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Control of superexchange interactions with DC electric fields
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We discuss DC electric-field controls of superexchange interactions. We first present generic results about an-
tiferromagnetic and ferromagnetic superexchange interactions valid in a broad class of Mott insulators, where we
also estimate typical field strength to observe DC electric-field effects: ∼1 MV/cm for inorganic Mott insulators
such as transition-metal oxides and ∼0.1 MV/cm for organic ones. Next, we apply these results to geometrically
frustrated quantum spin systems. Our theory widely applies to (quasi-)two-dimensional and thin-film systems
and one-dimensional quantum spin systems on various lattices such as square, honeycomb, triangular, and
kagome ones. In this paper, we give our attention to those on the square lattice and on the chain. For the square
lattice, we show that DC electric fields can control a ratio of the nearest-neighbor and next-nearest-neighbor
exchange interactions. In some realistic cases, DC electric fields make the two next-nearest-neighbor interactions
nonequivalent and eventually turns the square-lattice quantum spin system into a deformed triangular-lattice
one. For the chain, DC electric fields can induce singlet-dimer and Haldane-dimer orders. We show that the
DC electric-field-induced spin gap ∝ |E|2/3 in the Heisenberg antiferromagnetic chain will reach ∼10% of the
dominant superexchange interaction in the case of a spin-chain compound KCuMoO4(OH) when the DC electric
field of ∼1 MV/cm is applied.
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I. INTRODUCTION

Controlling quantum states of matter has been a long-
standing subject of condensed-matter physics and other
related fields. Historically, the condensed-matter-physics
community has made much effort for the challenging task of
searching for novel quantum states of matter such as, in quan-
tum magnetism, spin liquids [1–6] and spin-nematic states
[7–12]. This task includes a search for experimental realiza-
tions of theoretical models that can host such quantum states.
However, the synthesis of a compound that faithfully realizes
the theoretical model does not mean realizing the quantum
phase of our interest, which depends on the parameters of the
compound. In general, it is even more challenging to obtain
a model compound with a parameter set suitable for realizing
the desired phase.

Microscopic controls of quantum states by external forces
then become important. External forces can induce a quantum
phase transition into the phase of our interest and can bring us
the microscopic information of the quantum state through the
response to the external forces. An external DC (i.e., static)
magnetic field is a typical example. The DC magnetic field
adds the Zeeman interaction to the Hamiltonian and induces
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quantum phase transitions such as Bose-Einstein condensa-
tion of magnetic excitations [13]. The pressure is another
interesting example. The pressure can change the microscopic
parameters of the Hamiltonian without introducing additional
interactions [14–16].

Recently, AC-field controls of quantum states of mat-
ter have become a vigorous research subject [17–20]. The
Floquet theory [21,22] provides us with a fundamental frame-
work of such AC-field controls, which are often referred to as
the Floquet engineering [23–26]. The Floquet engineering has
also been discussed in quantum magnetism [25,27–36].

Despite these recent developments, microscopic DC
electric-field controls, which should be theoretically simpler
than AC ones, are less considered in quantum spin systems
partly because these systems are usually realized in Mott in-
sulators where the charge degree of freedom is frozen. The DC
electric field actually affects the Hamiltonian of quantum spin
systems, as shown in Fig. 1, because the exchange interaction
has an electronic origin. The superexchange interaction of
spins comes from hoppings of electrons carrying the spin. It
also motivates us to study DC electric-field effects that the DC
field is free from heating effects that the AC one inevitably
induces.

Previously, some of the authors investigated DC electric-
field controls of “direct superexchange” interactions [41],
originating from direct hoppings between magnetic ions, by
starting from a fundamental electron model, the Hubbard
model [42]. Reference [42] dealt with the DC electric poten-
tial as a site-dependent on-site potential. This treatment of the
DC electric field applies to general site-dependent potentials
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FIG. 1. (a) The antiferromagnetic superexchange interaction
(3.8) between two magnetic ions (the orange balls) is plotted as
a function of �E/Ud , where � is the distance between the j = 0
( j = 1) and j = 1/2 sites, and Ud is the on-site Coulomb repulsion
at the d-orbital sites. We assume that the two magnetic-ion sites
and the ligand (the blue ball) site are linearly aligned along the unit
vector e0,1 that connects the j = 0, 1 sites. The DC electric field is
applied either parallel (E‖) or perpendicular (E⊥) to a unit vector e0,1.
(b) When the ligand site is located to form the right angle as shown
in the left panel, the superexchange interaction between the magnetic
ions can become ferromagnetic. The ferromagnetic interaction (3.11)
is plotted in the right panel. When the DC electric field is applied par-
allel (perpendicular) to e0,1, we take � = �‖ (� = �⊥, respectively).
For (a) and (b), we used typical values, Ud = 5 eV, Up = 1 eV, and
�d p = 2 eV. Also, we took JH = Up = 1 eV for (b). The hoppings
t0 and t1 can be arbitrary when we consider ratios JA(E )/JA(0) and
JF(E )/|JF(0)| [see Eqs. (3.8) and (3.11)].

and is convenient to discuss several related phenomena on an
equal footing, as shown in Fig. 2. Note that strong DC electric
fields are often required to induce sizable effects on mag-
netism, where the surface geometry [Fig. 2(b)] [43,44] and
the single-cycle terahertz (THz) laser pulse [Fig. 2(c)] [45–47]
are helpful for that purpose. A DC electric field generated by
these methods can be deemed spatially uniform. Note that we
can also apply a local DC electric field to the material, for
example, by using a needle-like device [Fig. 2(d)] [39,40,48].

As of this writing, DC electric-field controls of superex-
change interactions mediated by nonmagnetic ions are largely
unexplored despite their importance to a broad class of
Mott-insulating materials such as transition-metal oxides.
Reference [42] discussed DC electric-field controls of ex-
change interactions, which is focused on controlling the
spatial anisotropy by the DC electric field. It was not yet
discussed how to control exchange interactions by keeping the
spatial anisotropy intact.

This paper develops a theory of DC electric-field con-
trols of superexchange interactions in geometrically frustrated
quantum spin systems, starting from simple electron models.
We are mainly focused on controlling microscopic Hamil-
tonian without affecting the dimensionality of the sample,
in contrast to our previous work [42]. Our theory is widely
applicable to (quasi-)two-dimensional thin-film and one-

FIG. 2. Three exemplary methods to impose a site-dependent
potential to a sample. (a) We can employ a field-effect transistor to
generate the DC electric field indicated by an orange arrow [37,38].
(b) A surface potential at a boundary of two different materials
can be used as a source of the gradient of the potential V (x) due
to the explicit inversion-symmetry breaking at the surface. (c) A
single-cycle terahertz laser pulse can also be a DC electric-field
source within a timescale sufficiently shorter than the pulse width
(see Sec. VI D.). (d) A needle-like electrode device such as scanning
tunneling microscopes can yield a spatially local DC electric field
[39,40]. The dashed curves depict electric force lines.

dimensional quantum spin systems on various lattices such
as square, honeycomb, triangular, and kagome ones. We dis-
cuss basic exemplary applications of our theory to frustrated
quantum spin systems on the square lattice and those on the
chain.

This paper is organized as follows. In Sec. II we define
two models that give a firm foundation for DC electric-field
controls of superexchange interactions in specific cases. In
Sec. III, we perform fourth-order perturbation expansions
on those two models and derive superexchange interactions
in generic forms. Also, we estimate typical values of DC
electric-field strength from our results. We apply generic
results of Sec. III to specific situations in Secs. IV and V. Sec-
tion IV is devoted to geometrically frustrated quantum spin
systems on the square lattice, where the nearest-neighbor J1

and next-nearest-neighbor J2 exchange interactions compete
with each other (see Sec. IV A). First, we deal with a simple
toy model in Sec. IV B to demonstrate controlling a ratio
of J1/J2 by a DC electric field without affecting the spatial
anisotropy. Next, we investigate a more realistic situation cor-
responding to a compound BaCdVO(PO4)2 [49] (Sec. IV C).
To get insight into the essential effects of DC electric fields,
we employ an electron model that significantly simplifies the
structures of those compounds. The simplified model that
emulates the experimental reality is studied in Secs. IV D
and IV E. Section V discusses another application of our
generic results to frustrated quantum spin chains formed on
a CuO2 chain. We show that the DC electric field induces an
alternation of nearest-neighbor exchange interactions, called
bond alternation. We discuss experimentally observable con-
sequences of the DC electric-field-induced bond alternation,
which turns out to differ from the DC magnetic-field-induced
one. Section VI discusses other major DC electric-field effects
not incorporated in our analysis. We summarize the paper in
Sec. VII.
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II. GENERIC MODELS

Our argument is based on a degenerate perturbation theory
of single-band or multiband Hubbard models with a site-
dependent potential, whose Hamiltonian H is given by the
following generic form:

H = HU + Ht . (2.1)

Here HU represents potential terms such as the on-site
Coulomb repulsion and site-dependent potentials, and Ht rep-
resents hopping terms of electrons. Note that we include the
DC electric field in the site-dependent potential. Throughout
the paper, Ht is regarded as a perturbation to HU .

We take two simple and generic models. Both models are
made of three sites, two of which have d orbitals, and the
other site in the middle has p orbitals. The number of sites
is minimized but large enough to yield the superexchange
interaction. To discuss the superexchange interaction between
d electrons, we assume that each d orbital is half occupied,
and the p orbitals are fully occupied in the subspace of the
degenerate unperturbed ground states. The difference of two
models lies in a degeneracy of p orbitals at the middle site
(Figs. 3 and 4).

The first model (Fig. 3) is the three-site single-band Hub-
bard model with the following Hamiltonian:

HA = HU ;A + Ht ;A, (2.2)

HU ;A = Ud

∑
j=0,1

n j,↑n j,↓ + Upn 1
2 ,↑n 1

2 ,↓

+
∑

j=0, 1
2 ,1

∑
σ

Vjn j,σ − h

2

∑
j=0, 1

2 ,1

(n j,↑ − n j,↓), (2.3)

Ht ;A = −
∑

σ

[(t0d†
0,σ + t1d†

1,σ )p 1
2 ,σ + H.c.], (2.4)

where the jth site has a d orbital for j = 0, 1 and a p or-
bital for j = 1/2. dj,σ and p j,σ are annihilation operators of
d and p electrons with the spin σ =↑,↓. Hopping ampli-

FIG. 3. (a) An electron configuration of an unperturbed ground
state of the model (2.2) is schematically drawn. Bars represent the
unperturbed energy levels of the j = 0, 1

2 , and 1 site from left to
right, whose energy differences are depicted as those among heights.
Each bar corresponds to a single orbital. Namely, each bar can have
two electrons with the opposite spins. Since the p orbital at the j =
1/2 site is fully occupied, the eigenenergy is raised by the repulsive
potential energy Up. (b) Example of the d and p orbitals for the model
(2.2), where the j = 0 and 1 sites have the dx2−y2 orbital and the
j = 1/2 site has the px orbital. The hopping amplitudes satisfy −t0 =
t1 = t .

