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Double degeneracy associated with hidden symmetries in the asymmetric two-photon Rabi model
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In this paper, we uncover the elusive level crossings in a subspace of the asymmetric two-photon quantum Rabi
model (tpQRM) when the bias parameter of qubit is an even multiple of the renormalized cavity frequency. Due
to the absence of any explicit symmetry in the subspace, this double degeneracy at the crossing points implies
the existence of the hidden symmetry. It is found that the number of the doubly degenerate crossing points in
the asymmetric tpQRM is comparable to that in asymmetric one-photon QRM in terms of the same order of
the constrained conditions. The bias parameter required for the occurrence of level crossings in the asymmetric
tpQRM is characteristically different from that at a multiple of the cavity frequency in the asymmetric one-photon
QRM, suggesting the different hidden symmetries in the two asymmetric QRMs.
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I. INTRODUCTION

The simplest interaction between a two-level system
(qubit) and a single-mode bosonic cavity (oscillator) was de-
scribed by the quantum Rabi model (QRM) [1,2], which is,
thus, a fundamental textbook model in quantum optics [3].
It has been demonstrated in many advanced solid devices,
such as circuit quantum electrodynamics (QED) system [4,5],
trapped ions [6], and quantum dots [7] from weak coupling to
the ultrastrong coupling, even deep strong coupling between
the artificial atom and resonators [8–10].

In contrast to the conventional cavity QED system, the ar-
tificial qubit appears in modern solid devices usually contains
both the splitting � and the bias ε between the two-qubit
states, thus, the so-called asymmetric QRM is ubiquitous.
Driven by the proposals and experimental realizations of the
various QRMs, the asymmetric two-photon QRM (tpQRM)
are also realized or stimulated to explore new quantum effects
[11–13]. The typical two asymmetric QRMs can be generally
written in a unified way as

H ε
p = −�

2
σx + ε

2
σz + ωa†a + g[(a†)p + ap]σz, (1)

where the first two terms fully describe a qubit with the energy
splitting � and the biases ε, σx,z are the Pauli matrices, a†

and a are the creation and annihilation operators with the cav-
ity frequency ω, and g is the qubit-cavity coupling strength.
p = 1, 2 denote the one-photon and two-photon QRMs, re-
spectively. In the superconducting flux qubit [8,9], � is the
tunnel coupling between the two persistent current states ε =
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2Ip(� − �0/2) with Ip as the persistent current in the qubit
loop, � as the an externally applied magnetic flux, and �0 as
the flux quantum. The flux qubit is usually manipulated by the
external magnetic flux and the persistent currents.

For the symmetric case (ε = 0), the one-photon QRM pos-
sesses Z2-symmetry (parity), i.e., [H0

1 , P̂1] = 0 with the parity
operator P̂1 = −σx exp(iπa†a), whose eigenvalues are ±1,
whereas the tpQRM has Z4 symmetry, i.e., [H0

2 , P̂2] = 0 with
the parity operator P̂2 = −σx exp(iπa†a/2), whose eigenval-
ues are the quartic roots of unity ±1,±i [14,15]. Hence,
the whole Hilbert space separates into two and four infinite-
dimensional subspaces in one-photon QRM and the tpQRM,
respectively.

An analytical exact solution of the one-photon QRM has
been found by Braak in the Bargmann space representation
[16]. It was quickly reproduced in the more familiar Hilbert
space using the Bogoliubov operator approach (BOA) by
Chen et al. [17]. Moreover, the BOA can be easily extended
to the tpQRM, and solutions in terms of a G -function, which
shares the common pole structure with Braak’s G function for
the one-photon QRM, are also found. It was soon realized
that the G function can be constructed in terms of the math-
ematically well-defined Heun confluent function [18]. These
studies have stimulated extensive interests in various QRMs
[19–27]. For more theoretical details in this field, one may
refer to recent review articles [28–30].

Level crossing is very helpful to identify the symmetry
in quantum systems. The quasiexact energies at the crossing
points in the symmetric QRMs, also called Juddian solutions
[31], have been found 20 yr ago [32]. The Juddian solutions
are corresponding to the doubly degenerate states and can be
constructed with the terminated polynomials. These quasiex-
act energies now can also be easily derived with the help of
the pole structure of the G function in both the one-photon
[16] and the two-photon [17] QRMs.

The presence of the qubit bias term ε
2σz breaks Z2-parity

symmetry of the QRM, so no any obvious symmetry remains
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in the asymmetric QRM [18,24,33]. So the level crossings
generally do not appear [16]. Surprisingly, when ε is a multi-
ple of the cavity frequency ω, it is observed in Ref. [18] that
the energy-level crossings reappear. This double degeneracy
at the level crossing point in the asymmetric model indeed
reflects an unknown hidden symmetry. It must be different
from the parity symmetry because the parity symmetry is
broken by any biases. Very recently, the hidden Z2 symmetry
different from the parity symmetry in the asymmetric QRM is
discussed based on the numerical calculation on the energy
eigenstates [34] and symmetry operators [35,36] for small
integers ε/ω.

While in the tpQRM, the qubit bias term ε
2σz reduces the

original Z4 symmetry to the Z2 symmetry. In the asymmetric
tpQRM, the Z2 symmetry corresponding to the parity operator
P̂2p = exp(iπa†a) only acts in the bosonic Hilbert spaces,
the whole Hilbert space then only divides into two invariant
subspaces: even and odd number Fock states, which can be
still labeled by the Bargmann index q = 1/4 and 3/4 [14]
. For the symmetric tpQRM, the standard Juddian solutions
are level crossings within the same q subspace. The second
type of level crossings of the eigenstates in different q sub-
spaces [32] was also found recently [37,38]. In the asymmetric
tpQRM since Z4 symmetry reduces to Z2 symmetry, the
level crossings within the same q subspace would generally
disappear, whereas the second type of the level crossings in
the different q subspaces remains robust due to the remaining
Z2 symmetry. Contrary to the one-photon asymmetric QRM
[33], the level crossing within the same q subspace in the
asymmetric tpQRM is elusive and is observed here. In this
paper, we will uncover such a kind of level crossings irrelevant
to any explicit symmetry.

The paper is structured as follows: In Sec. II, we briefly
review the solutions to the asymmetric one-photon QRM in
the framework of the BOA approach and corroborate the pre-
vious observed doubly degenerate states in the BOA frame.
We extend the BOA to study the asymmetric tpQRM and
derive the analytical exact solutions in Sec. III. In Sec. IV, we
demonstrate the level crossings within the same q subspace of
the asymmetric tpQRM. The characteristics of level crossings
in the two asymmetric QRMs are discussed in Sec. V. The
last section contains some concluding remarks. Appendix A
confirms the conjecture in both the asymmetric one-photon
QRM and the tpQRM that the two vanishing coefficients yield
the same solutions, thus, leading to the true level crossings.
Appendix B presents the nondegenerate exceptional solutions
for both the asymmetric one-photon QRM and the tpQRM.

II. ASYMMETRIC QUANTUM RABI MODEL IN THE BOA

For the asymmetric one-photon QRM, when the bias pa-
rameter ε is a multiple of the cavity frequency, the level
crossings appear again in the spectra even without any explicit
known symmetry in the system [18,24]. It should be noted
that here ε in accord with the standard qubit Hamiltonian
[8,9,34,39] is twice of that used in Refs. [16,18,24].

