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Unified framework for quantum classification
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Quantum machine learning is an emerging field that combines machine learning with advances in quantum
technologies. Many works have suggested great possibilities of using near-term quantum hardware in supervised
learning. Motivated by these developments, we present an embedding-based framework for supervised learning
with trainable quantum circuits. We introduce both explicit and implicit approaches. The aim of these approaches
is to map data from different classes to separated locations in the Hilbert space via a parametrized quantum
circuit. We will show that the implicit approach is a generalization of a recently introduced strategy, so-called
quantum metric learning. Furthermore, we discuss an intrinsic connection between the explicit approach and
those previously proposed quantum classification models. The implicit and explicit approaches, together, provide
a unified framework for quantum classification. The utility of our framework is demonstrated by our noise-free
and noisy numerical simulations. Moreover, we have conducted classification testing with both implicit and
explicit approaches using several IBM Q devices.
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I. INTRODUCTION

Quantum computation has been intensively studied over
the past few decades and is expected to outperform its clas-
sical counterpart in certain computational tasks [1–3]. In this
novel approach for computation, information is stored in the
quantum states of an appropriately chosen and designed phys-
ical system, which resides in a complex Hilbert space H,
and quantum bits (qubits) are used as the underlying build-
ing blocks and processing units. The power of a quantum
computer is in its ability to store and process information
coherently in the tensor-product Hilbert space [1], with entan-
glement being a characteristic by-product or even a potential
resource for information processing [4,5]. Quantum computa-
tions have been shown to provide dramatic speedup in solving
some important computational problems, such as factorization
of a large number via Shor’s algorithm [6] and the unstruc-
tured search using Grover’s algorithm [7], which are two
prominent examples among many that have been discovered.

At the same time, machine learning (ML) has become a
powerful tool in modern computation. For example, ML has
been successful in computer vision [8–10], natural language
processing [11], and drug discovery [12]. Building on this
history, a natural application of quantum computers also may
provide substantial speedup [13–16]. Several previous works
have revealed potential quantum advantages in the field of
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unsupervised learning [17–21]. For example, in Ref. [20], the
authors provide quantum algorithms for clustering problems,
which could, in principle, yield an exponential speedup. In
Ref. [21], the authors introduce a quantum version of k-means
clustering, namely, q means, and present an efficient quantum
procedure.

Using quantum computation in supervised learning also
has garnered increased attention [22–24]. For example, the
authors of Ref. [25] present a quantum version of support
vector machines (SVMs) that shows possible exponential
speedup. For near-term applications, variational strategies
have been proposed to classify real-world data [22,26–29].
Classification is among the standard problems in supervised
learning [30,31], and variational methods using short-depth
quantum circuits with trainable parameters have given rise
to a quantum-classical hybrid optimization procedure. Such
frameworks have proven to be capable of performing complex
classification tasks [26,27,29,32–34], and many more likely
will appear. It is probable that such variational methods will
be able to learn complex representations while still being
robust to noise in so-called noisy intermediate-scale quantum
(NISQ) devices [29,35–37].

“Traditional” quantum classification models rely on the
encoding of classical data x into some quantum state |ψ (x)〉.
This state then undergoes a parametrized quantum circuit
U (θ ). At the end, the state is measured. The outcome of the
measurement usually is interpreted as the output of the learn-
ing model. Although the structures of previously proposed
works [15,27–29] appear similar, the motivation underlying
their strategies seems varied. For example, the quantum cir-
cuit learning algorithm proposed in Ref. [29] is inspired by
classical neural networks. Meanwhile, in Refs. [28,38], the
authors exploit and formally establish the connection between
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quantum computation and the kernel method, where they in-
terpret the step of encoding classical data x into the quantum
state as a quantum feature map. Thus a clear picture emerges:
Classical data x are embedded into some quantum state |x〉,
i.e., a data point in Hilbert space H. (This space also is called
the quantum feature space, analogous to the feature space
in classical ML.) Then, a decision boundary is learned by
training the variational circuit to adapt the measurement basis,
which is analogous to the classical approach where a decision
boundary is learned to separate classes.

Metric learning is a well-known method in the classical
ML context [39]. The aim is to learn an appropriate distance
function over data points. This method recently has been ex-
tended to the quantum context by Lloyd et al. [40]. Instead of
focusing on training the variational layer that adapts the mea-
surement basis, the authors propose to train the embedding
circuit and proffer a remarkable notion of “well separation”
of data points. Per their argument, a significant amount of
computational power spent on processing classically embed-
ded data can be eased using such a strategy.

Aside from such an advantage, we pose that the ability to
use a quantum circuit to represent data in a complex Hilbert
space and the idea of well separation have further remarkable
consequences. Our framework is built upon the geometrical
aspect of the quantum classifier, where we consider the whole
quantum circuit as a means to map data from input space to
some Hilbert space. Therefore our framework conceptually
involves all the previous approaches [15,27–29,40]. We then
argue that previous traditional quantum classification methods
[15,27–29] essentially achieve a certain well separation of
data points, which implies that quantum classification models
could be conceptually merged into a common framework.
Here, we provide a unified, generic framework and catego-
rize approaches into two different types, implicit and explicit,
which are described in detail, backed up by numerical sim-
ulations, and tested on real quantum devices. The map from
the data input space X to the featured Hilbert space H is
enacted by a parametrized quantum circuit. The goal is to
train the embedding circuit to produce clusters of data from
different classes. In the implicit approach, the “centers” of
these clusters are random. In the explicit approach, the cluster
centers are constrained to lie in or nearby some predetermined
subspaces of the Hilbert space. We show that both explicit and
implicit approaches exhibit promising classification ability.
Particularly, the method proposed by Lloyd et al. [40] is a
binary version of the implicit approach. We point out that the
explicit approach can conceptually unify traditional quantum
classification methods, such as those of Refs. [15,27,29] (see
Sec. II C 2). These two approaches then constitute our unified
framework for quantum classification.

