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The quantum computation of electronic energies can break the curse of dimensionality that plagues many-
particle quantum mechanics. It is for this reason that a universal quantum computer has the potential to
fundamentally change computational chemistry and materials science, areas in which strong electron correlations
present severe hurdles for traditional electronic structure methods. Here we present a state-of-the-art analysis of
accurate energy measurements on a quantum computer for computational catalysis, using improved quantum
algorithms with more than an order of magnitude improvement over the best previous algorithms. As a
prototypical example of local catalytic chemical reactivity we consider the case of a ruthenium catalyst that can
bind, activate, and transform carbon dioxide to the high-value chemical methanol. We aim at accurate resource
estimates for the quantum computing steps required for assessing the electronic energy of key intermediates
and transition states of its catalytic cycle. In particular, we present quantum algorithms for double-factorized
representations of the four-index integrals that can significantly reduce the computational cost over previous
algorithms, and we discuss the challenges of increasing active space sizes to accurately deal with dynamical
correlations. We address the requirements for future quantum hardware in order to make a universal quantum
computer a successful and reliable tool for quantum computing enhanced computational materials science and
chemistry, and identify open questions for further research.
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I. INTRODUCTION

Quantum computing [1–4] has the potential to efficiently
solve some computational problems that are exponentially
hard to solve on classical computers. Among these prob-
lems, one of the most prominent cases is the calculation of
quantum electronic energies in molecular systems [5–9]. Due
to its many applications in chemistry and materials science,
this problem is widely regarded as the “killer application” of
future quantum computers [10], a view that was supported
by our first rigorous resource estimate study for the accurate
calculation of electronic energies of a challenging chemical
problem [11].

At the heart of chemistry is predicting the outcome of
chemical processes in order to produce chemicals, drugs, or
functional molecular assemblies and materials. A prerequisite
for this ability to predict chemical processes is an under-
standing of the underlying reaction mechanisms. Quantum
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mechanics allows one to assign energies to molecular struc-
tures so that a comparison of these energies in a sequence of
molecular transformations can be taken as a measure to rate
the viability of such a chemical reaction. Relative energies
are a direct means to predict reaction heats and activation
barriers for chemical processes. However, the reliability of
such predictions depends crucially on the accuracy of the
underlying energies, of which the electronic energy is often
the most important ingredient. This energetic contribution of
the dynamics of the electrons in a molecule can be calculated
by solving the electronic Schrödinger equation, typically done
in a so-called one-particle basis, the set of molecular orbitals.

The computational complexity of an exact solution of
the electronic Schrödinger equation on classical computers
is prohibitive as the many-electron basis expansion of the
quantum state of interest grows exponentially with the number
of molecular orbitals (often called the “curse of dimensional-
ity”). An exact diagonalization of the electronic Hamiltonian
in the full many-electron representation is therefore hard and
limited to small molecules that can be described by compara-
tively few (on the order of 20) orbitals. Once accomplished, it
is said that a full configuration interaction (full-CI) solution in
this finite orbital basis has been found. Since typical molecular
systems will require on the order of 1000 molecular orbitals
for their reliable description, exact-diagonalization methods
need to restrict the orbital space to about 20 orbitals chosen
from the valence orbital space [called complete active space
(CAS) CI]. Accordingly, approximate methods have been
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developed in quantum chemistry for large orbital spaces. By
contrast, quantum computing allows for an encoding of a
quantum state in a number of qubits that scales only linearly
with the number of molecular orbitals and has therefore the
potential to deliver full-CI solutions for large orbital spaces
that are inaccessible to traditional computing because of the
exponential scaling.

In our previous case study on the feasibility of quantum
computing for chemical reactivity [11], we chose to investi-
gate electronic structures of a biocatalyst with a still unknown
mode of action, i.e., the active site of nitrogenase which is
a polynuclear iron-sulfur cluster. This choice was motivated
by the fact that such polynuclear 3d transition metal clusters
are known to exhibit strongly correlated electronic structures
that are hard to describe reliably with approximate electronic
structure methods on classical computers (electronically ex-
cited states of molecules in photophysical and photochemical
applications represent another example of this class of prob-
lems). In Ref. [11], which relied on a structure model of
the active site of nitrogenase in its resting state, we avoided
biasing toward the electronic ground state of that particular
structure by optimizing arbitrary electronic states for that
structure for spin and charge states. These did not coincide
with the electronic ground state of the resting state as empha-
sized in the supporting information of Ref. [11]. Although the
resource estimates provided in Ref. [11] supported the view
that quantum computing is a true competitor of state-of-the-art
CAS-CI-type electronic structure methods such as the density
matrix renormalization group (DMRG) [12,13] or full config-
uration interaction quantum Monte Carlo (FCIQMC) [14] for
studies of chemical reaction mechanisms, we did not consider
an actual reaction mechanism.

In this work we therefore revisit the problem of quan-
tum computing enhanced reaction mechanism elucidation by
considering the latest algorithmic advances, but now with a
focus on a specific chemical reaction that is prototypical for
homogeneous catalysis and equally well relevant for hetero-
geneous catalysis. The example that we chose is the catalytic
functionalization of carbon dioxide, i.e., the capture of the
small green-house gas carbon dioxide by a catalyst that ac-
tivates and eventually transforms it to a useful chemical such
as methanol. Hence, we continue to focus on small-molecule
activation catalysis, but emphasize that, despite the obvious
interest into this specific system in the context of carbon
capture technologies, our analysis is of general value to a huge
body of chemical reactivity studies. Moreover, we reexamine
some of our initial assumptions that are a moving target in
the fast developing field of quantum computing. These are
the gate counts for the quantum algorithm that performs the
energy measurement and assumptions on the error corrected
gate times on a future quantum computer, which are heav-
ily dependent on the underlying technology of its hardware.
Furthermore, we extend our previous work with respect to
the steps that need to be carried out by a quantum computer,
specifically regarding the resources of the state preparation
step.

Since our previous work [11], there has been significant
progress in quantum algorithms, but also a better understand-
ing of what it takes to build a scalable quantum computer
has been reached. On the algorithmic side, Hamiltonians

represented by a linear combination of unitaries in a so-called
black-box query model can now be simulated with optimal
cost using techniques called “qubitization” [15] and “quan-
tum signal processing” [16]. In addition, structure in broad
families of Hamiltonians can be exploited to reduce the cost
of simulation even more. This includes Hamiltonians with
geometrically local interactions [17] and large separations
in energy scales [18]. Even more recently, very promising
tight theoretical bounds on the performance of traditional Lie-
Trotter-Suzuki formulas on average-case Hamiltonians have
been obtained [19].

Here we introduce further refinements to the technique of
qubitization applied to molecular systems, which has already
been noted [20] to be particularly promising in terms of the
dominant quantum Toffoli-gate complexity [21]. We assume
that the two-electron tensor describing interactions between
N molecular orbitals has a low-rank approximation in a so-
called double-factorized representation. This leads to Toffoli
gate cost estimates that are orders of magnitude better. For
instance, we previously estimated that obtaining an energy
level of a nitrogen fixation problem to 1 mHartree [11] cost
the equivalent of 1.5 × 1014 Toffoli gates. This was reduced to
2.3 × 1011 Toffoli gates by Berry et al. [22] using a so-called
single-factorized representation in the qubitization approach.
Under similar assumptions on the rank as Berry et al., we
achieve 1.2 × 1010 Toffoli gates, a further improvement of
more than an order of magnitude.