In this section, we revisit the asymmetric one-photon QRM
by the BOA. We first briefly review the solutions in the BOA
framework [17], then we can describe the level crossings
in the BOA alternatively, which is essentially equivalent to

the Bargmann space approach. Moreover, this scheme can be
easily extended to the asymmetric tpQRM in the next sections.

A. Solutions in the BOA

By two Bogoliubov transformations,

A = a + g/ω, B = a − g/ω, (2)

the wave function can be expressed as the series expansions
in terms of the A operator,

|A〉 =
(∑∞

n=0

√
n!en|n〉A∑∞

n=0

√
n! fn|n〉A

)
, (3)

where en and fn are the expansion coefficients and in terms of
the B operator,

|B〉 =
(∑∞

n=0(−1)n
√

n!cn|n〉B∑∞
n=0(−1)n

√
n!dn|n〉B

)
, (4)

with two coefficients cn and dn, |n〉A and |n〉B are called ex-
tended coherent states [40].

By the Schrödinger equation, we get the linear relation for
two coefficients em and fm with the same index m as [17]

em = �

2
(
mω − g2/ω + ε

2 − E
) fm, (5)

and the coefficient fm can be defined recursively,

(m + 1) fm+1 = 1

2g

(
mω + 3g2/ω − ε

2
− E

− �2

4
(
mω − g2/ω + ε

2 − E
))

fm − fm−1,

(6)

with f0 = 1. Similarly, the two coefficients cm and dm satisfy

dm = �

2
(
mω − g2/ω − ε

2 − E
)cm, (7)

and the recursive relation is given by

(m + 1)cm+1 = 1

2g

(
mω + 3g2/ω + ε

2
− E

− �2

4
(
mω − g2/ω − ε

2 − E
))

cm − cm−1, (8)

with c0 = 1.

If both wave-functions (3) and (4) are the true eigen-
function for a nondegenerate eigenstate with eigenvalue E ,
they should be, in principle, only different by a complex
constant z, i.e., |A〉 = z|B〉. Projecting both sides onto the orig-
inal vacuum state |0〉, using

√
n!〈0|n〉A = (−1)n

√
n!〈0|n〉B =

e−(g/ω)2/2(g/ω)n and eliminating the ratio constant z
gives

∞∑
n=0

en

(
g

ω

)n ∞∑
n=0

dn

(
g

ω

)n

=
∞∑

n=0

fn

(
g

ω

)n ∞∑
n=0

cn

(
g

ω

)n

,

(9)

033057-2



DOUBLE DEGENERACY ASSOCIATED WITH HIDDEN … PHYSICAL REVIEW RESEARCH 3, 033057 (2021)

with the help of Eqs. (5) and (7), one arrives at the one-photon
G function,

G1p =
(

�

2

)2
[ ∞∑

n=0

fn

nω − g2/ω + ε
2 − E

(
g

ω

)n
]

×
[ ∞∑

n=0

cn

nω − g2/ω − ε
2 − E

(
g

ω

)n
]

−
∞∑

n=0

fn

(
g

ω

)n ∞∑
n=0

cn

(
g

ω

)n

. (10)

This G function was first derived by Braak [16] using
Bargmann space approach, and later reproduced by Chen
et al. [17]. In the series expansions of Eq. (10), the co-
efficients before (g/ω)n depend on g also, the G function
actually does not diverge for arbitrary large g except at
the pole energies. The discussion of the convergence of
the G function is given in the Supplemental Material of
Ref. [16]. We then discuss the level crossing of the asym-
metric QRM in terms of the BOA framework described
above.

B. Doubly degenerate states

The two types of pole energies appear in the one-photon
G-function (10) as

EA
N = Nω − g2/ω + ε

2
, N = 0, 1, 2, . . . , (11)

EB
M = Mω − g2/ω − ε

2
, M = 0, 1, 2, . . . . (12)

They are labeled with the type-A and type-B pole energy,
respectively. If

ε = (M − N )ω, (13)

these two pole energies are the same,

EA
N (g) = EB

M (g) = 1
2 (M + N )ω − g2/ω. (14)

Note that ε should be a multiple of the cavity frequency
ω under the condition (13). In this paper, we only consider
M > N so that ε is positive. For the case of M < N , the
extension is achieved straightforwardly by changing ε into −ε

and interchanging M and N .
From Eqs. (5) and (7), one immediately notes that the coef-

ficient eN (dM ) would diverge at the same pole energy (14). It
does not make sense if some coefficients in the series expan-
sion of a wave function really become infinity. A normalizable
wave function should consist of the global property, i.e., the
finite inner product, so the series expansion coefficients in the
wave-functions (3) and (4) should be analytic and vanish as or
before n → ∞.

To achieve a physics state, at the pole energy (14), the
numerator of the right-hand side of Eqs. (5) and (7) should
also vanish so that eN (dM ) remains finite, which results in

fN (M, g) = 0; cM (N, g) = 0. (15)

(a)

(b)

FIG. 1. Energy spectra E + g2 + ε/2 for ω = 1, � = 1.5, ε =
1 (a) and ε = 2 (b) in left panels. The horizontal blue dotted lines
correspond to the pole energy ones for EA

N and the red dashed lines
to EB

M . Only the overlapped pole lines with N > 0 allow for the true
level crossings. The triangles denotes the doubly degenerate crossing
points. Circles indicate the nondegenerate exceptional solutions by
Eq. (B3). fN (M, g) (blue) and cM (N, g) (red) curves are shown in the
right panels. The zeros are exactly corresponding to the triangles in
the left spectra.

Note that fN and cM can be obtained using the following three-
term recurrence relations from (6) and (8) with energy (14),
respectively,

(n + 1) fn+1 = 1

2g

[
4g2/ω + (n − M )ω − �2

4ω(n − N )

]
fn

− fn−1, (16)

(n + 1)cn+1 = 1

2g

[
4g2/ω + (n − N )ω − �2

4ω(n − M )

]
cn

− cn−1. (17)

If �, M, N are given, two equations in Eq. (15) would provide
the coupling strength g in the energy spectra where the energy
levels intersect with the same pole line described by Eq. (14).

A mathematical proof to the conjecture that fN (M, g) = 0
and cM (N, g) = 0 could give the same real and positive solu-
tions for the coupling strength g was given in Ref. [33]. Li and
Batchelor [24] have analyzed the relation between the number
of the exceptional points and the model parameters (� and
ε) and numerically found that the number of positive roots
from these two equations are the same for integer ε/ω. But
we confine us here to a closed-form proof for small values
of N and M and numerical confirmation for large N and M.
In Appendix A 1, we show the same crossing points by two
equations in Eq. (15) for the fixed integers N and M.

The true level crossings in the asymmetric one-photon
QRM for integer ε/ω can be exhibited in the energy spectra.
To visualize this phenomena, we, respectively, present the
energy spectra E + g2/ω + ε

2 for � = 1.5 and � = 3 in the
left panels of Figs. 1 and 2 with ε = 1, 2, ω = 1. The dotted
and dashed horizontal lines denote different types of pole
lines. Obviously, if the two types of pole lines cannot coincide,
the level crossings cannot happen. fN (M, g) and cM (N, g)
curves are plotted in the right panels. By Eq. (A1), one finds
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(a)

(b)

FIG. 2. Notations are the same as those in Fig. 1 except for � =
3. Note that the doubly degenerate crossing point is absent in the
N = 1, M = 2 overlapped line in (a) due to � > 2

√
2 here.

g = 0.5995 for N = 1, M = 2 at � = 1.5, consistent with the
spectra in Fig. 1(a). For � = 3, see Eq. (A2), no real positive
solution can be found in this case, so level crossings cannot
occur in the overlapped line with N = 1 in Fig. 2(a).

