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Nonlinear Schrödinger equation solitons on quantum droplets
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Irrotational flow of a spherical thin liquid layer surrounding a rigid core is described using the defocusing
nonlinear Schrödinger equation. Accordingly, azimuthal moving nonlinear waves are modeled by periodic dark
solitons expressed by elliptic functions. In the quantum regime the algebraic Bethe ansatz is used in order to
capture the energy levels of such motions, which we expect to be relevant for the dynamics of the nuclear
clusters in deformed heavy nuclei surface modeled by quantum liquid drops. In order to validate the model we
match our theoretical energy spectra with experimental results on energy, angular momentum, and parity for
α-particle clustering nuclei.
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I. INTRODUCTION

Solitons are stable localized wave packets that can prop-
agate a long distance in dispersive media without changing
their shapes. Following the discovery of solitons by Russell
[1], a large number of similar particle-like nonlinear localized
waves, pulses, and finite-gap potentials were identified and
discovered, influencing the development of almost all tradi-
tional areas of science, and also shaping modern fields of
research [2]. Solitons are studied in a wide range of scales
from cosmology and dark matter [3,4] to the quantum scale
[5] and new states of matter [6–8], and they occur in a broad
spectrum of systems, from low temperature [9] to nonlinear
biological or social systems [10]. Soliton theory initiated ma-
jor developments in optical communication [11], especially by
revealing universality properties of several nonlinear phenom-
ena like rogue waves [12,13], in anomalous materials [14], or
in the collective dynamics of large random ensembles (soliton
gas, soliton rain) [15,16]. Solitons helped the development of
new applications in technology: soliton computing [17], ma-
chine learning [18], or non-Hermitian optics [19]. At present,
the long-range soliton stability is so well understood that
ordered sets of solitons are used to carry out the transmission
of information in fiber optics communication links [20].

Equivalently, the question of long-lifetime solitons con-
fined in a compact region [21,22] represents a subject of active
research in ocean wave dynamics. Solitons are present not
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only in long and narrow geometries such as channels, fiber
optics, electric lines, or nerves, but they were also found as
soliton gas or periodic waves in compact regions [22] and in
bounded nonlinear optics systems [12,15]. A rain of soliton
pulses, triggered by a noisy background, can start flowing
inside a finite fiber laser cavity, together with its condensed
phase [16]. Such trains of bound solitons (soliton molecules
[23]) can also travel at constant angular frequency through
circular fiber rings [24]. It was also possible to generate mul-
tisoliton rotating clusters and quasipolygonal stable soliton
clusters in bulk nonlinear optical media [25].

Rotating solitons/solitary waves can occur in micro-
scopic systems. Such excitations are theoretically obtained
in the quantum Hall effect of 2D electron drops [26] or in
Bose-Einstein condensates [27], and they were measured in
superfluid helium rotating vortices [28].

At laboratory scale, the formation of periodic nonlin-
ear waves, or cnoidal waves for Korteweg-de Vries models
(KdV), on closed and bounded systems was detected, and
the results were matched with theoretical calculations in low-
temperature interfacial systems [28,29], in confined rotating
flows [30], and along circular chains of magnetic pendu-
lums [31]. Experiments demonstrate the formation of rotating
hollow polygons in 2D fluids, within a good match with theo-
retical models of cnoidal waves [29,32–39].

Cnoidal patterns and solitary waves at large scales were
observed as vortex waves [40] and as rotating polygons in
the hurricane eye wall [41], as well as in the case of Saturn’s
North Pole hexagon [42]. Numerical simulations for the az-
imuthal nonlinear surface waves on neutron stars surrounding
a rigid core generate localized, shock-type dispersionless so-
lutions [43].

The formation of solitons on spherical surfaces was consid-
ered as a possible explanation of large-amplitude collective
modes of excitation on nuclear surfaces in the liquid drop
model for cluster radioactivity [44] or as shape solitons on the
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surface of liquid drops [21]. Nonlinear models with soliton
solutions offer possible explanations for the emergence of
such rotons as coherent states in nuclear systems [45], in
α-particles’ collision with medium-heavy nuclei [46–48], in
nuclear fission [49], and in cnoidal excitations of Fermi-Pasta-
Ulam rings [50].

