5. Differently to
standard TIS, the sampling of state A was done using the [0−′]
path ensemble simulation and not via MD.

(2) RETIS: In standard RETIS, the swapping move of
paths between the path ensembles is also allowed as an MC
move. The swapping move frequency was 0.5, shooting move
frequency 0.25, and time reversal move frequency 0.25.

(3) RETIS*: In the last simulation, RETIS is performed
with swapping moves and the newly implemented MC moves
in the [0−′] ensemble. The mirror plane was located at λ =
−3, which is indeed midway between λ−1 = −4.5 and λ0 =
−1.5.
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TABLE II. Numerical results (reduced units) for permeability P
of 3 Langevin particles permeating through a two-channel mem-
brane. Standard error from block averaging and error propagation
between brackets.

PA(λB|λA) P

ξ
τref,[0−′]

�z
×10−5 ×10−6

TIS 0.498 (1%) 5.66 (1%) 1.10 (12%) 0.97 (12%)
RETIS 0.540 (1%) 6.19 (1%) 1.20 (14%) 1.05 (14%)
RETIS* 0.507 (1%) 5.93 (1%) 1.23 (13%) 1.06 (13%)

Each of the three particles could be selected as the target
permeant when performing a target swap move. The swapping
move frequency was 0.5, time reversal move frequency 0.25,
mirror move frequency 0.05, target swap move frequency
0.05, and shooting move frequency 0.15.

After an equilibration run of about 1600 MC moves, the
analysis was performed based on a production run of 35 000
MC moves.

D. Two-channel membrane: analysis

Table II shows the permeability together with the calcu-
lated variables that enter in Eq. (30), ξ , τref,[0−′]/�z, and
PA(λB|λA). Note that the RETIS results on ξ and τref,[0−′]/�z
are somewhat off compared to TIS and RETIS*. Naturally, for
this symmetric system ξ = 0.5 is the exact result which agrees
with TIS and RETIS* while RETIS is 8% too high. This is
due to the relatively wide region between λ0 and λ−1 and the
lower frequency of shooting moves in the RETIS simulation
compared to TIS. In RETIS, 50% of the moves are swapping
moves (replica exchange moves between path ensembles),
which are very useful to improve the sampling of the barrier
region, but not necessarily help the exploration of the water
phase. Both the swapping and time-reversal moves are unable
to generate a λ−1 → λ−1 path from a λ0 → λ0 path and vice
versa. In RETIS*, the target swap move and the mirror move
repair this weakness even if these moves only represent 10%
of the executed MC cycles.

The crossing probabilities PA(λB|λA) and the permeabili-
ties in Table II give quantitative good agreement within about
10%. Given a barrier of at least 10 kBT this is a notable
result. However, even more difficult challenges for a simu-
lation method in this system, are (i) the ability to sample
transitions through both channels, and (ii) to achieve this with
the correct ratio. Since the channels’ barriers only differ by
1 kBT , both permeation routes are competing, but successful
permeation transitions are expected to proceed via the lowest
barrier channel in about 73% of the cases. Getting this ratio
right is extremely challenging for any rare event method.

Figure 8 shows the distribution P(y∗) of the orthogonal
coordinate at the first crossing with λi, y∗, for different path
ensembles, [i+], i = 0, 1, . . . , 10. The crossing point y∗ of a
path is indicative of the channel visited by that path. The
distributions show that for TIS, all y∗ crossing points in the
ensembles [6+] and higher are in the V2 channel, while for
RETIS and RETIS* the other channel is visited as well in all
ensembles. This clearly demonstrates the deficit of the shoot-
ing move. The chance for this move to generate an acceptable

FIG. 8. Distributions P(y∗) of first crossing point with λi along
the y-direction for the different [i+] ensembles. Results are shown
for (a) TIS, (b) RETIS, and (c) RETIS*. Note that the TIS simula-
tions only sample the high-energy barrier V2 for ensembles [6+] and
higher.

path is highest when the shooting point is chosen on the barrier
region, close to λi for ensemble [i+]. However, switching
between channels can practically only occur if the shooting
is initiated from the well region. The fact that TIS got stuck in
the high-energy channel, rather than the low-energy channel is
purely accidental reflecting the memory of the initial path that
was used to bootstrap the simulation. The TIS result (Table II)
is lower than the other values, as one might expect based
on its bias towards the high-barrier channel. Yet, since the
crossing probability up to λ6 is based on the progress through
both channels, the TIS permeability is still rather close to the
RETIS and RETIS* results.

