
PHYSICAL REVIEW RESEARCH 3, 033058 (2021)

Noise feedback in an electronic circuit
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Electronic circuits combine components with intrinsic current/voltage characteristics assumed independent of
the circuit. This breaks down for nanostructures at ultralow temperature, a phenomenon usually believed to be of
quantum nature. We report similar phenomena at room temperature in an avalanche diode, whose characteristics
strongly depend on the value of a resistor connected in series with itself. We present a theory linking transport
and noise to explain our experimental results. The key ingredient is the feedback of the noise of the component
on itself.
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I. INTRODUCTION

As the size of a tunnel junction becomes smaller and
smaller, its electrostatic capacitance C decreases and the en-
ergy EC = e2/C to add one single electron becomes more and
more relevant. When the energy kBT associated with ther-
mal fluctuations becomes smaller than EC , the charge in the
conductor may freeze leading to the suppression of electronic
transport. This phenomenon, called Coulomb blockade, has
been extensively studied in submicron-size tunnel junctions
placed at very low temperature [1], typically below ∼1 K, but
is also observed in nanoscale islands at room temperature [2].
The total suppression of transport may occur in systems with
islands coupled through tunnel junctions where the charge
on the island cannot change by less than one electron [3–5],
while a partial suppression of transport, usually referred to
as dynamical Coulomb blockade (DCB), is observed in the
absence of a conducting island [6]. Since DCB is observed at
very low temperature and is associated with the tunneling of
single charges, it is usually thought of as a quantum effect.
Indeed, DCB is well accounted for by the so-called P(E )
theory [7,8], which is based on a quantum treatment of the
tunnel junction and the circuit it is connected to, i.e., its
electromagnetic environment.

Interestingly, when the size of a conductor decreases until
it becomes less than electronic mean free path or the electron-
phonon interaction length, it becomes more and more possible
for the electrons to cross it without exchanging energy, i.e.,
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transport becomes elastic. This leads to the appearance of
shot noise: current fluctuations become voltage dependent
[9]. Shot noise in mesoscopic conductors is ubiquitous: it
comes from the partitioning of the electrons, which are some-
times reflected, sometimes transmitted by the sample, and
only channels that are perfectly transparent are devoid of it.
Partition noise is described by a binomial process, and thus
is not Gaussian, i.e., it has higher order cumulants beyond its
variance. The study of such cumulants has revealed that, in a
way similar to DCB, the electromagnetic environment of the
sample strongly modifies the cumulants of voltage and current
fluctuations [10,11].

The link between DCB and environmental effects can be
understood in terms of feedback: a current fluctuation i(t )
leads to a voltage fluctuation v(t ) across the sample because of
the finite impedance of its environment. Since noise is voltage
dependent, v(t ) will modify the probability of subsequent
current fluctuations. Links between DCB and shot noise have
been explored in the framework of the P(E ) theory [11–19],
while another approach based on the noise susceptibility has
been proposed [20,21]. A too naïve but elegant and instructive
approach consists in describing electron transport in the sta-
tionary state by the probability P0(i;V ) for the instantaneous
current to be i when the sample is biased at voltage V . In the
presence of an external resistor r, the voltage across the sam-
ple is v(t ) = V − ri(t ) and the new probability distribution
for the current P(i) is given by

P(i) � P0(i;V − ri) � P0(i;V ) − ri
∂P0

∂V
, (1)

which immediately leads to

I = 〈i〉 = 〈i〉0 − r
∂〈i2〉0

∂V
, (2)

i.e., a correction to the dc current that involves the derivative
of noise with respect to voltage (which should be replaced
by the noise susceptibility in a more accurate treatment of the
feedback). Furthermore, as sketched in [20], Eq. (1) also leads
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FIG. 1. Experimental setup. TIA represents a transimpedance
amplifier.

to the environmental corrections of higher-order cumulants of
current fluctuations.

From this description of environmental effects it appears
that only one ingredient matters for the I (V ) characteristic of
a component to be affected by what it is connected to: the
voltage dependence of the noise it generates. All the elec-
tronics industry is based on the idea that the behavior of a
component is not affected by the rest of the circuit so that one
can calculate the behavior of the circuit knowing that of the
individual components. This is in principle not correct: on the
contrary, there is no intrinsic behavior of a component; it al-
ways depends on the full circuit. In this article we demonstrate
the existence of noise feedback effects analogous to DCB in a
circuit at room temperature, an avalanche diode in series with
a resistor, and provide the theoretical framework to predict its
behavior.