These results suggest that some dynamical systems can
have collective localized stable excitations in compact or
bounded geometries. Given the observed similarity between
such rotating solitary waves within various ranges of physical
scales (from nuclei to neutron stars) there may be a possibility
of manifestation of signatures of universality.

In this paper we show that for a spherical thin liquid droplet
surrounding a rigid core one can develop an asymptotic proce-
dure which gives the evolution of periodic envelope solitons
in the azimuthal direction (the spherical ϕ coordinate). The
variation in the polar coordinate θ is considered to be very
slow (more precisely this approximation is valid not very
close to the spherical poles). The asymptotic (related to the
thickness of the spherical fluid layer) of Laplace equations and
kinematic boundary condition transforms the linearized spher-
ical Euler equation into a nonlinear one, supporting plane
wave solutions with a Boussinesq-type dispersion relation. In
the full nonlinear Euler equation we assume that in a stretched
space-time scale, a slow modulation of the plane wave occurs,
and accordingly, a defocusing nonlinear Schrödinger equa-
tion is obtained. Periodic dark solitons solutions expressed
by elliptic functions are described. In a sense, this paper
is a continuation of [21] where cnoidal KdV 1-phase solu-
tions were founded. In Sec. III the last part we analyze the
quantum dynamics of such system using an algebraic Bethe
ansatz, a well-known procedure for the defocusing nonlinear
Schrödinger equation. We believe that this fact to be relevant
in the study of collective excitations of the surface of heavy
nuclei in exotic radioactivity processes [44]. In the last section
we match our theoretical energy spectra with experimental re-
sults on energy, angular momentum, and parity for α-particle
clustering nuclei for atomic masses ranging from 20 to 212.

II. GENERAL DERIVATION OF THE NONLINEAR
SCHRÖDINGER EQUATION

Solitons represent fundamental nonlinear modes of phys-
ical systems described by a special class of wave equations
of an integrable nature. These equations, like the KdV equa-
tion or the nonlinear Schrödinger equation (NLS), are of
significant physical importance since they describe at the lead-
ing order the behavior of many systems in various fields of
physics

Our model is an ideal spherical liquid layer exhibiting
irrotational flow. The inner surface is bounded by a rigid core

of radius R0 − h, and the variable outer surface � is parama-
terized by spherical coordinates r = R0[1 + ξ (θ, φ, t )]. We
further assume that traveling perturbations will be slowly
varying in θ and the fast dynamics is happening in the φ direc-
tion, and so we separate ξ (θ, φ, t ) = g(θ )η(φ, t ), with g(θ ) a
slowly varying function. From the equation of continuity for
incompressible fluid ρ = const and irrotational condition we
have the Laplace 
� = 0 and Euler equation:(

�t + 1

2
|∇�|2

)
�

= −P

ρ
,

where P is the pressure and � is the velocity potential. The
boundary condition on �,

dr

dt

∣∣∣∣
�

=
(

∂t r + dθ

dt
∂θ r + dφ

dt
∂φr

)
�

,

can be written in terms of the velocity potential in spherical
coordinates:

�r |� = R0

(
ξt + ξθ

r2
�θ + ξφ

r2 sin2 θ
�φ

)
�

.

Because our model is a liquid shell we have the inner bound-
ary condition vr = ∂r�|r=R0−h = 0. In order to meet the
harmonic condition we expand the flow potential [21,22]

� =
∞∑

n=0

(
r − R0

R0

)n

fn(θ, φ, t ),

where the functions fn must obey recursion relations obtained
form the Laplace equation. Assuming the smallness parameter
h/R0 = ε << 1 and (r − R0)/R0 = ε we obtain the following
relations in the dominant order from the inner boundary con-
dition:

f1 = 2ε f2, f2 = − 1
2 (
� f0 + 2 f1).

From the free surface boundary condition and slowly variation
on θ we can write

f0,φ = R2
0 sin2 θξξt

εξφ

+ O(ξ 2). (1)

Also using the expansion of velocity potential we have in the
first order

� = f0 + ξ f1 + O(ξ 2), �φ = f0,φ + O(ξ 2),

vφ = �φ

r sin θ
= f0,φ

R0 sin θ
.