Provided ergodic sampling, TIS and RETIS should be ca-
pable to sample nontrivial multiple-channel systems where
splitting based methods, like FFS and AMS, would fail. An
example of such a case is a system with two channels in which
the lowest-barrier channel goes initially much steeper uphill
than the channel with the higher barrier [62]. However, as is
clear from Fig. 8, the TIS simulation is not ergodic since it is
not able to switch between channels for ensembles [6+] and
higher with just the shooting move.

For this academic model, this aspect could be repaired
using nonlocal shooting moves in which not only the veloc-
ities, but also the configuration point is changed by a nonlocal
displacement. Such a move, however, would have vanishingly
low acceptance in a realistic condensed matter system as
nearly every attempt will lead to a molecular overlap.

The RETIS and RETIS* simulations, however, are able to
sample both channels and get the ratio between low- and high-
barrier pathways at least qualitatively correct. The replica
exchange swapping moves allow the exchange of paths be-
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tween the different path ensembles. Consequently, sampling
in [0−′] and [i+] with low i can facilitate the sampling in [i+]
with high i. Especially the [0−′] and [0+] path ensembles are
very effective to sample the direction that is orthogonal to
the RC enabling the entrance of both channels. Figuratively
speaking, this improved sampling of the orthogonal coordi-
nate can then trickle down into the other ensembles by means
of the swapping moves.

If we examine the height of the distributions in Fig. 8, we
see that both RETIS and RETIS* predict that the majority of
transitions will pass via the low-barrier channel. The RETIS
simulation, however, seems to overestimate the preference of
the V1 channel, especially when the [10+] ensemble is consid-
ered. Integration of exp(−βV (y, λ10)) over y along positive
and negative values indicates a 2.54 higher probability to be
in the negative y-range. Even if these relative probabilities de-
viate a bit from the distribution of first crossing points y∗, this
deviation is expected to be marginal for this model system.

To further analyze the effectiveness of the MC schemes
we analyzed the number of channels switches observed in the
path ensemble simulations. For path ensemble [i+] each path
is assigned to channel V1, channel V2, or neither of the two,
based on the first crossing point y∗ with λi. It is assigned to
belong to the V1-channel if −2.5 < y∗ < −0.5 and to the V2

channel if 0.5 < y∗ < 2.5. A channel switch is counted when
the MC move produces a V2 channel path while the V1 channel
was most recently visited, and vice versa.

Figure 9(a) shows the number of channel switches that are
calculated via this approach for different path ensembles. The
TIS results are magnified by a factor 20 for visualization as
this approach shows dramatically less channel switches than
RETIS and RETIS*. This shows that replica exchange (swaps
between path ensembles) is absolutely necessary for efficient
sampling. From [0+] to [5+] (λ0 = −1.5 to λ5 = −0.8), the
number of channel switches drops from 144 to 1. From [6+] to
[10+] (λ6 = −0.7, λ10 = −0.2), there is not a single channel
switch observed.

The difference in channel switches seems negligible be-
tween RETIS and RETIS* up to λi = −1. After that point,
RETIS* seems to produce significantly more switches. This is
remarkable since the extra moves, the mirror and target swap
move, are only executed in the [0−′] ensemble and its effect
on the [10+] path ensemble is only indirect via the replica
exchange moves. It requires at least 10 path ensemble swaps
to process any information from [0−′] up to [10+]. Still, the
effect is most noticeable for the last seven path ensembles, but
hardly before. Our conjecture is that the channel switches due
to the mirror move and certainly due to the target swap move
are more effective in decorrelating the ensemble. A channel
switch is likely more effective if it enters the new channel
along its central line and indeed this happens more often with
the target swap move than with the shooting move. Also, the
number of channel switches does not tell the full story. If two
path ensemble [i+] and [(i + 1)+] are at different channels and
then make a lot of successful replica exchange moves solely
between each other, this will yield a lot of channel switches.
However, the effectiveness in decorrelating the sampling will
be modest.