At � = 1.5, we can obtain two solutions for g as 0.4804,
1.0287 for N = 2 and M = 3 by Eq. (A4), agreeing well with
two crossing points in the pole line with N = 2 and M = 3
shown in Fig. 1(a). For � = 3, we only find one real positive
g = 0.8356, consistent with the spectra in Fig. 2(a).

Associated with the overlapped N = 1 and M = 3 pole
lines, one can obtain g = 0.7806 for � = 1.5, and g = 0.4330
for � = 3 by Eq. (A6), consistent with the crossing points in
the calculated spectrum in Figs. 1(a) and 2(a).

For large values of M and N as shown in the right panels of
Figs. 1 and 2, both fN (M, g) and cM (N, g) curves provide the
same zeros for all cases.

Now we will further demonstrate explicitly that any cross-
ing point found above is corresponding to a doubly degenerate
state in the BOA framework. At the crossing point, looking
at (5) since both the numerator fN (g) and the denominator
vanish, eN would be arbitrary. If we set

eN = −4g

�
fN−1, (18)

from Eq. (6) we know fN+1 = 0, further eN+1 = 0, and all
coefficients fk and ek for k > N + 1 vanish. So the infinite se-
ries expansion in the wave-function (4) terminates with finite
N as

|A〉N =
(∑N

n=0

√
n!en|n〉A∑N−1

n=0

√
n! fn|n〉A

)
. (19)

Similarly, the infinite series expansion in the wave-function
(4) terminates with finite M as

|B〉M =
(∑M−1

n=0 (−1)n
√

n!cn|n〉B∑M
n=0(−1)n

√
n!dn|n〉B

)
, (20)

where

dM = −4g

�
cM−1.

Interestingly, both wave functions terminate at finite terms.
Because these two wave functions are not obtained from the G
function based on the proportionality (9), so they are different
|A〉N �= |B〉M , leading to doubly degenerate states. Since the
degenerate eigenfunctions |A〉N and |B〉M are given as finite
polynomials in the extended coherent state basis {|n〉A} and
{|n〉B} (see also Ref. [41]), these states are the quasiexact
solutions of the asymmetric QRM.

At this stage, we can simply discuss the number of the
doubly degenerate crossing points associated with the given
N type-A pole line. fN (M > N, x = 4g2) derived by Eq. (16)
is a polynomial with N terms. Its zero would generally give
around N roots, indicating that there are around N doubly
degenerate crossing points along the N type-A pole line in the
energy spectra. For large �, the number of the roots could be
slightly less than N as shown in Fig. 2 whereas for small �,
we can actually have just N roots in Fig. 1.

The nondegenerate exceptional points can be generated if
only one energy level intersects with the energy pole line
alone, which are analyzed in Appendix B 1. In the left panels
of Figs. 1 and 2, the nondegenerate exceptional points are
indicated by open circles and crosses. All the open circles are
given by zeros of the nondegenerate exceptional G-function
(B3), whereas a cross in Fig. 2(a) is solved by G-function
Gnon,2B

1p associated with the type-B pole lines, cf. Eq. (B2).
Overall, one can find that the previous main results in

the asymmetric QRM based on the Bargmann space approach,
see Ref. [24] and references therein, can be well described in
the BOA framework in a self-contained way. Nevertheless, the
level crossings in asymmetric tpQRM have not been observed
in the literature, to the best of our knowledge. Note that the
G function by the direct application of the Bargmann space
approach to the tpQRM [42] has no pole structure and, thus,
could not give qualitative insight into the behavior of the
spectral collapse [15] and the level crossing. As far as we
know, the G function with its pole structure for the tpQRM has
only been found using the BOA [14,17,43] and, in particular,
has so far not been derived using the Bargmann space method
in the literature. Therefore, it is perhaps irreplaceable, at the
moment, to employ the BOA to explore the level crossings in
the asymmetric tpQRM, which is just the main topic of this
paper.

III. ASYMMETRIC TWO-PHOTON RABI MODEL
AND SOLUTIONS USING THE BOA

To facilitate the BOA approach, we write the asymmetric
tpQRM Hamiltonian H ε

2 in Eq. (1) with the following matrix
form:

H ε
2 =

(
ωa†a + g(a†2 + a2) + ε

2 −�
2

−�
2 ωa†a − g(a†2 + a2) − ε

2

)
.

(21)

It is connected with su(1, 1) Lie algebra [14],

K0 = 1
2

(
a†a + 1

2

)
, K+ = 1

2 a†2, K− = 1
2 a2, (22)

which obey spinlike commutation relations [K0, K±] =
±K±, [K+, K−] = −2K0.
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Then we apply a squeezing operator S1 = e(r/2)(a2−a†2 ) to
diagonalize the bosonic part of the above Hamiltonian and the
parameter r is to be fixed later. In terms of the K0, K±, the
transformed Hamiltonian is derived as

H ε
2 =

(
β(2K0) + ε−ω

2 −�
2−�

2 H22

)
, (23)

where β = ω
√

1 − 4( g
ω

)2 < ω can be termed as the renor-

malized cavity frequency owing to the fact that it is just a
g-dependent prefactor of the free photon number operators
2K0, and β = ω if g = 0. It will be shown later that β plays a
key role in two-photon QRMs. The second diagonal element
is

H22 = (2 ω cosh 2r − 4g sinh 2r)K0

+ (ω sinh 2r − 2g cosh 2r)(K+ + K−) − ε + ω

2
,

and the squeezing parameter is

r = 1

4
ln

(
1 − 2g/ω

1 + 2g/ω

)
. (24)

It is obvious that the coupling strength g < ω/2 leads to a real
squeezing parameter.

Based on the squeezing transformation, we propose the
corresponding wave function as

|	A〉q =
⎛
⎝∑∞

m=0

√[
2
(
m + q − 1

4

)]
!e(q)

m |q, m〉A∑∞
m=0

√[
2
(
m + q − 1

4

)]
! f (q)

m |q, m〉A,

⎞
⎠ (25)

where the new basis |q, m〉A = SA|q, m〉 with |q, m〉 as the
Fock state. The coefficients e(q)

m and f (q)
m are to be determined

in the following.
In the case of the Lie algebra considered here, K0|q, 0〉A =

q|q, 0〉A where q = 1
4 and 3

4 divide the whole Hilbert space H
into even and odd sectors and label them, respectively. For the
even subspace, H1/4 = {a†n|0〉, n = 0, 2, 4, . . .}, and for the
odd subspace, H3/4 = {a†n|0〉, n = 1, 3, 5, . . .}, correspond-
ing to even or odd Fock number basis. The Bargmann index q
allows us to deal with both cases independently.

The su(1, 1) Lie algebra operators satisfy

K0|q, n〉A = (n + q)|q, n〉A,

K+|q, n〉A =
√(

n + q + 3
4

)(
n + q + 1

4

)|q, n + 1〉A,

K−|q, n〉A =
√(

n + q − 3
4

)(
n + q − 1

4

)|q, n − 1〉A.

Projecting both sides of the Schrödinger equation onto |q, n〉A

gives a linear relation between coefficients e(q)
n and f (q)

n ,

e(q)
n = �/2

2β(n + q) − E + ε−ω
2

f (q)
n , (26)

and a three-term linear recurrence relation is given by

f (q)
n+1 =

2(2ω2 − β2)(n + q) − β
(
E + ε+ω

2

) − �2β/4
2β(n+q)−E+ ε−ω

2

8gω
(
n + q + 1

4

)(
n + q + 3

4

) f (q)
n − 1

4
(
n + q + 1

4

)(
n + q + 3

4

) f (q)
n−1. (27)

All coefficients f (q)
n and e(q)

n can be calculated with initial conditions f (q)
−1 = 0 and f (q)

0 = 1.