Deriving with respect to φ the Euler equation we get (we
neglect the θ derivatives)

∂t ( f0,φ + ξ f1,φ + · · · ) + ∂φ

(
v2

φ

2

)
= 2σ

ρR0
ξφ + σ

ρR0

�ξφ + O(ξ 2), (2)

we obtain

∂t

(
R2

0 sin2 θξξt

εξφ

)
+ ∂φ

(
R2

0 sin2 θξ 2ξ 2
t

2ε2ξ 2
φ

)
− 2σξφ

ρR0
− σξφφφ

ρR0 sin2 θ
= 0.
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The linearized version of the Euler equation is given by

�t = − 1

ρ
P,

which further can be written

∂t

(
R2

0 sin2 θξξt

εξφ

)
= 2σ

ρR0
ξφ + σ

ρR0 sin2 θ
ξφφφ.

This equation admits the linear traveling wave solution
ξ = A(θ )ei(kφ−ωt ) + c.c. with the Boussinesq-type dispersion
relation

ω2 = εσ

ρR3
0 sin2 θ

(
2k2 − k4

sin2 θ

)
.

In the long-wave limit k = εK ∼ O(ε) the dispersion relation
becomes

ω(K ) = ε1/2

R0 sin θ

√
2σ

ρR0

(
εK − ε3K3

4 sin2 θ

)
+ O(K5)

≡ εvK + βε7/2K3 + O(K11/2), (3)

with v = ε1/2/(R0 sin θ )
√

2σ/ρR0 being the phase velocity.
It results that for the monochromatic case this dispersion
provides exactly the stretched variables for the KdV equation.
Indeed, from Eq. (3) we have

ξ = A exp[i(kx − ωt )] = A exp{iK[ε(φ − vt )

− ε7/2βK3t − · · · ]},
and this suggests the variables φ → ε(φ − vt ), T ∼
ε7/2t, ξ → ε3g(θ )η(φ, T ). In these new variables one obtains
immediately the KdV equation in η(φ, T ), which is analyzed
extensively in [21,22] In the following, one can see that for
ξ (φ, t ) = Aei(kφ−ωt ) we have ξξt/ξφ = −(ω/k)ξ ≡ −vξ .
This nonlinearity produces higher harmonics and weak
modulation of amplitude in the slow variables ϕ, τ , which will
be defined next. So we make the following approximation:

ξξt

ξφ

∼ ξ (φ, θ, t ) =
∞∑

n=−∞
εsn Qn(ϕ, τ, θ )ein(kφ−ωt ),

where ε is a small parameter measuring the weak modulation
of the amplitude in a slow space-time scale (different form
ε = h/R0) and sn are some exponents which have to be deter-
mined form balance. Now we can define the slow variables

ϕ = ε

(
φ − 2σ t

vρR2
0 sin2 θ

+ 3σk2t

vρR3
0 sin4 θ

)
,

τ = −ε2kt,

and the amplitudes of the expansion:

Q0(ϕ, θ, τ ) = ε2g(θ )V0(ϕ, τ ),

Q2(ϕ, θ, τ ) = ε2g(θ )V2(ϕ, τ ),

Qn(ϕ, θ, τ ) = εng(θ )Vn(ϕ, τ ), n �= 0, 2, V−n = V ∗
n .

Introducing these expressions from above in the Euler
equation we obtain the following defocusing nonlinear

Schrödinger (NLS) equation with dimensionless terms:

i
A(θ )

3D(θ )

∂ζ

∂τ
+ ∂2ζ

∂ϕ2
− C(θ )2g(θ )2

18D(θ )2
|ζ |2ζ = 0, (4)

where we used the following notations:

ζ (ϕ, τ ) = V1

k
, A(θ ) = vR2

0 sin2 θ

h
,

C(θ ) = v2R4
0 sin4 θ

h2
, D(θ ) = − σ

ρR0 sin2 θ
.

The physical configuration is give by the parametrization
equation

r = R0

{
1 + g(θ )

[
εkζ (ϕ, τ )ei(kφ+ωt ) + c.c.

+ ε2

(
Cg

6D
ζ 2 − Cg

3D
|ζ |2e2i(kφ+ωt ) + c.c.

)]}
.