To examine this decorrelation, Fig. 9(b) plots the ratio of
the number of paths in the V1 and V2 channels as a function

FIG. 9. (a) Number of channel switches observed in [i+] as a
function of λi for TIS, RETIS, and RETIS*. The TIS results are mag-
nified for visibility and shown with explicit numbers for the nonzero
values. (b) Running average of ratio between generated V1 and V2

trajectories for the [10+] ensemble. Dashed line is the predicted value
based on the numerical integration of exp(−βV (y, λ10 )). (c) A zoom
of the upper curve together with target index on the right vertical axis.
It shows that channel switches (indicated by a change in direction of
the blue line) occur often when the target permeant is reassigned.

of the number of MC moves in the [10+] ensemble. The
TIS curve is a flat zero line as it is stuck in the V2 channel
for the full simulation. Comparing RETIS and RETIS*, we
see that RETIS* converges much faster and approaches the
predicted value of 2.54 that was obtained from the numerical
integration. Figure 9(c) shows a zoom of the curve together
with the index for the target permeant. These running averages
for RETIS and RETIS* have a typical sawtooth shape though
the latter is able to flip much more frequently the slope of
the curve. The zoom in Fig. 9(c) shows that such a flip often
coincides with a change of the index for the target permeant.
This indicates that the target swap move has a strong influence
in the overall sampling even if it is only applied in the [0−′]
ensemble.

VIII. CONCLUSION

In this work, we derived a formula for the permeability
based on path sampling quantities that can be determined
in a RETIS simulation. As the idealized permeation model
represents a membrane inside an infinite solution, the RETIS
path ensembles require an adaptation via the introduction of
an additional interface prior to λ0, called λ−1, and a newly
defined path ensemble [0−′] that replaces the [0−] path ensem-
ble. The resulting approach is exact and does not depend on
the positions of the interfaces including λ−1. Their positions
are therefore set to optimize efficiency.
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In addition to this theoretical derivation, we introduce a
few algorithmic developments such as a consistent way to
define the reaction coordinate for permeability whenever peri-
odic boundary conditions are applied and two additional MC
moves that mainly operate in the new [0−′] path ensemble.
One of these new MC moves is the mirror move which can be
applied whenever the membrane is symmetric. The other MC
move is the target swap move and can be used when more than
one permeant is present in the simulation model system.

Our new theoretical formulation and algorithmic develop-
ments have been implemented in the open-source PYRETIS

code [57,58], and it was successfully tested on a one-
dimensional Langevin system for which analytical results
exist. After this, a challenging two-dimensional model mem-
brane with two competing permeation channels was simulated
to test the effectiveness of the new MC moves. These simula-
tions show that the replica exchange moves are essential to
simulate this system as the plain TIS method gets trapped in-
side a single channel. The inclusion of the two new MC moves
considerably improves the sampling efficiency even further, as
is clear when inspecting the relative transmission through the
two channels. This noticeable difference is surprising given
the fact that the new moves only operate in the [0−′] ensemble
and it takes at least 10 replica exchange moves to transfer the
effect of these moves up to the last path ensemble [10+]. Still,
the direct relation between the improved efficiency and the
new MC moves was demonstrated by a correlation between
the channel-switches and changes of the target permeant’s
identity.

The theoretical derivation in this paper is valid for all kinds
of microscopically reversible dynamics (e.g., deterministic
Newtonian dynamics, Langevin, Brownian, Nosé-Hoover,
etc.). Besides the standard ergodicity hypothesis, it does not
rely on any further assumption nor approximations. This im-
plies that our approach will in principle give the same value
for the permeability as the direct counting method based on
brute force simulations, but orders of magnitude faster.

Our approach has the great advantage that the Markovian
assumption of memoryless hopping between interfaces (see
Sec. I) is not needed like the approaches based on milestoning
[42–45]. Especially for large molecules the permeation pro-
cess is often driven by nontrivial membrane fluctuations such
that the projected dynamics on a one-dimensional coordinate
gets a memory dependent character. Since RETIS is inherently
non-Markovian in its description, it allows a much broader
range of applications. An interesting route of thought could be
the combination of our facilitating RETIS framework with the
high-throughput methods that efficiently scan chemical space
[70]

On the other hand, a milestoning type approach avoids the
creation of full transition trajectories which can be computa-
tionally demanding when the transit time through the mem-
brane is long. In this case, PPTIS [51] could be an interesting
alternative. PPTIS avoids the sampling of complete transition
paths like milestoning, but still maintains some of the history
dependence. Alternatively, the exact non-Markovian character
could be kept by alternating between short and long paths
by means of stone skipping/web throwing [71]. Both PPTIS
and stone skipping/web throwing can straightforwardly be
implemented in our theoretical framework.