We further apply the second squeezing operator SB = e−(r/2)(a2−a†2 ) to the Hamiltonian (21) and suggest the wave
function as

|	B〉q =
⎛
⎝∑∞

m=0(−1)m
√[

2
(
m + q − 1

4

)]
!c(q)

m |q, m〉B∑∞
m=0(−1)m

√[
2
(
m + q − 1

4

)]
!d (q)

m |q, m〉B,

⎞
⎠ (28)

where |q, m〉B = SB|q, m〉. Similarly, we can obtain a linear relation between the coefficients c(q)
n and d (q)

n ,

d (q)
n = �/2

2β(n + q) − E − ε+ω
2

c(q)
n , (29)

and the three-term linear recurrence relation is

c(q)
n+1 =

2(2ω2 − β2)(n + q) − β
(
E − ε−ω

2

) − �2β/4
2β(n+q)−E− ε+ω

2

8gω
(
n + q + 1

4

)(
n + q + 3

4

) c(q)
n − 1

4
(
n + q + 1

4

)(
n + q + 3

4

)c(q)
n−1. (30)

Left multiplying the vacuum state 〈q, 0| to the extended squeezed state |q, m〉A and |q, m〉B, we can obtain the inner product,

〈q, 0||q, m〉A = (− tanh r)m

√
cosh r

√[
2
(
m + q − 1

4

)]
!

2mm!
, 〈q, 0||q, m〉B = (tanh r)m

√
cosh r

√[
2
(
m + q − 1

4

)]
!

2mm!
. (31)
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(a)

(b)

FIG. 3. G curves for ω = 1, � = 3, ε = 0.4, g = 0.35. q =
1/4 (upper) and q = 3/4 (lower). The blue dashed lines are EA

m in
Eq. (33), and the red dashed lines are EB

m in Eq. (34), m = 0, 1, 2 · · · .
The data by numerical diagonalizations are indicated by black dots,
which agree excellently with the zeros of the G functions (32).

If both wave-functions |	A〉q and |	B〉q for the same q
are the true eigenfunction for a nondegenerate eigenstate with
eigenvalue E , they should be proportional with each other, i.e.,
|	A〉q = z|	B〉q, where z is a complex constant. Projecting
both sides of this identity onto the original vacuum state |q, 0〉,
we, consequently, obtain the G function of the asymmetric
tpQRM as

G(q) =
(

�

2

)2
[ ∞∑

m=0

f (q)
m 


(q)
m

2β(m + q) + ε−ω
2 − E

]

×
[ ∞∑

m=0

c(q)
m 


(q)
m

2β(m + q) − ε+ω
2 − E

]

−
∞∑

m=0

f (q)
m 
(q)

m

∞∑
m=0

c(q)
m 
(q)

m , (32)

where


(q)
m = (− tanh r)m

√
cosh r

[
2
(
m + q − 1

4

)]
!

2mm!
.

If set ε = 0, the G function for the symmetric tpQRM
[17] is recovered. The zeros of the G(q) function give
the regular spectrum in the q subspace of the asymmetric
tpQRM.

One immediately finds that the G function diverges at ei-
ther

EA
m = 2β(m + q) + ε − ω

2
, (33)

or

EB
m = 2β(m + q) − ε + ω

2
, (34)

with m = 0, 1, 2, . . .. They are also labeled as two types
(A and B) pole energies, similar to the asymmetric
QRM.

G curves at q = 1/4 and 3/4 for ε = 0.4, g = 0.35, and
� = 3 with ω = 1 are plotted in Fig. 3. The zeros are easily
detected. As usual, one can check it easily with numerics,
and an excellent agreement can be achieved. The poles given
in Eqs. (33) and (34) are marked with vertical lines. The G
curves indeed show diverging behavior when approaching the
poles.

(a) (b) (c)

(d) (e)

FIG. 4. (a) The spectrum for the first five levels and the non-
degenerate exceptional solutions for the asymmetric tpQRM with
ω = 1, � = 2, ε = 1, q = 1/4. The blue dashed lines are EA

m=0,1

by Eq. (33), and red dashed lines are EB
m=0,1,2 by Eq. (34). The inset

on an enlarged scale clearly displays an avoided crossing rather than
a true level crossing. f (1/4)

N=1 , c(1/4)
M=1,2 curves are exhibited in (b), whose

zeros are indicated by open triangles, agreeing with the same sym-
bols in the spectrum (a). The nondegenerate exceptional G function
G(1/4)

non,2B in Eq. (B9) for M = 2 and G(1/4)
non,2A in Eq. (B8) for N = 1, 0 are

given in (c)–(e), respectively. Their zeros are denoted by open circles,
which are excellently consistent with the nondegenerate exceptional
points indicated by the same symbols in the spectrum (a).

We next present the spectra in Fig. 4(a) for the pa-
rameters q = 1/4, � = 2, ε = 1 with ω = 1. The crossing
points of the energy levels and the pole lines (33) and (34),
known as nondegenerate exceptional points, are marked with
open symbols. In Appendix B 2, we derive the nondegen-
erate exceptional solutions analytically in details. All these
nondegenerate exceptional points can be confirmed. The so-
lutions by the coefficient polynomial equations f 1/4

N=1 = 0 and
c1/4

M=1,2 = 0 are indicated by open triangles in Fig. 4(b) and
denoted with the same symbols in Fig. 4(a). Zeros of the
nondegenerate exceptional G functions (B8) and (B9) corre-
sponding to open circles in Figs. 4(c)–4(e) are indicated by
the open circles in Fig. 4(a).

As revealed on an enlarged scale in the inset of Figs. 4(a)
and 4(b), two open triangles do not coincide, indicating an
avoided crossing at the bias parameter ε = 1. We will show in
the left panels of Fig. 5 at slightly larger bias ε = 1.0954 in
the next section that the two open triangles also obtained from
f (1/4)
N=1 = 0 and c(1/4)

M=2 = 0 can eventually meet. Thus, it should
be very interesting to see how an avoided crossing essentially
turns to a true level crossing when ε = 1 → 1.0954.

IV. DOUBLY DEGENERATE STATES IN ASYMMETRIC
TWO-PHOTON QRM

The natural question arises what the condition is for the
existence of the level crossings in the same q subspace in the
asymmetric tpQRM. According to the pole energies (33) and
(34), if EA

M = EB
N , then

ε = 2β(M − N ), (35)

the same pole energy takes

E = (M + N + 2q)β − 1
2ω. (36)
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Interestingly, Eq. (35) entails ε to be an even multiple of the
renormalized cavity frequency β, in contrast to the asym-
metric one-photon QRM where ε should be an multiple of
the cavity frequency ω under the condition (13) for level
crossings. It makes sense that only the two-photon process is
involved in the two-photon model, whereas the single-photon
process in the one-photon model.

Without loss of generality, we also only consider M > N
here. From Eqs. (27) and (30), one immediately note that the
coefficient e(q)

N in Eq. (26) [d (q)
M in Eq. (29)] would diverge at

the same pole energy (36). Similar to the asymmetric QRM
case, the series expansion coefficients in the wave-functions
(25) and (28) should be analytic and vanish as or before n →
∞.