II. PRINCIPLE OF THE EXPERIMENT

Our experimental setup is sketched in Fig. 1. We use a
commercially available avalanche diode [22] usually operated
for its noise properties. The avalanche occurs at ≈ −8.5V so
we will focus our study to voltages nearby. One end of the
diode is connected to a voltage source Vs, which is shorted
by a 10 nF surface-mount ceramic capacitor to ground to
ensure a low impedance of the voltage source even at high
frequency. The other end of the diode is connected to a thin
film surface-mount resistor r, which is in turn connected
to ground through a transimpedance amplifier (TIA). This
amplifier plays the role of an ammeter with a bandwidth of
1MHz: it outputs a voltage proportional to the instantaneous
current i(t ) in the circuit. Then, we use a dc voltmeter to
deduce the average current I = 〈i〉, a spectrum analyzer to
measure the noise spectral density of current fluctuations as
a function of frequency, and an ac voltmeter to obtain the total
variance of current fluctuations S = 〈i2(t )〉 − 〈i〉2 integrated
in the bandwidth 0.1 Hz–300 kHz. Examples of spectra are
given in the inset of Fig. 2. One clearly observes that current
fluctuations are well within the bandwidth of the ac voltmeter,
so that S can indeed be considered the total noise emitted
by the sample. We have also checked that integrating spec-
tra over frequency coincides with the value given by the ac
voltmeter.

FIG. 2. Current-voltage characteristics I (V ) of the avalanche
diode for different values of the environmental resistor r. Inset:
Spectra of the current noise of the circuit. Symbols on the I (V ) curves
represent the voltage point at which the spectra were taken for each
resistor. The vertical dashed line at 300 kHz is the upper frequency
for the integrated noise measurement S.

III. EXPERIMENTAL RESULTS

In Fig. 2, we show different current-voltage characteristics
I (V ) of the avalanche diode for increasing values of the en-
vironmental resistor r between 0 and 1 k� where the voltage
is always swept down starting from −8.45V . We note that
even at r = 0, there is a residual impedance seen by the diode
of ≈5 �, which consists of the source output and amplifier
input impedances. Here V is the voltage across the diode itself,
which is calculated using V = Vs − rI (Vs is imposed by the
source and I is measured). In the absence of environmental
effects, all the curves should be identical, given by the in-
trinsic characteristic of the diode. We clearly see that it is
far from being the case. For r = 0, the avalanche occurs at
V = −8.462 V and I is a monotonous function of V . Starting
from r � 25 � the I (V ) curve is no longer single-valued at
low current, i.e., at the onset of the avalanche. For r = 1 k�

the avalanche threshold is pushed down to −8.487 V, the I (V )
characteristic has a large swing and is not single-valued over a
broad voltage range. These curves are reminiscent of the V (I )
that are predicted for single-electron transistor oscillations
(SETOs) [23–27]. However, we do not observe peaks in the
spectra revealing the existence of similar oscillations. Since
it is mathematically difficult to deal with non-single-valued
functions, in the following data analysis we will consider the
voltage vs current V (I ) and noise vs current S(I ) characteris-
tics, which are single-valued.

Figure 3(a) shows V (I ) up to |I| = 1.5 mA using different
scales for high and low currents in order to clearly see the
features of both regimes. At high current, all the curves are
parallel, but with a clear shift as r is increased. This feature is
reminiscent of the shift seen on V (I ) curves of a tunnel junc-
tion with a resistive environment [7] known as the Coulomb
gap.

To showcase the link between the current dependence of
the noise and environmental effects on the transport properties
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FIG. 3. (a) Voltage V across the diode as a function of the current
I for different values of the environmental resistor r. Left panel
corresponds to voltage between 3 mV and 13 mV while right panel
corresponds to voltage between −20 mV and 15 mV. (b) Integrated
noise spectral density of the diode as a function of the current I for
different values of the environmental resistor r.

of the avalanche diode, we present S(I ) on Fig. 3(b). As r
is increased, nonlinearities in the V (I ) become progressively
more apparent around −0.1 mA, −0.6 mA, and −0.9 mA,
where the S(I ) also has its strongest current dependance.
However, the value of r does not simply act as a scaling factor.
Indeed, the current dependance of S(I ) close to the avalanche
(V ∼ −0.1 mA) is strongest at r = 23 �, even though the
nonlinearities of V (I ) in the avalanche keep increasing
with r.

In fact, the nonlinearity of S(I ) around the avalanche seems
to be maximal at the exact value of r where V (I ) becomes
multivalued.