In conclusion, our permeability method presents a model-
free approach for the computation of permeability and it is
expected to become a valid standard method when membrane
crossings are rare events.

APPENDIX A: ENSEMBLE AVERAGES IN TRAJECTORY
SPACE

At several instances in our article [e.g., Eqs. (6), (10), and
(16)], we refer to phase space ensemble averages with the
remark that these should actually be viewed as an average
over “trajectory phase points.” Even if this point has mainly
conceptual importance, we will outline here its mathematical
interpretation since it is yet underreported in literature. One
convenient way is to refer to path space ensemble averages
instead of phase space ensemble averages [72]. Here, the path
X = {x0, x1, . . . , xL} can be viewed as a “chain of states” [73]
with xi the phase point that is visited after i MD steps, at time
t = i�t with �t the time step. From this, the path probability
follows as

P[X ] = ρ(x0)
L−1∏
i=0

p(xi → xi+1), (A1)

where ρ(x0) is the probability density of the initial state (x0

at t = 0) of the path, and p(xi → xi+1) are the single time
step transition probabilities. The latter are dependent on the
type of dynamics. Mostly, we assume that ρ(·) is the equilib-
rium phase space density given by the Boltzmann distribution:
ρ(x) ∝ exp(−βE (x)) with E (x) the total energy of phase
point x. Actually, while P[X ] and p(xi → xi+1) are commonly
referred to as a type of probabilities, it would have been more
accurate to call these probability densities as well.

Now, by expressing an observable f as a functional of X ,
the path ensemble average can be formally written as

〈 f 〉 =
∫

dX P[X ] f [X ] with dX =
L∏

i=0

dxi (A2)

As we assume microscopically time-reversible dynamics,
we can write [72]

ρ(xi )p(xi → xi+1) = p(xi+1 → xi )ρ(xi+1), (A3)

where x refers to the momenta-reversed phase point: if x =
(r, v) with r the configuration and v the particles’ velocities,
then x = (r,−v). Here, it is also assumed that ρ(x) = ρ(x)
for any phase point x. Applying Eq. (A3) multiple times on
Eq. (A1), allows us to write alternative expressions for the
path probability [59]:

P[X ] = ρ(x0)p(x0 → x1)p(x1 → x2)p(x2 → x3) . . .

= p(x̄1 → x̄0)ρ(x1)p(x1 → x2)p(x2 → x3) . . .

= p(x̄1 → x̄0)p(x̄2 → x̄1)ρ(x2)p(x2 → x3) . . .

= p(x̄1 → x̄0)p(x̄2 → x̄1)p(x̄3 → x̄2)ρ(x3) . . .

In the TIS and RETIS theoretical framework, the path concept
is extended by including time slices before x0. In this view,
x0 is considered the present state, the principle phase point,
while xi is a state in the future or in the past whenever
i is, respectively, positive or negative. Hence, for a path
X = {x−M , x−M+1, . . . , x−1, x0, x1, . . . xL−1, xL, }, we can

033068-18



EXACT NON-MARKOVIAN PERMEABILITY FROM RARE … PHYSICAL REVIEW RESEARCH 3, 033068 (2021)

write

P[X ] = ρ(x0)

(
L−1∏
i=0

p(xi → xi+1)

)(
M−1∏
i=0

p(x−i → x−i−1)

)
.

(A4)
Using Eq. (A4), we can in principle redefine all phase space
ensemble averages, in which one integrates over x, as path
ensemble averages in which one integrates over x0 and addi-
tional phase points xi �=0 with both positive and negative index
via Eq. (A2) with dX = ∏L

i=−M dxi. Whenever the value of f
is instantaneously available from the present phase point x0,
the integrals over the additional phase points can be ignored,
since they are unity.