The following summarizes the contributions of this work:
(i) We introduce two approaches for quantum classi-

fication, implicit and explicit, that constitute a generic
embedding-based framework.

(ii) We show that the implicit approach is the generalization
of the metric quantum learning method proposed in Ref. [40].
Such generalization allows us to manage the multiclass classi-
fication problem. The number of separated classes (or labels)
is independent of qubits used in the quantum circuit. In
principle, this approach can work even with a single qubit.

Therefore it sheds light on constructing a universal quantum
classifier.

(iii) We demonstrate that the explicit approach can concep-
tually unify other models for quantum classification. Along
with the generalization provided by the implicit approach, our
work provides a complete unification of quantum classifica-
tion frameworks.

(iv) We implement both learning approaches on NISQ
devices and compare the results with noisy simulations. We
demonstrate the framework’s success and clarify the cases
where the results on real devices and noisy simulations do not
agree well.

The structure of the paper is as follows: Sec. II A presents
the main conceptual tool of our framework. In Secs. II B and
II C, we discuss the implicit and explicit approaches. In Sec.
III, we present results from numerical experiments and runs
from real devices, and provide numerical evidence that the
implicit approach is especially robust with small training size.
Some discussions regarding our framework’s prospects in the
near-term era are presented in Sec. IV. Section V concludes
the primary work. Appendix B provides an additional example
to illustrate the unification. Appendix C discusses a remark-
able consequence of focusing on the embedding part instead
of the measuring part in quantum supervised learning (QSL),
which could avoid a systematic issue of misclassification of
the one-versus-all strategy.

II. GENERAL FRAMEWORK

A. Basic concept

We first introduce the basic concept of classification, which
can be illustrated by a simple map:

x −→ �f (x, θ ), (1)

where

�f (x, θ ) =

⎡
⎢⎢⎢⎢⎢⎣

f0
...

fi
...

fL−1

⎤
⎥⎥⎥⎥⎥⎦

, (2)

∈ RL, is called a classifying vector of some input data x and θ

refers to the network’s or circuit’s parameters. { fi} is generally
of the form

fi = 〈x|Mi|x〉 = Tr(|x〉 〈x|Mi ), (3)

where |x〉 is the corresponding quantum state of classical data
x and Mi, in general, is some Hermitian operator. The value
of fi depends on circuit parameters θ and the input feature x.

In the supervised learning problem with L separated labels,
we are given a training set together with corresponding labels
X × Y = {x, i}, where i ∈ {0, 1, . . . , L − 1} is the label of the
data point x. We need to predict the label for some other
unseen data x. In the quantum setting, we simply use its rep-
resentation by a quantum state |x〉 instead of the classical data
x. The number of components { fi}, or equivalently the dimen-
sion of �f (x, θ ), is denoted by L. The value fi (for convenience,
assumed to be in the range 0 � fi � 1) quantifies the likeli-
hood that some input x have any of labels {i}. In this sense, the
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method is somehow similar to the classical neural network,
where the information is fed forward from the input layer
to the output layer. There have been numerous works that
explore the relation between quantum computation and neural
networks [26,27,41,41–44]. The key relation extends from the
quantum gates, as they carry out unitary transformation on the
input quantum state, which is a vector in some Hilbert space
H. In the graphical representation (distinctively illustrated in
Ref. [27]), the action of a quantum gate on the input state
|ψ〉 produces an output state |ρ〉 and can be represented as
a fully connected two-layer network. Hence a full quantum
circuit generally can be represented by such a fully connected
network with a certain number of layers. Measuring quantum
states then corresponds to a nonlinear activation function.

Thus, to make a prediction, we “forward” x to such a
classifying vector �f (x, θ ) and assign to it a label according to
the highest value of { fi}. The accuracy of correct assignment
depends on circuit parameters θ . Now, we provide a strategy
to train the circuit. For each label i, assume that there are Ni

training points with such a label and there are a total of N data
points, where N = ∑

i Ni. Let �yi be the real, so-called label
vector, of class i (which has dimension L) with components
{y j

i }L
j=1 = δi j , where δi j is the Kronecker delta function. Let

�f j
i be the classifying vector of the jth data. We minimize the

following cost or so-called loss function,

C = 1

L

L∑
i=1

1

Ni

Ni∑
j=1

∣∣ �f (x j
i , θ

) − �yi

∣∣, (4)

where x j
i is the jth data point in class i.

State overlaps. Given two pure quantum states represented
by density matrices ρ ≡ |ρ〉〈ρ| and φ ≡ |φ〉〈φ|, the overlap,
i.e., a similarity measure, on these two states is given by
Tr(ρφ) = |〈ρ|φ〉|2. State overlap plays an important role in
our subsequent construction of the implicit and explicit ap-
proaches. In the general case of mixed states, the SWAP test
quantum procedure [1] can be used to evaluate Tr(ρφ) up to
an additive error ε. In the special case of pure states, the inver-
sion test [40] can be used to evaluate the overlaps between two
quantum states | 〈φ| · |ρ〉 |2, provided that the circuit U to cre-
ate either |φ〉 or |ρ〉 can be efficiently inverted. Both schemes
require only shallow circuits. In our subsequent experiments,
we also will implement both schemes for classification on real
devices.

B. Implicit approach

1. Construction

In the implicit approach, the data from the same class,
after going through the quantum circuit �(x, θ ), produce
clusters (closed data points) in the Hilbert space H. Clusters
corresponding to different classes should become maxi-
mally separated after minimizing the cost function (see
Figs. 1 and 2).

To describe our supervised learning problem, we assume
that for each label i, there are Ni training points that will be
transformed to quantum states {|x j

i 〉}Ni
j=1. The formula for Mi

FIG. 1. An example supervised learning problem with L = 3
labels. The black circle is some unseen data.

in this case is

Mi = 1

Ni

∑
j

∣∣x j
i

〉〈
x j

i

∣∣, (5)

which is exactly an ensemble of quantum states: σi =
1
Ni

∑
j |x j

i 〉 〈x j
i |. This ensemble may be interpreted as the col-

lection of the corresponding training points from class i on
H, and it can be obtained by sampling from the training set
{x j

i }|Ni
j=1. The classifying vector �f (x, θ ) now becomes

⎡
⎢⎢⎢⎣

Tr(|x〉 〈x| σ0)
Tr(|x〉 〈x| σ1)

·
·

Tr(|x〉 〈x| σL−1)

⎤
⎥⎥⎥⎦. (6)

We will focus on optimizing those quantities { fi} and using
the values to assign a label to x.