FIG. 4. (a) Unperturbed ground state of the model (2.5). The
model has doubly degenerate p orbitals labeled by p 1

2 ,0 and p 1
2 ,1 at

the j = 1/2 site unless both of them are half occupied. (b) Unper-
turbed excited state of the model (2.5). Since the p orbitals are half
occupied, the Coulomb exchange interaction acts on the p 1

2 ,μ orbitals
(μ = 0, 1) and lift their degeneracy by reconstructing them. The
reconstructed p orbitals at the j = 1/2 site are p 1

2 ,± = p 1
2 ,0 ± p 1

2 ,1.
The eigenenergies of the two p orbitals differ by 2JH − Up when they
are half occupied, that is, when the lower-energy level p 1

2 ,+ is fully
occupied and the higher-energy one p 1

2 ,− is empty. (c) Example of
the d and p orbitals. Here we took d0 = d1 = d3x2−r2 , p 1

2 ,0 = px , and
p 1

2 ,1 = py. There are two hoppings, t0 = −t between the d3x2−r2 and

px orbitals and t1 = 1
2 t between the d3x2−r2 and py orbitals.

tudes, t0, t1 ∈ C are supposed to be complex to incorporate
U(1) fluxes, if necessary. Vj represents the site-dependent
and spin-independent potential of electrons, into which the
DC electric potential enters. Generally, p and d orbitals have
different eigenenergies. These atomic orbital eigenenergies
are incorporated into our model through the on-site potential
term Vj . The last term of Eq. (2.3) represents the Zeeman
energy, where h is the DC magnetic field. Though h = gμBB
with B = μ0H is the Zeeman splitting rather than the DC
magnetic field H , we roughly identify h and H , and call
them simply the DC magnetic field in this paper. Both the
external magnetic field is spatially uniform. If nonuniform,
the exchange interactions would depend on the magnetic
field.
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We assume that the on-site repulsions Ud > Up > 0 are
much larger than |Vj | and |t j | to validate a degenerate per-
turbation expansion about |t j |/Ud and |t j |/Up. The condition
of small |Vj | is required to ensure that the low-energy physics
involves magnetic excitations only. The same parameter con-
ditions apply to the other model given below.

The second model (Fig. 4) has two p orbtals at the j = 1/2
site:

HF = HU ;F + Ht ;F, (2.5)

HU ;F = Ud

∑
j=0,1

n j,↑n j,↓ + Up

∑
μ=0,1

n 1
2 ,↑,μn 1

2 ,↓,μ

+
∑
j=0,1

∑
σ

Vjn j,σ +
∑

σ

∑
μ=0,1

V1
2
n j,σ,μ

− h

2

[ ∑
j=0,1

(n j,↑ − n j,↓) +
∑

μ=0,1

(n 1
2 ,μ,↑ − n 1

2 ,μ,↓)

]

− JHs0 · s1, (2.6)

Ht ;F = −
∑

σ

(t0d†
0,σ p 1

2 ,σ,0 + t1d†
1,σ p 1

2 ,σ,1 + H.c.). (2.7)

The j = 1/2 site has two p orbitals labeled by the index
μ = 0, 1. The operator sμ = h̄

2

∑
s,s′=↑,↓ p†

1
2 ,s,μ

σss′
p 1

2 ,s′,μ de-

notes the spin-1/2 hosted by the p orbital μ = 0, 1, where
σ = (σ x, σ y, σ z ) is a set of the Pauli matrices. The operator
sμ makes sense only when the p orbitals μ = 0, 1 are half
occupied. We include the interaction, −JHs0 · s1, only when
both the two p orbitals are half occupied and otherwise may
drop it from Eq. (2.6). The coupling −JH < 0, which is the
ferromagnetic direct exchange between the p orbitals and
related to the Hund’s rule, affects the p orbitals only when they
are half occupied. Though the inter-band Coulomb potentials
are omitted in this model for simplicity, it is straightforward
to take them into account.

For simplicity, we focus on a situation where the eigenen-
ergy, Ep, of the empty p orbital is equal to or lower than the
eigenenergy, Ed , of the empty d orbital in both models, that is,
Ep � Ed . These eigenenergies are encoded in the on-site po-
tential Vj . Here we introduce a parameter � j (E ) for j = 0, 1,

� j (E ) = Vj − V1
2
. (2.8)

E denotes the DC electric field, and � j (0) = Ed − Ep rep-
resents the eigenenergy difference of the d orbital at the j
site from the p orbital aside from the Coulomb repulsion
energy. For example, when we apply E = E‖ in Fig. 1(a), we
obtain �0(E‖) = Ed − Ep − |e|�E‖ and �1(E‖) = Ed − Ep +
|e|�E‖, where −e < 0 is the electron charge.

Though we use parameters that meet the condition

� j (0) � 0 ( j = 0, 1); (2.9)

for simplicity throughout this paper, nothing forbids real
materials from violating the inequality (2.9). We emphasize
that our results also hold for � j (0) < 0. The eigenenergy
differences can be shifted by the amount of the Coulomb re-
pulsive energy when the orbitals are partially or fully occupied
[Figs. 3(a) and 4(a) and 4(b)].

We conclude this section by mentioning the orbital de-
generacy. We assumed above the single d orbital at each
magnetic-ion site, namely, the absence of the d-orbital degen-
eracy. This assumption can be easily relaxed. Let us consider
situations where only one d orbital at each magnetic-ion
site can participate in hoppings between the intermediate
nonmagnetic-ion site because of symmetries. For example, in
the setup of Fig. 4(c), the px orbital at the j = 0 has a nonzero
hopping amplitude to the d3x2−r2 orbital at the j = 1/2 site
and has vanishing hopping amplitude to the other four d
orbitals, dxy, dyz, dzx, and dy2−z2 . The low-energy physics in
these multi-d-orbital cases are also effectively described by
the models (2.2) and (2.5) unless symmetry-breaking struc-
tural distortion occurs.

III. SUPEREXCHANGE INTERACTIONS

This section describes the degenerate perturbation theory
of the two models (2.2) and (2.5) and shows that the former
(the latter) model gives rise to a Heisenberg exchange interac-
tion with the antiferromagnetic (ferromagnetic, respectively)
coupling.

A. Definition of the effective Hamiltonian

The unperturbed ground state is 2N -fold degenerate for
the two models (2.2) and (2.5), where N = 2 is the number
of d-orbital sites. Let us define a projection operator P onto
the subspace of the Hilbert space spanned by the degenerate
ground state. Q = 1 − P is a projection operator onto its com-
plementary space spanned by the unperturbed excited states.

We carry out the perturbation expansion as follows. First,
we perform the Schrieffer-Wolf canonical transformation [50]
on the full Hamiltonian (2.1), H → eηHe−η, with an anti-
Hermitian operator η. The effective Hamiltonian Heff that
describes the low-energy physics is then defined as

Heff = PeηHe−ηP. (3.1)

The unitary operator eη keeps the excitation spectrum of the
model unchanged but can simplify the effective Hamiltonian
(3.1). η is determined so that the eηHe−η is commutative with
P [51]. Generic forms of the perturbation expansion of Heff

up to the sixth order are listed in the Appendix of Ref. [51].
In our case, a relation, PHt P = 0, simplifies the per-

turbation significantly. Up to the fourth-order perturbation
expansion, the effective Hamiltonian (3.1) is expanded as

Heff = Heff
0 + Heff

2 + Heff
4 , (3.2)

Heff
0 = PHU P, (3.3)

Heff
2 = PHt

1

Eg − HU
QHt P, (3.4)

Heff
4 = PHt

(
1

Eg − HU
QHt

)3

P, (3.5)

where Eg is the unperturbed ground-state energy and
( 1

Eg−HU
QHt )3 is an abbreviation of 1

Eg−HU
QHt

1
Eg−HU

QHt
1

Eg−HU
QHt . The first- and third-order terms vanish triv-

ially in our models.
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The zeroth-order term (3.3) is mostly constant but contains
one important term, the Zeeman energy:

Heff
0 = −h

(
Sz

0 + Sz
1

) + const. (3.6)

S j = h̄
2

∑
s,s′=↑,↓ d†

j,sσ
ss′

d j,s′ is the S = 1/2 spin operator at
the j = 0, 1 site. Note that the spins of the p orbitals do
not appear in Eq. (3.6) since they are fully occupied in the
unperturbed ground-state subspace. The DC magnetic field
h appears only in the zeroth-order term (3.6) because it is
spatially uniform and our model Hamiltonians do not have
spin-orbit couplings. The second-order term (3.4) is a constant

that has no impact on low-energy physics and thus discarded
hereafter.

B. Antiferromagnetic superexchange

Performing the fourth-order perturbation expansion on the
model (2.2) (see the Appendix A 1), we obtain the following
effective Hamiltonian:

Heff
A = JA(E )S0 · S1 − h

(
Sz

0 + Sz
1

)
, (3.7)

where JA is the antiferromagnetic superexchange interaction,

JA(E ) = 2|t0t1|2
(

1

�0(E ) + Ud − Up
+ 1

�1(E ) + Ud − Up

)2 1

�0(E ) + �1(E ) + 2Ud − Up

+ 2|t0t1|2
(

1

(�0(E ) + Ud − Up)2

1

�0(E ) − �1(E ) + Ud
+ 1

(�1(E ) + Ud − Up)2

1

�1(E ) − �0(E ) + Ud

)
, (3.8)

where the DC electric field E enters into Eq. (3.8) through
the energy difference � j (E ). When E = 0, the Heisenberg
superexchange coupling (3.8) is antiferromagnetic. In fact,

JA(0) = 4|t0t1|2
(�0(0) + Ud − Up)2

(
2

2�0(0) + 2Ud − Up
+ 1

Ud

)

(3.9)

is positive when � j (0) � 0 and Ud > Up > 0. The latter in-
equalities are the case. The former condition (2.9) is likely
to be the case but can be violated, as we mentioned below
Eq. (2.8). Small DC electric field modifies the strength of the

antiferromagnetic exchange coupling (3.8) with keeping its
sign.

C. Ferromagnetic superexchange

When applied to the model (2.5), the fourth-order perturba-
tion expansion (Appendix A 2) leads to the following effective
Hamiltonian of the model (2.5):

Heff
F = JF(E )S0 · S1 − h(Sz

0 + Sz
1), (3.10)

where JF(E ) is the DC-electric-field dependent ferromagnetic
superexchange interaction,

JF(E ) = −2|t0t1|2
(

1

�0(E ) + Ud − Up
+ 1

�1(E ) + Ud − Up

)2 JH

[�0(E ) + �1(E ) + 2(Ud − Up)]2 − JH
2 . (3.11)

The sign of JF(E ) is determined by that of JH. The coupling
JH must be positive since it represents the direct Coulomb
exchange interaction [52]. The additional condition �0(E ) +
�1(E ) + 2(Ud − Up) − JH > 0 is also required to guarantee
that the right-hand side of Eq. (3.11) is negative. The in-
equality is usually satisfied because Jd/Ud = O(1), Ud �
Up, and � j (E ) � 0 [Eq. (2.9)]. When the inequality (2.9)
is violated, the superexchange coupling (3.11) can become
antiferromagnetic. Therefore, the superexchange interaction
JF(E ) is ferromagnetic.

D. Estimates in typical situations

Here we estimate the DC electric-field dependence of
the antiferromagnetic (3.8) and ferromagnetic (3.11) superex-
change interaction parameters for typical situations. As Fig. 1
shows, the DC electric field affects the antiferromagnetic (fer-
romagnetic) superexchange interaction drastically when the
DC electric field is applied parallel to e‖ (e⊥), where the unit
vector e‖ (e⊥) is parallel (perpendicular, respectively) to the
vector that connects the j = 0 site and the j = 1 site.