Regarding states with the energy (36), the numerator of the
right-hand side of (26) and (29) should also vanish so that
e(q)

N (d (q)
M ) remains finite, which requires

f (q)
N (M, g) = 0; c(q)

M (N, g) = 0. (37)

Note that f (q)
N and c(q)

M can be, respectively, obtained from
the recurrence relations (27) and (30) by using the same pole
energy (36),

f (q)
n+1 =

2ω2(n + q) − β2(n + M + 2q) + �2

16(N−n)

4gω
(
n + q + 1

4

)(
n + q + 3

4

) f (q)
n

− 1

4
(
n + q + 1

4

)(
n + q + 3

4

) f (q)
n−1, (38)

c(q)
n+1 =

2ω2(n + q) − β2(n + N + 2q) + �2

16(M−n)

4gω
(
n + q + 1

4

)(
n + q + 3

4

) c(q)
n

− 1

4
(
n + q + 1

4

)(
n + q + 3

4

)c(q)
n−1. (39)

Similar to the asymmetric one-photon QRM, we conjec-
ture that both f (q)

N (M, g) = 0 and c(q)
M (N, g) = 0 could give

the same positive real g and ε under the constrained condi-
tion (35), leading to levels crossing at the same pole energy.
Although it would be interesting to rigorously prove the
conjecture in the two-photon case mathematically, we also
confine us here to an analytical closed-form proof only for
small values of N and M and numerically confirmation for
large N and M in searching for physically reasonable coupling
strength g. Similar to the asymmetric QRM, we analytically
prove in Appendix A 2 that for some small values of N and
M both f (q)

N (M, g) = 0 and c(q)
M (N, g) = 0 in Eq. (37) give the

same values for ε and g. Two energy levels cross the corre-
sponding pole lines at the same values of ε and g where the
two pole lines also cross. Thus true level crossings also happen
in the asymmetric tpQRM. Compared to the one-photon QRM
where ε can be determined independently, in the asymmetric
tpQRM, we need to solve Eqs. (35) and (37) simultaneously
to determine ε and g.

To illustrate the level crossing clearly, we show the energy
spectra of the asymmetric tpQRM at N = 1, � = 2 with ω =
1 for q = 1/4, M = 2 (left), q = 1/4, M = 3 (middle), and
q = 3/4, M = 3 (right) in the low panels of Fig. 5. The cor-
responding values of ε are just those determined by Eq. (A9),
which, in turn, are ε = 1.0954, 1.8516, and 2.494 42 from

(a) (b) (c)

FIG. 5. Energy spectra for � = 2 and ω = 1 are plotted in the
lower panels: (q, ε) = (1/4, 1.0954) (left), (1/4, 1.8516) (middle),
and (3/4, 2.4944) (right). The black lines are energy levels, the blue
dashed lines are EA

m , and the red dashed lines are EB
m . Open triangles

indicate the doubly degenerate level crossings. f (q)
N=1(M, g) (blue) and

c(q)
M (N = 1, g) (red) curves are displayed in the upper panels just on

the top of the corresponding spectra. Zeros are the same for both
curves, indicating true level crossings.

left to right. Interestingly, the level crossing point indicated by
the open triangle really appears in each spectrum, confirming
the analytical prediction.

The upper panels in Fig. 5 present the curves for f (q)
1 (M, g)

and c(q)
M (1, g). It is clear that the zeros of both functions are

the same and are consistent with the coupling strength at
the level crossing points. For example, for q = 1/4, � =
2, M = 2 two energy levels cross exactly at g = 0.4183 by
Eq. (A10). This analytical finding is in excellent consistent
with numerical results presented in the left panels of Fig. 5.
This agreement also applies to the middle and right panels.
As expected, the type-A pole lines EA

N=1 and the type-B pole
lines EB

M also cross at the degenerate points in the low panels
of Fig. 5.

For N = 1, no matter what is the value of M > N , from
Eq. (A7), we can, at most, find one solution for g. By con-
trast, for N > 1, f (q)

N (M, g) = 0 is a polynomial equation
with higher-order terms, which would result in more than one
solution for g.

To demonstrate the true level crossings for N > 1, we plot
f (q)
N (M, g) and c(q)

M (N, g) curves with N = 2 and M = 3 for
� = 2, ω = 1, q = 1/4 in Fig. 6(a). It is to note that zeros
of both curves yield the same solutions g1,2 = 0.3015, 0.4686
predicted by Eq. (A11), and two values of biases ε1,2 =
1.5954, 0.6974 are determined accordingly. We then display
the energy spectra for these two values of ε in Figs. 6(b)
and 6(c) for the same model parameters, respectively. The
level crossings are clearly revealed at the analytical predicted
coupling strength. In other words, the N = 2 type-A pole line
and the M = 3 type-B pole line indeed cross at the same
doubly degenerate points.

Finally, the doubly degenerate states at the true level cross-
ing points can be expressed explicitly in terms of the BOA
as

|	A〉q =
⎛
⎝∑N

m=0

√[
2
(
m + q − 1

4

)]
!e(q)

m |q, m〉A∑N−1
m=0

√[
2
(
m + q − 1

4

)]
! f (q)

m |q, m〉A,

⎞
⎠
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(a) (b) (c)

FIG. 6. f (1/4)
N=2 and c(1/4)

M=3 curves for � = 2, ω = 1, and q = 1/4
are exhibited in (a). The zeros are the same for both curves. The
energy spectra for same parameters are presented in (b) for ε =
1.5954 and (c) ε = 0.6974. The black lines are energy levels, the
blue dashed lines are EA

m , and the red dashed lines are EB
m . Two open

triangles indicate the doubly degenerate level crossing points, and the
locations are consistent with two zeros in (a).

and

|	B〉q =

⎛
⎜⎝

∑M−1
m=0 (−1)m

√[
2
(
m + q − 1

4

)]
!c(q)

m |q, m〉B∑M
m=0(−1)m

√[
2
(
m + q − 1

4

)]
!d (q)

m |q, m〉B,

⎞
⎟⎠

respectively, where e(q)
N and d (q)

M are given by Eqs. (B5) and
(B7). Because these two wave functions are not obtained from
the G function based on the proportionality, so they are differ-
ent, leading to doubly degenerate states. Both wave functions
terminate at finite terms, so they are the quasiexact solutions
of the asymmetric tpQRM.

V. DISCUSSIONS

From the spectra in Figs. 5 and 6, one might speculate
that level crossings seldom happen in the asymmetric tpQRM.
Actually it is not that case. If we always incorporate Eq. (35)
required by the level crossings, we may acquire similar spectra
graphs as Figs. 1 and 2 in the one-photon case. In doing
so, we calculate the energy as a function of g, and at the
same time, ε also changes as Eq. (35). To display the level
crossings in asymmetric tpQRM more distinctly, we can make
the pole lines horizontal, thus, we plot the normalized energy
E ′ = E+ω/2

2β
− q + ε

4β
as a function of g and simultaneously

varying ε = kβ in Fig. 7 for k = 0, 1, 2, and 4 at � = 2 with
ω = 1, q = 1/4.

When ε is an even multiple of the normalized cavity
frequency β entailed in Eq. (35), i.e., k is an even integer
including the symmetric case k = 0, we find that the two
equations in Eq. (37) result in the same positive solutions
for the coupling strength as indicated with open triangles in
Figs. 7(a), 7(c), and 7(d). One can note that the level crossings
happen regularly. The crossing points at the N = 1 type-A
pole line in Figs. 7(c) and 7(d) are just corresponding to those
in Figs. 5(a) and 5(b), whereas the two crossing points at the
N = 2 type-A pole line in Fig. 7(c) are corresponding to those
in Fig. 6.