FIG. 2. Illustration of the implicit approach. After the training
procedure, the “distance” between any two clusters (represented by
dashed lines) becomes maximal. The “center” of each cluster is not
fixed as the training process will move it so as to produce maximally
separated clusters. Note that the data points in this picture are not
related to the Iris data set in our subsequent experiment or to the data
points in Fig. 3.
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After applying Eq. (4), the cost function becomes

C = 1 − 1

L

L∑
i=1

Trσ 2
i + 2

L

∑
i< j

Tr(σiσ j ). (7)

Each cross term,

Tr(σiσ j ) = 1

NiNj

Ni∑
k=1

Nj∑
p=1

∣∣ 〈xk
i

∣∣ · ∣∣xp
j

〉∣∣2
, (8)

is a sum of the modulus square of overlaps. Hence, in the
training procedure, we can use either the SWAP or inversion
test to evaluate the cost.

Consider the binary classification problem (L = 2). The
cost function is simply

C = 1 − 1
2

(
Trσ 2

1 + Trσ 2
2

) + Trσ1σ2 = 1 − 1
2 Tr(σ1 − σ2)2.

(9)

The optimization will be to minimize the Hilbert-Schmidt
distance between two data clusters, which is highlighted in
Ref. [40]. Therefore we have shown that this implicit approach
is a generalization of the binary method discussed in Ref. [40].

2. Training with QRAM

If quantum random access memory (QRAM) [45] is avail-
able, the cost for the training and testing procedure will be
reduced by a factor of approximately

∑
i� j NiNj and

∑
i Ni,

respectively, where Ni is the number of data points in each
training set i. The calculation of the cost function and data
classification can be done in time O(1). The data can be
loaded corresponding to class i to a quantum state |ψi〉 =

1√
Ni

∑Ni
j=1 | �“x j

i ”〉 | j〉, where the index j represents the address

of the memory where x j
i is residing. We use | �“x j

i ”〉 to denote
the classical data (not the embedded feature state) loaded to a
quantum register.

A third register is initialized in |0 · · · 0〉 and is used to
implement the quantum feature. The application of Ry(x) (re-
fer to Fig. 6) on this register with its argument being x j

i can
be done by performing the rotation conditioned on the first
register with classical values x j

i , i.e., a conditional rotation
c − Ry(x). In this way, at the expense of a more complicated
circuit to implement the conditional rotation, we obtain the

entangled state |ψ ′
i 〉 = 1√

Ni

∑Ni
j=1 ⊗| �“x j

i ”〉 ⊗ | j〉 ⊗ |�(x j
i , θ )〉.

Tracing over the first and second registers (i.e., without do-
ing anything on them afterwards), the third register is in the
state σi = ∑

j |�(x j
i , θ )〉〈�(x j

i , θ )|/Ni. With QRAM, we do
not need to repeat the circuits (with different rotations) to
sample every data point individually from the training set to
obtain an effective σi (about Ni times). However, a practical
implementation of QRAM is currently not available.

Using the controlled-SWAP gate on this third register and
another embedded state |x〉 for an unknown data point (i.e.,
the SWAP test), we can directly measure their fidelity 〈x|σi|x〉.
However, computing the pairwise overlaps in Eq. (8) without
QRAM will require using the SWAP test NiNj times. As such,
it would be useful to design an efficient quantum subroutine

of low-depth circuits to evaluate the cost in Eq. (7), directly
exploiting QRAM and reducing the iterative evaluation steps.

3. Classification over a large number of classes
and universal quantum classifier

In most current quantum ML models, the measurement
outcome usually is interpreted as the outcome of learning
models. In a binary classification problem, one-qubit mea-
surement suffices to classify the data as there are only two
possible outcomes, and one can draw inferences from such
a measurement. For example, if the probability of obtaining
class zero P(outcome = 0) � 0.5, we then assign the data to
class 0. Otherwise, we assign them to class 1. For multiclass
classification, multiqubit measurement needs to be employed.
A circuit with k qubits can classify up to 2k different labels.
Our implicit approach surpasses this because we only aim
to get the classifying vector �f . The dimension of �f , or the
number of classes, can be quite large. Real-world supervised
learning problems may contain overwhelmingly numerous
classes, such as in face recognition. Thus our framework may
prove useful for these practical tasks.

Recall that our framework concerns the geometrical aspect
of the quantum classifier, where the aim is to maximally
distribute data points on Hilbert space. Even a single qubit
is enough to execute this implicit approach, as it provides
enough space for the separation, regardless of how many
classes or labels are in the supervised learning problem (see
Fig. 2). We further remark that a single qubit is enough for
embedding purposes, as it could map data with arbitrary di-
mension to the Hilbert space of dimension 2.

Relevant work has been carried out in Ref. [46], showing
that a single qubit is sufficient to construct a universal clas-
sifier and is able to deal with multidimensional input data
and multilabel output of supervised learning problems. To
handle multidimensional input, the authors propose a data
reuploading strategy. They achieve the multiclassification by
introducing a bias term in the measurement outcome. Our
approach differs from that of Ref. [46] because we use the
parametrized quantum circuit to represent the data in the
Hilbert space and exploit its “vastness.” Data from different
classes are “aligned” in separate locations. To handle multidi-
mensional data, one may opt to follow the same strategy as in
Ref. [46] or engage a different embedding routine. We do not
attempt to provide a specific embedding ansatz here, since it
is up to one’s choice.