Hence, to estimate the typical field strength, we give our
attention to the following situations:

E = E‖e‖ (3.12)

for the antiferromagnetic case (Fig. 3) and

E = E⊥e⊥ (3.13)

for the ferromagnetic case (Fig. 4). Note that the unit vector
e⊥, perpendicular to e‖, is on the plane where j = 0, 1

2 , and 1
sites are put. JA(E ) of Eq. (3.8) and JF(E ) of Eq. (3.11) are
plotted for �E/Ud in Fig. 1, where E is either E⊥ or E‖, and �

is a length scale between the d-orbital and the p-orbital sites.
As shown in Fig. 1(b), we take � = �⊥ for E⊥.

Supposing transition-metal oxides, we employ their typical
values Ud = 5 eV, Up = 1 eV, �d p = 2 eV, JH = 1 eV, and
� = 5 Å (e.g., Ref. [53]). Hopping amplitudes t0 and t1 can be
arbitrary, though they should be perturbative.

JA(E ) and JF(E ) depend on the direction of the DC electric
field. JA(E ) is sensitive to E‖ but independent of E⊥, which
is obvious because the latter case only shifts Vj uniformly
for j = 0, 1

2 , 1. By contrast, JF(E ) is more sensitive to E⊥
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than E‖. To increase JA(E ) and JF(E ) by 1% of their original
values at E = 0, we need �|E‖|/Ud ≈ 0.05 for the former and
�⊥|E⊥|/Ud ≈ 0.003 for the latter case, namely,

|E‖| ≈ 5 MV/cm (3.14)

for the antiferromagnetic superexchange and

|E⊥| ≈ 0.3 MV/cm (3.15)

for the ferromagnetic superexchange. These values are large
but feasible with current experimental techniques. As summa-
rized in Ref. [37], the DC electric field in the conventional
field-effect transistor setup [Fig. 2(a)] reaches the order of 1
MV/cm. Also, recently developing techniques, such as the
electric double layer transistors, are capable of inducing the
electric field stronger than 10 MV/cm [37,38].

Despite these technical developments, realization of the
DC electric field with O(1) MV/cm is still challenging. It is
thus important to look into other approaches that facilitate the
achievement of the large DC electric field. There are basically
two options. One is to use an alternative sample with more
suitable parameters. The other is to use an alternative method
to induce the DC electric field.

The simplest way in the first option is to reduce the thick-
ness of the sample. If we can use a thin-film sample, we will be
able to use larger DC electric field though the electric field is
then applied only in a direction perpendicular to the thin film
[Fig. 2(a)]. Reducing the sample thickness meets our purpose
of controlling microscopic parameters without changing the
composition of the compound. However, for comparison, it
is now worth considering the use of a completely different
sample to enhance the DC electric-field effects. Recall that
the superexchange interactions (3.8) and (3.11) are the func-
tions of �E/Ud . Instead of increasing |E |, we may increase
�/Ud . Organic Mott insulators will be suitable to this pur-
pose for their long � and weak Ud [54]. Let us assume, for
example, Ud = 1 eV, Up = 0.5 eV, �d p = 0.8 eV, � = 10 Å
(e.g. Refs. [55,56]). Then JA(E )/JA(0) and |JF(E )/JF(0)| are
increased by 1% when

E‖ = 0.5 MV/cm (3.16)

for the antiferromagnetic superexchange and

E⊥ = 0.04 MV/cm (3.17)

for the ferromagnetic superexchange.
The last option we consider here is to employ an alternative

DC electric-field source, the THz laser pulse (Fig. 2), instead
of using modifying the sample [57]. The THz laser can induce
a larger electric field than the DC one [58]. We can regard
the THz laser pulse effectively as a DC electric field in a
shorter time than the temporal width of the pulse. To adopt the
THz laser pulse for the DC electric-field control of quantum
magnetic states, we need to use a quantum magnet with fast
enough spin dynamics (see Sec. VI D).

IV. FRUSTRATED FERROMAGNETS ON SQUARE
LATTICE

Sections IV and V are devoted to applications of the
generic results of Sec. III to simple frustrated quantum spin
systems.

FIG. 5. (a) Lattice structure of the spin-1/2 J1–J2 Heisenberg
model on the square lattice (4.1). The spin is put on every crossing
of the square and interact with each other via the nearest-neighbor J1

interaction (the solid line segment) and the next-nearest-neighbor J2

interaction (the dashed line segment). (b) The ground-state phase dia-
gram of the J1–J2 model (4.1) [5,8,59]. The angle θ around the origin
corresponds to the ratio J1/J2: tan θ = J2/J1. The labels CAF, SN,
FM, NAF, and SL are shorthands for the canted antiferromagnetic,
spin-nematic, ferromagnetic, Néel antiferromagnetic, and spin-liquid
phases, respectively.

A. Model

This section deals with a frustrated quantum spin system on
the square lattice. We give our attention to a frustrated spin-
1/2 J1–J2 model [5,8,60–73] with the following Hamiltonian,

Hsq = J1

∑
〈r,r′〉1

Sr · Sr′ + J2

∑
〈r,r′〉2

Sr · Sr′ , (4.1)

where J1 and J2 represent the nearest-neighbor and next-
nearest-neighbor interactions, respectively. 〈r, r′〉1 (〈r, r′〉2)
denotes a pair of a nearest-neighbor (next-nearest-neighbor,
respectively) bond connecting two sites r = (rx, ry) and r′ =
(r′

x, r′
y) of the square lattice [Fig. 5(a)]. The model (4.1) is

realized in various compounds [49,74–83]
We can apply the DC magnetic field h to the model (4.1)

through the zeroth-order term (3.6), but in what follows, we
focus on the h = 0 case. The model (4.1) shows a rich ground-
state phase diagram [8,59] depending on the ratio of J1 and J2

[Fig. 5(b)], which contains the spin-liquid phase and the spin-
nematic phase. Hereafter, we employ the unit system h̄ = e =
a0 = 1 for simplicity, where −e < 0 is the electron charge and
a0 is the lattice spacing.

B. Toy model

Before addressing an experimentally feasible case, we first
consider a simple toy model on a lattice of Fig. 6(a) to get
insight into the DC electric-field effects on J1/J2. The lattice
contains edge-sharing pyramids, where the empty balls form
a square lattice. Every crossing of the square lattice has one
magnetic-ion site with a single d orbital that hosts an S = 1/2
spin. The top of the pyramid has one ligand site, which is
depicted as a filled ball in Fig. 6(a). We assume that this ligand
site hosts two p orbitals. Similarly to the model (2.5), these p
orbitals are fully occupied and degenerate in the unperturbed
ground-state subspace. When the system is excited to a state
with the half-filled p orbitals, the Coulomb exchange JH lifts
the orbital degeneracy. For simplicity, we consider only two
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FIG. 6. (a) Toy model to demonstrate the DC electric-field con-
trol of the ratio J1/J2. The d orbitals are put on the square lattice
(the white balls) and the p orbitals are put on top of the pyramids
(the orange balls). (b) Five-site (single-pyramid) model (4.2) with
two kinds of hoppings, t for the d-d hoppings and t ′ for the d-p
hoppings.

hoppings: t on the square edge and t ′ that climbs up the
pyramid to the top [Fig. 6(b)].

As we did in Sec. III, we minimize the number of sites
down to 5 [Fig. 6(b)] and discuss nearest-neighbor and next-
nearest-neighbor exchange interactions of spins. The five-site
model on the single pyramid has the following Hamiltonian:

Hpy = HU ;py + Ht ;py, (4.2)

HU ;py = Ud

4∑
j=1

n j,↑n j,↓ + Up

∑
μ=0,1

n0,↑,μn0,↓,μ

+
4∑

j=0

∑
σ

Vjn j,σ , (4.3)

Ht ;py = −
4∑

j=1

∑
σ

(td†
j,σ d j+1,σ + H.c.)

−
∑

σ

[t ′(d†
1,σ + d†

3,σ )p0,σ,1

+ t ′(d†
2,σ + d†

4,σ )p0,σ,0 + H.c.]

− JHs0 · s1, (4.4)

where d†
j,σ for j = 1, 2, 3, and 4 and p†

0,σ,μ for μ = 0, 1 are
creation operators of the d-orbital electron and the p-orbital
one, respectively. The index μ = 0, 1 distinguishes two p or-
bitals. Note that we employed the periodic boundary condition
in Eq. (4.2), d†

j+4,σ = d†
j,σ .

Here we apply the DC electric field to this system so that
the electric field points perpendicular to the square lattice.
Namely, we assume the following relations among on-site
potentials, Vj :

V0 = V1 − �d p + �E , (4.5)

V1 = V2 = V3 = V4, (4.6)

where �d p = �0(0) = Ed − Ep � 0 is the eigenenergy differ-
ence of the d orbital and the p orbital and � > 0 denotes the
height of the p-orbital site from the square-lattice plane. The
electric field E is applied so that

E = Eez, (4.7)

where ez is perpendicular to the basal square lattice of the
pyramids (Fig. 6). The situation (4.7) is in contrast to Ref. [42]

FIG. 7. The ratio J1(E )/J2(E ) is plotted against the DC elec-
tric potential �E/Ud . We used parameters: Ud = 1, Up = JH = 0.3,
�d p = 0.5, t = 0.01, and t ′ = 0.1.

where the DC electric field is applied within the square-lattice
plane.

We designed the Hamiltonian (4.2) so that the superex-
change interaction along the path 1 → 0 → 2 is ferromag-
netic and that along the path 1 → 0 → 3 is antiferromagnetic.
The other superexchange intearctions are determined simi-
larly. Applying the generic results for HA [Eq. (2.2)] and HF

[Eq. (2.5)] to this pyramid, we obtain an effective spin model
with the Hamiltonian,

Heff
py =

4∑
j=1

[J1(E )S j · S j+1 + J2(E )S j · S j+2], (4.8)

with coupling constants,

J1(E ) = 4|t |2
Ud

− 8|t ′|4
(

1

Ud − Up + �d p − �E

)2

× JH

4[Ud − Up + �d p − �E ]2 − JH
2 , (4.9)

J2(E ) = 4|t ′|4
(

1

Ud − Up + �d p − �E

)2

×
(

2

2Ud − Up + 2�d p − 2�E
+ 1

Ud

)
, (4.10)

within the fourth-order perturbation expansion about the hop-
pings. Note that we implicitly assumed that the second-order
direct superexchange and the fourth-order superexchange in-
teractions are comparable with each other. In other words, we
assumed a relation O(|t |) = O(|t ′|2) so that the leading terms
of the “direct superexchange” and superexchange interactions
are of the same order.

The first term of J1(E ) is the direct superexchange interac-
tion, and the second term is the ferromagnetic superexchange
interaction. J2(E ) is the antiferromagnetic superexchange in-
teraction. We can strengthen (E > 0) or weaken (E < 0) the
exchange interactions thanks to the explicit breaking of the
z → −z inversion symmetry. Since the electric field (4.7) is
antisymmetric in this inversion, the superexchange interac-
tions (4.9) and (4.10) can also contain antisymmetric terms
under the z → −z inversion, which is in contrast to the
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results of Ref. [42]. Figure 7 shows how E controls the ratio
J1(E )/J2(E ).