However, if k is not an even integer, no level crossings hap-
pen, and a lot of nondegenerate exceptional points emerges
instead. As exhibited in Fig. 7(b) for k = 1, the open trian-
gles correspond to the nondegenerate exceptional points by

(a) (b)

(c) (d)

FIG. 7. The energy spectra E ′ = E+1/2
2β

− q + ε

4β
for ω =

1, � = 2, q = 1/4, ε = kβ in k = (a) 0, (b) 1, (c) 2, and (d) 4.
Note particularly that ε changes with g along the g axis. The horizon-
tal blue dotted lines correspond to the pole energy ones for EA

N and the
red dashed lines to EB

M . Only the overlapped pole lines with N > 0
allow for the true level crossings. The triangles denotes the doubly
degenerate crossing points in (a), (c), and (d). In (b), the triangles are
obtained from f (q)

N = 0 and c(q)
M = 0 or, equivalently, from Eqs. (B4)

and (B6), whereas open circles from Eqs. (B8) and (B9), all of them
correspond to nondegenerate exceptional points.

Eqs. (B4) or (B6), whereas the open circles correspond to
those by Eqs. (B8) and (B9).

We can also estimate the number of the doubly degenerate
crossing points associated with the given N type-A pole line.
For any M > N , generally, there are around N crossing points
due to the polynomial equation with N terms f (q)

N (M, g) = 0
in Eq. (37), the detailed polynomial equations are derived
from Eq. (38). This is to say, associated with the N type-A pole
line, we generally have around N degenerate crossing points
for both asymmetric one-photon and two-photon QRMs. In
Appendix A 3, we have employed the constrained condi-
tions in the asymmetric both one- and two-photon QRMs
and numerically found that they have nearly the same num-
bers of level crossing points in the range of integers of N
and M in each case. Therefore, we could reach a conclusion
that the number of the doubly degenerate crossing points
in asymmetric tpQRM would be twice that in the asym-
metric QRM due to two Bargmann indices in the former
model.

Very interestingly, the efforts to look for the hidden sym-
metry responsible for the double degeneracy at the level
crossing points for integer ε/ω in the asymmetric one-photon
QRM have been attempted recently [33,39,44,45] and con-
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tinue to be a great interest. Since the doubly degenerate states
within the same q subspace also exist in the asymmetric
tpQRM without any obvious symmetry, it should also be
owing to the unknown hidden symmetry. Then an interesting
question is what symmetry operators might exist in the asym-
metric tpQRM and, hence, could account for the observed
energy-level crossings. To construct the kth hidden symme-
try operator Jk in the asymmetric tpQRM, the condition for
the existence of the true level crossings ε = 2kβ should be
considered. Inspired by the parity operator in the symmet-
ric QRMs, we speculate that the symmetry operators in the
asymmetric tpQRM would take the form of 2 × 2 matrices
of polynomials in operators K0, K± in the usual su(1, 1) Lie
algebra and satisfy the commutation relation [Jk, H ε=kβ

2 ] = 0.
It should be very interesting to rigorously find the general
hidden symmetry operators in the future.

Such degeneracies due to hidden symmetries can be easily
tested in superconducting qubit setups by measured trans-
mission magnitude of the coupled qubit-cavity system if the
external parameters meet the condition of the level crossings.
Some avoided-level crossings could be driven to the true
level crossings in the spectrum (cf. Fig. 3 of Ref. [5]). More
interestingly, all properties described in quantum optics [3]
where the static bias is usually lacking would appear in the
superconducting qubit setups with the special bias supporting
the double degeneracy. It would be particularly worthwhile
with regard to investigating topological properties [44] if the
conical intersection structure in the energy spectrum can be
recovered.

VI. CONCLUSION

In this paper, we have studied both the asymmetric QRM
and the asymmetric tpQRM by the BOA in a unified way. The
previously observed level crossing when the bias parameter ε

is a multiple of cavity frequency in the asymmetric QRM is
illustrated by a closed-from proof for low orders of the con-
strained polynomial equations in a transparent manner. For the
asymmetric tpQRM, we find that the true level crossings can
also happen in the same q subspace if the qubit bias parameter
ε is an even multiple of the g-dependent renormalized cavity
frequency. We argue that the even multiple is originated from
the two-photon process involved in the two-photon model.
The doubly degenerate points can be also located analytically,
similar to the asymmetric QRM. The number of the doubly
degenerate points within the same subspace in the asymmetric
tpQRM should be comparable with that in asymmetric QRM.
The subspace of the asymmetric tpQRM possesses not any
explicit symmetry, the newly found double degeneracy at the
level crossings points, thus, also implies the hidden symmetry.

The hidden symmetry in the asymmetric QRM could be
identified at the same integer ε/ω, whereas in the asymmetric
tpQRM at the same integer ε/(2β ). The latter constraint on the
parameter space for the occurrence of the double degeneracy
is illuminating in searching for symmetry operators in the
two-photon case. The present results may shed some light
on the different nature of the hidden symmetries in the two
asymmetric QRMs.
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APPENDIX A: DEMONSTRATION FOR THE SAME
PHYSICAL SOLUTIONS OF THE TWO EQUATIONS IN

THE CONSTRAINED CONDITIONS IN TWO
ASYMMETRIC QRMs

In this Appendix, we first present a closed-form proof
for the conjecture that fN (M, g) = 0 and cM (N, g) = 0 in
Eq. (15) could give the same real and positive solutions for
the coupling strength g with small numbers of N and M in the
asymmetric one-photon QRM. In parallel, we then provide a
closed-form proof for the conjecture that f (q)

N (M, g) = 0 and
c(q)

M (N, g) = 0 in Eq. (37) could give the same real and positive
solutions for the coupling strength g with small numbers of
N and M in the asymmetric tpQRM. Finally, we provide
numerical confirmations on the conjecture with large range
of integers N and M in two asymmetric QRMs. We set ω = 1
in both models for simplicity in this Appendix.

1. Analytical proof for the small order of the constrained
conditions in the asymmetric one-photon QRM

Since f0 = 1, we begin with the N = 1 type-A pole energy,
and Eq. (16) becomes

f1(M, g) = 1

2g

(
4g2 + 1

4
�2 − M

)
,

its zero is simply

g = 1

2

√
M −

(
�

2

)2

, (A1)

which is dependent on M. If � > 2
√

M, no real solution
exists, so the level crossing does not occur along the N = 1
pole line.

If we set M = 2, i.e., ε = 1, we have

g = 1

2

√
2 −

(
�

2

)2

. (A2)

The second equation in Eq. (15) c2(1, g) = 0 yields(
4g2 + �2

4

)(
4g2 + �2

8
− 1

)
− 4g2 = 0,

resulting in

g = 1

2

√
2 −

(
�

2

)2

,

which is exactly the same as Eq. (A2), the solution for
f1(2, g) = 0. It follows that two energy levels intersect with
the same pole line at the same coupling strength g in the
spectra, indicating a true energy-level crossing.
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For N = 2 type-A pole energy, the first equation in Eq. (15)
f2(M, g) = 0 becomes (we set x = 4g2 for simplicity)(

x + 1
4�2 − M + 1

)(
x + 1

8�2 − M
) − x = 0, (A3)

yielding

x =
(

M − 3

16
�2

)
±

√(
�2

16
− 1

)2

+ (M − 1).