Ultimately, even though Eqs. (1) and (2) provide a good
qualitative picture of the feedback process at cause here, a
better model is needed to establish a quantitative link between
S(I ) and V (I ).

IV. THEORETICAL MODEL

We have developed a theoretical approach inspired by
functional renormalization group theory [28–30]. Instead of
trying to calculate the characteristics of the device in the
presence of an arbitrary external resistor r [current I (V, r)
and noise S(V, r)], we suppose we know them for a given r
and calculate the effect of an additional infinitesimal resistor
dr (see Fig. 6 from Appendix B). We then obtain differential
equations with respect to r. We model the device by a source
of gaussian delta-correlated noise whose variance is voltage-
dependent, so that the instantaneous current i(t ) in the circuit
is given by

i(t ) = I (v(t ), r) + ξ (t )
√

S(v(t ), r), (3)

with ξ (t ) a gaussian random variable noise of variance 1 and
v(t ) the instantaneous voltage across the device including the
resistance r, given by v(t ) = Vs − i(t )dr. The same i(t ) can
be seen as that generated by a device that includes a resistance
r + dr. Thus it also obeys

i(t ) = I (Vs, r + dr) + ξ (t )
√

S(Vs, r + dr). (4)

Taking the time average of i(t ) and expanding S(v(t ), r) to
first order in dr leads to Eq. (2) with an extra factor 1/2. This
factor was lacking in the same way that a wrong factor appears
in the case of a noiseless resistance voltage biased through a
resistor as shown in Appendix A. Taking the variance of i(t )
gives the differential equation of S. Higher order cumulants
arise from the feedback mechanism induced by the external
resistor, but we neglect them and suppose that the device
generates Gaussian noise even in the presence of the external
resistor. We then can reexpress the equations in terms of cur-
rent instead of voltage, and introduce the voltage V across the
bare device V = Vs − rI (V, r). We obtain our main theoretical
result

∂V (I, r)

∂r
= 1

2

∂S(I, r)

∂I
and (5)

∂S(I, r)

∂r
= 1

R + r

[
−2S(I, r) + 1

2

(
∂S(I, r)

∂I

)2]
, (6)

with R(I, r) = ∂V/∂I the differential resistance of the device.
For the full derivation of these equations, refer to Appendix B.
Note that V is the bias on the device (here the avalanche diode)
while S is the current noise in the circuit, which is the quantity
that we measure. It is related to the intrinsic noise of the device
Sint, which cannot be measured in the presence of the external
resistor, by S = Sint ( R

R+r )2.
To clarify the meaning of Eqs. (5) and (6), it is helpful

to look at a simple examples. First, Eq. (5) implies that the
V (I ) characteristics of the device is not affected by its envi-
ronment if and only if its noise is current-independent. Let
us consider a resistor R in parallel with a capacitor C (in
order to keep the bandwidth finite), which generates thermal
noise S0 = 4kBT/(R2C). Integrating Eq. (6) with the condi-
tion S(I, r = 0) = S0 leads to S = S0( R

R+r )2, which simply
means that the noise generated by R is split between r and R.
We now turn to the case of a tunnel junction at zero temper-
ature, which obeys: V (I, r = 0) = RI , S(I, r = 0) = 2eB|I|
with B = 1/(RC) the bandwidth of the shot noise emitted
by the junction of geometric capacitance C. By integrating
Eqs. (5) and (6) we find V (I, r) = RI + �(r)sgn(I) with
sgn(I) for I > 0 and sgn(I ) = −1 for I < 0. A disconti-
nuity appears at I = 0 in the V (I ) characteristics: there is
no current at low voltage |V | < �. This corresponds to the
existence of a Coulomb gap � = (e/C)r/(r + R), which
tends to the usual result e/C when r → ∞ [7]. For the
noise, by integrating Eq. (5) we find the intrinsic noise of
the device Sint = S( R+r

R )2 = 2eB|I| + S0(r). We recover the
usual shot noise of a tunnel junction with a Fano factor
F = 1, in agreement with quantum theories taken at zero
frequency [31,32].