Another way to generalize the ensemble average, which
in some cases could be arguably more intuitive, can be de-
rived from another perspective on the path object as stated
by Crooks and Chandler [73]: “A stochastic trajectory can
be defined by the chain of states that the system visits, but
it can also be represented by the initial state and the set of
random numbers, the noise history, that was used to generate
the trajectory.” [73]. As an example they show that the prob-
ability density of a one-dimensional Brownian dynamics path
X consisting of L time slices can be written as

P[X ] = P[{x0, x1, . . . , xL}] = ρ(x0)
L∏

i=1

1√
2πε

exp(−ξ 2
i /2ε),

where each ξi is a Gaussian random number of zero mean
and ε variance, the stochastic force acting at time between
t = (i − 1)�t to t = i�t . Here, we deliberately shifted the
indexing of the noise terms from 1 to L instead of the original
[73] indexing from 0 to L − 1. The reason becomes clear
when we introduce Eq. (A8).

Since the phase point of the system at t = �t , x1, is fully
determined by the first phase point and first stochastic noise
term, we can write x1 = φ(x0, ξ1) with φ being the MD time-
step integrator. Likewise, x2 = φ(x1, ξ2) = φ(φ(x0, ξ1), ξ2)
etc. It is thus apparent that, when we add to x0 all the
information of the random noise sequence ξ1, ξ2, . . . , ξL to
make an “extended phase point” or “trajectory phase point,”
x̃ = {x0, ξ1, . . . , ξL} = {x0, ξ

L}, basically every property of
the system between t = 0 and L�t becomes a function of x̃,
as if the dynamics would be deterministic.

Henceforth, for a general type of stochastic dynamics that
proceeds via random noises that are drawn from a distribution
pξ (·), we can define phase space density of an extended phase
point x̃ as

ρ(x̃) = P[X (x̃)] = ρ(x0)
L∏

i=1

pξ (ξi ). (A5)

So equivalently to Eq. (A2), by expressing an observable f as
a function of an extended phasepoint x̃, we write its ensemble
average as

〈 f 〉 =
∫

dx̃ ρ(x̃) f (x̃) with

dx̃ = dx0

L∏
i=1

dξi = dx0dξL,

ρ(x̃) = ρ(x0)
L∏

i=1

pξ (ξi ) = ρ(x0)pξ (ξL ). (A6)

This automatically becomes a standard phase space ensemble
average with x instead of x̃ when f is not noise-dependent
since all integrals over dξi become 1.

While the concept of an extended phase point is gener-
ally not explicitly referred to, it is often implicitly used. For
instance, time-correlation functions are often casually intro-
duced as C(t ) = 〈a(0)b(t )〉 without being specific about the
noise dependence. Based on Eqs. (A5) and (A6), we can
rigorously define the ensemble average as an integral over
extended phase space:

C(t ) =
∫

ρ(x̃)a(x0)b(xL )dx̃ (A7)

=
∫

ρ(x0)pξ (ξL )a(x0)b(xL(x0, ξ
L ))dx0 dξL

with L = t/�t,

where a and b are functions of the phase point of the system at
the time under consideration, at t = 0 and L�t , respectively.
The absolute timescale is irrelevant here since we gener-
ally assume we are at an equilibrium distribution at t = 0
and the dynamics conserves this distribution, i.e 〈a(0)b(t )〉 =
〈a(t ′)b(t + t ′)〉 or any arbitrary t ′. Hence, the correlation func-
tion C(t ) becomes an ensemble average 〈a(x̃)b(x̃; t )〉 where
one just integrates over x̃ and b is parametrically dependent
on t in addition to its dependence on x̃.

Comparing Eqs. (A1) and (A5), it is apparent that p(xi →
xi+1) = pξ (ξi+1) for stochastic dynamics with ξi+1 being the
noise that forces the dynamics to produce xi+1 from xi; xi+1 =
φ(xi, ξi+1). For deterministic dynamics, we can write p(xi →
xi+1) = δ(xi+1 − φ(xi )). In addition, it is clear that the path
interpretation and the extended phase point interpretation are
equivalent; if one knows the initial phase point and the noise
sequence, one knows the path X and vice versa.

As stated before, the TIS and RETIS theoretical framework
requires the description of phase points before x0. This means
that the “noise history” term by Crooks and Chandler to
denote ξL

+ = {ξ1, ξ2, . . . , ξL} is now recoined as noise future
while ξM

− = {ξ−1, ξ−2, . . . , ξ−M} is the actual noise history or
noise past.