Dark periodic soliton

In order to obtain periodic solutions and traveling waves,
we consider

ζ (ϕ, τ ) = f (kϕ + ωτ )ei(λϕ+�τ ),

and we make the shorthand notations s = kϕ + ωτ and η =
λϕ + �τ . By introducing these notations in the NLS equation
(4) it results in

(18Dλ2 + 6A�) f (s) − 6i(6Dkλ + Aω) f ′(s)

+ C2Dg2 f (s)3 − 18Dk2 f ′′(s) = 0. (5)

By imposing 6Dkλ + Aω = 0 we obtain an equation which
can be solved by elliptic functions. To make it simpler we
divide by 18Dk2, and we find

b0 f (s) + b1 f (s)3 − f ′′(s) = 0, (6)

where

b0 =
(

λ

k

)2

+ A�

3Dk2
, b1 = −C2g2

18k2
, ω = −6Dkλ

A
.

The solution of Eq. (6) is

f (s) ≡ f (ϕ, τ ) = Hsn

[
k

√
C2g2

18k2(m + 1)

(
ϕ − 6Dλ

A
τ

)∣∣∣∣m
]
,

(7)
where H = i

√
2b1m/b0(m + 1). When m → 1 we obtain the

dark line-soliton limit

f (ϕ, τ ) → i

√
b1

b0
tanh

[√
−b1

2
k

(
ϕ − 6Dλ

A
τ

)]
.

We stress that the solution in Eq. (7) is a particular one. The
most general solution has the form

ζ (ϕ − ντ ) =
√

f (ϕ − ντ ) exp[ig(ϕ − ντ )],
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and it can be expressed in terms of the Jacobi sn function and
the elliptic integral of the third kind

f (x) = a1 + (a2 − a1)sn2

[√
c(a3 − a1)

2
x

∣∣∣∣m
]
,

g(x) = νx

2
+

√
a2a3

a1a3 − a2
1

�

×
{

1 − a2

a1
; am

[√
c(a3 − a1)

2
x

]∣∣∣∣m
}
,

where a1, a2, a3 are the roots of the “potential” equation re-
lated to f and m = √

(a2 − a1)/(a3 − a1); see [51] for details.

III. QUANTIZATION

Our equation (4) can be written in a Hamiltonian form:

∂T ζ = δ

δζ †

∫ 2π

0
(|ζϕ|2 + c|ζ |4)dϕ, (8)

where we rescaled time T = (A/3D)τ , and c = C2g2/36D2.
The pseudovacuum is |0〉 and ζ (ϕ)|0〉 = 0. In order to per-
form the quantization, we discretize the system on a lattice,
which means that our system will not be defined anymore on
the meridian circle of the spheroidal drop, but on a polygon
with M sides. Also the evolution variable is the angle ϕ := n,
which is increased or decreased by fixed step angle h. A Lax
operator with λ spectral parameter is [52]

Ln(λ) =
(

1 − iλh
2 −ih

√
cζ †

n

ih
√

cζn 1 + iλh
2

)
+ O(h2),

and the quantum operators obey [ζn, ζ
†
m] = δnm/h, where we

consider that h̄ ≡ 1.
Because we have periodic boundary condition the Lax

operator is transformed to a monodromy operator. Namely,
by imposing periodicity we have the transition from a zero-
curvature formulation to the pure Lax formulation by using
the monodromy matrix

T (λ) = LM (λ) · · · L1(λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
,

where A, B,C, D are operators, and not the coefficients of
the initial KdV or NLS equations. The evolution of the Lax
operator can be written either with a new matrix P in the
form Lt = [P, L] or equivalently using the R-matrix formal-
ism, which singles out the Hamiltonian structure. When we
quantize, we can write explicitly the commutation relation
between elements of monodromy matrix using the so-called
RTT relation

R(λ,μ)[T (λ) ⊗ T (μ)] = [T (μ) ⊗ T (λ)]R(λ,μ),

where the matrix R is given by

R =

⎛
⎜⎜⎜⎝

f (λ,μ) 0 0 0

0 g(λ,μ) 1 0

0 1 g(λ,μ) 0

0 0 0 f (λ,μ)

⎞
⎟⎟⎟⎠,

with f (λ,μ) = 1 + ic/(μ − λ), g(λ,μ) = ic/(μ − λ). Here
2c is the θ-dependent coefficient of our NLS equation (4),
C2g2/18D2. The action of elements of the monodromy matrix
on the vacuum is

A(λ)|0〉 = a(λ)|0〉, D(λ)|0〉 = d (λ)|0〉,
C(λ)|0〉 = 0, B(λ)|0〉 = free.