If M = 3, i.e., ε is still 1, the solutions then read

g = 1
8

√
−3(�2 − 16) ±

√
(�2 − 16)2 + 512. (A4)

On the other hand, the second equation in Eq. (15) c3(2, g) =
0 is (

x + �2

4

)[(
x + �2

8
− 1

)(
x + �2

12
− 2

)
− x

]

− 2x

(
x + �2

12
− 2

)
= 0, (A5)

which interestingly gives the same solutions as in Eq. (A4),
consistent with the conjecture. Here an unphysical solution
x = − 1

12�2 is omitted.
Next, we set N = 1, M = 3, thus, ε = 2. f1(3, g) = 0

gives

g = 1
4

√
12 − �2. (A6)

By c3(1, g) = 0, we have(
x + 1

4�2 + 1
)[(

x + 1
8�2)(x + 1

12�2 − 1
) − x

]
− 2x

(
x + 1

12�2 − 1
) = 0.

Its solutions are

x = 3 − 1

4
�2; x = −�2

48

(
5 ±

√
1 − 96

�2

)
.

Note that the second root is not a positive real value and is so
omitted. The first root gives exactly the same g in Eq. (A6).

2. Analytical proof for the small order of the constrained
conditions in the asymmetric tpQRM

In this subsection, we turn to the a closed-form proof for
the conjecture in the asymmetric tpQRM.

For the most simply case, we set N = 1, then f (q)
1 (M, g) =

0 gives

4q − (2M + 4q)β2 + �2

8
= 0, (A7)

then the location of the degenerate point is obtained

β2 = 2q + �2/16

M + 2q
, (A8)

which is dependent on M. Also note that the positive real
solution only exists for � < 4

√
M. Subject to the constrained

condition (35), we have

ε = (M − 1)

√
8q + �2/4

2q + M
. (A9)

If set M = 2, c(q)
2 (1, g) = 0 gives[

4(q + 1)(1 − β2) + 1
8�2

]
×[

2(2q + 1)(1 − β2) + 1
16�2 − 2

]
− 4

(
q + 1

4

)(
q + 3

4

)
(1 − β2)

= 0,

we then have

β2 = 2q + �2/16

2 + 2q
, (A10)

which is the same as that in Eq. (A8) for M = 2, consistent
with our conjecture.

Next, we set N = 2, M = 3. f (q)
2 (3, g) = 0 gives[

4(1 − β2)(2 + q) + �2

8
− 4

]

×
[

2(1 − β2)(3 + 2q) + �2

16
− 6

]

− 4(1 − β2)

(
q + 1

4

)(
q + 3

4

)
= 0.

The solutions at q = 1
4 are

β2 = 1

3
+ 23�2

2016
± 1

126

√
25�4

256
+ 21

2
�2 + 1008,

and at q = 3
4 are

β2 = 5

11
+ 29�2

3168
±

√
20

363
+ �2

8712
+ 49�4

31682
,

whereas c(q)
3 (2, g) = 0 results in{(

2 + q + �2

32(1 − β2)

)[
2(1 − β2)(3 + 2q) + �2

16
− 2

]

−
(

q + 5

4

)(
q + 7

4

)}[
4(1 − β2)(1 + q) + �2

24
− 4

]

−
[

4(1 − β2)(2 + q) + �2

8

](
q + 1

4

)(
q + 3

4

)
= 0.

If q = 1
4 , the solutions are

β2 = 1

3
+ 23�2

2016
± 1

126

√
25�4

256
+ 21

2
�2 + 1008,

β2
3 = 1 + �2

120
.

If q = 3
4 , the solutions are

β2 = 5

11
+ 29�2

3168
±

√
20

363
+ �2

8712
+ 49�4

31682
,

β2
3 = 1 + �2

168
.

033057-10



DOUBLE DEGENERACY ASSOCIATED WITH HIDDEN … PHYSICAL REVIEW RESEARCH 3, 033057 (2021)

Omitting the unreasonable solutions β3, we can find that both
f (q)
2 (3, g) = 0 and c(q)

3 (2, g) give the same crossing coupling
strengths for q = 1/4 and 3/4, respectively,

g(1/4)
1,2 = 1

2

√
2

3
− 23

2016
�2 ±

√
25�4 + 2688�2 + 258 048

2016
,

(A11)

g(3/4)
1,2 = 1

2

√
6

11
− 29

3168
�2 ±

√
49�4 + 1152�2 + 552 960

3168
.

(A12)

which also agree well with our conjecture.

3. Numerical confirmation for the two conjectures
in both asymmetric QRMs

In this subsection, we extensively demonstrate that for
large N and M (>N ), the two equations in either Eq. (15)
or Eq. (37) give the same physics solutions in both asym-
metric QRMs. We sets N from 1 to 10 and M from 2 to
20 for both one-photon QRM and one-photon tpQRM in
the q = 1/4 subspace at � = 2. First, we find that physics
solutions from fN = 0 and cM = 0 are exactly the same in
either case, confirming the conjectures numerically. Second,
there are 715 level crossings points for both cases, indicating
N roots in the N-order polynomial equations in both models
at � = 2. Generally, the root number is equal to or slightly
less than N for any �. This is to say, for any values of
�, the numbers of the level crossings are generally nearly
the same for the same ranges of N and M in asymmetric
QRMs.

In Fig. 8, the doubly degenerate level crossing points are
visualized in a three-dimensional (3D) view in (ε, g, E ) space
for the asymmetric one-photon QRM and in (ε/2β, g, E )
space for the asymmetric tpQRM at � = 2. It is interest-
ing to draw planes for level crossings in both cases as ε is
simply scaled by a g-dependent factor 2β in the two-photon
case. In the original 3D (ε, g, E ) space, all the degenerate
crossing points in asymmetric QRM are confined on equally
spaced integer ε/ω planes, whereas those in asymmetric
tpQRM are actually locked in different cylindrical surfaces
with integer ε/(2β ). Those different constrained surfaces in
the model parameter spaces for the occurrence of the dou-
ble degeneracy in two models should be considered in the
definition of conserved operators and the detection of hidden
symmetries.

APPENDIX B: NONDEGENERATE
EXCEPTIONAL SOLUTIONS

In this Appendix, we derive the nondegenerate exceptional
solutions in both asymmetric one-photon QRM and asymmet-
ric tpQRM, respectively, in the following two subsections. In
the asymmetric models, the number of pole lines are dou-
bled compared to the corresponding symmetric models, cf.
Eqs. (11) and (12), so the nondegenerate exceptional points
appear more easily.

(a)

(b)

FIG. 8. Three-dimensional view for the doubly degenerate level
crossing points at ω = 1, � = 2 for (a) the asymmetric one-photon
QRM and (b) tpQRM in the q = 1/4 subspace. We set N from 1 to
10 and M from 2 to 20 for both cases, and the numbers of the true
level crossing points are the same. The data are drawn from part of
the level crossings in this range.

1. The asymmetric one-photon QRM

In principle, all nondegenerate states including nondegen-
erate exceptional ones can be obtained by the G-function
(10) because it is built based on the proportionality (9),
only excluding the degenerate states. These states have been
first analyzed for the symmetric QRM with the Bargmann
space technique in Ref. [19] and later in Refs. [41,46,47].
We believe that the BOA has advantages with regard to the
nondegenerate exceptional solutions, which cannot be found
with any ansatz.