C. Motivation from experiments

We demonstrated that the DC electric field indeed controls
the ratio of the nearest-neighbor and next-nearest-neighbor
interactions of the toy model (4.2). Since both J1 and J2 are
antiferromagnetic in this model, the DC electric field does not
drive the system into the spin-nematic phase [Fig. 5(b)].

Many experiments were reported about J1 − J2 square-
lattice quantum magnets with J1 < 0 < J2, for example,
BaCdVO(PO4)2 [49,84,85] and AMoOPO4Cl (A = K, Rb)
[83]. The former compound has (J1, J2) ≈ (−3.6 K, 3.2 K)
[49], which is in the vicinity of the phase boundary between
the canted antiferromagnetic phase and the spin-nematic
phase. The latter compound has (J1, J2) ≈ (−2 K, 19 K) for
A = K and (0 K, 29 K) for A = Rb [83], both of which are
supposed to be deep in the canted antiferromagnetic phase.

As we show below, these compounds have characteristic
crystal structures that allow for the DC electric-field control
of J1/J2 in a different mechanism from that for the pyra-
mid model (4.2). In what follows, we describe the essential
characteristics of the crystal structure relevant to our purpose
and build a model that simplifies the crystal structure without
interfering with the essence.

Figure 8(a) shows a schematic picture of the crystal struc-
ture of BaCdVO(PO4)2 viewed along the c axis. The single
layer that hosts the J1–J2 model is projected onto the ab plane
in this figure. Large squares and small gray squares represent
VO4 pyramids and PO4 tetrahedra, respectively [Fig. 8(b)].
Interestingly, there are two kinds of VO4 pyramids, distin-
guished by the label U and D in Fig. 8(a).

The single layer of the J1–J2 Heisenberg model (4.1) is
composed of U and D pyramids connected by the PO4 tetra-
hedra [49]. It is crucial in the following argument that the c
coordinate of the magnetic ion depends on whether it belongs
to the pyramid U or D [Fig. 8(b)].

To change the ratio J1/J2, we apply a uniform DC electric
field,

E = Eec, (4.11)

to the system, where ec is the unit vector along the c axis.
If we define the origin of the electric potential at the height
of the P ions, the V ion of the upward pyramid feels the
electric potential −E� and that of the downward pyramid feels
+E� with 2� > 0 being the height of the pyramid. Though the
external field is uniform, the magnetic ion at r = (rx, ry) feels
a staggered electric potential (−1)rx+ry E� due to the staggered
structure of the pyramids [Fig. 8(a)].

D. Simplified electron model

To investigate DC electric-field effects on BaCdVO(PO4)2,
we develop a model that emulates BaCdVO(PO4)2 with a
much simpler structure. The compound BaCdVO(PO4)2 has
complicated exchange paths between neighboring magnetic
V ions. Starting from a V ion site, the path goes through an
O ion, a P ion, and another O ion before reaching the other
V ion. The miscellaneous O, Ba, and Cd atoms are omitted

FIG. 8. (a) Schematic drawing of the crystal structure of
BaCdVO(PO4)2 projected onto the ab plane [49]. Large blue and red
squares represent VO4 pyramids. Small gray squares represent PO4

tetrahedra. Note that oxygen atoms are located on each corner of the
squares, which are omitted. We depicted the atoms important for the
later discussion of Sec. IV D. The black and white balls represent
the magnetic V ions, and the yellow ones represent the nonmagnetic
P ions. The V ions are located at the top of the pyramid, and the P
ions are at the center of the tetrahedron. (b) When the upward and
downward pyramids are viewed along the b axis, we find that their
magnetic ions are shifted by 2� (>0) along the c axis. This height
difference of the magnetic ions plays a crucial role in response to the
DC electric field (4.11).

in Fig. 8. In our simplified model, the miscellaneous atoms
of BaCdVO(PO4)2 are removed. Namely, we consider more
direct hoppings between the magnetic ions along paths such
as V → V or V → P → V as shown in Fig. 9 instead of
V → O → P → O → V. The U and D pyramids are replaced
by the magnetic ions with the same labels. Figure 9 represents
the U (D) magnetic ions as MU,1 and MU,2 (MD,1 and MD,2,
respectively). The ligand site that corresponds to the P ion is
also simplified in our model. The ligand site of our model
hosts two p orbitals. The Coulomb exchange interaction lifts
the orbital degeneracy of the p orbitals when they are half
occupied. One of the p orbitals admits hoppings of electrons
from/to the d orbitals of the magnetic ions, MU,1 and MU,2,
and the other admits hoppings from/to the d orbitals of the
magnetic ions, MD,1 and MD,2.

Our simplified model inherits the essential structure of
BaCdVO(PO4)2. First, we keep the ligand ion at the center
of a tetrahedron formed by the each of four magnetic-ion
sites to yield superexchange interactions (Fig. 9). Second, our
model has the alternating structure that the magnetic-ion site
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FIG. 9. Hopping amplitudes inside a tetrahedron that connects
the upper and the lower layers. Magnetic ions (filled balls) on the
upward (downward) pyramid are MI,1 and MI,2 (MII,1 and MII,2).
There is a direct hopping tM−M between two magnetic ions that
belong to the same kind of pyramid. To hop between two magnetic
ions on the two different kinds of pyramids, the electron first hops to
the ligand ion (the empty ball) at the center of the tetrahedron and
next to the other magnetic ion. The hopping amplitude between the
magnetic ion and the ligand is given by tM−L.

r = (rx, ry) is located above (below) the ligand site for rx + ry

is even (odd) [Fig. 8(a)].
Following the generic argument of Sec. III, we minimize

the number of sites and consider a five-site electron model
with a Hamiltonian,

Htetra = HU ;tetra + Ht ;tetra, (4.12)

HU ;tetra = Ud

∑
j=1,2

∑
α=U,D

n j,α,↑n j,α,↓

+ Up

∑
α=U,D

nL,α,↑nL,α,↓

+
∑
j=1,2

∑
α=U,D

∑
σ

Vαn j,α,σ , (4.13)

Ht ;tetra = −
∑

σ

∑
α=U,D

{(tM−Md†
1,α,σ d2,α,σ + H.c.)

+ [tM−L(d†
1,α,σ + d†

2,α,σ )pL,α,σ + H.c.]}
− JHsU · sD. (4.14)

The model has a d orbital at four magnetic-ion sites at the ver-
tices of the tetrahedron and two orbitals at the ligand site at the
center. d†

j,α,σ represents the annihilation operator of electron at
the magnetic-ion site j with the spin σ . The index α = U, D
indicates the upward and downward magnetic ions, respec-
tively. Accordingly, the on-site potential is given by VU =
V̄ − �E and VD = V̄ + �E with an E-independent constant V̄ .

FIG. 10. Lattice deformation by the DC electric field. The J1–J2

square-lattice model acquires δJ2(E ) > 0 from the DC electric field
and eventually turns into the deformed triangular-lattice antiferro-
magnet when δJ2 reaches J2.

The pL,α,σ operator annihilates the p electron at the ligand
site. As the hopping term (4.14) shows, the p orbitals labeled
by the index α = U, D have a hopping term from/to the d
orbital with the same α index. −JH < 0 is the Coulomb ex-
change interaction between sα = 1

2

∑
s,s′ p†

L,α,sσ
s,s′

pL,α,s′ for
α = U, D at the ligand site.

E. Effective spin model

The low-energy effective Hamiltonian of the model (4.12)
is given by

Heff
tetra = J1(E )(SU,1 + SU,2) · (SD,1 + SD,2)

+ J2(E )(SU,1 · SU,2 + SD,1 · SD,2)

+ δJ2(E )(SU,1 · SU,2 − SD,1 · SD,2). (4.15)

We dealt with the hoppings by tM−M and tM−L as perturbations
to the remainder of the Hamiltonian.

Let us embed the effective model (4.15) on the tetrahedron
into the square lattice of Fig. 5(a). J1(E ) and J2(E ) are the
nearest-neighbor and the next-nearest-neighbor interactions,
respectively. The perturbation expansion gives a side effect
that the effective Hamiltonian (4.15) contains the third in-
teraction of δJ2(E ), which makes the two diagonal bonds
nonequivalent (the middle panel of Fig. 10). The appearance
of nonzero δJ2(E ) is due to the explicit violation of an inver-
sion symmetry by E. When E = 0, the bond connecting MU,1

and MU,2 is symmetrically equivalent to that connecting MD,1

and MD,2. The DC electric field along the c axis makes these
bonds nonequivalent, that is, δJ2(E ) �= 0. Figure 11 shows the
DC electric-field dependence of the exchange interaction for
some parameter sets.

The nearest-neighbor interaction is a superexchange inter-
action, and the next-nearest-neighbor interaction is mainly a
direct superexchange interaction though its subleading terms
are superexchange ones as shown below. Up to the fourth
order of the perturbation expansion, J1(E ), J2(E ), and δJ2(E )
are given by

J1(E ) = −2|tM−L|4
(

1

Ud − Up + �d p − �E
+ 1

Ud − Up + �d p + �E

)2 JH

[2(Ud − Up + �d p)]2 − JH
2 , (4.16)

J2(E ) = 4|tM−M|2
Ud

+ |tM−L|4
{(

2

Ud − Up + �d p − �E

)2 1

2Ud − Up + 2�d p − 2�E
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+
(

2

Ud − Up + �d p + �E

)2 1

2Ud − Up + 2�d p + 2�E

+ 2

Ud

[(
1

Ud − Up + �d p − �E

)2

+
(

1

Ud − Up + �d p + �E

)2]}
, (4.17)

δJ2(E ) = |tM−L|4
{(

2

Ud − Up + �d p − �E

)2 1

2Ud − Up + 2�d p − 2�E
−

(
2

Ud − Up + �d p + �E

)2 1

2Ud − Up + �d p + 2�E

+ 2

Ud

[(
1

Ud − Up + �d p − �E

)2

−
(

1

Ud − Up + �d p + �E

)2]}
. (4.18)

J1(E ) and J2(E ) are even functions of E as they should be
from the symmetry point of view. By contrast, δJ2(E ) is an
odd function of E . Just like we did in Eqs. (4.9) and (4.10),
we assumed that O(|tM−M|) = O(|tM−L|2) to make the leading
terms of the exchange and superexchange interactions compa-
rable.

The side effect of nonzero δJ2(E ) is an interesting phe-
nomenon by itself. In the extreme situation of δJ2 = J2, the
spin model turns into a deformed triangular-lattice Heisen-
berg antiferromagnet (Fig. 10) [86–88]. Each triangle unit
has one J2 bond and two J1 bonds. We can thus expect that
the DC electric field changes the square-lattice antiferromag-
net eventually into the triangular-lattice one. The deformed

FIG. 11. The ratio J1(E )/J2(E ) of Eqs. (4.16) and (4.17) are
plotted. In panels (a) and (b), we take �d p = 0 and �d p = 1, re-
spectively. The other parameters are taken in common as Ud = 1,
Up = 0.5, JH = 0.5, t = 0.01, and t ′ = 0.12. The ratio δJ2(E )/J2(E )
grows with an increase of �E/Ud for the two cases, where the square
lattice becomes the anisotropic triangular lattice. In particular, panel
(b) shows that the DC electric field changes only δJ1(E )/J2(E ).

triangular-lattice antiferromagnet also exhibits a rich phase
diagram under magnetic fields [87]. It will be interesting to
apply the DC electric and magnetic fields simultaneously to
the model (4.12), searching for E-induced quantum phase
transitions.