C. Explicit approach

1. Construction

The implicit approach emphasizes training the embedding
circuit to produce separated clusters on H. However, the cen-
ters of these clusters are somewhat random. As long as relative
distances among these clusters are maximal and those among
data points within the same cluster are minimal, the method
achieves its goal.

With the explicit approach, the cluster “positions” are de-
signed to be fixed and separated into orthogonal subspaces
(Fig. 3). The main intuition is that with enough qubits, the
Hilbert space is large enough and can accommodate many
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FIG. 3. Illustration of the explicit approach. The “center” of
each cluster is fixed. For class 0 (red points), the position of the
center is v0 = (0, 0, 1). For class 1 (green points), the position is
v1 = (1, 0, 0). For class 2 (blue points), the position is v2 = (0, 1, 0).
Notably, this separation is not exactly the same as desired in Eq. (10)
because the Hilbert space associated with a single qubit has dim = 2,
and it only can be decomposed into, at most, two orthogonal sub-
spaces. Nevertheless, this figure illustrates the idea of the explicit
approach.

smaller subspaces where data clusters can reside. These sub-
spaces are well defined and well separated. If the data from
different classes are “approximately” mapped to their proper
subspaces, they are well separated by construction. The ap-
proximation here means that the embedded data might not
exist completely within the desired subspace, instead possibly
only in its vicinity. Then, we can “measure” the distance from
a data point in H to different subspaces. Thus classification of
such a data point can be done accordingly.

Again, consider the supervised learning problem with L
labels; we decompose H into

H = H0 ⊕ H1 ⊕ · · · ⊕ HL−1 ⊕ · · · , (10)

assuming that L � dim(H). We can always achieve this
condition by adding more qubits to the circuits.

Our aim is to approximately map a data point according
to its “label subspace” {Hi}. Without loss of generality, let

dim(Hi ) = k and Hi be spanned by {|ψ j
i 〉k

j=1}. Let a set of
operators associated with label i, or equivalently, the subspace
Hi, be {|ψ j

i 〉 〈ψ j
i |}k

j=1. The likelihood of given data |x〉 having
some label i may be quantified by the projection of |x〉 onto
the corresponding “label” subspace. Therefore Mi could have
the following form of a projection operator:

Mi =
k∑

j=1

∣∣ψ j
i

〉 〈
ψ

j
i

∣∣ , (11)

which essentially is the targeted ensemble density operator
(up to a normalization) associated with label i. The same
strategy is then followed as we minimize the cost in Eq. (4)
and assign some unseen data x according to the value of fi.

For example, we consider the binary supervised learning
problem with L = 2 and 1-dim data set X = XA ∪ XB, where

FIG. 4. Illustration of binary classification. After the training
stage, data from A are mapped to the blue points, surrounding |0〉.
Data from B are mapped to the red points, surrounding |1〉.

XA and XB are the training sets with label 0 and 1, respectively,
as depicted in Fig. 4. For simplicity, we use one qubit in
the embedding circuit (we refer readers to the one-qubit toy
model in Ref. [40]). Hence dim H = 2. We then make the
decomposition

H = H0 ⊕ H1,

where H0 and H1 are spanned by |0〉 and |1〉, respectively. We
note that the classifying vector �f has the form[

Tr(|x〉 〈x| σ0)
Tr(|x〉 〈x| σ1)

]
=

[
Tr(|x〉 〈x| · |0〉 〈0|)
Tr(|x〉 〈x| · |1〉 〈1|)

]
. (12)

Following the same procedure as provided in Eq. (4) helps
obtain the cost value

C = 1 − 1
2 Tr[σz(ρA − ρB)], (13)

where ρA and ρB are state ensembles of the two training sets A
and B, respectively, and σz is the Pauli Z matrix. Minimization
of this cost C with respect to the circuit’s parameters will
give an embedding �(x, θ ) that maps the data from A to the
vicinity of |0〉 in H and the data from B to the vicinity of |1〉
in H, as illustrated in Fig. 4.

An alternative picture also can be drawn from the described
1-dim data set. If we choose the label space to be {H0, H1},
then the classifying vector in Eq. (12) can be obtained by
simply performing the measurement on the embedded state
|x〉 in the z basis. Choosing a different label space, e.g., by
decomposing H = H+ ⊕ H−, where H+ and H− are spanned
by (|0〉 + |1〉)/

√
2 and (|0〉 − |1〉)/

√
2, respectively, measure-

ment in the x basis (i.e., the observable σx) would need to be
used instead. The classifying vector �f in this latter case is a
direct result of such a σx measurement. Instead of the north
and south poles on the Bloch sphere (Fig. 4), the quantum
circuit training would then make data points cluster around
the “+x̂ pole” and “−x̂ pole,” where x̂ is the unit vector point
along the positive x direction.

2. Connection to traditional quantum classification models

By closely examining �f in Eq. (12), the value of f0 =
Tr(|x〉 〈x| · |0〉 〈0|) = | 〈0| · |x〉 |2 turns out to be the proba-
bility of obtaining state |0〉 when measuring the state |x〉
in the computational basis. Most current quantum classifiers
[27,28] rely on these measurement outcomes after applying a
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general circuit �(x, θ ) = W (θ )U (x) to some initial state |0〉
for classification. Hence, by choosing the appropriate label
space (specifically, the standard computational-basis state),
there is an intrinsic connection between this explicit approach
and other traditional models [27,29,38]. More precisely, tradi-
tional approaches can be unified by this explicit approach.

To be more specific about the intrinsic connection, we
consider the structure of these traditional approaches, which
has been shown to be closely related to the kernel method in
the classical context [38]. The first part of the circuit maps
classical data to some quantum states; training the parame-
ter layer followed by measurement could be interpreted as
learning the decision boundary for classification on the Hilbert
space. Under the scope of our explicit approach, the whole
circuit (everything before the measurement) is used for en-
coding purposes, and the optimization process would align
the data in separated subspaces. As mentioned, if we choose
the appropriate label space, then the measurement outcomes
on the encoded state could be understood as the “distance” to
the corresponding label space, and hence the classification can
be done. Such intrinsic connection merges all these quantum
classification models and hence provides a unified picture. In
Appendix B, we provide a further example to illustrate the
unification.