Then, equivalent to Eq. (A4), we can define the phase space
density of x̃ = {ξ−M, . . . , ξ−1, x0, ξ1, . . . , ξL} as

ρ(x̃) = P[X (x̃)] = ρ(x0)

(
L∏

i=1

pξ (ξi)

)(
M∏

i=1

pξ (ξ−i)

)

= ρ(x0)pξ (ξL
+)pξ (ξM

− ), (A8)

where the noise terms have a slightly different interpretations
depending on the index being positive or negative. For i > 0,
ξi is the noise needed for φ to produce xi given xi−1, while
ξ−i is the noise needed for φ to produce x̄i given x̄−i+1:
φ(xi−1, ξi ) = xi and φ(x̄i−1, ξi ) = x̄i. Hence, the history of
the path X follows from the negative noise terms as: x−1 =
φ(x0, ξ−1), x−2 = φ(x1, ξ−2), etc, again showing that there is
a one-to-one relation between X and x̃.

Based on Eq. (A8), it is now possible to define the proba-
bility of overall state A as: pA = 〈hA〉. Here hA = hA(x̃) =
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hA(X ) equals

hA(x̃) =
∞∑

n=0

h−n
A (x̃) (A9)

with

h−n
A (x̃) = hA(x−n)

n−1∏
i=0

(1 − hA(x−i ) − hB(x−i )) (A10)

such that h−n
A is a function of (x0, ξ−1, ξ−2 . . . ξ−n) which is a

part of x̃. The product term is simply 1 if none of the points
xi with index −n < i � 0 is inside A or B. Otherwise it is 0.
Further, h0

A(x̃) is simply hA(x0). Likewise, we can define

hB(x̃) =
∞∑

n=0

h−n
B (x̃) with (A11)

h−n
B (x̃) = hB(x−n)

n−1∏
i=0

(1 − hA(x−i ) − hB(x−i )).

In principle, we consider the path or random noise se-
quence to extend to infinite in both time directions [L → ∞,
M → ∞ in Eq. (A8)]. However, as h−n

A (x̃) does not depend
on ξi with i > −1 nor i < n, many noise integrals are simply
1 and therefore

pA = 〈hA〉 =
∫

ρ(x̃)hA(x̃)dx̃ (A12)

=
∫

dx0 ρ(x0)
∞∑

n=0

∫
dξ n

− pξ (ξ n
−)h−n

A (x0, ξ
n
−)

with dξ n
− = dξ−1dξ−2 · · · dξ−n.

Now, suppose f is a function of phase space: f = f (x).
Then, the ensemble average of f does not require the integra-
tion of any noise terms

〈 f 〉 =
∫

dx f (x)ρ(x) (A13)

though the conditional ensemble average 〈 f 〉A does as

〈 f 〉A = 〈 f hA〉
〈hA〉 (A14)

=
∫

dx0 f (x0)ρ(x0)
∑∞

n=0

∫
dξ n

− pξ (ξ n
−)h−n

A (x0, ξ
n
−)

〈hA〉 .

The division used in Eq. (10) can now be understood with
this extended phase point picture in mind as

pA〈 f 〉A + pB〈 f 〉B = 〈hA〉〈 f 〉A + 〈hB〉〈 f 〉B

=
∫

dx0 f (x0)ρ(x0)
∞∑

n=0

×
∫

dξ n
− p(ξ n

−)
[
h−n
A (x0, ξ

n
−) + h−n

B (x0, ξ
n
−)

]
. (A15)

If we consider the third line of Eq. (A15) separately, we can
identify this, for a given phase point x0, as the chance that the
stochastic dynamics needed exactly n steps backward in time
to move outside no man’s land, i.e., enter either stable state A
or B. Since we assume that no point x0 can be trapped into no

man’s land forever, the sum over n of this probability equals
1. Hence,

pA〈 f 〉A + pB〈 f 〉B =
∫

dx0 f (x0)ρ(x0) = 〈 f 〉. (A16)

Note that the we can use integration over x [Eq. (A13)]
or x0 [Eq. (A16)] interchangeably since ρ(·) refers to the
equilibrium phase density that is time-invariant. So indeed,
〈. . .〉 = pA〈. . .〉A + pB〈. . .〉B like stated in Eq. (10).