As a result, one can see that in our case

a(λ) =
M∏

(1 − iλh/2) = (1 − iλh/2)M,

lim
M→∞

a(λ) = e−iλMh/2, d (λ) = (1 + iλh/2)M,

lim
M→∞

(1 + iλh/2)M = eiλMh/2.

We can further use Mh → 2π , since the full periodicity is of
2π angle. The quantum states are constructed by applying the
operator B(λi) from the monodromy matrix. In the case of N
parameters (usually called rapidities) we have

�(λ1, . . . , λN ) =
N∏

j=1

B(λ j )|0〉.

Now imposing that this � must be an eigenvector of the
trace of the monodromy matrix we find the following Bethe
equation:

e2π iλm =
N∏

j=1, j �=m

(
λm − λ j + i C2g2

36D2

λm − λ j − i C2g2

36D2

)
, (9)

and the eigenvalue of TraceT (μ) are

TraceT (μ)� = [A(μ) + D(μ)]� = ��,

with

� = e−iμπ

N∏
j=1

f (μ, λ j ) + eiμπ

N∏
j=1

f (λ j, μ),

where, as was shown above, f (μ, λ) = 1 + ic/(λ − μ). It is
easy to note that all the quasi-momenta λ j are dimensionless.
Since it is well known that the trace of the monodromy matrix
is nothing but the generating function of conserved integrals
of motion (as a power series in 1/μ in our case), we can finally
write the eigenvalues of the Hamiltonian

EN =
N∑

m=1

λ2
m,

where N is the number of particles associated with �, and λm

are the solutions of the transcendental Bethe equations (9), so
we will have quantum levels parameterized by the polar angle
c = c(θ ) with the real values

EN (c) = h̄2

R2
0

N∑
j=1

λ2
j (c). (10)

Equation (9) has only real solutions, and they are all peri-
odic of period 1, so it is enough to consider the solutions
λ j ∈ [0, 1].
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IV. DISCUSSION

One can ask what is the role of dark solitons and how
their dynamics is seen in the quantum regime. First, as we
have seen, we obtained a nonlinear Schrödinger equation with
defocusing nonlinearity. On the spatial infinite line the soliton
solutions are rarefaction (dark) nonlinear waves which are
build upon a finite condensate. But for the periodic boundary
conditions these rarefaction waves are turned into periodic
solitons expressed through Jacobi elliptic functions. They
describe periodic envelopes of azimuthal excitations with
various periodicities. In the quantum regime the defocus-
ing nonlinear Schrödinger equation is nothing but interacting
delta-Bose gas (with periodic boundary conditions). The al-
gebraic Bethe ansatz provides a quantization of the whole
dynamical system described by the Hamiltonian (8) and not a
quantization of a special classical solution (periodic dark soli-
ton). However, there is a correspondence between the periodic
dark soliton and the expectation value of the density operator
on a special Bethe quantum state 〈�0|ζ †(ϕ, t )ζ (ϕ, t )|�0〉 [53]
constructed using some specific Bethe numbers. The construc-
tion is complicated and involves numerical simulations. The
structure of the energy spectra changes with N and with the
parameter c = C2g2/36D2. For any given N it is observed that
there is always a region for the parameter c = ccrit around
which the energy spectrum becomes very dense. For values
c < ccrit the spectral lines are rather equidistant, while for
larger c > ccrit the spectrum tends to be quadratic, similar
to the spectrum for the rigid rotor. The larger the number
of eigenvalues N , the smaller the value of ccrt . is. From the
expression of the coefficients C, D from liquid drop model
introduced in [21] it results that c � 0 at θ = 0, π as ex-
pected since there are no soliton excitations orbiting at the
poles of the droplet. In general, c has its larger values around
the equator θ � π/2. For certain combinations between the
soliton orbital speed V , the depth of the shallow layer h, and
the strength of the surface tension coefficient σ , the parameter
c(θ ) can be very small for all polar angles θ . For example,
for fast solitons orbiting a very shallow layer h/R0 � 1 and
for weak surface tension, one can have very small values of
c, resulting in weak energy excitation, resulting in a small
probability to excite such soliton solutions. For droplets of
the size of a medium-heavy nucleus, the parameter c acquires
values around c ∼ 103 for almost all values of θ , resulting in a
larger probability to excite such soliton excitations. Equation
(9) can be rewritten in the form