Despite its simplicity, our theoretical approach clearly cap-
tures the physics of the usual dynamical Coulomb blockade
observed in mesoscopic conductors at low temperature. It may
give insights into regimes beyond the usual P(E ) theory and
can be applied to any system regardless of its microscopic
description. It has, however, obvious limitations. In particular,
the frequency dependence of the noise, impedance, and noise
susceptibility [33] are all disregarded. Taking into account
such a frequency dependence should be possible but is beyond
the scope of the present paper.
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FIG. 4. Experimental validation of Eq. (5) (top row) and Eq. (6) (bottom row) for different values of resistances. Blue lines and orange
dots respectively represent the left-hand side and right-hand side of both equations. The values of (r1, r2) are as follows: (a) (2 �, 5 �),
(b) (10 �, 15 �), (c) (51 �, 99 �), (d) (10 �, 15 �), (e) (51 �, 99 �), and (f) (1006 �, 1020 �). The experimental data are multiplied by a
mutiplicative factor in order to keep the y axis constant along each row.

In the particular case of the avalanche diode, the environ-
mental effect we observe can be understood as follows: when
an avalanche occurs, a strong current runs through the diode
and in the external resistor. This results in a reduction of the
voltage across the diode, which tends to stop the avalanche.
This phenomenon is well known and used in practical appli-
cations of avalanche diodes, such as photon detectors [34].
The addition of an external resistor avoids burning the detector
at the expanse of imposing a dead time in the detection. Our
result applies to the case of multiple overlapping avalanches
that are treated as broadband noise. This is valid not too close
to the avalanche threshold.

V. VALIDATION

To validate our theory, we have measured V (I, r) and
S(I, r) as described above and checked that Eqs. (5) and (6)
reproduce the experimental data. Derivatives with respect to
current appearing in the equations can be accurately evalu-
ated thanks to the many values of voltage/current measured.
Changing the resistances is much more time consuming, so
the derivatives with respect to r are replaced experimentally
by finite differences. For data measured at two resistances r1

and r2, Eq. (5) is replaced by

V (I, r1) − V (I, r2)

r2 − r1
= 1

2

∂
[ S(I,r1 )+S(I,r2 )

2

]
∂I

.

The top row of Fig. 4 shows the experimental verification
of Eq. (5), i.e., the effect of the external resistor on the
V (I ) characteristics, for (r1, r2) = (2 �, 5 �), (10 �, 15 �),
and (51 �, 99 �). The bottom row of Fig. 4 shows the exper-
imental verification of Eq. (6), i.e., the effect of the external
resistor on the noise, for (r1, r2) = (10 �, 15 �), (51 �, 99 �)

as well as (1006 �, 1020 �). Clearly, our theoretical predic-
tions of Eqs. (5) and (6) are in good agreement with our
experimental data over a large range of resistances (from a
few Ohms to a kilo-Ohm) and for signal amplitudes spanning
more than 5 orders of magnitude. All the oscillations present
in the current dependence of the noise lead to oscillations
in the voltage exactly at the position we predict, and the
overall amplitude of the data is well accounted for. Precise
prediction of the amplitude of the peaks is lacking, but we
think this is due to the difficulty of measuring derivatives
with respect to the environmental resistance r. Indeed, the
agreement between our theory and experimental data is vir-
tually perfect for (r1, r2) = (1006 �, 1020 �) in Fig. 4(f),
where the finite difference correctly approximates a deriva-
tive: (r2 − r1) 	 r1, r2.

VI. CONCLUSION

Electronic circuits are built by assembling components
assuming these have a well defined, intrinsic I(V) character-
istics. We have shown experimentally that this is incorrect
as soon as components exhibit a voltage-dependent noise.
We have derived two equations which dictate how a device’s
intrinsic V (I ) and S(I ) characteristics change when it is in-
serted in a resistive electromagnetic environment. The only
necessary ingredient is for the device to have current- or
voltage-dependent noise. The origin of this dependence can
be quantum, as in the case of shot noise and DCB, or not,
as shown here in the avalanche diode. We have demonstrated
experimentally the relevance of our theory by showing how
the intrinsic characteristics of an avalanche diode dramatically
depends on its environmental impedance. They show that the
idea that components in a circuit behave according to their
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individual intrinsic I (V ) characteristics is erroneous. On the
contrary, electronic components interact through their noise,
which may lead to strong deviations of their characteristics, as
we have observed. Our results are very general and do apply
to a large class of devices. Since almost all devices exhibit
voltage-dependent noise, the effects we have described should
be ubiquitous in electronic circuits. While we have, for the
sake of simplicity, disregarded any frequency dependence (of
the impedances, the noise and noise susceptibility), this could
be restored with some effort.
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APPENDIX A: ERRONEOUSNESS OF THE FIRST ORDER
CORRECTIONS IN TOY MODELS