As a special case, we can take f (x; z) = δ(z − zt ) with
zt being the z coordinate of a specific particle (the target
permeant). Here, zt is a part of the system’s phase point x
that on its turn can be viewed as x0 which a part of x̃ (recall
that the phase space density is time-invariant). In addition, z is
a parameter that specifies a reference region in configuration
space. Note that the parametric dependence of f on z is not
vanishing when taking the ensemble average since it is not a
part of x̃ and therefore not integrated out. Therefore, we can
write

ρ(z) = 〈δ(z − zt )〉 = 〈 f (x; z)〉 (A17)

= pA〈 f (x̃; z)〉A + pB〈 f (x̃; z)〉B
= pA

〈 f (x0; z)hA(x̃)〉
〈hA〉 + pB

〈 f (x0; z)hB(x̃)〉
〈hB〉

= pA
〈δ(z − zt (x0))hA(x̃)〉

〈hA〉 + pB
〈δ(z − zt (x0))hB(x̃)〉

〈hB〉 .

All ensemble averages in Eq. (A17) are in principle integrals
over x̃, though in the first line an integral over configuration
space would be sufficient since the integrals over momenta
and noise terms are unity. In the last line of Eq. (A17), the
integrals need to be carried out on the principle phase point x0

and the backward noise terms ξ−1, ξ−2, . . . The integrals over
the forward noises ξ1, ξ2, . . . are still unity.

The delta-function is only nonzero whenever zt (x0) equals
z. This implies that if z is inside stable state A, then the prod-
uct δ(z − zt (x0))hB(x̃) is by definition zero; if zt (x0) = z ∈ A
then x0 ∈ A and, therefore, hB(x̃) = 0. This explains the last
equality of Eq. (16) where z = zref ∈ A.

Finally, for the rate in Eq. (6), the product of hA(0) and
hB(�t ) should be evaluated. By defining the principle phase
point to be x0, we have x̃ = (. . . , ξ−2, ξ−1, x0, ξ1, . . .) and
x1 = φ(x0, ξ1) with φ the �t time step integrator. Further, the
product can only be nonzero if both hA(x̃) and hB(x1) are
equal to 1, and hB(�t ) can be replaced by hB(φ(x0, ξ1)) in
the product,

hA(0)hB(�t ) = hA(. . . , ξ−1, x0, ξ1, . . .)hB(φ(x0, ξ1))

= hA(x̃)hB(φ(x0, ξ1)).

The ensemble average in Eq. (6) can be written as

k = lim
�t→0

〈hA(0)hB(�t )〉
〈hA〉 �t

= lim
�t→0

1

〈hA〉 �t

∫
dx0ρ(x0)

∫
dξ1 pξ (ξ1)hB(φ(x0, ξ1))

×
∞∑

n=0

∫
dξ n

− pξ (ξ n
−)h−n

A (x0, ξ
n
−) (A18)
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where noise history and noise future appear within one
equation. The limit �t → 0 only exists formally since �t
will be taken equal to the typical MD step in any practical
case.

APPENDIX B: THEORETICAL PERMEABILITY FOR 1D
TOY SYSTEM

In the 1D toy system, we can express the permeability
in an analytical shape for the following three situations: for
a Brownian particle (based on the Smoluchowski equation),
for a Langevin particle crossing a high barrier (based on
the Kramers equation), and for a deterministic Newtonian
particle.

The Smoluchowski equation for a Brownian particle leads
to the permeability expression in Eq. (3). In the one-
dimensional case, the absence of any other degrees of freedom
implies that the free energy F (z) and the potential energy V (z)
are the same. Hence, for overdamped dynamics, we can derive
a theoretical expression for P by inserting V (z) of Eq. (39) as
F (z) into Eq. (3),

P = D

h

e−βV0/2

I0(βV0/2)
. (B1)

Here, h = 2a and I0(x) = (1/π )
∫ π

0 exp(cos θ )dθ is the 0th
order modified Bessel function of the first kind. When V0 = 0,
then I0(0) = 1, and the resulting flat potential yields P = D/h.
For large V0, the cosine barrier can be approximated by a
second order Taylor expansion about z = 0, F (z) = V (z) ≈
V0(1 − ( πz

h )2) and it can be assumed that exp(−βV (z))
rapidly decays when moving away from the membrane. This
can be inserted into Eq. (3) and the integration boundaries can
be moved from ±h/2 to ±∞. Solving the resulting Gaussian
integral yields an approximation of P for large V0,