Such unification offers a twofold advantage. First, the eval-
uation of overlaps between the input data |x〉 and |0〉 or |1〉, as
in Eq. (12), can be done simply by letting x undergo the em-
bedding circuit �(x, θ ) once and performing measurements
instead of invoking the embedding circuit twice (in the SWAP

test subroutine). Additionally, the cost evaluation in Eq. (13)
does not necessarily need to be done in an iterative manner.
In Refs. [47,48], the authors provide elegant and efficient
methods to encode the cost evaluation directly into quantum
circuits. Hence the training time can be reduced.

III. NUMERICAL SIMULATIONS AND REAL-DEVICE
EXPERIMENTS

With each approach, we train on the ideal simulator and
then use the optimized circuit to test on the ideal simulator,
the noisy simulator, and several real devices.

A. Implicit approach experiment

Data sets. For illustration purposes, we target the Iris data
set [49,50] with L = 3 labels (Fig. 5). There are 50 data points
in each class for a total of N = 150 data points. Ten data
points are taken from each class to serve as the training data,
and the remaining 40 are used for testing. Aside from classifi-
cation, our aim is to demonstrate the formation of clusters in
the featured Hilbert space H.

Quantum embeddings. We use the same so-called quantum
approximate optimization algorithm (QAOA)-like ansatz as in
Ref. [40] (Fig. 6) for embedding. The unit circuit �(x, θ )
is composed of a feature layer U (x) followed by the pa-
rameter layer W (θ ). Hence we have �(x, θ ) = W (θ )U (x),
and the model is compact. A possible useful design of this
embedding unit is to mix the feature parameters x and tunable
parameters θ to reduce the depth while maintaining the effi-
ciency (see Ref. [46]). For instance, instead of Ry(x1), one can

FIG. 5. The Iris data set. There are three classes distributed in
a two-dimensional region. Different classes are represented by dif-
ferent colors. This data set is used in our implicit approach for
classification.

consider Ry(θ1, x1) or, generally, Ry(g(θ1, x1)), where g is
some function.

Training stage. Because there are L = 3 labels in our prob-
lem, the cost function is

C = 1 − 1

3

3∑
i=1

Tr(σi )
2 + 2

3

∑
i< j

Tr(σiσ j ). (14)

The training procedure is as follows:
(i) Data from the training set are mapped to quantum states.
(ii) Define and use the SWAP test subprogram to evaluate

Tr(σ 2
i ) and Tr(σiσ j ). Later, we also use the inversion test.

(iii) Minimize the cost C in Eq. (14) over circuit
parameters.

Our simulation uses the PENNYLANE software package
[51], and the optimization of C over circuit parameters is done
using the RMSPROP [52] optimizer with a learning rate of 0.01.

1. Results of noiseless simulations

Figure 7 shows the training curve. As minimization takes
place, the embedded data in H are expected to form clusters,
while those from different classes separate from each other.
This is confirmed, as shown in Fig. 8, in the comparison of
the overlap of embedded data before and after the training.
In particular, the overlaps between the embedded data from

FIG. 6. Unit embedding circuit �. In our implementation, this
unit is repeated four times. Hence the total number of trainable
parameters is 20. In the end, the feature layer is repeated once
more. The repetition of both feature and parameter layers has been
used in Ref. [46] as a data reuploading strategy that yielded better
classification ability.
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FIG. 7. Cost as a function of epochs. In this training, we use
100 epochs. There are 10 training points for each class, totaling 30
training points.

different classes become small after the training. This is es-
pecially the case for the overlap of class 0 with both class 1
and class 2. Thus we have verified the well separation of the
embedded data from different classes.

After obtaining the optimized circuit parameters, we use
the optimal circuit to perform a test on classifying the remain-
ing unused data (i.e., the test data set). The overall accuracy
obtained is 92.5%. Notably, only 30 data points (ten for each
class) are used as the training set, which corresponds to 20%
of the total data points. Such a result demonstrates that the
classifier can classify unseen data with high accuracy, despite
being trained with a relatively small training data set (more
details in Sec. III C).

2. Testing results from noisy simulations

In real quantum hardware, noise and errors are important
factors that reduce accuracy. To examine our method in the
presence of noise, we test our classification with noisy models
acquired from IBM Q “backends.” The device noise model
is generated from their device calibration and accounts for
gate error probability, gate length, T1 and T2 (relaxation and
dephasing times, respectively), and readout error probability.
For convenience, Table I shows the average gate errors for the
four backends considered in this paper.

We test the classification with the SWAP test circuit via the
noisy simulations, and the results are tabulated in Table II.
The accuracy seems to be unaffected by the noise, and the
values from the noisy simulator using the four noisy models

FIG. 8. Visualization of overlaps between training points (ten
training points in each class). Top: Initial distribution of data in
H, in which the parameters in the variational quantum circuit are
randomized. Bottom: After 100 training epochs, the data from the
same class form a cluster in H as overlaps between their quantum
states are high (brighter color). The visualization clearly shows that
class 0 (red points) is more separated from the other two classes.
Meanwhile, classes 1 (blue points) and 2 (green points) are less
separated from each other. The observation is in agreement with the
testing results because all testing points from class 0 are predicted
with absolute accuracy, and false predictions only come from classes
1 and 2.

from the respective devices are 92.5, 90.83, 92.5, and 92.5%.
The circuit parameters used are obtained from the noiseless
optimization. The reason for not using noisy simulators to
obtain the parameters is because we will perform the same
testing on the actual hardware. Hence it would be impractical

TABLE I. Overall noise properties of four machines in our experiment. For each column (e.g., “U1 gate error”), we average over the values
of all qubits in that device. The U1 gates have zero error because they are implemented with a frame change [53]. For “CNOT error,” we average
over all pairs of qubits. The last two columns show the results of noisy simulations. Circles, make_circles data set.