We emphasize that the argument in Secs. IV D and IV E
also applies to AMoOPO4Cl. There are minor differences
between BaCdVO(PO4)2 and AMoOPO4Cl from the DC
electric-field viewpoint. AMoOPO4Cl has the Mo ion whose
4 f orbital contributes to quantum magnetism, however, which
can be dealt with on equal footing with the model (4.12).
The orbital hosting the S = 1/2 spin does not need to have
the d-orbital symmetry though we used the notation of the d
orbital symbolically. Our model here as well as the generic
ones of Sec. II assume that the orbital at the magnetic-ion site
is nondegenerate and has a large on-site repulsion, Ud > Up.
The 4 f orbital fulfills this assumption.

BaCdVO(PO4)2 and AMoOPO4Cl have the same charac-
teristics in response to the DC electric field for the following
reasons. First, AMoOPO4Cl also has two kinds of magnetic-
ion sites with two different electric potential energies. Instead
of the upward and downward pyramids, AMoOPO4Cl has two
kinds of octahedra shifted in the opposite direction along the
c axis that results in the same staggered electric-field potential
(−1)rx+ry�E as BaCdVO(PO4)2. Second, the same simplifica-
tion of the hopping paths to Fig. 9 applies to AMoOPO4Cl as
well as BaCdVO(PO4)2. We can expect that the simplification
works even better in AMoOPO4Cl thanks to the outspread
probability distribution of the 4 f orbital. We thus conclude
that the results (4.16), (4.17), and (4.18) will thus hold also
for AMoOPO4Cl.

V. FRUSTRATED FERROMAGNETIC CHAINS

A. Experimental realizations

This section discusses another important frustrated quan-
tum spin system of an S = 1/2 J1–J2 spin chain described by
the Hamiltonian

Hchain = J1

∑
j

S j · S j+1 + J2

∑
j

S j · S j+2 − h
∑

j

Sz
j .

(5.1)

J1 < 0 < J2 cases [10,11,89,95,101,102] and J1, J2 > 0 cases
[63,99,100] have been intensively studied. Figure 12(a) shows
the ground-state phase diagram of the model (5.1) at h =
0. It contains two kinds of dimer phases. The sign of
J1 governs the nature of these dimers. The dimer is a
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FIG. 12. Schematic phase diagrams of the J1 − J2 spin-1/2 chain
(5.1) with J2 > 0 (a) at zero magnetic field [89] and (b) near the
saturation field [10,11,90]. (a) The zero-field ground-state phase
diagram contains the Tomonaga-Luttinger (TL) liquid, the singlet-
dimer, the Haldane-dimer, and the ferromagnetically ordered (FM)
phases [63,91]. Around the origin, J1/J2 = 0, the gapped phases
with two different spontaneous dimer orders appear. The dimers are
formed on nearest-neighbor (J1) bonds in both phases. (b) When
the magnetic field h is in the vicinity of the saturation field, the phase
diagram becomes rich. The phase diagram contains quasi-long-range
multipolar order phases of spins, the quadrupolar, octapolar, and
hexadecapolar phases for J1 < 0 [10,90]. In particular, the quadrupo-
lar phase is known as the (quasi-long-range) spin-nematic phase
[10,11,73,92–98]. There are one- and two-component TL-liquid
phases for J1/J2 > 4 and 0 < J1/J2 < 4, respectively [99,100].

nonmagnetic singlet type for J1 > 0 and a magnetic triplet
type for J1 < 0 [91].

Some materials with CuO2 chains [103–109] are known to
be described by the J1 − J2 chain with J1 < 0. When −2.7 <

J1/J2 < 0, this spin chain has the spin nematic phase in the
vicinity of the fully polarized phase forced by the strong
magnetic field h [Fig. 12(b)].

B. Goodenough-Kanamori rule

The model (5.1) can experimentally be realized, for exam-
ple, in a CuO2 chain of Fig. 13(a), where the Cu ion carries
the S = 1/2 spin. Figure 13(a) shows a generic case that two O
ions, OI and OII, are nonequivalent. Two O ions can be equiv-
alent but, in what follows, are supposed to be nonequivalent
to derive the antiferromagnetic J1 and ferromagnetic J1 from
the single model.

The sign J1 is determined by the angle ∠Cu − O − Cu.
The two O ions mediate the nearest-neighbor superexchange
interaction. According to the Goodenough-Kanamori rule
[110–112], the superexchange interaction is ferromagnetic
when an angle ∠Cu − O − Cu is 90◦ and antiferromagnetic
when the angle is 180◦. We can easily understand this differ-
ence by looking into the d and p orbitals of Fig. 13(b). When
the angle is 90◦, there are no hoppings between the dx2−y2

orbital of the Cu ion and the px orbital of the O ion. Then
the superexchange interaction is well described by the model
(2.5) with the two degenerate p orbitals at the oxygen site. On
the other hand, when the angle is 180◦, the single p orbital
allows for hoppings of electrons from the O ion to the two

FIG. 13. (a) CuO2 chain with two nonequivalent oxygens, OI and
OII. The angles ∠Cu − OI − Cu and ∠Cu − OII − Cu are supposed
to be site-independent and differ from each other. Accordingly, the
CuO2 chain has the twofold screw symmetry in the e‖ direction
along which the chain extends. (b) 3dx2−y2 orbital of Cu ions and
2px,y orbitals of O ions. When the angle formed by two coppers and
one oxygen equals exactly 90◦ as shown here, the electron can hop
from the left (right) Cu ion to the px (py, respectively) orbital of
the O ion. (c) The J1–J2 spin chain and the E-induced dimer states
are schematically shown. (c1) The J1–J2 chain in the absence of
the DC electric field (5.2). (c2) When J1 > 0, the DC electric field
(5.2) with E > 0 yields the bond alternation δJ1 > 0, which results
in the singlet-dimer ground state. The singlet dimer is formed on
the J1 + δJ1 bond. (c3) When J1 < 0, the DC electric field (5.2)
with E > 0 yields the bond alternation δJ1 > 0, which results in the
Haldane-dimer ground state. The Haldane dimer is formed on the
J1 − δJ1 bond.

Cu ions on both sides. Then the superexchange interaction is
modeled by Eq. (2.2) with the nondegenerate p orbital at the
oxygen site [see also Fig. 3(b) and Fig. 4(c)].

Generally, the angles are intermediate, when the superex-
change process also has an intermediate character of the two
models (2.2) and (2.5). For simplicity, we consider an ideal
situation where the superexchange interaction via the OI ion
is described by the model (2.5) with t0 = t1 = t and that via
the OII ion is described by the model (2.2) with t0 = t1 = t ′
[Fig. 13(a)]. It follows from the above modeling that 0 <

∠Cu − OI − Cu < ∠Cu − OII − Cu � 180◦. We assume that
the two oxygens are exactly in the middle of the two nearest-
neighbor Cu ions along the chain direction, e‖.

C. Twofold screw symmetry

When the CuO2 plane has two nonequivalent oxygen sites,
the CuO2 chain has a twofold screw symmetry along the chain
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direction, a combination of the discrete translation symmetry
in the chain direction and the π spatial rotation around that
direction. Let us denote the discrete translation as T1 and the
π rotation as Rπ . The CuO2 chain of Fig. 13(a) has neither T1

nor Rπ symmetries though it has the T1Rπ symmetry. Never-
theless, the low-energy spin-chain model (5.1) in the absence
of the electric field has both the T1 and Rπ symmetries instead
when the electric potentials at the two oxygen sites are exactly
balanced.

The DC electric field can violate this balance, replacing
the emergent high symmetry of the spin chain by the original
T1Rπ one of the CuO2 chain. Let us apply the following DC
electric field to the system,

E = Ee⊥, (5.2)

along the direction perpendicular to the CuO2 chain and on the
CuO2 plane [Fig. 13(a)]. We denote the electric potentials at
the Cu, OI, and OII sites as 0, ±�IE , and ∓�IIE , respectively.

The sign of the latter two potentials is positive if the O ion is
below the Cu ion in the e⊥ direction and negative if the O ion
is above the Cu ion. We can assume �I > �II to be consistent
with the assumption of ∠Cu − OI − Cu < ∠Cu − OII − Cu.

The effective spin-chain model under the DC electric field
(5.2) has the following Hamiltonian:

Hchain = J1(E )
∑

j

S j · S j+1 + J2(E )
∑

j

S j · S j+1

− h
∑

j

Sz
j + δJ1(E )

∑
j

(−1) jS j · S j+1, (5.3)

where the last term, called the bond alternation, is a direct
consequence of the imbalance of the electric potentials of OI

and OII. The nearest-neighbor interactions, J1(E ) and δJ1(E ),
are given by

J1(E ) = −4|t |4
[(

1

Ud − Up + �d p − �IE

)2 JH

4(Ud − Up + �d p − �IE )2 − JH
2

+
(

1

Ud − Up + �d p + �IE

)2 JH

4(Ud − Up + �d p + �IE )2 − JH
2

]

+ 2|t ′|4
[(

1

Ud − Up + +�d p + �IIE

)2( 2

2Ud − Up + 2�d p + 2�IIE
+ 1

Ud

)

+
(

1

Ud − Up + �d p − �IIE

)2( 2

2Ud − Up + 2�d p − 2�IIE
+ 1

Ud

)]
, (5.4)

δJ1(E ) = −4|t |4
[(

1

Ud − Up + �d p − �IE

)2 JH

4(Ud − Up + �d p − �IE )2 − JH
2

−
(

1

Ud − Up + �d p + �IE

)2 JH

4(Ud − Up + �d p + �IE )2 − JH
2

]

+ 2|t ′|4
[(

1

Ud − Up + �d p + �IIE

)2( 2

2Ud − Up + 2�d p + 2�IIE
+ 1

Ud

)

−
(

1

Ud − Up + �d p − �IIE

)2( 2

2Ud − Up + 2�d p − 2�IIE
+ 1

Ud

)]
. (5.5)

We emphasize that Eqs. (5.4) and (5.5) rely on the assump-
tion that the superexchange mediated by the OI ion is the
ferromagnetic one [Eq. (3.11)] and the one by the OII ion
is the antiferromagnetic one [Eq. (3.8)]. J1(E ) and δJ1(E )
are even and odd functions of E , respectively (Figs. 14 and
15). This E dependence is consistent with the twofold screw
symmetry of the CuO2 chain. For instance, since Rπ maps
E = Ee⊥ to −E, the T1Rπ operator maps the bond alternation
δJ1(E )

∑
j (−1) jS j · S j+1 to δJ1(−E )

∑
j (−1) jS j+1 · S j+2 =

δJ1(E )
∑

j (−1) j+1S j+1 · S j+2. Hence, the E-induced bond al-
ternation has the twofold screw symmetry though it breaks the
T1 symmetry.

Note that the right-hand side of Eq. (5.5) does not vanish
for �I = �II, though it should from the symmetry viewpoint.
This inconsistency comes from the initial assumption that we
made. We assumed that the superexchange process via the OI

ion and that via the OII ion are supposed to be nonequivalent
from the beginning. Accordingly, Eqs. (5.4) and (5.5) hold
when the difference �I − �II is large enough to justify the
nonequivalent superexchange processes. This condition �I,II

is convenient for our purpose of the DC electric-field control.
J2(E ) depends on E in a complex manner. However, its DC

electric-field dependence is less important than the induction
of the bond alternation because the latter is much more rele-
vant in the renormalization-group sense [113,114].