2πλ̂ j = 2c
N∑

j=1, j �=N

λ j − λk

(λ j − λk )2 − c2
, (11)

where the hat symbol represents the equivalence class modulo
addition of integers n j ∈ Z. We can evaluate the solutions
of this equation for large values of the parameter c � λ.
In this case we can make the approximation |λ j − λk| � c,
and Eq. (11) becomes a linear system of equations in λ j

with the free term given by a column of N arbitrary integers
(n1, . . . , n j, . . . , nN )T . It is straightforward to calculate the
solutions of this linear system

λ j �
∑N

k=1,k �= j nk + (−1 − πc − 2N )n j

πc(πc + N )
� 1̂

πc
,

and consequently, in this approximation, the spectrum has a
quadratic structure

EN �
N∑

k=1

n2
k

π2c2
, nk ∈ Z, (12)

which is manifested for intermediate values for c > λ. Never-
theless, since λ ∈ [0, 1] there are limitations on the values of
the arbitrary integers nk and in fact this constraint requires nk

to be of order of the integer part of (N − 1)/2, meaning that
all nk are constant and the spectrum is actually represented
by a constant multiplied by a sum of ones. This observation
explains the asymptotic behavior of the spectrum for large c
towards a harmonic oscillator spectrum. In fact, in the limit
c → ∞ Eq. (9) reduces to exp(2π iλ j ) = ±1 which gener-
ates an equidistant energy line spectrum, since λ̂ j = 1/2. The
spectral density of the λ j solutions as a function of c, N
can be estimated by introducing a vector nonlinear operator
O = (Oi ), acting on the N-dimensional unit cube of vectors
�λ = (λ1, . . . , λN ) in the form

Oi(�λ) =
N∑

k=1,k �=i

λi − λk

(λi − λk )2 − c2
.

With this operator the Bethe ansatz Eq. (9) becomes a fixed
point equation for this operator, and while acting on the vec-
tors �λ, O is a contraction, so it has a unique fixed point, and
thus the eigenvector space reduces to one vector. For this case
the energy spectrum has one spectral line only. Consequently,
dense energy spectra are in the regions where this operator is
not a contraction. For such regions inside the unit cube and
for the corresponding values of c, the spectrum becomes rich
in spectral lines. Obviously, when |c| < 1 there are values for
�λ where the denominators in Eq. (11) approach zero, so the
operator is described by a Lipschitz discontinued function,
and thus O cannot be a contraction. For these regions the
spectrum becomes denser, as one can easily verify by nu-
merical calculations in the region c � 1. However we have
to underline that in the limit of c → 0 we have free bosons,
while in the limit c → ∞ the defocusing intercation is so
huge and we have free fermions (inasmuch as the Bethe state
obeys the Pauli principle). The Pauli principle for Bethe states
shows that the nonlinear excitations of the quantum liquid
drop model are purely fermionic.

V. COMPARISON WITH NUCLEAR
EXPERIMENTAL DATA

In order to validate the physical relevance of the quan-
tum nonlinear liquid drop representation introduced here, we
compare the energy levels predicted by our model with ex-
perimentally measured resonant lines for α-clustering nuclei
[46–49,54–60]. Numerous studies show that α clustering oc-
curs from light and medium-mass elements to heavy and
superheavy elements. Various phenomenological and micro-
scopic models have been proposed in the literature to describe
various aspects of α clustering [54–60]. Among them, the
large-amplitude nonlinear collective model [21,22,44–49,61]
is of special interest for the present work.
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FIG. 1. Black: Experimental energy spectra, [47], of positive- and negative-parity resonant states obtained in the collision of α-particles
on 20Ne targets with formation of bound α-cluster states in 24Mg. The spectra are horizontally aligned by angular momentum J from J = 0+

to J = 7−. Red: The theoretical Bethe spectra (10) are plotted for rapidities N = 3 and 4 with the parameter c chosen to provide the best fit
with experiments. The odd angular momentum states (labeled with higher placed text in the figure) provide a good fit for larger values of c,
typically c > ccrit , while the best fit for even states occur for relative smaller c, shown under each column.