We have also taken into account realistic assumptions for
mid-term quantum hardware. While our previous work [11]
focused on optimistic future devices with logical gate times
of 100 ns and all-to-all connectivity between qubits, we here
employ gate times of 10 μs for fault tolerant gates with near-
est neighbor connectivity—realistic assumptions for mid-term
quantum computer architectures. We therefore also discuss
the overhead due to mapping the quantum algorithm to a
two-dimensional planar layout, which further increases the
overall runtime but makes the estimates more realistic.

II. A HOMOGENEOUS CARBON DIOXIDE
FIXATION CATALYST

The catalytic process that we selected for our present
work is the binding and transformation of carbon dioxide.
The infrared absorption properties of carbon dioxide make
it a green-house gas that is a major contributor to climate
change. Naturally, limiting or even inverting rising carbon
dioxide levels in the atmosphere is a truly important goal
and all possible ways to accomplish it must be considered.
One option, although currently not the most relevant one [23],
is carbon dioxide utilization by chemical transformation. In
basic research, options have been explored to fix and react
inert carbon dioxide to yield chemicals of higher value (see
Refs. [24,25] for two recent examples). Also, homogeneous
transition metal catalysts have been designed in the past
decade, many of them based on ruthenium as the central
metal atom. Despite the fact that eventually heterogeneous
catalysis may be preferred over homogeneous catalysis, un-
derstanding the basics of carbon dioxide fixation chemistry
is facilitated by well-defined homogeneous systems. While
formate is often the product of such a fixation process,
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FIG. 1. Selected steps of the catalytic cycle elucidated in Ref. [27] on the basis of DFT calculations: intermediates and transition state
structures considered for the present work are shown (Roman numerals are according to the original publication).

methanol is a chemical of higher value. Not many catalysts
have been reported so far that can transform carbon dioxide
directly into methanol [26] and all of these are plagued by a
comparatively low turnover number. To find synthetic cata-
lysts that robustly produce high-value chemicals from carbon
dioxide with high turnover number is therefore an impor-
tant design challenge and computational catalysis can provide
decisive insights as well as virtual screening to meet this
challenge.

For our assessment of quantum computing resource es-
timates, we chose a catalyst reported by the Leitner group
[27] as extensive density functional theory (DFT) calculations
on its mechanism have already been reported by this group.
Hence, key molecular structures have already been identified
based on DFT. A detailed mechanistic picture has emerged,
from which we took intermediates and transition state struc-
tures for our resource estimate analysis. Lewis structures
of the eight structures selected for our work are shown in
Fig. 1.

In this work we focus on the electronic structure of isolated
complex structures and therefore neglect any surrounding
such as a solvent as well as energy contributions from nuclear
dynamics that would be required for the calculation of free
energies (cf. Ref. [11] on how to include them). The heavy
element ruthenium is known to form complexes that are often
low spin, i.e., singlet or doublet, and do not feature strong
multiconfigurational character (by contrast to its lighter ho-

molog iron). It is therefore not surprising that we found no
pronounced multiconfigurational character through an analy-
sis of occupation numbers as well as orbital entanglement and
pair-orbital mutual information measures. Hence, the Ru com-
plexes selected for our resource estimate study feature mostly
dynamic electron correlation indicated by small weights of
all but one electronic configurations (Slater determinants) that
contribute to the exact wave function in a full configuration
interaction expansion. For our resource analysis, this is of
little importance but highlights the importance of a larger
and faster universal quantum computer with a few thousand
logical qubits for complete state representation, to accurately
capture all relevant dynamical correlations.

The presentation of the CO2-fixating ruthenium catalyst of
the Leitner group [27] was accompanied by extensive DFT
calculations of the potentially relevant molecular structures,
which is a routine procedure in chemistry. However, DFT
electronic energies are plagued by approximations made to
the exchange-correlation functional [29,30] and can there-
fore be of unknown reliability (cf., e.g., Refs. [31–33]).
Contemporary DFT is often considered to be a reliable com-
putational approach, but its actual accuracy is in general not
known for a reaction under investigation. While molecular
equilibrium structures are predicted with sufficient accuracy,
the assigned electronic energies can still be affected by
significant errors. This can be understood from error mea-
sures such as the largest and the mean absolute deviation
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FIG. 2. Relative DFT electronic reaction energies for the catalytic cycle obtained with a def2-TZVP basis set and three different approxi-
mate density functionals: M06-L [27], PBE, and PBE0 on M06-L/def2-SVP-optimized structures taken from Ref. [27]. For comparison, we
provide relative electronic reaction energies from PBE/def2-TZVP//PBE/def2-TZVP calculations (in Pople’s double slash notation, where
the density functional behind the double slash is the one for which the structure was obtained) labeled as “PBE opt.”

from energy reference data of large balanced benchmark
data sets. Another indication is the comparatively poor per-
formance of tailored system-focused parametrizations (see,
e.g., Refs. [32,34]). The authors of Ref. [27] selected the
Minnesota functional M06-L [35] because they found good
overall agreement with their experimental results. In order
to demonstrate the uncertainty that generally can affect DFT
results, which can be very cumbersome if experimental data
are not available for comparison, we supplemented the DFT
data of Ref. [27] with results obtained with the standard
generalized-gradient-approximation functional PBE [36] and
its hybrid variant PBE0 [37] for the eight structures of the
reaction mechanism considered in this work (data shown in
Fig. 2).

As can be seen in Fig. 2, whereas structure optimiza-
tion (compare results for structures optimized with the same
functional with the single-point data denoted by the double
slash notation) has a small effect on the relative electronic
energies, the difference between the functionals can amount
to more than 50 kJ/mol (i.e., 19 mHartree per molecule)
and can even reverse the qualitative ordering of the com-
pounds (compare structures V and VIII). The variation of
the electronic DFT energy obtained with different density
functional approximations is an indication of the magnitude
by which DFT energies can change with respect to this
key approximation in DFT. However, we want to empha-
size that one does not know to what extent any of these
energies for any of these structures is accurate. This can
lead to qualitatively, but also quantitatively wrong conclu-
sions about the mechanism (recall the fact that microkinetic
models will require errors in relative energies to be smaller
than about 1 mHartree as they enter rate expressions through
an error-amplifying exponential expression; see Ref. [34]).
Obviously, in the absence of any additional information (such
as experimental data or more accurate calculations), it is
virtually impossible to settle on reliable energetics with poten-
tially dramatic consequences for the elucidation of a reaction
mechanism.

III. QUANTUM COMPUTING ENHANCED
COMPUTATIONAL CATALYSIS

The elucidation of chemical reaction mechanisms is rou-
tinely accomplished with approximate quantum chemical
methods [38,39], for which usually stationary structures on
Born-Oppenheimer potential energy surfaces are optimized,
yielding stable reactants, products, and intermediates of a
chemical process. More importantly, optimized first-order
saddle points on such a surface represent transition state struc-
tures, which are key for detailed kinetic studies and hence for
the prediction of concentration fluxes.