Before describing the E-induced bond alternation effects,
we comment on the field direction. If we apply the DC electric
field along the chain direction (e‖ of Fig. 13), the DC electric
field does not yield the bond alternation because it keeps the
balance of the electric potentials at the two oxygen sites. The
DC electric field E ‖ e‖ purely changes the ratio J1(E )/J2(E ),
keeping δJ1(E ) = 0, which will be relevant to studies of
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FIG. 14. The E-induced bond alternation δJ1(E ) is plotted for
the DC electric potential �IE for the J1, J2 > 0 case with parameters,
Ud = 1, Up = 0.5, JH = 0.5, t = 0.04, t ′ = 0.1, and �II/�I = 0.60.
The ratio �II/�I is determined from the data for KCuMoO4(OH)
[109]. We took �d p = 0 for the upper panel and �d p = 0.5 for the
lower panel.

the quasi-long-range spin-nematic phase of J1 − J2 spin
chains.

D. Dimerization induced by DC electric fields

1. J1 > 0: singlet dimers

When both J1 and J2 are positive, the ground-state phase
diagram for E = h = 0 contains two phases: a Tomonaga-
Luttinger (TL) liquid phase [113,114] and a spontaneously
dimerized phase. A quantum critical point, J2/J1 = αc ≈
0.2411 [115,116], separates these two phases: the TL-liquid
phase for J2/J1 � αc and the spontaneously dimerized phase
for αc < J2/J1. The former is gapless, and the latter is gapped.
Turning on the DC electric field (5.2), we can introduce
the bond alternation to the J1–J2 spin chain. Trivially, the
bond alternation turns the spontaneously dimerized phase into
an induced dimerized phase, which we call an E-induced
dimerized phase, by lifting the ground-state degeneracy of
the spontaneously dimerized phase [Fig. 13(c2)]. More in-
terestingly, the bond alternation drives the TL liquid into the
E-induced dimerized phase.

The dimer order parameter D(E ) characterizes the E-
induced dimer phase. When the ground state belongs to the
TL-liquid phase for E = 0, the dimer order parameter is ob-
viously zero: D(0) = 0. As soon as we apply the DC electric
field to the TL liquid, we can open the excitation gap. The gap

FIG. 15. The E-induced bond alternation δJ1(E ) is plotted
for the DC electric potential �IE for the J1 < 0 < J2 case with
parameters, Ud = 1, Up = 0.5, JH = 0.5, t = 0.1, t ′ = 0.01, and
�II/�I = 0.81. The ratio �II/�I is determined from the data for
NaCuMoO4(OH) [109]. We took �d p = 0 for the upper panel and
�d p = 0.5 for the lower panel.

opening due to the bond alternation is well described by the
sine-Gordon theory with the following Hamiltonian [113]:

Hchain ≈ v

2

∫
dx[(∂xθ )2 + (∂xφ)2]+g(E )

∫
dx cos(

√
2πφ),

(5.6)

where v is the spinon velocity and g(E ) ∝ δJ1(E ) ∝ |E | is
the coupling constant that leads to the spin gap. φ and θ are
related to the spin operator S j as [113,114,117]

Sz
j = 1√

2π
∂xφ + (−1) ja1 cos(

√
2πφ), (5.7)

S+
j = e−i

√
2πθ [b0(−1) j + b1 cos(

√
2πφ)], (5.8)

with nonuniversal constants a1, b0, and b1. It is exactly known
that the sine-Gordon theory (5.6) gives the following the
dimer order parameter D(E ) [118]:

D(E ) = 1

L

L∑
j=1

〈(−1) jS j · S j+1〉

= 3dz

∫
dx 〈cos(

√
2πφ)〉

= 3dz

{
�(E )

√
π�(2/3)

v�(1/6)

]1/2

exp

[ ∫ ∞

0

dt

t

[
− 1

2
e−2t

+ sinh2(t/2)

2 sinh(t/4) sinh t cosh(3t/4)

]}
, (5.9)
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where the parameter dz relates the spin operator and the φ

boson via (−1) jSp
j Sp

j+1 = dz sin(
√

2πφ) + · · · for p = x, y, z
in the absence of the DC electric field [119,120] and �(z)
is the gamma function. The parameter �(E ) represents the
lowest-energy excitation gap induced by E. Note that v and
dz are calculated in the model with E = 0 since the E depen-
dence of these quantities merely leads to hardly observable
corrections to the right hand side of Eq. (5.9), which we
will discuss later. The field-theoretical result (5.9) becomes
accurate when the ratio J1(0)/J2(0) is close to the critical
value αc. When J1(0)/J2(0) ≈ αc, the parameters v and dz are
given by v = 1.174J1(0) [121] and dz = 0.182 [119].

One can obtain the exact excitation gap, �(E ), of the sine-
Gordon theory (5.6) [118,122,123]:

�(E ) = 2v√
π

�(1/6)

�(2/3)

(
3dzπ

2

�(3/4)

�(1/4)

|δJ1(E )|
v

)2/3

∝
( |δJ1(E )|

J1(0)

)2/3

. (5.10)

Equation (5.5) tells us that the E-induced bond alternation
δJ1(E ) is proportional to E for |E | � (Ud − Up)/�I. There-
fore, we obtain

�(E ) ∝ |E |2/3, (5.11)

D(E ) ∝ |E |1/3. (5.12)

The gap (5.10) and the dimer order (5.9) are plotted in Fig. 16.
We can see the power-law behaviors (5.11) and (5.12) near
E = 0. The power laws (5.11) and (5.12) hold near the origin
but break down at some field strength, say, for |�IE/Ud | ≈ 0.1
when �d p = 0 (Fig. 16), because of a nonlinear E dependence
of J1(E ) and δJ1(E ) [Eqs. (5.4) and (5.5)]. Since Ud is typi-
cally ∼5 eV for Cu [124–126], we can expect this nonlinear
effect for |E | � 34 MV/cm, which is extremely strong. The
nonlinear effect will be hardly observable. At the same time,
this estimation of |E | justifies our perturbative treatment of
the DC electric field in the field-theoretical argument such as
Eq. (5.9).

This E-induced dimerization differs significantly from a
magnetic-field-induced dimerization that one of the authors
found recently [127]. Though a fourfold screw symmetry
is essential to cause the magnetic-field-induced dimeriza-
tion, such a complication is not required in the E-induced
dimerization.

2. J1 < 0: Haldane dimers

When J1 < 0 < J2, the ground-state phase diagram at E =
h = 0 contains the ferromagnetically ordered phase, a vector-
chiral phase, and the Haldane-dimer phase [91]. When 0 <

J1/J2 � 1, the ground state is expected to belong to the
Haldane-dimer phase, where the triplet dimer is formed on
the nearest-neighbor bond. Reference [91] also discusses the
effects of the bond alternation on the ground-state phase di-
agram of the J1–J2 chain. The bond alternation weakens the
geometrical frustration between the nearest-neighbor and the
next-nearest-neighbor exchange interactions. While the J1–J2

spin chain with J1 < 0 < J2 has the spontaneous Haldane-
dimer phase with the twofold ground-state degeneracy, the

FIG. 16. (a) The E-induced excitation gap �(E ) (5.10) (5.2)
(the solid lines) is plotted and compared with a simple power-law
function ∝ (�IE/Ud )2/3 (the dashed lines). (b) The E-induced dimer
order parameter (5.9) (solid lines) is plotted and compared with a
simple power-law function ∝ (�IE/Ud )1/3 (dashed lines). We used
the same parameters as those in Fig. 14.

J1–J2–δJ1 chain has the induced Haldane-dimer phase with
the unique and gapped ground state. In the latter phase, the
triplet dimer is formed on the bond with the stronger nearest-
neighbor exchange interaction, namely, on the J1 + δJ1 bond
for E > 0 and on the J1 − δJ1 bond for E < 0 [Fig. 13(c3)].

Differently from the J1 > 0 case, the DC electric field
does not open the spin gap for large |J1|. When J1 < 0 and
|J1| is large enough, the ground state has the spontaneous
ferromagnetic order accompanied by a gapless nonrelativistic
Nambu-Goldstone mode, which is robust against the small
bond alternation. When |J1| is much smaller than J2, the DC
electric field opens the gap exactly in the same way for both
the J1 < 0 and J1 > 0 cases.

When max{|J1|, |δJ1|} � J2, we can regard the J1–J2 spin
chain as weakly coupled spin chains. Bosonizing each spin
chain, we obtain an excitation gap [128],

�(E ) ∝ |δJ1(E )| ∝ |E |, (5.13)

instead of Eq. (5.10). Accordingly, the dimer order parameter
follows

D(E ) ≈ |δJ1(E )|1/2. (5.14)
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Therefore, we find for weak E � (Ud − Up)/�I that

�(E ) ∝ |E |, (5.15)

D(E ) ∝ |E |1/2. (5.16)

Though we obtained different power laws from Eqs. (5.11)
and (5.12), it is not attributed to the sign of J1. In fact, even
when J1 > 0, we will find the power laws (5.15) and (5.16) if
J1 and |δJ1| are much smaller than J2. In this weak |J1| region,
we can find the difference due to the sign of J1 only in the
nature of the dimer order whether it is the Haldane dimer or
the singlet one.

E. Proposals for experiments

The following are our proposals for experiments. The
CuO2 chain of Fig. 13 is realized, for example, in
ACuMoO4(OH) (A = Na, K) [109,129,130]. (J1, J2) are
given by (−51 K, 36 K) for A = Na and (238 K, 0) for A =
K. We can expect the E-induced dimerization for A = K and
the E-induced Haldane-dimer phase for A = Na

For A = K, it will be intriguing to observe the 2/3-power-
law dependence (5.11) of the excitation gap �(E ). We expect
that the DC electric field with 1 MV/cm opens the gap
∼22 K in KCuMoO4(OH), which reaches 8.6% of J1(0).
Spectroscopic methods such as the electron spin resonance
(ESR) [131,132], the inelastic neutron scattering [133], and
the Raman scattering [134,135] will be suitable candidates for
observing those characteristics.

There is another interesting phenomenon specific to
KCuMoO4(OH). The compound KCuMoO4(OH) has a stag-
gered Dzyaloshinskii-Moriya (DM) interaction,

∑
j (−1) jD ·

S j × S j+1, in addition to the Hamiltonian (5.3). The DM
interaction originates from the spin-orbit coupling. Though
we did not take the spin-orbit coupling into account thus far
in this paper, we can approximately apply our theory to this
compound since the DM interaction is weak. As far as the
leading effects caused by the perturbative DM interaction and
the perturbative electric field are concerned, we can still adapt
our theory to those systems with the weak DM interaction. If
one wishes to discuss DC electric-field controls of DM inter-
actions, one has to take into account the spin-orbit coupling
in the electric models such as Eq. (2.2) and (2.5), which goes
beyond the scope of this paper.

The staggered DM interaction yields a staggered magnetic-
field interaction [say, −hs

∑
j (−1) jSx

j ] when the external DC
magnetic field h is applied in a direction perpendicular to D
[136,137].