U1 gate error U2 gate error U3 gate error Readout error CNOT error Iris (%) Circles (%)

ibmq_16_melbourne 0.0 0.00115 0.00229 0.06597 0.03157 92.5 97
ibmq5_yorktown 0.0 0.00084 0.00168 0.03494 0.02024 90.83 93
ibmq_bogota 0.0 0.00031 0.00062 0.03702 0.01171 92.5 96
ibmq_rome 0.0 0.00035 0.00071 0.02397 0.01344 92.5 95
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TABLE II. Summary of testing results, including SWAP test and
inversion test, on noisy simulators and real devices, for simulations
and runs on actual backends for both the Iris and make_circles data
sets. The result given in the top row for each backend corresponds
to the noisy simulation (n.s.), and the results underneath correspond
to the real device (r.d.). Values are percentages. ST, SWAP test; IT,
inversion test.

Iris Circles

Ideal simulator 92.5 96

ibmq_16_melbourne

92.5(n.s.)
32.5(r.d. ST)
88.33(r.d. IT)

97(n.s.)
99(r.d.)

ibmq_5_yorktown

90.83(n.s.)
50(r.d. ST)

83.83(r.d. IT)

93(n.s.)
91(r.d.)

ibmq_bogota

92.5(n.s.)
75(r.d. ST)

91.67(r.d. IT)

96(n.s.)
95(r.d.)

ibmq_rome

92.5(n.s.)
28.33(r.d. ST)
91.67(r.d. IT)

95(n.s.)
94(r.d.)

and too time-consuming to perform the training directly on
the hardware as the jobs queue could be long and execution of
the training circuits would have to be split over many jobs.

3. Runs on quantum computers

With the noisy simulation, we also test our ideally trained
model on real quantum backends. Table II summarizes the
detailed results, including simulations and real devices. For
the same classification, we run two different methods to ob-
tain overlaps: the SWAP test, which uses five qubits, and the
inversion test, which uses only two qubits.

The accuracy with the SWAP test ranges from 28 to 75%
on various backends. However, the inversion test accuracy
remains stable around 90%. This clearly shows substantial
performance differences between the SWAP and inversion
tests. Likely, the main factor that accounts for such a dis-
crepancy is the controlled-SWAP (CSWAP) gate (Fig. 16) in the
SWAP test circuit. The number of CSWAP gates required for
two n-qubit states scales as O(n). Each CSWAP gate then is
decomposed into many CNOT gates (which are noisy) as shown
in Fig. 9. Despite the noisy simulations yielding accuracy
around 90%, runs on the actual machines suffer accumulated
errors not captured in the noise model used in the simulations.

FIG. 10. The make_circles data set with N = 2 labels used in
our explicit approach for classification.

On the other hand, the inversion test does not need the CSWAP

gate and, hence, requires fewer CNOTs—but at the cost of dou-
bling the quantum circuit depth. In our classification model,
there is a trade-off between using the SWAP test and using
the inversion test. As our small-size experiments have shown,
the inversion test should be used for better classification on
NISQ machines. However, it requires the ability to invert the
embedding circuit and can only evaluate the overlaps between
two data points (of pure states). Hence classifying unseen data
(by obtaining the classifying vector �f ) must be done in an
iterative manner. Conversely, the SWAP test can handle mixed
states, and the classification can be sped up with QRAM. In
addition, the SWAP test performance can be further improved
by using methods introduced in Ref. [54]. Such an approach is
hardware dependent (as the authors examined on IBM Q and
Rigetti separately), and it requires fewer CNOT gates [55].

B. Explicit approach experiment

Data sets. To illustrate this approach, we target the data set
make_circles with L = 2 labels (Fig. 10). Fifteen points are
taken from each class to serve as the training data. For testing,
we generate an additional 50 points for each class.

Training stage. We choose two subspaces spanned by |00〉
and |11〉, respectively, as label spaces and train the circuit to
map data from class 0 (blue points in Fig. 10) to H00 and from

FIG. 9. Decomposition of controlled-SWAP gates into many CNOT and one-qubit gates. In this paper, classical data are embedded in two-
qubit states. Hence there are five total qubits in the SWAP test circuit that uses a controlled-SWAP gate. Note that this diagram only shows the
decomposition of CSWAP, not including the data embedding part. There are 38 CNOT gates used in the decomposition.
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FIG. 11. Cost as a function of epochs. There are 100 epochs
in this training with 15 training points for each class and 30 total
training points.

class 1 (red points in Fig. 10) to H11. Given some input data x,
the classifying vector is then[

Tr(|x〉 〈x| · |00〉 〈00|)
Tr(|x〉 〈x| · |11〉 〈11|)

]
. (15)

The cost function becomes

C = 1 − 1

2
{Tr[σA(|00〉 〈00| − |11〉 〈11|)]

−Tr[σB(|00〉 〈00| − |11〉 〈11|)]}, (16)

where σA = 1
NA

∑
A |xA〉 〈xA| and σB = 1

NB

∑
B |xB〉 〈xB|. A and

B refer to class 0 and class 1, respectively.

1. Results of noiseless simulations

Figure 11 presents the training curve in the noiseless sim-
ulation. The overall accuracy is 96%. As in the implicit case,
we visualize the overlaps between training points before and
after training with 100 epochs (Fig. 12). This confirms the
well separation of embedded data from different classes in our
explicit approach.

2. Noisy simulations

As in the previous implicit case, we also use the trained
parameters from the noiseless simulation for the quantum
embedding but perform the noisy simulation to classify the
testing data set. The accuracy of these noisy simulations is
tabulated in Table II. Noise details can be found in Table I.

3. Runs on quantum computers

We perform the classification experiments of this
explicit approach on the real quantum backends
ibmq_16_melbourne, ibmq_5_yorktown, ibmq_bogota,
and ibmq_rome and compare their accuracy with the noisy
simulation with the noise model from the same backend.
Table II summarizes the results.