In the following we discuss where in the mechanism elu-
cidation process quantum computing can be efficient, useful,
and decisive, and hence, how quantum computing can effi-
ciently enhance and reinforce computational catalysis to make
a difference. As there are many steps involved that require a
deep understanding of various branches of theoretical chem-
istry, we provide an overview of the essential steps in Fig. 3.
Understanding chemical catalysis, and chemical reactions in
general, requires an exploration of relevant molecular struc-
tures (structure exploration in Fig. 3), which is usually done
manually and with DFT approaches (as in Ref. [27] for our
example here), but which can now also be done in a fully
automated and even autonomous way [40]. These structures
need to be assigned an energy which may be conveniently
separated into an electronic contribution (steps 1–7 in Fig. 3)
and a remaining part (additional free energy calculations in
Fig. 3) containing nuclear and other effects (calculated in a
standard rigid-rotor–harmonic-oscillator model accompanied
by dielectric continuum embedding or by explicit molecular
dynamics) to eventually yield a free energy calculated from
all related microstates. Relative free-energy differences will
eventually be used as barrier heights in expressions for abso-
lute rate constants (kinetic modeling in Fig. 3) that can then be
used in kinetic modeling for predicting concentration fluxes
through the chemical web of relevant molecular structures.
Ultimately, such knowledge can be exploited to improve on
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FIG. 3. Protocol of computational catalysis with the key step of quantum computing embedded in black, which is usually accomplished
with traditional methods such as CASSCF, DMRG, or FCIQMC (see text for further explanation).

existing or to design new catalysts with enhanced catalytic
properties.

Accuracy matters: A reaction rate depends exponen-
tially on the energy difference between a transition state
structure and its corresponding stable reactants, which are
connected by an elementary reaction step. Because of
this exponential dependence, highly accurate energy differ-
ences are decisive. While many contributions enter these
free energy differences, the electronic energy difference is
the most crucial one in bond breaking and bond making
processes.

Electronic energies are key components (steps 1–7 in
Fig. 3): Electronic energies are notoriously difficult to cal-
culate and standard approximations are affected by unknown
errors that can be large. Only for electronically simple struc-
tures, so-called closed-shell single-determinant electronic
structures, well-established methods exist that run efficiently
on a classical computer (such as explicitly correlated local
coupled cluster schemes with, at least, perturbatively treated
triple excitations [41]). For general electronic structures, how-
ever, no method of comparable accuracy exists that is at the
same time feasible for moderately sized molecules. In partic-
ular, for strong correlation cases, which require more than one
Slater determinant for a qualitatively correct description of the
electronic wave function, it can be hard to obtain an accurate
total electronic energy, which then enters the calculation of
relative energies.

In our previous work [11] we considered a quantum com-
puter of moderate size within reach in the not too distant
future. Moreover, we assumed that such a machine might have
100 to 200 logical qubits available for the representation of a
quantum state. Such a state would be constructed from single-
particle states, i.e., molecular orbitals for molecular structures.
For decades it has been the goal of quantum chemistry to
devise methods that efficiently construct approximations to a
many-electron state represented in terms of orbitals. If the full
many-electron Hamiltonian is expressed and diagonalized in
a complete many-electron (determinantal) basis constructed
from such a one-electron basis, then a full-CI calculation may
be carried out. Such an exact diagonalization is, however,
routinely only feasible for about 18 orbitals [42] (a record
calculation was recently carried out for 24 orbitals [43]) due
to the exponentially growing number of many-electron states
with the number of orbitals.

Required accuracy: A reasonable target accuracy for rela-
tive energies (and therefore also for total electronic energies of
individual molecular species) is about 1 mHartree, if not 0.1
mHartree. This corresponds to about 2.6 and 0.26 kJ/mol, re-
spectively. Note that thermal energy RT (T being temperature
and R the gas constant) at room temperature is on the order
of 2.6 kJ/mol, which may be related to the kinetic energy of
a reactant molecule at average velocity (compare this to the
spread observed for different DFT functionals in our example
in the last section).
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It is important to understand that this target accuracy is
important for relative energies, i.e., for the energy differences
that eventually enter the rate constant expressions. For total
electronic energies, however, this accuracy does not match the
precision with which these energies are actually known. In
fact, the true total energies are typically off by a huge energy
offset because one does not make an effort to describe core
electrons, which contribute significantly to the total electronic
energy, but not to reaction chemistry as they are atomically
conserved. Hence, such calculations rely on significant er-
ror cancellation effects that occur when atomic contributions
to the total electronic energy drop out in the calculation of
reaction energies (which are relative energies) as they are
conserved during a reaction (consider, e.g., a molecular orbital
that is mostly of 1s-atomic orbital character and remains un-
affected by a chemical reaction, but contributes significantly
to the total electronic energy).

Challenges of electronic structure (steps 1–7 in Fig. 3): It is
therefore most important to get the electronic (valence) struc-
ture of each relevant molecular structure right. Here quantum
computing offers an opportunity [11]. It is important to realize
that a typical chemical catalysis problem does not involve very
many valence orbitals in every elementary reaction step. As a
consequence, the size of the active orbital space, from which
the electronic wave function is constructed, does usually not
need to be very large and can be easily handled with methods
such as complete active space self-consistent field (CASSCF),
DMRG, or FCIQMC. The latter two are capable of handling
active orbital spaces of up to about 100 spatial orbitals owing
to efficient approximations. However, sometimes there may be
a price to pay for these approximations and that is a residual
uncertainty regarding convergence of the electronic energy.
For instance, a DMRG result will critically depend on—apart
from a fixed finite value of the bond dimension—proper con-
vergence of the sweeping algorithm, which, at times, might
be difficult to determine. In the case of the more recent
FCIQMC approach, which is under continuous development
and offers extraordinarily efficient scaling on large traditional
parallel computers, convergence with respect to the number
of walkers or extrapolation to an infinite number of walkers
may be hard to achieve for certain molecules. We also note
that it is generally hard for any quantum chemical approach
(hence, also for DMRG and FCIQMC) to deliver rigorous yet
useful information about the error associated with a specific
result. Moreover, any active-space approach is plagued by
a severe drawback discussed below, namely the neglect of
dynamic electronic correlation arising from the majority of
virtual orbitals neglected.

Importance of dynamic electron correlation (steps 1 and 7 in
Fig. 3): As noted already above, moderately sized molecules,
such as the ones studied in this work, may easily require
on the order of 1000 or more spatial molecular orbitals for
a description that may be considered accurate within the
chemically relevant accuracy of about 1 mHartree or even 0.1
mHartree for relative energies. However, the restriction to the
valence orbital space from which the active space of the most
strongly correlated orbitals is chosen [44,45] compromises
this accuracy (note that these active orbitals may be identified
based on natural-orbital occupation numbers [46] or on orbital
entanglement measures [47,48], even in a completely auto-

mated fashion [47,49]). The vast majority of orbitals that are
weakly correlated and neglected in this procedure give rise to
dynamic electron correlations, which are neglected in a small-
CAS calculation. However, the dynamic electron correlation
contribution to the total electronic energy is decisive and so
standard recipes exist to approximate it. The most prominent
one is the a posteriori correction (step 7 in Fig. 3) provided
by multireference perturbation theory [50], which, however,
requires elements of the three- and four-body reduced density
matrices (3-RDMs and 4-RDMs, respectively) that would be
extremely hard to obtain by quantum computing. Not even
approximate approaches that rely on at most some 3-RDM
elements will be accessible by quantum computing for inter-
esting molecules. To evade such a computational bottleneck,
perturb-then-diagonalize approaches (step 1 in Fig. 3) such
as range-separated DFT for CAS-type methods [51–53] or
transcorrelation approaches [54] were proposed for quantum
computing [11].