Note from G-function (10) that at the pole energy ei-
ther (11) or (12) the denominator of the associated term
becomes zero so this term would diverge and should be
treated specially. For a physics state to avoid the divergence,
the numerator fN (g) or cM (g) should also vanish. It is very
important to see that fN (g) or cM (g) could vanish in two
different ways. First, fn(cm) can be obtained by using the
three-term recurrence relations (6) and (8) from f0 = 1 (c0 =
1) and fN = 0 (cM = 0) until n = N (m = M ). Second, one
can set fn�N = 0 (cm�M = 0) and en=N = 1 (dm=M = 1) at
the beginning directly and obtain all remaining coefficients
by the recurrence relation (6) and (8). This is to say, we
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have two ways to overcome the divergence. In the infinite
summation where the diverging term is present, we may cut
off all the terms either after or before this diverging one.
E.g., for the N th type-A pole line, we may terminate the
infinite summation at the diverging term following the same
idea outlined in the last section for the degenerate states. So
the first nondegenerate exceptional G function can be written
as

Gnon,1A
1p =

[ N−1∑
n=0

� fn

2ω(n − N )

(
g

ω

)n

+ eN

(
g

ω

)N]

×
[ ∞∑

n=0

�cn

2(nω − g2/ω − ε)

(
g

ω

)n
]

−
N−1∑
n=0

fn

(
g

ω

)n ∞∑
n=0

cn

(
g

ω

)n

= 0, (B1)

where eN is given by Eq. (18). Note that the remaining
terms vanish because all coefficients become zero. We can
also remove all terms before the diverging term in the sum-
mation and give the second nondegenerate exceptional G
function as

Gnon,2A
1p =

[(
g

ω

)N

+
∞∑

n=N+1

� fn

2ω(n − N )

(
g

ω

)n
]

×
[ ∞∑

n=0

�cn

2(nω − g2/ω − ε)

(
g

ω

)n
]

−
∞∑

n=N+1

fn

(
g

ω

)n ∞∑
n=0

cn

(
g

ω

)n

= 0, (B2)

with the initial condition eN = 1. The nondegenerate ex-
ceptional G-functions Gnon,1B

1p and Gnon,2B
1p associated with

the type-B pole line can be obtained similarly by modi-
fying the other infinite summation, which are not shown
here.

Two nondegenerate exceptional G-functions (B1) and (B2)
provide different exceptional solutions, which comprise the
full nondegenerate exceptional points associated with the
type-A pole lines. Particularly, fN = 0 or cM = 0 is implied
Eq. (B1) or Gnon,1B

1p = 0, thus, can be also used to give the
same nondegenerate exceptional points in a simpler way. Just
as pointed out in Ref. [24], for noninteger ε, a subset of
the nondegenerate exceptional points associated with the pole
lines can be given by the vanishing coefficients fm or cm,
equivalently, using Eq. (B1) or Gnon,1B

1p = 0 here. However,

Eq. (B1) and Gnon,1B
1p = 0 fail at integer ε including ε = 0

because fN = 0 or cM = 0 actually results in the doubly de-
generate states, which results in nonzero G function in this
case.

Interestingly, for integer ε, two types of pole line may
merge together. In this case, besides the doubly degenerate
points, the nondegenerate exceptional points can addition-
ally be generated by the intersection with one energy level
alone. At the same pole energy (14), the second nonde-

generate exceptional G-function Eq. (B2) would be further
modified as

Gnon
1p =

[(
g

ω

)N

+
∞∑

n=N+1

� fn

2ω(n − N )

(
g

ω

)n
]

×
[(

g

ω

)M

+
∞∑

n=M+1

�cn

2ω(n − M )

(
g

ω

)n
]

−
∞∑

n=N+1

fn

(
g

ω

)n ∞∑
n=M+1

cn

(
g

ω

)n

= 0, (B3)
where en<N = 0, eN = 1 and dn<M = 0, dM = 1, the other
coefficients can still be obtained from the three-term recur-
rence relations (6) and (8).

2. The asymmetric tpQRM

As outlined in Appendix B 1 for the asymmetric one-
photon QRM, we can also find the nondegenerate exceptional
solutions in the spectra for the asymmetric tpQRM by the
pole structures of the G function. When the energy levels
cross the pole lines, the coefficients in the G function would
diverge and, therefore, should be treated specially. For any
real physical systems, the wave function should be analytic,
so the numerators f (q)

m in Eq. (26) or c(q)
m in Eq. (29) should

also vanish, which further gives the condition for the model
parameters g,�, ε for the fixed value of m associated with
one pole line.

In parallel to the asymmetric one-photon QRM, the first
nondegenerate exceptional G function associated with the N th
type-A pole lines (33) for the asymmetric tpQRM is easily
given by

G(q)
non,1A =

[
N−1∑
n=0

� f (q)
n 


(q)
n /2

2β(n − N )
+ eN


(q)
N

]

×
[ ∞∑

n=0

�c(q)
n 


(q)
n /2

2β(n − N ) − ε

]

−
N−1∑
n=0

f (q)
n 
(q)

n

∞∑
n=0

c(q)
n 
(q)

n

= 0, (B4)
where

e(q)
N = −4gω

�β
f (q)
N−1, (B5)

and that associated with the Mth type-B pole lines (34)
reads

G(q)
non,1B =

[ ∞∑
n=0

� f (q)
n 


(q)
n /2

2β(n − M ) + ε

]

×
[

M−1∑
n=0

�c(q)
n 


(q)
n /2

2β(n − M )
+ dM


(q)
M

]

−
∞∑

n=0

f (q)
n 
(q)

n

M−1∑
n=0

c(q)
n 
(q)

n

= 0, (B6)

033057-12



DOUBLE DEGENERACY ASSOCIATED WITH HIDDEN … PHYSICAL REVIEW RESEARCH 3, 033057 (2021)

where

d (q)
M = −4gω

�β
c(q)

M−1. (B7)

Note that by Eqs. (B5) and (B7), all the remaining coefficients
for n > N [n > M] vanish. Zeros of the first nondegenerate
exceptional G functions are equivalent to f (q)

N = 0 or c(q)
M = 0

. Obviously, the later ones are obviously simpler in practical
calculations, whereas the former ones are more conceptually
interesting, both can give the same solutions.

Similarly, the second nondegenerate exceptional G func-
tion associated with the type-A pole lines (33) is

G(q)
non,2A =

[



(q)
N +

∞∑
n=N+1

� f (q)
n 


(q)
n /2

2β(n − N )

]

×
[ ∞∑

n=0

�c(q)
n 


(q)
n /2

2β(n − N ) − ε

]

−
∞∑

n=N+1

f (q)
n 
(q)

n

∞∑
n=0

c(q)
n 
(q)

n

= 0, (B8)

where we have set e(q)
N = 1 and the coefficients e(q)

n<N = 0 and
f (q)
n�N = 0. By the recurrence relations and the pole energy, all

other coefficients can be obtained. The second nondegenerate
exceptional G function associated with the type-B pole lines
(34) can be obtained in a straightforward way as

G(q)
non,2B =

[ ∞∑
n=0

� f (q)
n 


(q)
n /2

2β(n − M ) + ε

]

×
[



(q)
M +

∞∑
n=M+1

�c(q)
n 


(q)
n /2

2β(n − M )

]

−
∞∑

n=0

f (q)
n 
(q)

n

∞∑
n=M+1

c(q)
n 
(q)

n

= 0, (B9)

where d (q)
M = 1 and the coefficients d (q)

n<M = 0 and c(q)
n�M = 0.
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