P = D

h

√
πV0

kBT
e−βV0 . (B2)

An alternative approach to the Smoluchowski approach is
to use Kramer’s relation for the rate constant k instead. The
permeability P is then obtained via Eq. (18) by first computing
the rate k while assuming a hard wall at z = −W that can
be taken to infinite. Using a harmonic approximation and a
high barrier assumption, this rate constant k can be written
as [74]

k = κ

√
kBT

2πm

exp(−βV (0))∫ 0
−W exp(−βV (z)) dz

, (B3)

where κ is the transmission coefficient that can be approxi-
mated using Kramers’ relation

κ = 1

ω+

(
−γ

2
+

√
γ 2

4
+ ω2+

)
. (B4)

Here, ω+ is the frequency associated to the curvature at the
top of the barrier: ω+ = √

k+/m with V (z) ≈ V0 − 1
2 k+z2.

From the above Taylor expansion, we have k+ = 2V0π
2/h2

and ω+ = (π/h)
√

2V0/m.

The conditional probability appearing in Eq. (18) is
expressed as

(ρref )A = 1∫ 0
−W exp(−βV (z)) dz

(B5)

where we assumed that overall state A condition is statisti-
cally equivalent to the condition z < 0 for this case, which is
a valid assumption for a high barrier.

Inserting Eq. (B4) in Eq. (B3) and inserting Eqs. (B3) and
(B5) in Eq. (18) gives the permeability for a high barrier,

P = κ

√
kBT

2πm
e−βV0 (B6)

= h

π

√
m

2V0

(
−γ

2
+

√
γ 2

4
+ 2V0π2

mh2

)√
kBT

2πm
e−βV0 .

In the high friction limit where γ � ω+, Eq. (B4) reduces to
κ = ω+/γ , and P for large V0 becomes

P = π

hγ

√
2V0

m

√
kBT

2πm
e−βV0

= kBT

hγ m

√
πV0

kBT
e−βV0 . (B7)

Since D = kBT/(mγ ), this equation is equal to the Smolu-
chowski equation Eq. (B2) within the harmonic approxima-
tion for the high barrier. A Langevin particle with high friction
is indeed well described by the overdamped dynamics of a
Brownian particle.

In the low friction limit γ � ω+, Eq. (B4) reduces to
κ = 1, and P in Eq. (B6) becomes, for any V0,

P =
√

kBT

2πm
e−βV0 . (B8)

This friction-less limit is exactly the permeability of the deter-
ministic particle. It can also be obtained from Eq. (24). Here,
ξ = 1/2, since a deterministic particle in a flat free energy
region either moves to the right (velocity positive), either to
the left (velocity negative), which have equal Boltzmann prob-
ability. A particle moving to the right will reach the barrier
top with a probability exp(−βV0) and it will not recross, and
therefore PA(λB|λA) = exp(−βV0). The time spent per path in
[0−′] in a reference region of size �z can be computed from
the flux-weighted velocity distribution as

τref,[0−′] = �z
√

πβm/2. (B9)

Inserting these three factors into Eq. (24) gives Eq. (B8).
Let us recap the case of a flat potential membrane (V0 = 0).

For the Brownian particle, the permeability is P = D/h. If the
particle has low friction γ → 0, then D → ∞, and the perme-
ability diverges. For the Langevin particle, the high friction
limit of P in Eq. (B7) based on Kramer’s relation vanishes
when V0 = 0, which is not an adequate approximation of a
flat potential’s permeability. Nevertheless, again considering
a Langevin particle and Kramer’s equation, the low friction
limit in Eq. (B8) converges to P = √

kBT/(2πm), which is
finite.

In conclusion, the two theoretical expressions for the
one-dimensional case, Eq. (B1) based Smoluchowski and
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Eq. (B6) based on Kramers, use respectively an over-
damped assumption or a harmonic approximation to describe
the top of the barrier. For high friction and low barri-
ers, Eq. (B1) will be more accurate than Eq. (B6). For
high barriers and low friction Eq. (B6) will prevail over

Eq. (B1). In the case that both the friction and the barrier
is high, both converge to the same value. In the case that
both the friction and the barrier is low, neither Eq. (B1)
nor Eq. (B6) will be accurate descriptions of a Langevin
particle.
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