Quantum computing is supposed to be a valuable and,
in the long run, an ultimately superior competitor to the
aforementioned traditional methods (i) because rigorous er-
ror estimates are available and (ii) because systems may be
accessible that are traditionally not feasible because of the
curse of dimensionality when a total state is to be represented
in a large set of orbitals. Its true benefits will fully unfold if
energy measurements in the full orbital basis become feasible
(on this, see the discussion in the Conclusions section).

Four-index transformation (step 4 in Fig. 3): A cumbersome
technical step, to be carried out by traditional computing on
classical computers, is the four-index transformation of the
two-electron interaction integrals in the Hamiltonian, which
scales with the fifth power of the number of basis functions.
In this transformation, the final parameters for the electronic
Coulomb Hamiltonian in the molecular orbital basis are pro-
duced from the four-index integrals defined in the atomic
orbital basis, i.e., in the basis which is provided for the
representation of all molecular orbitals (typically a set of
Gaussian-type functions such as the def2-TZVP basis set used
in the DFT calculations presented above). Note, however, that
this transformation, while being expensive but feasible for a
small CAS, becomes a threat to the whole calculation when
the active space grows to eventually incorporate the complete
one-electron (atomic orbital) basis (of say, more than 1000
basis functions). Hence, the sheer number of two-electron
parameters in the electronic Hamiltonian will require us to
rethink how to deal with these terms growing to the fourth
power in the number of orbitals, such as in recent work [55]
that generates sparse low-rank approximations to the two-
electron integrals. Naturally this issue has also been discussed
in modern traditional approaches [56].

IV. QUANTUM ALGORITHMS FOR CHEMISTRY

For the catalysis problem we require quantum algorithms
that provide reliable results with controlled errors on the
electronic energy in a given orbital basis. Uncontrolled
approximations in quantum algorithms would negate the ad-
vantages offered by quantum computers, which will require
tremendous effort to build and operate even at a moderately
sized error-corrected scale.
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Though it is without doubt that the popular variational
quantum eigensolver (VQE) [57] can obtain parameters of
a unitary coupled cluster (UCC) parametrization of the elec-
tronic wave function that is likely to be accurate (especially
when higher than double excitations are considered [58]),
this scheme unavoidably generates a residual unknown uncer-
tainty in the true electronic energy. Reducing these errors by
improving the ansatz will require significantly more gate oper-
ations than are expected to be possible on non-error-corrected
noisy intermediate scale quantum devices [59,60]. Moreover,
the number of repetitions required to estimate energies with
sufficient accuracy of 1 mHartee or better is enormous [61].

We also note that knowledge of reliable and controllable
errors in quantum algorithms is a decisive advantage over
classical methods such as DMRG and FCIQMC, for which
convergence control with respect to their parameters is not
necessarily easy or even feasible.

Therefore, we turn to one of the most promising appli-
cations of quantum computers, which is a bounded-error
simulation of quantum systems using quantum phase estima-
tion. The main idea is to synthesize a quantum circuit that
implements the real time-evolution operator W = e−iH/α by a
given Hamiltonian H for some normalizing factor α, which
henceforth are always in atomic units of Hartree. When ap-
plied n times to an eigenstate H |ψk〉 = Ek|ψk〉, a phase nEk/α

is accumulated. Quantum phase estimation then estimates the
energy Ek with a standard deviation �E = O(α/n) [62]. If
one prepares an arbitrary trial state |ψtrial〉 rather than an
eigenstate, phase estimation collapses the trial state to the kth
eigenstate with probability pk = |〈ψk|ψtrial〉|2 and it returns an
estimate to the corresponding energy Ek [63].

The phase estimation procedure is executed on a quantum
computer by applying a sequence of quantum gates. If the
unitary W is implemented using a number cW of quantum
gates, the overall quantum gate cost of obtaining a single
estimate Êk is then

cW
πα

2�E
, (1)

where the factor πα
2�E

arises from previous analyses on the
performance of phase estimation [20,64] (combined with a so-
called phase-doubling trick [20,65]). In general, the quantum
circuit only approximates W to some bounded error �W in
spectral norm. This adds a systematic bias of α�W to the
estimate Êk . Thus, we budget for this error by making the
somewhat arbitrary choice of performing phase estimation to
an error of 0.9�E , and compiling W so that �W � 0.1�E/α.
To date, there are several prominent quantum algorithms for
approximating real time evolution, such as Lie-Trotter-Suzuki
product formulas [66], sparse Hamiltonian simulation [67],
linear combination of unitaries [68], qubitization [15], and
quantum signal processing [16]. In this work we consider
the electronic Hamiltonian in its nonrelativistic form with
Coulomb interactions (in Hartree atomic units),

H =
∑
i j,σ

hi ja
†
(i,σ )a( j,σ )

+ 1

2

∑
i jkl,σρ

hi jkl a
†
(i,σ )a

†
(k,ρ)a(l,ρ)a( j,σ ), (2)

which is parametrized through the one- and two-electron inte-
grals hi j and hi jkl of the molecular orbitals {ψi},

hi j =
∫

ψ∗
i (x1)

(
−∇2

2
−

∑
m

Zm

|x1 − rm|

)

× ψ j (x1)d3x1, (3)

hi jlk =
∫

ψ∗
i (x1)ψ j (x1)

(
1

|x1 − x2|
)

× ψ∗
k (x2)ψl (x2)d3x1d3x2, (4)

where xi denote electronic coordinates and Zm is the charge
number of nucleus m at position rm (note that a relativistic
generalization is straightforward [69]). We explicitly sepa-
rate the fermion indices p ≡ (i, σ ) into an index where i ∈
{1, . . . , N} enumerates the N spatial molecular orbitals, and
σ ∈ {0, 1} indexes spin up and spin down. Hence, the fermion
operators satisfy the usual anticommutation relations

{ap, aq} = 0, {a†
p, a†

q} = 0, {ap, a†
q} = δpqI, (5)

and the coefficients hi j , hi jkl are real and satisfy the symme-
tries

hi j = h ji,

hi jkl = h jikl = hi jlk = h jilk = hlki j

= hlk ji = hkli j = hkl ji. (6)

For the purposes of phase estimation through the so-called
qubitization approach, it is not necessary to simulate
time-evolution e−iHt . Whereas our previous work [11] approx-
imated the time-evolution operation using Lie-Trotter-Suzuki
product formulas, it can be advantageous in some cases to im-
plement the unitary walk operator W = ei sin−1(H/α) [15,70,71]
instead, which has some normalizing constant α � ‖H‖ that
ensures the arcsine is real. This walk operator can be im-
plemented exactly, assuming access to arbitrary single-qubit
rotations, in contrast to all known quantum algorithms where
time-evolution e−iHt can only be approximated. After esti-
mating the phase θ̂ = sin−1(Ek/α) with phase estimation, we
may obtain Êk by applying sin(θ̂ ) in a classical postprocessing
step.

We focus on the qubitization technique applied to
the electronic Hamiltonian of Eq. (2), with the goal
of minimizing the quantum gate costs in Eq. (1). In
fault-tolerant architectures, quantum gate costs reduce to
the number of so-called primitive Clifford gates (e.g.,
Hadamard= 1√

2
[1 1
1 −1], phase= [1 0

0 i], and controlled-NOT)

and non-Clifford gates (e.g., T = [1 0
0

√
i] and Toffoli, which

applies a NOT gate controlled on two input bits being in the
“one” state). As the physical resources needed to implement a
single error-corrected primitive non-Clifford gate such as the
T gate are on the order of 100 to 10 000 times higher than for
a single two-qubit Clifford gate [72,73]—and one Toffoli gate
may be implemented by four T gates—much recent work has
focused on optimizing the non-Clifford-gate cost of W . Within
an atom-centered basis set (such as the ones employed in this
work), this focus has reduced the T gate cost of obtaining a
single estimate Êk from Õ(N5/�

3/2
E ) using Trotter methods to

Õ(αCDN3/2/�E ) Toffoli gates and O(N3/2 log N/�E ) qubits
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using qubitization combined with a so-called single-factorized
Hamiltonian representation, where αCD = O(N3) [22] is
a certain norm of the Hamiltonian. Our main technical
contribution is a further reduction of the gate cost of W and the
normalizing factor to αDF = O(N3/2) as described in the next
section.