For the circuit shown in Fig. 5, it is tempting to express
the noise feedback effects using the probability distribution of
current P(i;Vs) through

P(i;Vs) = P0(i;Vs − ri). (A1)

Let us consider the case of a resistor R with no fluctuations.
We obtain

P0(i;Vs) = δ(i − Vs/R). (A2)

The current in the presence of r is then given by

〈i〉 =
∫

iP(i;Vs)di

=
∫

P0(i;Vs − ri)di

=
∫

iδ

(
i − 1

R
(Vs − ri)

)
di

=
∫

x

1 + r/R

dx

1 + r/R
δ(x − Vs/R),

where x = i(1 + r/R), so that

〈i〉 = Vs/R

(1 + r/R)2

� Vs

R
(1 − 2r/R). (A3)

FIG. 5. Model of a device under test (DUT) without fluctuations.

This result is wrong by a factor of 1/2 compared to the cor-
rect result, Vs

R (1 − r/R), obtained using basic circuit theory.
This offset is the same as the one obtained in Eq. (2) in the
main text. This is due to this method’s rough use of i as
no longer strictly speaking the stochastic variable defined in
P0(i;Vs) (which depends on the constant parameter Vs), but
as a variable in the usual sense, which is not mathematically
correct. However, this faux-pas enables rapid understanding
of the underlying physics of the phenomena at play.

APPENDIX B: RENORMALIZATION METHOD

The goal of the model developed herein is to calculate the
effect of an infinitesimal change of the environmental resistor
(dr) on the characteristics of the device. This technique leads
to Eqs. (5) and (6) in the main text.

This Appendix expands the derivation of those equations
and clarifies the limits of the calculation. See Ref. [35] for the
full derivations.

1. Toy-model: no fluctuations

As a first step we suppose that neither the external resis-
tor nor the device we consider exhibit noise, so current and
voltage are totally time-independent. We note I0(Vs) when it
is completely isolated, i.e., its environmental impedance is
effectively zero, and polarized by a perfect voltage source
Vs. When this device is in series with a resistor, it is instead
characterized by I (Vs, r), with I (Vs, 0) = I0(Vs). In the exper-
iments shown in the main text, this device is an avalanche
diode, but it could be anything.

We now define the voltage v as the voltage across the
device and the resistor (see Fig. 6) and look at the effects of
an increase in the value of the resistor by (dr).

We have

v = Vs − I (v, r)dr , (B1)

I (v, r) = I (Vs, r + dr), (B2)

so that a Taylor series expansion leads to

I (v, r) = I (Vs, r) − drI (v, r)

(
∂Vs

∂v

∂I (v, r)

∂Vs

)∣∣∣∣
v=Vs

+ O(dr2).

(B3)

FIG. 6. Model of a device under test (DUT) without fluctuations
considering a change dr in its environmental impedance.
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FIG. 7. Model of a device under test (DUT) with fluctuations.

with ∂Vs
∂v

= 1 + ∂I (v,r)
∂v

dr. Then, taking the limit dr → 0 with
the fact that I (v, r) = I (Vs, r + dr) leads to

lim
dr→0

I (Vs, r + dr) − I (Vs, r)

dr
= lim

dr→0
−I (v, r)

∂I (v, r)

∂Vs

∣∣∣∣
v=Vs

⇒ ∂I (Vs, r)

∂r
= −I (Vs, r)

∂I (Vs, r)

∂Vs
, (B4)

This equation is indeed valid for a simple resistor I0 =
Vs/R0, where both sides are equal to −Vs/R2. This result can
also be rewritten as ∂I

∂r = − 1
2

∂I2

∂Vs
, which, as mentioned before,

is a factor 1/2 off from toy-model predictions in Eq. (2) from
the main text.

2. Taking into account voltage fluctuations

In a real device, voltage fluctuations play a role in the
transport mechanisms. Let us now consider the effect of such
fluctuations on our calculation.

Suppose that the device exhibits current noise 〈δI0(Vs)2〉 =
S0(Vs), while neglecting fluctuations generated by the external
resistor (see Fig. 7). The instantaneous current in the circuit

now becomes time-dependent,

i(t,Vs, r) = I (Vs, r) + f (Vs, r)ε(t ), (B5)

with 〈i(t,Vs, r)〉 = I (Vs, r) and δi(t,Vs, r) = f (Vs, r)ε(t ),
ε(t ) being a random variable. These are linked to the noise
of the circuit by S(Vs, r) = f (Vs, r)2〈ε(t )2〉. The same calcu-
lations as in the noiseless case lead to

∂i(t,Vs, r)

∂r
= −i(t,Vs, r)

∂i(t,Vs, r)

∂Vs
, (B6)

which is the same equation for instantaneous current as in the
noiseless case [Eq. (B4)].