The accuracies from the noisy simulators and real ma-
chines turn out to agree well with each other, achieving values
above 90%. This indicates that the explicit approach is less

FIG. 12. Visualization of overlaps between training points (15
training points in each class). Top: Initial overlaps between data
points (with randomized circuit parameters). Bottom: After training
process, data from different classes become separated. Compared
with the implicit approach, the “well separation” is less apparent. In
other words, clusters are less tight. This may be reasonably explained
by the way the two methods work. In the implicit approach, the
optimization procedure focuses on directly separating data points
from different classes. Meanwhile in the explicit approach, data get
separated indirectly, i.e., through the predefined subspaces. Hence, in
theory, the implicit approach has certain advantages over the explicit
method in terms of attaining complete separation. In practice, both
approaches have strong classification ability, demonstrated in our
experiments.

affected by the noise compared with the implicit approach
using the SWAP test. This is reasonable as the explicit approach
requires fewer resources, such as fewer two-qubit gates, than
the implicit approach with the SWAP test. We simply let the
input data run through the circuit and perform computational-
basis measurements as the classification only depends on the
probability of obtaining |00〉 and |11〉.

C. Training over small samples

We observe that both approaches produce surprisingly
good testing accuracy despite training with small data points.
This provides motivation to determine whether one approach
is more robust than the other in terms of learning capacity. An-
other motivation is to investigate how testing accuracy varies
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FIG. 13. The make_moons data set.

with training size. We choose the make_moons data set with
L = 2 labels to perform the numerical experiment (Fig. 13).

The procedure is given as follows.
(i) For each class, we generate a fixed set of 50 points

(hence there are 100 points in total), serving as testing in-
stances.

(ii) For each class, we then choose randomly 5, 10, 20, and
25 points, serving as training instances. For each number of
training instances, we average over multiple training sessions
to obtain the testing accuracy.

(iii) We train the quantum circuit using implicit and explicit
approaches separately and compare the testing accuracy after
100 epochs of training.

Table III summarizes the results. From these, we observe
that both approaches perform reasonably well even with a
small training size. It is interesting to note that even with five
data points in each class for training, the implicit approach
has about 10% higher accuracy in the testing than the explicit
approach. However, this gap becomes smaller as the training
size increases.

TABLE III. Summary of testing results from the make_moons

data set on the simulator, with varying training size and fixed testing
points. There are 100 points in each class for a total of 200. For
each class, we choose 50 points to serve as testing instances. The
remaining 50 are used as the pool to randomly select a certain size of
training instances as described previously.

Training size Implicit approach (%) Explicit approach (%)

5 84 75.8
7 84 80.4
10 83.4 80.4
15 87 86
20 87.5 86.5
25 89.5 92

IV. PROSPECTS IN THE NISQ ERA

To maximally enhance the performance of any quantum
algorithm or, generally, a quantum procedure, we also need to
take into account the hardware structure, e.g., the connectivity
of qubits in the system and specific qubits chosen. Figure 14
shows the topology of the machine ibmq_bogota used in this
paper.

Table II shows the result of testing the Iris data set
on ibmq_bogota with the inversion test done using
qubits labeled “3” and “4.” We also carried out the same
“testification” using qubits “1” and “2.” The testification
result 65.83% is dramatically lower than that using qubits 3
and 4 (91.67%). Such a deviation can be reasonably argued
from the noise rates of the qubit pair involved and their CNOT

gates. As depicted in Fig. 14, qubits 3 and 4, as well as
the connection between them, have much lower error rates
compared with those of qubits 1 and 2. Hence, in practice, any
quantum procedure needs to be hardware-aware to reach its
maximum efficiency. Of course, our experiment requires very
small numbers of qubits and simple gates. As such, we can
simply choose specific qubits to obtain better accuracy. More
complicated quantum circuits generally require more careful
qubit specification. The quantum hardware topology also
varies, e.g., ibmq_16_melbourne and ibmq5_yorktown
versus ibmq_bogota (Fig. 15). Such differences can affect
the decomposition of a multiqubit gate into available one-
and two-qubit (in particular) gates. A hardware-aware
compiler that optimizes the selection also is a necessity
for future large-scale tasks. This hardware-specification
optimization is important practically and requires additional
development. Given an arbitrary quantum backend’s topology
and description of some quantum procedures, such as a
circuit’s length, width, and number of one-qubit or two-qubit
gates, it may be worth determining whether a systematic
procedure exists that can decide which qubits—and in what
orders—should be used in order to maximize the performance.

Other works also have demonstrated the ability and
feasibility of using actual quantum computers to classify
real-world data [28,56]. In addition to providing a unified
framework for QSL, we have performed simulations and
cloud-based real-device experiments. These experiments on
real quantum backends have extended the prospects of apply-
ing quantum computers for ML one step further, demonstrated
explicitly in this paper that current noisy quantum computers
can achieve high accuracy on classifying data. The low-
accuracy results obtained via the SWAP test routine may be
improved by using the inversion test routine, and we have
emphasized that the inversion test is more appropriate in
the NISQ era. Real quantum systems undoubtedly are more
complicated, and their noise on long circuits (especially those
with many CNOTs) may result in worse accuracy than noisy
simulations. In our experiments, the error rate of one-qubit
gates is ∼10−3 or smaller, and that of the two-qubit CNOT

is ∼10−2 for current hardware [37]. Full implementation of
quantum error correction remains elusive. Along with devel-
opment of precise, high-fidelity gates, efforts have been made
in error mitigation methods [57–60] to obtain useful out-
comes. Some of these mitigation methods require repetition
of the same circuit but with different overall error rates by
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FIG. 14. Topology of ibmq_bogota. The picture was acquired at the time of our experiment. Topologies of other machines used in our
experiment can be found in Fig. 15.

FIG. 15. Topology and the coupling map of other IBM Q devices
used in this paper: ibmq_5_yorktown, ibmq_16_melbourne, and
ibmq_rome.

possibly stretching the gate pulses. This allows observables
to be extrapolated to the gate noiseless limit [57,58]. Error
mitigation in measurement also is necessary to infer correct
readout outcomes [59,60]. The experiments done as part of
our work do not employ any mitigation techniques. As such,
our real-device results may be further improved with these
techniques, especially results from the SWAP test using gate
mitigation. Additionally, our classification model has been
shown to do well with a small training pool (compared with
the testing set), achieving very high accuracy. Hence one
can reasonably expect that the model can be trained on real
machines to achieve comparable performance.