V. EFFICIENT ENCODING OF DOUBLE-FACTORIZED
ELECTRONIC STRUCTURE

Our main algorithmic advance is based on a quantum algo-
rithm to “qubitize” the so-called double-factorized represen-
tation HDF of the electronic Hamiltonian H . On the one hand,
the double-factorized representation is sparse, and therefore
minimizes the cost cW of qubitization, which generally scales
with the number of terms needed to represent the Hamiltonian.
On the other hand, the double-factorized representation is a
partial diagonalization of the original Hamiltonian, and hence
has a small normalizing constant αDF. Despite these favorable
properties, previous quantum simulations using this represen-
tation are based on Trotter methods [74,75].

A. Double-factorized Hamiltonian

The double-factorized form builds upon the single-
factorized representation HCD of the Hamiltonian H where

HCD
.=

∑
i j,σ

h̃i ja
†
(i,σ )a( j,σ ) + 1

2

∑
r∈[R]

(∑
i j,σ

L(r)
i j a†

(i,σ )a( j,σ )

)2

,

(7)

h̃i j
.=hi j − 1

2

∑
l

hill j . (8)

Note that the rank-R factorization of the two-electron tensor
hi jkl = ∑

r∈[R] L(r)
i j L(r)


kl of Eq. (2) into the N × N symmetric
matrices L(r) always exists due to the symmetry constraints of
Eq. (6), and may be computed using either a singular-value
decomposition or a Cholesky decomposition. This represen-
tation also facilitates a low-rank approximation by truncating
the rank R. In the worst case, R � N2. However, it was noted
by Peng et al. [55] that rank R ∼ N log N for typical molecular
systems when N is proportional to the number of atoms,
which is a provable statement for 1D systems [76]. This
reduces the number of terms needed to describe the second-
quantized Hamiltonian from O(N4) in Eq. (2) to O(RN2)
in Eq. (7). This representation was first exploited by Berry
et al. [22] to qubitize HCD with a normalizing constant αCD

.=
2‖h̃‖EW + 2

∑
r∈[R] ‖L(r)‖2

EW expressed using the entry-wise

norm ‖L(r)‖EW
.= ∑

i j∈[N] |L(r)
i j |.

The technical innovation in our approach is a quantum cir-
cuit, detailed in the Supplemental Material [28], for qubitzing
the double-factorized Hamiltonian

HDF =
∑
i j,σ

h̃i ja
†
(i,σ )a( j,σ )

+ 1

2

∑
r∈[R]

⎛
⎜⎜⎜⎝

∑
i j,σ

∑
m

∈ [M (r)]

λ(r)
m

�R(r)
m,i

�R(r)
m, ja

†
(i,σ )a( j,σ )

⎞
⎟⎟⎟⎠

2

. (9)

This is obtained by a rank-M (r) eigendecomposition of
the symmetric matrices L(r) = ∑

m∈[M (r)] λ
(r)
m

�R(r)
m · ( �R(r)

m )
 into
a total of M

.= ∑
r∈[R] M (r), each normalized to be of unit

length ‖ �R(r)
m ‖2 = 1. The number of terms in Eq. (9) is even

further reduced to O(MN ) as Peng et al. [55] also noted that
for typical molecular systems where N  103 scales with the
number of atoms, one may retain M ∼ N log N eigenvectors
and truncate the rest. A key technical step in our approach is
to work in the Majorana representation of fermion operators

γp,0 = ap + a†
p, (10)

γp,1 = −i(ap − a†
p), (11)

{γp,x, γq,y} = 2δpqδxyI. (12)

As we show in the Supplemental Material, this representation
maps

HDF →
(∑

i

hii − 1

2

∑
il

hilli + 1

2

∑
il

hllii

)
I

+ OneL(−1) + 1

2

∑
r∈[R]

One2
L(r) , (13)

which is expressed as a sum of squares of one-body Hamilto-
nians

OneL
.= i

2

∑
i j

∑
σ

Li jγi,σ,0γ j,σ,1, (14)

L(−1)
i j

.= hi j − 1

2

∑
l

hill j +
∑

l

hlli j . (15)

This leads to a normalizing constant

αDF = ‖L(−1)‖SC + 1

4

∑
r∈[R]

‖L(r)‖2
SC. (16)

Note that the difference between L(−1) and h̃ is the mean-
field Coulomb repulsion contribution term

∑
l hlli j . Note that

αDF is also significantly smaller than αCD from previous ap-
proaches [22]. In addition to the factor of 8 reduction in the
prefactor of the two-electron norms, the dependence of αDF

on Schatten norms ‖L(r)‖SC is beneficial as they can be up
to a factor of N smaller than the entry-wise norms ‖L(r)‖EW

that αCD depends on, as follows from the following tight
inequalities for any Hermitian N × N matrix h,

‖h‖SC
.=

∑
k∈[N]

|Eigenvalues[h]k|, (17)

1

N
‖h‖EW � ‖h‖SC � ‖h‖EW, (18)

which we prove in the Supplemental Material and may be of
independent interest.

The Toffoli gate complexity of synthesizing the walk
operator to an error �W = 0.1�E/αDF, as detailed in the
Supplemental Material, is then

cW � 2M

1 + λ
+ 2λNβ + 8Nβ + 4N

+ O[
√

R log M +
√

M log (1/�W )], (19)
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for any choice of integer λ � 0, and where the parameter β =
�5.652 + log2( N

�W
)�. This also uses the following number of

qubits:

Nβ(1 + λ) + 2N + O[log (N/�W )]. (20)

Note that λ controls the number of ancillary qubits. By choos-

ing λ = O(
√

M
Nβ

), the Toffoli cost is cW = O(
√

MNβ + Nβ ),

which is advantageous when M  Nβ, using O(
√

MNβ +
N + β ) qubits. Assuming the empirical scaling of M and R by
Peng et al., our algorithm encodes electronic spectra for atom-
centered basis sets into the walk operator using only cW =
Õ(N ) Toffoli gates, and with a normalizing constant αDF,
which improves upon the Õ(N3/2) Toffoli gates and larger
normalizing constant αCD required by the single-factorized
approach [22].

In the following examples we consider typical values of
λ that minimize the Toffoli costs between 1 and 5, and the
Toffoli gate counts and qubit counts we quote exclude the
subdominant big-O(·) component of Eqs. (19) and (20).