However, the mean current is given by

〈i(t,Vs, r + dr)〉 = I (Vs, r + dr)

= I (Vs, r) − I (Vs, r)
∂I (Vs, r)

∂Vs
dr

−
〈

f (Vs, r)
∂ f (Vs, r)

∂Vs
drε(t )2

〉
+ O(dr2)

⇒ ∂I (Vs, r)

∂r
= −I (Vs, r)

∂I (Vs, r)

∂Vs
− 1

2

∂S(Vs, r)

∂Vs
, (B7)

where an additional term due to fluctuations is now apparent.
It is also possible to calculate an equivalent equation for

the noise

δi(t,Vs, r + dr)

= i(t,Vs, r + dr) − 〈i(t,Vs, r + dr)〉
= f (Vs, r)ε(t )

−
[
∂ f (Vs, r)

∂Vs
I (Vs, r)ε(t ) + ∂I (Vs, r)

∂Vs
f (Vs, r)ε(t )

+ f (Vs, r)
∂ f (Vs, r)

∂Vs
(ε2(t ) − 1)

]
dr. (B8)

Thus,

S(Vs, r + dr) = 〈δi(t,Vs, r + dr)2〉

= 〈 f (Vs, r)2ε(t )2〉 −
〈[

2 f (Vs, r)
∂ f (Vs, r)

∂Vs
I (Vs, r)ε(t )2R + 2 f (Vs, r)2 ∂I (Vs, r)

∂Vs
ε(t )2

+ f (Vs, r)2 ∂ f (Vs, r)

∂Vs
(ε3(t ) − ε(t ))

]〉
dr + O(dr2)

= S(Vs, r) − I (Vs, r)
∂S(Vs, r)

∂Vs
dr − 2S(Vs, r)

∂I (Vs, r)

∂Vs
dr + O(dr2)

⇒ ∂S(Vs, r)

∂r
= −2S(Vs, r)

∂I (Vs, r)

∂Vs
− I

∂S(Vs, r)

∂Vs
. (B9)

It is noteworthy to mention that the random variable ε(t ) has
to be gaussian for this result to be valid, otherwise the term
∝ε(t )3 would need to be taken into account, although the
magnitudes of corrections from higher cumulants are usually
negligible.

At this point, all characteristics are still dependent on the
voltage of the source Vs. We now define voltage V as the
voltage across the device itself, and recalculate the equations

above in terms of this quantity. We then obtain

∂I (V, r)

∂r

∣∣∣∣
V

= −1

2

∂S(V, r)

∂V

∣∣∣∣
r

, (B10)

∂S(V, r)

∂r

∣∣∣∣
V

=−2S
G

1 + rG
− 1

2

r

1 + rG

(
∂S(V, r)

∂V

∣∣∣∣
r

)2

, (B11)

with G = ∂I
∂V the conductance of the device itself.
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APPENDIX C: CHANGE OF VARIABLES
BETWEEN I AND V

Experimentally, it is usually much easier to bias a device
using a current rather than a voltage. To correctly assess our
theoretical model, a variable change is needed. Using two
properties of our system,

∂S

∂Vs

∣∣∣∣
r

= ∂S

∂I

∣∣∣∣
r

∂I

∂Vs

∣∣∣∣
r

(C1)

and

∂S

∂r

∣∣∣∣
Vs

= ∂S

∂r

∣∣∣∣
I

+ ∂S

∂I

∣∣∣∣
r

∂I

∂r

∣∣∣∣
Vs

= ∂S

∂r

∣∣∣∣
I

− ∂S

∂I

∣∣∣∣
r

∂Vs

∂r

∣∣∣∣
I

∂I

∂Vs

∣∣∣∣
r

,

(C2)

and after a tedious but straightforward calculation, we arrive
at Eqs. (5) and (6) of the main text

∂V (I, r)

∂r

∣∣∣∣
I

= 1

2

∂S(I, r)

∂I

∣∣∣∣
r

, (C3)

(R + r)
∂S(I, r)

∂r

∣∣∣∣
I

= −2S + 1

2

(
∂S(I, r)

∂I

∣∣∣∣
r

)2

, (C4)

with R = ∂V
∂I |r the resistance of the device.
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