The resultant staggered magnetic field is proportional to h
and |D|: hs ∝ |D|h/J . As well as the bond alternation δJ1(E ),
the staggered magnetic field hs also generates the excitation
gap. The staggered magnetic field induces the Néel order in
a direction perpendicular to the external DC magnetic field
[137]. When the DC electric and magnetic fields are applied
to the spin chain simultaneously and are tuned, a crossover
will occur between the E-induced dimerized phase and the
hs-induced Néel phase. The entanglement of the singlet dimer
is protected by one of the time-reversal, the D2 spin rotation,
and the bond-centered inversion symmetries [138–140]. All
these symmetries are explicitly broken in the simultaneous

FIG. 17. Possible E -H ground-state phase diagram of
KCuMoO4(OH). When E �= 0 and hs = 0 (= h), the E -induced
singlet-dimer phase is realized. By contrast, when E = 0 and hs �= 0,
the hs-induced Néel phase is realized. These ground states will be
smoothly connected to each other because the symmetries protecting
these gapped quantum phases are explicitly broken.

presence of the DC electric and magnetic fields. Namely,
nothing forbids the smooth deformation of the E -induced
dimer-ordered ground state into the H-induced Néel ordered
ground state. It will be interesting to look into whether the
crossover actually occurs on the two-dimensional parameter
space shown in Fig. 17.

Due to the staggered DM interaction, the field dependence
of the excitation gap will be tractable in ESR measurements
[141–143]. One significant difference of these two phases
lies in a localized excited state at the chain end, called the
boundary bound state [143], exists only in the hs-induced Néel
phase [143]. With an increase of |E |, the boundary bound state
will be eventually lost though it will survive for a while in the
vicinity of the horizontal axis of Fig. 17.

For A = Na, the nearest-neighbor interaction is ferromag-
netic. The ratio J1(0)/J2(0) ≈ −1.4 implies that the ground
state at zero magnetic field belongs to the Haldane-dimer
phase (Fig. 1 of Ref. [91]). Experimentally, DC electric-field
effects on the Haldane-dimer phase can be observed as an
increase of the excitation gap similarly to the J1 > 0 case.
We can also observe an S = 1/2 edge state. The spin-1 Hal-
dane phase is a topological phase protected by the Z2 × Z2

spin-rotation symmetry [144,145]. Since the DC electric fields
keep the Z2 × Z2 symmetry, the E-induced Haldane-dimer
phase has doubly degenerate edge states on each chain end,
that is, an S = 1/2 edge spin. The edge-spin degrees of free-
dom can be observed by, for example, the ESR spectroscopy
[146,147]. An increase in the excitation gap immediately
means a decrease in the correlation length. The decrease of
the correlation length would affect the ESR spectrum of the
spin chain with a finite chain length [147].

VI. OTHER DC ELECTRIC-FIELD EFFECTS

This section is devoted to discussions on other major DC
electric-field effects that we have not dealt with in this pa-
per. We can incorporate some effects into our model with
slight modifications and some with substantial changes. The
renormalization of the dielectric constant and the structural
distortion fall into the former. The spin-orbit coupling falls
into the latter and requires the substantial change of the model.
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In what follows, we briefly discuss these three effects and
another important effect of the THz laser pulse.

A. Dielectric constant

We implicitly assumed that the electrons feel the exter-
nal DC electric field itself. In real materials, the electron is
surrounded by various charges that can screen or enhance
the external electric field. Generally, the dielectric function
represents how the external DC electric field is screened or
enhanced. In particular, the dielectric constant in the material
gets shifted from its vacuum value. We can incorporate this
effect into our model by regarding E(r) in our model as the
actual DC electric field that the electrons in materials actually
feel.

B. Structural distortion

The strong DC electric field can possibly distort the crystal
structure. Still, the E-induced change of the on-site potential
Vj turns out to be dominant, as shown below. The structural
distortion will make the hopping amplitude t j depend on E by
modifying the lattice spacing. We did not include this effect
in our analysis thus far but can immediately include it without
any problem. Namely, we just replace the constant t j by an E-
dependent function t j (E ). If one wishes to predict the precise
E dependence of the hopping amplitude, one needs to model
how the DC electric field distorts the lattice.

Besides, the structural distortion can lower the crystalline
symmetry. The symmetry lowering leads to an important ef-
fect of switching on hoppings between d and p orbitals that
were forbidden by symmetries in the absence of the DC elec-
tric field. Then we need to include d- or p-orbital degeneracy
explicitly into the model Hamiltonian. However, since such
a newly introduced hopping amplitude is proportional to the
DC electric-field strength, the inclusion of the degenerate d or
p orbitals will become important only under extremely strong
DC electric fields. Let us denote the additional hopping ampli-
tude as t ′

j (E ) for j = 0, 1. Note that t ′
j (0) = 0 by definition. It

is straightforward to include t ′ into our results. We can obtain
the correction by t ′

j (E ) to Eqs. (3.8) and (3.11) by replacing
t j in these relations to t ′

j totally or partially. The fourth-order
perturbation expansion shows that this correction to the su-
perexchange coupling is an even order of �|E|/Ud because an
electron in a p orbital hopped to a d orbital must come back
to the same p orbital from the same d orbital in the Mott-
insulating phase. t ′

j (E ) gives corrections of O([t ′
j (E )/Ud ]4) �

O((�|E|/Ud )4) to Eq. (3.8), that is, fourth order about the DC
electric field. On the other hand, t ′

j (E ) gives corrections of
O([t ′

j (E )/Ud ]2) � O((�|E|/Ud )2) to Eq. (3.11). In any case,
the correction is nonlinear about the DC electric field.

As we saw throughout the paper, the strong DC electric
field of O(1) MV/cm is already required to change the su-
perexchange interaction by a few percent. Accordingly, we
need much stronger DC electric field to observe the non-
linear change of the superexchange. Under such situations,
the second- or fourth-order effect will be relevant only for
O(10) MV/cm for inorganic materials and for O(1) MV/cm
for organic ones. There will be a chance in organic materials

to observe the nonlinear field effects including that by the
symmetry-lowering structural distortion. However, it will be
difficult to distinguish the structural distortion effect from
other nonlinear terms in Eqs. (3.8) and (3.11). Therefore, the
inclusion of the structural distortion keeps our result intact
unless the subleading nonlinear field effects are concerned.

Finally, we comment on a possible spontaneous formation
of the electric polarization due to the E-driven structural phase
transition. Such a spontaneous polarization can become large
even if �|E|/Ud � 1. This large polarization can potentially
lead to a large correction to the superexchange coupling. It
will be interesting in the future to investigate such E-driven
phase-transition effects.

C. Spin-orbit coupling

The spin-orbit coupling can dramatically change the spin
Hamiltonian by adding to the spin Hamiltonian anisotropic in-
teractions such as the DM interaction. It needs straightforward
but lengthy calculations to discuss the effects of the spin-orbit
coupling on electric-field controls of magnetism [148]. We
will discuss in a subsequent paper [148] the combination
effect of the spin-orbit coupling and the DC electric field.

D. THz laser pulse

The single-cycle THz laser pulse can be deemed the effec-
tive DC electric field when the relevant timescale of the spin
system is fast enough. We need this assumption of the fast spin
dynamics to guarantee that the quantum spin system quickly
reaches the equilibrium before the pulse laser disappears. The
typical timescale ranges from ∼0.1 ps to ∼1 ns [149–157].
For example, the spin dynamics with the timescale ∼0.1–1
ps is much faster than the single cycle (∼10 ps) of the THz
laser pulse with the 0.1 THz frequency [45–47]. Then we
can regard the single-cycle THz laser pulse as the effective
DC electric field. On the other hand, if we apply the laser
pulse with the 10 THz frequency to the spin system with
the timescale �10 ps, the pulse (∼0.1 ps) disappears much
faster than the equilibration of the spin system. Then the
single-cycle THz laser pulse can be approximated as a delta-
function electric field, E(t ) = E0δ(t ). Even when the spin
dynamics is much slower than the THz laser pulse width, the
electron dynamics can be much faster than the pulse width. In-
deed, the hopping amplitude t ∼ O(1) eV gives the timescale
O(1) fs = O(10−3) ps. Therefore, we can incorporate the THz
laser pulse as an effective DC electric field into our model
even when the pulse width is too short to equilibrate the
spin system. We then notice an interesting possibility. If we
derive the effective spin model, the THz laser pulse turns into
the delta-function potential, δJ (E0)δ(t ), that instantaneously
modifies the exchange interaction at the time t = 0. It is an
interesting direction of future studies to investigate dynamical
effects caused by the instantaneous potential.

To conclude, we emphasize two points. The THz laser
pulse can be deemed the effective DC electric field. The THz
laser pulse can equilibrate the spin system and otherwise
induces the instantaneous modification of the exchange inter-
action, which depends on materials.
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VII. SUMMARY

This paper discussed DC electric-field controls of superex-
change interactions in Mott insulators. We first presented the
generic results (3.8) and (3.11) about the superexchange inter-
action by the fourth-order degenerate perturbation expansion
of the two basic electron models. We considered the antifer-
romagnetic and ferromagnetic superexchange interactions and
obtained their E dependence.

The other part of the main text was devoted to applica-
tions of the generic results to basic geometrically frustrated
quantum spin systems. While the results of Sec. III applies
to various quantum spin systems regardless of the lattice and
the dimensionality, we give our attention to low-dimensional
quantum spin systems in this application part to investi-
gate how DC electric fields applied perpendicular to the
system control the superexchange interactions without inter-
fering with the spatial anisotropy. In contrast to this paper,
the previous paper [42] discussed how to control the “di-
rect superexchange” interaction [41] and introduce the spatial
anistoropy to the system through the DC electric field parallel
to the system. These two theories complement each other.

As the first application, we considered J1–J2 frustrated
quantum spin systems on the square lattice in Sec. IV. We first
demonstrated in the toy model how the DC electric field ad-
justs the parameter J1(E )/J2(E ) that determines the fate of the
ground state. Next, we applied the generic results of Sec. III
to the more realistic model that emulates two compounds
BaCdVO(PO4)2 [49] and AMoOPO4Cl [83]. Combined to
their crystal structures, the DC electric field breaks the in-
version symmetry that introduces the nonequivalence of the
next-nearest-neighbor interactions, J2(E ) ± δJ2(E ) though
the original model exactly has δJ2(0) = 0 at E = 0. An in-
crease of the nonequivalence by δJ2(E ) turns the frustrated
square-lattice quantum antiferromagnet eventually into the
deformed triangular-lattice antiferromagnet, which will offer
a unique experimental method to change the lattice structure
effectively.

We also discussed applications to geometrically frustrated
one-dimensional quantum spin systems, the J1–J2 spin chains.
We assumed that there are two oxygen sites between the two
nearest-neighbor magnetic ion sites, such as the CuO2 chain.
When two oxygen sites feel different electric potentials, the
DC electric field breaks the one-site translation symmetry
down to the two-site one. In other words, the number of spins
per unit cell is doubled. The DC electric field then yields the
bond alternation δJ1(E )

∑
j (−1) jS j · S j+1 while δJ1(0) = 0.

The appearance of the bond alternation drives the quantum
critical phase of the spin chain into a unique gapped quantum
phase with a dimerization, which is the first proposal of the
DC electric-field-induced dimerization.