B. Truncation

We now describe our procedure for obtaining, by truncat-
ing eigenvalues, low-rank approximations H̃DF of the double-
factorized Hamiltonian in Eq. (13) from an initial numerically
exact representation HDF. We focus on truncating the two-
electron terms as those tend to dominate the cost of block
encoding. Given a target approximation error ε, we consider
two truncations schemes, which we call coherent and incoher-
ent. The coherent scheme upper bounds the actual error

‖H̃DF − HDF‖ � εco, (21)

in spectral norm for any given choice of εco. This upper bound
is obtained by a triangle inequality, which assumes that all
truncated terms have an error that adds linearly. That is, if the
difference H̃DF − HDF = ∑

j Hj is a sum of terms, then we
truncate so that ∑

j

‖Hj‖ � εco. (22)

We find that this bound is often quite loose, and the gap
between the actual error and ε grows with system size.
This motivates the incoherent scheme, which assumes that the
error of truncated terms add incoherently by a sum-of-squares.
Thus we truncate so that√∑

j

‖Hj‖2 � εin. (23)

Suppose we remove a single eigenvalue λ(r)
m from Eq. (13)

during truncation. Using the identity A2 − (A − B)2 =
AB + BA − B2, the difference

HDF − H̃DF

= 1

2

[{
OneL(r) ,

λ(r)
m

2

∑
σ

γ �R(r)
m ,σ,0γ �R(r)

m ,σ,1

}

−
(

λ(r)
m

2

∑
σ

γ �R(r)
m ,σ,0γ �R(r)

m ,σ,1

)2]
(24)

can be bounded in ‖ · ‖ as follows:

‖HDF − H̃DF‖ �
∣∣λ(r)

m

∣∣ ∑
n �=m

∣∣λ(r)
n

∣∣ + 1

2

∣∣λ(r)
m

∣∣2

= ∣∣λ(r)
m

∣∣(‖L(r)‖SC − 1

2

∣∣λ(r)
m

∣∣)

� ‖L(r)‖SC

∣∣λ(r)
m

∣∣. (25)

In the coherent scheme we truncate eigenvalues in the
index set T such that

∑
(r,m)∈T ‖L(r)‖SC|λ(r)

m | � εco.
In the incoherent scheme we truncate such that√∑

(r,m)∈T (‖L(r)‖SC|λ(r)
m |)2 � εin. In both cases we may

maximize the number of truncated eigenvalues by deleting
those with the smallest value of ‖L(r)‖SC|λ(r)

m | first. To
evaluate the validity of the truncation schemes, we have
computed the error in the DMRG ground-state energies they
introduce for a set of benchmark systems (Fig. 4).

In the following we truncate according to the sum-of-
square procedure. While this approach does not rigorously
bound the total error, we find that it better matches the error
we observed for our benchmark systems, but still tends to
significantly overestimate the actual error.

VI. RESULTS

For the intermediates and transition states depicted in the
catalytic cycle in Fig. 1, we carried out density functional cal-
culations that delivered the data presented in Fig. 2 and wave
function calculations with various active orbital spaces for the
analyses discussed below. For the sake of brevity we refer
the reader to the Supplemental Material [28] for all technical
details on these standard quantum chemical calculations.

For each of these key intermediates and transition states
we then evaluate the cost of performing quantum phase esti-
mation to chemical accuracy, both for small active spaces of
52–65 orbitals and larger ones, and then discuss runtimes and
qubit requirements.

A. Selection of active orbitals

As mentioned in Sec. IV, the electronic Hamiltonian in
Eq. (2) is parametrized by one- and two-electron integrals
hi j and hi jkl , respectively, over the molecular orbitals of a
restricted orbital subspace, the active space. For the selection
of the active space (cf. Fig. 3), all strongly correlated orbitals
must be identified (see the detailed discussion for our car-
bon dioxide fixation process in the supporting information).
For this we relied on orbital entanglement measures which
we applied in an automated procedure [47,49], but we em-
phasize that the importance of this choice for selecting the
different orbital space sizes for this work is not crucial at
all. Analysis of the resulting states in terms of these orbital
entanglement measures, pair-orbital mutual information, and
occupation numbers shows that the electronic ground states of
the catalyst structures selected for our study are not dominated
by static correlation. For such cases, the traditional quantum
chemistry toolbox offers efficient and very accurate coupled
cluster methods at the basis set limit, which represent a true
challenge for quantum algorithms to compete with. Still, we
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FIG. 4. Empirical absolute error δ (in Hartree) of the ground-state electronic energy resulting from applying the two truncation schemes
to the two-electron integrals of the Hamiltonian at various thresholds εco, εin, evaluated from DMRG-CI calculations. The lines δ = ε and
δ = 1mHartree are meant to guide the eye. (Left) Absolute error of the ground-state electronic DMRG-CI energy for the two truncation
schemes for complex II–III with 6 active orbitals and complex IX with 16 active orbitals. (Middle) Absolute error in the ground-state electronic
DMRG-CI energy of linear hydrogen chains of length 2, 4, 6, and 8 at different truncation thresholds εco for the coherent truncation scheme
and (right) εin for the incoherent truncation.

seek to analyze a general approach in quantum computation
that can deal with strong (static) correlation (and possibly
with any correlation problem in the not too distant future).
It is therefore not decisive for our resource analysis that the
active space sizes chosen (see supporting information) neither
obey nor exploit typical patterns of electron correlation. It
was, however, still possible to select a small active space of
strongly correlated orbitals on the size of 5 to 16 orbitals.
The main purpose of this work is understanding the perfor-
mance of quantum algorithms on an actual chemical problem
of varying size. The varying size is the growing size of the
orbital space in which the exact wave function is constructed.
In order to construct a proper test bed, we are therefore forced
to choose active space sizes that are arbitrary with respect to
the proper balance of static and dynamic correlation. In other
words, to grow the active space sizes beyond the classical
limit, we had to add weakly correlated orbitals. Naturally it
then became increasingly difficult to select the active spaces
based on orbital entanglement alone (because all such or-
bitals show similarly weak entanglement entropy measures).
In this study we therefore resorted to criteria which ensure
a reproducible selection that is, at the same time, reasonable
from a chemical point of view. We chose three different active
space sizes (small, intermediate, and large) for each molecular
structure of the catalytic cycle. The first active space com-
prises those orbitals selected based on orbital entanglement
criteria. Note that this small active space is identical to the
one employed in the CASSCF calculations that produced the
molecular orbitals from which the Hamiltonian parameters
hi j and hi jkl were calculated. The intermediate active space
includes all the orbitals of the small active space and then in
addition the valence orbitals of ruthenium and the ligands (ex-
cluding the triphos ligand and, if present, solvent molecules),
as well as the orbitals involved in ligand-metal bonding. For
the largest active space we further supplemented these orbitals
with the π and π∗ orbitals on the triphos ligand, as they form a

well-defined and easily identifiable set of orbitals. Apart from
these three active spaces per catalyst structure, we created
even larger active spaces for structure XVIII, for which we
additionally selected three active spaces of size n = 100, 150,
and 250 spatial molecular orbitals. Since a manual selection is
pointless for such large active spaces of mostly dynamically
correlated orbitals, we selected the n/2 occupied and n/2
virtual orbitals around the Fermi level. For each of these active
spaces, we obtained the one- and two-electron integrals hi j

and hi jkl via a four-index transformation (see also Fig. 3).
These integrals then served as input to the quantum algo-
rithms.

B. Resource estimates

We now evaluate the cost of phase estimation to chemical
accuracy for various structures in the carbon capture catalytic
cycle of Sec. II. The active spaces of the molecules considered
in this section are in the range of 52–65 orbitals, although we
tabulate more results for 2–250 orbitals in the Supplemental
Material. In addition, we also evaluate the scaling of cost with
respect to the active space size N while keeping the number of
atoms fixed, and find a different scaling law of M ∼ N2.5 for
the number of eigenvectors compared to that of M ∼ N log N
[55] when increasing the number of atoms. We find, as shown
in Table I, that the gate cost for systems in the 52-orbital to
65-orbital range is on the order of 1010 Toffoli gates, using
about 4000 qubits.