V. CONCLUSION

In our framework for quantum supervised learning, the
main conceptual tool of our method is the idea that the input
data x are “forwarded” to the classifying vector �f , and their
classification can be done accordingly. A hybrid optimization
step then proceeds to train the circuit. After being trained, the
embedding circuit can map the data from the input space X to
the proper subspaces in H.

Our work emphasizes that the quantum feature map,
equipped with a learning procedure, is an especially powerful
tool for supervised learning. With the implicit approach, the
number of separated classes (labels) in a supervised learning
problem ideally can be arbitrarily high. Thus it provides a
means to construct a universal quantum classifier. Compared
with the explicit approach, the learning capacity of this ap-
proach has been demonstrated with a small training pool,
which is also encouraging. Moreover, we show that the ex-
plicit approach can intrinsically unify other traditional QSL
models (detailed in Appendix B). The fact that our framework
can be divided into explicit and implicit approaches demon-
strates its flexibility, affording the option to choose how data
are embedded and analyzed on the Hilbert space H. These
two approaches constitute a unified framework for supervised
learning methods using a quantum computer.

Along with classification, we note that the trained quantum
circuit possibly can be employed as a subroutine of other
quantum ML algorithms as we know with high confidence
that embedded data from different classes are well separated
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from each other (trained with the implicit approach) or ap-
proximately well contained in some subspaces in H (trained
with the explicit approach).
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APPENDIX A: SWAP AND INVERSION TESTS

Figure 16 provides a description of two alternative methods
to evaluate the overlaps between two data points. The first is
the controlled-SWAP gate, acting on five qubits, and the second
is the inversion test.

APPENDIX B: MORE ON THE EXPLICIT APPROACH

In Sec. II C 2, we have illustrated the intrinsic relation
between the explicit approach and traditional quantum classi-
fication models via the measurement outcomes. Here, we offer
an alternative explanation. We consider a binary classification
problem (two classes, A and B) and a single-qubit quantum
circuit (Fig. 17).

In traditional approaches, the first block U (x) embeds clas-
sical information x into a quantum state in the Hilbert space

FIG. 16. Circuit representation for the (a) SWAP test and (b) in-
version test. There is an abuse of the notation �: In both the SWAP

and inversion test circuits, the actual embedding circuit �i, j already
includes the repetition of the unit embedding in Fig. 6.

FIG. 17. A common circuit model for machine learning tasks.

H. Then, the variational layer W (θ ) is trained to distinguish
those embedded states. For instance, x can be assigned to
class A if the probability of measuring 0 is greater than the
probability of measuring 1 (P0 > P1). The training step should
focus on maximizing the probability of measuring 0 for data
in class A and measuring 1 otherwise.

Recall that our embedding-based framework exploits the
ability of a quantum circuit to represent data in a complex
space. An alternative, simple perspective is evident if we
interpret the whole circuit as an encoding of the classical
data x.

Without loss of generality, we assume that classical data x
are mapped to a quantum state |ψ〉 (refer to Fig. 18). When we
measure this state, the probability of measuring 0 is cos2(θ ),
which means that if such a probability is high, the state |ψ〉
will be close to the “north pole” |0〉. If we follow the explicit
approach and decompose H = H0 ⊕ H1, where H0,H1 are
spanned by |0〉 , |1〉, respectively, we end up maximizing the
probability of measuring 0 for data from class A and mea-
suring 1 for data from class B. Pictorially, those data from
class A will form a cluster around |0〉, and data from class B
will cluster around |1〉. After optimization, these clusters are
hopefully well separated. To classify unseen data, we can use
the optimized circuit to map them to some states and measure.
The measurement probability may be understood as a “close-
ness” to either one of the two data cluster centers from classes
A and B. This example also illustrates that our embedding-
based framework, or, more specifically, the explicit approach,
conceptually unifies other traditional quantum classification
models, as they share the same underlying mathematical struc-
ture. To relate the explicit approach to the kernel method, one
can think that the above decomposition H = H0 ⊕ H1 sets
a fixed decision boundary (the dashed line in Fig. 18), and
training of the embedding circuit would maximally distribute
the data points on two sides, far from the boundary.

FIG. 18. Visualization of a qubit on a Bloch sphere. Note that the
angle θ in this figure differs from the circuit parameters θ in Fig. 17.
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FIG. 19. One-vs-all strategy. There are three classes (blue,
orange, and red) and the corresponding decision boundary (blue, or-
ange, and red lines). All classes are linearly separable for simplicity.

APPENDIX C: ONE-VERSUS-ALL STRATEGY

The one-versus-all strategy (Fig. 19) often has been used
to transform a binary classifier to a multiclass classifier, es-
pecially for those models that, in essence, can deal with only
binary classification. Here, we review this strategy and discuss
its drawbacks.

The underlying mechanism of the one-versus-all strategy
is that it assumes there are only two classes (or labels) in
the supervised learning problem that learn the corresponding
decision boundary. For example, in Fig. 19, all blue circles and
red triangles can be treated as one class that learns the decision
boundary to distinguish them from the orange rectangles, as
well as the decision boundary between the blue circles and
the other symbols and the decision boundary between the red
triangles and the other symbols.

The caveat of the one-versus-all strategy is clear from
Fig. 19: The black stars (unseen data) struggle to find a class
(label). A similar issue appears in QSL, where the data are
embedded by a fixed circuit in the Hilbert space H and the
subsequent variational circuit is trained to draw the decision
boundary. Notably, our framework can naturally surpass this
issue as the representation of the data in H is learned. Then,
a measure is employed to compare data directly as in the
implicit approach or indirectly as in the explicit approach.
Hence a label for unseen data is always guaranteed.
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