The E-induced dimer phase is the singlet-dimer one for
J1 > 0 or the Haldane-dimer (triplet-dimer) one for J1 < 0.
The E dependence of the excitation gap will be experimen-
tally visible in, for example, the ESR, the inelastic neutron
scattering, and the Raman scattering experiments, which give
evidence of the growth of the E -induced dimer orders.

We also briefly investigated other major DC electric-field
effects that were not incorporated in our analyses. We hope

that this paper stimulates further theoretical and experimental
studies on electric-field controls of quantum magnetism.
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APPENDIX: FOURTH-ORDER DEGENERATE
PERTURBATIONS

This Appendix is devoted to derivations of the generic
formulas (3.8) and (3.11) of the superexchange coupling.

1. Antiferromagnetic superexchange interaction

There are two kinds of processes that have nontrivial con-
tributions to the fourth-order term Heff

4 of Eq. (3.5). Figure 18
depicts two representatives of the fourth-order perturbation
processes. While the p orbitals are temporally empty in the
process (a), one of the p orbitals are always filled in the
process (b). Every fourth-order process fits into either the pro-
cess (a) or the process (b) with minor differences of the spin
orientation. All we have to do is to complete the calculations
of the processes (a) and (b) with generic spin orientations.

Let us denote contributions of those processes as

Heff
4 = Heff;a

4 + Heff;b
4 . (A1)

FIG. 18. Two typical fourth-order processes, (a) and (b), of the
perturbative expansion for the model (2.2). Filled (empty) arrows
represent electron spins at d (p, respectively) orbitals in the initial
state (a0). (a0) and (a4) are initial and final states of the process
(a) in Eq. (3.5), respectively. (a1), (a2), (a3) are intermediate ones.
Applying the perturbation Ht to the state of (an), we obtain the state
of [a(n + 1)]. The same rules apply to the process (b).
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The contribution from the process (a) exemplified by Fig. 18(a) is the following:

Heff;a
4 = −P

(
t∗
0 t∗

1

�1 + Ud − Up

∑
σ ′

p†
1
2 ,−σ ′d1,−σ ′ p†

1
2 ,σ ′d0,σ ′ + t∗

1 t∗
0

�0 + Ud − Up

∑
σ ′

p†
1
2 ,−σ ′d0,−σ ′ p†

1
2 ,σ ′d1,σ ′

)

×
(

t1t0
(�0 + �1 + 2Ud − Up)(�0 + Ud − Up)

∑
σ

d†
1,−σ p 1

2 ,−σ d†
0,σ p 1

2 ,σ

+ t0t1
(�0 + �1 + 2Ud − Up)(�1 + Ud − Up)

∑
σ

d†
0,−σ p 1

2 ,−σ d†
1,σ p 1

2 ,σ

)
P. (A2)

Since the p orbitals are fully occupied within the subspace spanned by the unperturbed ground state, the projection P onto this
subspace enables us to remove operators of the p orbitals:

Pp†
1
2 ,−σ ′ p

†
1
2 ,σ ′ p 1

2 ,−σ p 1
2 ,σ P = δσ ′,σ − δσ ′,−σ . (A3)

In addition, some products of operators at d orbitals are rewritten in terms of the S = 1/2 spin operators S j =
1
2

∑
σ,σ ′ d†

j,σ σσσ ′
d j,σ ′ . The contribution (A2) of the process (a) is thus reduced to a simple form,

Heff;a
4 = P

[
2|t0t1|2

(
1

�0 + Ud − Up
+ 1

�1 + Ud − Up

)2 1

�0 + �1 + 2Ud − Up
S0 · S1 + const

]
P. (A4)

We can obtain Heff;b
4 similarly:

Heff;b
4 = −P

(
t∗
0 t1

�0 + Ud − Up

∑
σ ′

p†
1
2 ,σ ′d0,σ ′d†

1,σ ′ p 1
2 ,σ ′

t∗
1 t0

(�1 − �0 + Ud )(�0 + Ud − Up)

∑
σ

p†
1
2 ,σ

d1,σ d†
0,σ p 1

2 ,σ

+ t∗
t t0

�1 + Ud − Up

∑
σ ′

p†
1
2 ,σ ′d1,σ ′d†

0,σ ′ p 1
2 ,σ ′

t∗
0 t1

(�0 − �1 + Ud )(�1 + Ud − Up)

∑
σ

p†
1
2 ,σ

d0,σ d†
1,σ p 1

2 ,σ

)
P

= P

[
2|t0t1|2

(
1

(�0 + Ud − Up)2

1

�0 − �1 + Ud
+ 1

(�1 + Ud − Up)2

1

�1 − �0 + Ud

)
S0 · S1 + const

]
P. (A5)

Combining Eqs. (A4) and (A5), we reach the final result of
the antiferromagnetic superexchange coupling (3.8), which is
consistent with the special case of �0 = �1 and t0 = t1 ∈ R
[52].

2. Ferromagnetic superexchange interaction

The ferromagnetic superexchange coupling (3.11) is sim-
ilarly derived. Two processes contribute to the fourth-order
term (3.5) as shown in Fig. 19. The process (a) of Fig. 19
exchanges spins at j = 0 and j = 1 sites. On the other hand,
the process (b) of Fig. 19 does not. Nevertheless, the latter
must be taken into account because it gives rise to a term Sz

0Sz
1,

as we will see soon.
A major difference of the present model (2.5) from the

previously dealt one (2.2) comes from the Coulomb exchange
(the ferromagnetic direct exchange), JH, that reconstructs the
unperturbed eigenstates of the degenerate p orbitals only
when they are half occupied. We assumed the presence of two
degenerate p orbitals px and py. Without the hopping terms,
the eigenstates are given by a product state |φd〉 |φp〉, where
|φμ〉 denotes the eigenstate at the μ = d, p orbital. |φd〉 is
further split into a product of local states at two d-orbital sites.
The same applies to |φp〉 except for the case mentioned above.
When the p orbitals are half occupied, their eigenstates are
reconstructed as the singlet |φp〉 = (|↑x↓y〉 − |↓x↑y〉)/

√
2 and

triplets, |φp〉 = |↑x↓y〉, (|↑x↓y〉 + |↓x↑y〉)/
√

2, and |↓x↓y〉.
Here |σxσy〉 denotes the eigenstate of the p orbitals. Note that

the triplets have the eigenenergy lower than the singlet by
2JH (>0).

Paying attention to the reconstruction of p orbitals, we can
calculate the fourth-order term (3.5). Let us inherit the nota-
tion of Eq. (A1). Here the processes (a) and (b) are replaced

FIG. 19. Two typical fourth-order processes, (a) and (b), of
the perturbative expansion for the model (2.5), similarly drawn to
Fig. 18. The red rounded square represents a reconstruction of the
p-orbital eigenstates by the Coulomb exchange JH [cf. Fig. 4(b)].
The p-orbital states surrounded by this curve is either symmetrized
or antisymmetrized. The former corresponds to one of the triplet
states and the latter to the singlet state. This reconstruction permits
hoppings, for instance, from the j = 0 site to the y orbital at the
j = 1/2 site, that were forbidden for JH = 0.
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by those of Fig. 19. The process (a) of Fig. 19 leads to

Heff;a
4 = −P

(
t∗
1 t∗

0

�1 + Ud − Up

∑
σ ′

p†
1
2 ,−σ ′,y

d1,−σ ′ p†
1
2 ,σ ′,x

d0,σ ′ + t∗
0 t∗

1

�0 + Ud − Up

∑
σ ′

p†
1
2 ,−σ ′,x

d0,−σ ′ p†
1
2 ,σ ′,y

d1,σ ′

)

×
[

1

2

(
t1

�0 + �1 + 2(Ud − Up) + JH
+ t1

�0 + �1 + 2(Ud − Up) − JH

)
t0

�0 + Ud − Up

∑
σ

d†
1,−σ p 1

2 ,−σ,yd†
0,σ p 1

2 ,σ

+ 1

2

(
t0

�0 + �1 + 2(Ud − Up) + JH
+ t0

�0 + �1 + 2(Ud − Up) − JH

)
t1

�1 + Ud − Up

∑
σ

d†
0,σ p 1

2 ,−σ,xd†
1,σ p 1

2 ,σ,y

+ 1

2

(
t1

�0 + �1 + 2(Ud − Up) + JH
− t1

�0 + �1 + 2(Ud − Up) − JH

)
t0

�0 + Ud − Up

∑
σ

d†
1,−σ p 1

2 ,σ,yd†
0,σ p 1

2 ,−σ,x

+ 1

2

(
t0

�0 + �1 + 2(Ud − Up) + JH
− t0

�0 + �1 + 2(Ud − Up) − JH

)
t1

�1 + Ud − Up

∑
σ

d†
0,−σ p 1

2 ,σ,xd†
1,σ p 1

2 ,−σ,y

]
P.

(A6)

The last two terms represent spin-dependent hoppings that appear as a direct consequence of nonzero JH. They vanish in the
JH → 0 limit. Discarding the p operators and translating the d operators into spin operators with the aid of the projection P, we
obtain

Heff;a
4 = P

[
|t0t1|2

(
1

�0 + Ud − Up
+ 1

�1 + Ud − Up

)2
�0 + �1 + 2(Ud − Up)

[�0 + �1 + 2(Ud − Up)]2 − JH
2

(
1 + 2Sz

0Sz
1

)

− |t0t1|2
(

1

�0 + Ud − Up
+ 1

�1 + Ud − Up

)2 JH

[�0 + �1 + 2(Ud − Up)]2 − JH
2 (S+

0 S−
1 + S−

0 S+
1 )

]
P

= P

[
− 2|t0t1|2

(
1

�0 + Ud − Up
+ 1

�1 + Ud − Up

)2 JH

[�0 + �1 + 2(Ud − Up)]2 − JH
2 S0 · S1

+ 2|t0t1|2
(

1

�0 + Ud − Up
+ 1

�1 + Ud − Up

)2 1

�0 + �1 + 2(Ud − Up) − JH
Sz

0Sz
1 + const

]
P. (A7)

Equation (A7) turns out to break the SU(2) spin-rotation symmetry that the model possesses. The process (b) yields a
compensating Sz

0Sz
1 term and restores the SU(2) spin-rotation symmetry. The process (b) leads to

Heff;b
4 = −P

(
t∗
1 t∗

0

�1 + Ud − Up

∑
σ ′

p†
1
2 ,σ ′,y

d1,σ ′ p†
1
2 ,σ ′,x

d0,σ ′ + t∗
0 t∗

1

�0 + Ud − Up

∑
σ ′

p†
1
2 ,σ ′,x

d0,σ ′ p†
1
2 ,σ ′,y

d1,σ ′

)

×
(

t1
�0 + �1 + 2(Ud − Up) − JH

t0
�0 + Ud − Up

∑
σ

d†
1,σ p 1

2 ,σ,yd†
0,σ p 1

2 ,σ,x

+ t0
�0 + �1 + 2(Ud − Up) − JH

t1
�1 + Ud − Up

∑
σ

d†
0,σ p 1

2 ,σ,xd†
1,σ p 1

2 ,σ,y

)
P

= P

[
− 2|t0t1|2

(
1

�0 + Ud − Up
+ 1

�1 + Ud − Up

)2 1

�0 + �1 + 2(Ud − Up) − JH
Sz

0Sz
1 + const

]
P. (A8)

The last line of Eq. (A8) indeed cancels the anisotropic term of Eq. (A7). We thus end up with the isotropic ferromagnetic
exchange coupling (3.11).
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