The cost depends on the truncation threshold εin as plotted
in Fig. 5. At the highly aggressive threshold of εin = 100
mHartree, the rank of these examples roughly matches the
parameters fit by Peng et al. [55] to three-dimensional hydro-
carbons for 54 orbitals. However, the numerically computed
shift in energy at that threshold can exceed chemical accuracy,
following Fig. 4, and should be interpreted as a most opti-
mistic cost estimate. Therefore, we choose εin = 1 mHartree,
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TABLE I. Number of Toffoli gates for estimating an energy level to an error of 1 mHartree using a truncation threshold of εin = 1 mHartree
for the largest active spaces of structures in the catalytic cycle considered here. Our approach allows for a trade-off between the number of
logical qubits required and the Toffoli count.

Structure Orbitals Electrons R M αDF Using fewer qubits Using fewer Toffolis
per Hartree Qubits Toffolis/1010 Qubits Toffolis/1010

I 52 48 613 23 566 177.3 3400 1.3 6900 1.1
II 62 70 734 33 629 374.4 4200 3.6 8400 3.1
II–III 65 74 783 38 122 416.0 4400 4.5 8900 3.7
V 60 68 670 29 319 371.1 4100 3.3 8200 2.9
VIII 65 76 794 39 088 425.7 4400 4.6 8900 3.8
VIII–IX 59 72 666 29 286 384.4 4000 3.4 8000 2.9
IX 62 68 638 28 945 396.6 4200 3.5 8400 3.1
XVIII 56 64 705 29 594 293.5 3700 2.5 7400 2.1

which our numerical simulations indicate closely reflect
chemical accuracy. Irrespective of the truncation scheme, we
note that the logarithmic scaling with 1/εin means that the Tof-
foli costs vary by at most factor of 5 between these extremes.
By varying the active space size between 2 and 250 orbitals
for the different catalyst structures, we find in Fig. 6 that the
Toffoli cost of phase estimation scales with ∼N3.25. The expo-
nent is a combination of two factors: Across all configurations
of the catalytic cycle, the number of eigenvectors scales with
M ∼ N2.5, hence cW ∼ √

MN ∼ N1.75, and the normalizing
constant αDF ∼ N1.5 Hartree.

We next demonstrate the extent of our algorithmic im-
provements by applying our techniques to the 54-orbital
representation of the FeMoco active site of nitrogenase that
we considered previously [11], and comparing costs with prior
art based on Trotterization and qubitization of the single-
factorized representation. As seen in Table II, our Toffoli cost
following Eq. (19) is on the order of 1.22 × 1010 using 3600
qubits. Assuming that the number of logical qubits is not a
limiting factor, this is a dramatic improvement over the 6.0 ×
1014 T gates and 142 qubits in our original estimate [11], and
a significant improvement over the 1.2 × 1012 Toffoli gates of
the single-factorized approach [77], where αCD = 3.6 × 104

Hartree with 3.0 × 105 unique nonzero terms, and a rank of

R ∼ 200 was claimed to be sufficient to achieve chemical
accuracy with respect to a CCSD ansatz. This is seen in
Table III where, for the sake of comparison, we choose a trun-
cation threshold of εin = 73 mHartree to normalize the rank
between our results and the single-factorized approach. More-
over, our double-factorized approach also improves upon the
2.3 × 1011 Toffoli gates of highly optimized implementations
[77] based on the unfactorized Hamiltonian Eq. (2), which has
α = 9.9 × 103 Hartree with 4.4 × 105 unique nonzero terms.
Our improvement largely stems from a normalizing factor αDF

that is 33 to 120 times smaller as the number of terms in
all approaches at this threshold are roughly equal. This trend
also applies to the various carbon fixation catalyst structures
that we consider when we perform a similar comparison but
instead use the same incoherent truncation scheme for all
examples at a more conservative error threshold of εin = 1
mHartree.

C. Runtimes and qubit counts

We finally relate these gate count estimates to expected
runtimes on future quantum computers. Exact runtime will,
of course, depend on details of the system and error correc-
tion schemes. In our previous analysis [11], we optimistically
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FIG. 5. (Left) Toffoli cost versus truncation threshold for phase estimation to a precision of 1 mHartree in the double-factorized
representation of the catalytic cycle in Fig. 1 with a number of orbitals listed in Table I. Computation time is assumed to be 10 μs between
each Toffoli, or 100 kHz. (Right) Number of eigenvector in the double-factorized representation. The data points by Peng et al. are for
three-dimensional hydrocarbons [55] with 54 orbitals.
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normalizing constant is αDF.

assumed gate times of 100 ns for fault tolerant logical gate
operations, which may be a long-term achievable goal. As a
more realistic assumption for mid-term fault tolerant quantum
computers we now expect that the physical gate times in
current quantum computer architectures range from tens of
nanoseconds for solid state qubits to tens of microseconds for
ion traps. Realizing fault tolerance by using quantum error
correction with the surface code [78], will lead to logical gate
times for a Toffoli gate of about 10 μs to 10 ms depending on
the architecture. The lower estimate of 10 μs means that 1010

Toffoli gates correspond to a runtime of 28 h or about a day,
while the upper estimate of 10 ms would correspond to several
years. These considerations show that fast gate times will
be essential for realistic quantum computation for chemical
catalysis.

The above estimates do not explicitly consider the cost
of layout, i.e., the mapping onto a nearest neighbor planar
square lattice topology of error corrected logical qubits. We
argue that this overhead is negligible, since the subroutine
with dominant cost, the table lookup discussed in the Sup-
plemental Material is based on FANOUT operators [79] and
maps well to this topology. Moreover, we here assume that
any overhead of layout as well as Clifford gates are included
in the assumed gate time for a Toffoli gate, as these domi-
nant FANOUT operations may be implemented in a constant

Clifford depth of 4 in parallel with the sequentially applied
Toffolis.

Fault tolerant gates also have an overhead in the number of
qubits, with hundreds to thousands of physical qubits needed
per logical qubit [11,78], depending on the quality of the
qubits. 4000 logical qubits will thus correspond to millions of
physical qubits. This implies the need for a scalable quantum
computer architecture, scaling to millions of qubits.

D. State preparation

To determine the ground state energy using phase estima-
tion, it is required to prepare a trial state |ψtrial〉 which has a
high overlap with the true ground state |ψ0〉 of the Hamilto-
nian H as discussed in Sec. IV. While the exact ground state is
unknown, we used state-of-the-art DMRG calculations to ob-
tain an approximate ground state |ψ̃0〉 for each of our systems
(see the Supplemental Material [28] for further details). An
approximate configuration interaction wave function obtained
by reconstruction [80] from the corresponding matrix product
state wave function optimized with DMRG served to provide
an overlap with the trial state prepared on the quantum com-
puter. Since the trial state is chosen to be HF determinant for
this case, the overlap is given by the square of the coefficient
in front of the Hartree-Fock determinant in the configuration

TABLE II. Comparison of our new double-factorization approach for HDF applied to the FeMoco active site of nitrogenase (N = 54) with
prior approaches based on Trotterization [11] or qubitization [22] using the unfactorized H or single-factorized HCD Hamiltonian, and also
for the VIII structure in the catalytic cycle (N = 65) where all examples apply the incoherent truncation scheme with the same threshold of
εin = 1 mHartree.

Structure Approach α / Hartree Terms Qubits Toffoli gates Comments

FeMoco Qubitization HDF 300.5 1.3 × 106 3600 2.3 × 1010 εin = 1 mHartree
Qubitization HDF 296.9 2.8 × 105 3600 1.22 × 1010 Optimistic εin = 73 mHartree

Trotterization H [11] – – 142 1.5 × 1014 Optimistic Trotter number
Qubitization H [22] 9.9 × 103 4.4 × 105 5100 2.3 × 1011 Truncation evaluated by CCSD

Qubitization HCD [22] 3.6 × 104 4.0 × 105 3000 1.2 × 1012 Truncation evaluated by CCSD
VIII Qubitization HDF 425.7 2.5 × 106 4600 4.6 × 1010 εin = 1 mHartree

Qubitization H 1.1 × 104 2.2 × 106 11000 9.3 × 1011 εin = 1 mHartree
Qubitization HCD 4.2 × 104 1.3 × 106 5800 2.1 × 1012 εin = 1 mHartree
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TABLE III. Scaling of cost in our double-factorization approach with truncation threshold for the FeMoco active site of nitrogenase
(N = 54). For comparison, the last line has R = 200 which matches that used by Berry et al. [22].

εin/mHartree Rank Eigenvectors Terms αDF/Hartree Qubits No. Toffoli
R M M × N gates

1 567 2.4 × 104 1.30 × 106 300.5 3600 2.3 × 1010

10 371 1.33 × 104 7.2 × 105 300.0 3600 1.67 × 1010

100 178 4.2 × 103 2.3 × 105 295.8 3600 1.16 × 1010

73 200 5.2 × 103 2.8 × 105 296.9 3600 1.22 × 1010

interaction expansion, i.e., the one with the first N/2 orbitals
occupied where N is the number of electrons. We found that
there is a large overlap for all of our systems, see Table IV. We
expect this overlap to not shrink substantially with increasing
precision of the approximate ground state obtained by DMRG
and hence preparing the dominant single-determinant state is
sufficient for the molecular structures considered in this work.
Recall that the Ru complexes selected for our study do not
exhibit strong multireference character. If this overlap had
turned out to be small, we would defer to Ref. [81] for options
on how to prepare a multideterminant initial state in order to
boost the success probability of phase estimation.

VII. CONCLUSIONS

In this work we considered computational catalysis lever-
aged by quantum computing. We rely on accurate error
bounds on the electronic energy accessible in quantum algo-
rithms to obtain sufficiently accurate data for intermediate and
transition state structures of a catalytic cycle. In particular,
(i) we considered decisive steps of a synthetic catalyst that is
known to convert carbon dioxide to methanol (and for which
traditional work based on density functional theory had al-
ready been reported alongside the experimental results [27]),
(ii) we presented a quantum algorithm in the qubitization
framework that exploits a double-factorized electronic struc-
ture representation, which significantly reduces the runtime,
(iii) we validated the truncation schemes by comparison with
density matrix renormalization group calculations, (iv) we
confirmed that starting the quantum algorithm from a single
determinant initial state has high success probability for the
carbon dioxide functionalization process studied in this work,
and (v) we calculated realistic resource estimates for mid-term

scalable quantum computers and related them to expected
runtimes.

A pressing challenge in the cost of quantum simulation for
large molecular systems is the rapid growth in the number of
four-index two-electron integrals. By using integral decom-
position techniques in the double-factorized representation
[56,82], we simultaneously minimize two key parameters
governing the cost of qubitization: the number of coefficients
that must be loaded into the quantum computer and a certain
bound αDF on the spectral norm of the Hamiltonian. Com-
pared to other simulation techniques such as Trotterization,
qubitization also enables a large trade-off in non-Clifford gate
count by using additional qubits. In the case of estimating an
energy level to chemical accuracy, we found that our approach
has a Toffoli gate cost with respect to active space size N ,
while keeping the number of atoms fixed, that scales like
∼N3.25. When the number of atoms also grows with N , our
technique promises a Toffoli cost scaling like ∼αDFN log (N ),
assuming the empirically fitted sparsity of double factoriza-
tion by other authors [55], and where αDF ∼ N1.5 based on
hydrogen chain benchmarks. When applied to structures in
the catalytic cycle with 52–65 orbitals, our approach requires
roughly 1010–1011 Toffoli gates and ∼4000 logical qubits.
Note that the benefit of our reduced Toffoli count can far
outweigh the cost of using more logical qubits—the physical
qubit count of the overall algorithm is typically dominated by
that required for the fault-tolerant distillation of non-Clifford
gates. Under realistic assumptions on the performance of mid-
term quantum hardware, this corresponds to a runtime of a
few weeks for a single calculation. While this seems similar
to the results of our previous paper [11], we here use much
more conservative and realistic estimates for the clock speeds
of mid-term quantum computers, while Ref. [11] assumed
ambitious specifications for the long term.

TABLE IV. Overlap |〈ψ̃0|ψtrial〉|2 of the dominant single-determinant state |ψtrial〉 with the approximate ground state ˜|ψ0〉 obtained with
DMRG for the complexes considered in this work. The type of molecular orbital (MO) basis is given as well as the size of active space of the
DMRG calculation in terms of orbitals and electrons.

Complex MO basis Orbitals Electrons |〈ψ̃0|ψtrial〉|2

I CAS(4,5)SCF 52 48 0.847
II CAS(8,6)SCF 62 70 0.848
II–III CAS(8,6)SCF 65 74 0.848
V CAS(12,11)SCF 60 68 0.841
VIII CAS(2,2)SCF 65 76 0.869
VIII–IX CAS(4,4)SCF 59 72 0.863
IX CAS(16,16)SCF 62 68 0.807
XVIII CAS(4,4)SCF 56 64 0.889
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From our results it is evident that a future universal quan-
tum computer can only lead the range of electronic structure
methods if further developments provide faster algorithms that
can treat much larger active spaces in order to be competi-
tive. We emphasize that, although no logical qubit has been
realized experimentally so far, a universal quantum computer
that can represent a state on a few thousand logical qubits
would revolutionize electronic structure theory as it bears the
potential to provide an accurate exact-diagonalization energy
for a moderately sized molecular system of on the order of 100
atoms in the full single-particle basis set. As a consequence,
any necessarily approximate a priori or a posteriori correc-
tion for the nagging dynamic correlation problem (that arises
solely from the choice of a reduced-dimensional active space)
would no longer be needed. It is clear that such a calculation
would be an ultimate goal, but also that it would present new
technical challenges.

Going to an order of magnitude larger active space sizes as
considered here would increase the quantum computational
requirements by three orders of magnitude. Hence, despite
the advances reported in this work, it is obvious that further
algorithmic improvements of quantum algorithms are urgently
needed in order to get timings down so that a quantum com-
puter can become superior to traditional approaches, i.e., to
eventually demonstrate a quantum advantage in real-world

chemistry applications. Given the innovation rate in quan-
tum algorithms for chemistry of many orders of magnitude
over the past years, we are confident for this to happen. One
direction is exploring novel sparse representations. Another
promising avenue is exploiting the fact that the number of
electrons may grow much smaller than the size of the single-
particle basis set when expanding the latter to incorporate
dynamical correlations. That can lead to significant savings
compared to the algorithms presented here.

The integral files used in this work are hosted on Zenodo
[83].
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