In the following, we mention four classes of experimental
observations and the associated theoretical questions, pointing
our interest towards using nonlinear collective models. These
types of models can relate the features of superdeformed
nuclei, cluster radioactivity, quasimolecular structures, or α

clustering to particular solutions of nonlinear evolution equa-
tions like Bose-Einstein condensation or solitons.

First, the experimental evidence of cluster decay as sponta-
neous emission of carbon, neon, magnesium, and silicon from
heavy nuclei indicates a large enhancement of such clusters
on the nuclear surface. By considering nonlinear terms in the
hydrodynamics of the liquid drop model for the nucleus, it was
inferred that KdV solitary waves could exist on the surface of
nuclei and explain cluster decay as a large-amplitude collec-
tive excitation [44,49,61]. Nevertheless, in order to reproduce
the experimental spectroscopic factors for α and cluster de-
cays with such a nonlinear integrable model defined on the
nuclear surface it was necessary to add shell corrections. Thus
one obtained a coexistence model consisting of the usual shell
model and a cluster-like model, leading to a minimum in
the total potential energy degenerated with the ground state
minimum.

Second, α-like states were detected for many light to heavy
nuclei. The α clustering in the nuclear structures and cluster-
ing models have a long history, but in the last decade a rapid
development successfully explained the structure of many
states in light to heavy nuclei, especially in n · α nuclei [59].

Third, a moment of inertia anomaly was emphasized in the
rotational bands of resonance elastic scattering measurements.
By plotting the mean weighted values with the reduced widths
of the experimental energy levels versus J (J + 1) for such
experiments one can obtain a value for the moment of inertia

of the system. By comparing this value with the theoretic
moment of inertia of an α-particle plus the daughter nucleus
rotating together at a touching distance we have a discrepancy:
The experiment provides smaller values by a factor of at
least 2 than the rigid rotor moment of inertia [46,47,54]. For
example, in [54] the measured moment of inertia for the elas-
tic scattering α +36 Ar →40 Ca was I = 3.8 ± 0.3h̄2/MeV,
while α-particles orbiting a noninteracting 36Ar core would
have a I = 9.3h̄2/MeV moment of inertia. Moreover, this
larger theoretical value results also from calculations of the
strongest superdeformed bands in 40Ca (4p − 4h and 8p − 8h
excitations). It appears that the geometric configuration of a
cluster orbiting around a daughter nucleus is a little more
complicated than a rigid rotor.

The fourth observation is related to various aspects of col-
lective motion in nuclei. One of the collective motion degrees
of freedom is caused by the spontaneous symmetry breaking
of rotational invariance due to the α clustering. The collective
motion related to cluster condensation, or superfluidity in
nuclei, has received attention in the frame of the many-body
theory in the last decades. In [55] it was shown that collective
states of the zero mode operators are new-type soft modes due
to Bose-Einstein condensate of α clusters.

From the Bose-Einstein phenomenological Hamiltonian
of a number of α-particles trapped by an external poten-
tial results a Gross-Pitaevskii equation (G-P) for the nuclear
condensate component of the field operator. In the field the-
oretical superfluid cluster model, the solution of the G-P
equation represents the order parameter of the phase transi-
tion from the Wigner phase to the Nambu-Goldstone phase.
Because the order parameter is a superfluid amplitude, the
square of the modulus of this amplitude represents the
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superfluid density distribution [55], which ultimately de-
scribes the nuclear shape. The G-P equation is in the same
hierarchy as the NLS equation, just having in addition the
potential trap linear term. Consequently, it is natural for the
G-P equation to have solitary waves solutions as shown, for
example, in [2,7,8].

This final observation supports the NLS droplet model,
since both G-P and NLS equations have a similar type of soli-
tons and can be equally used to explain some exotic nuclear
shapes. The NLS model for quantum droplets presented here
has the advantage of being already quantized, so it does not
request shell corrections when applied in nuclear models.

In all experimental comparison we use only three fitting
parameters: c (the shape parameter), N , and E0, the last
one being a multiplicative rescaling of the energy spectra
in Eq. (10). The expression of the total energy is the sum
between the scaled Bethe spectrum and a rigid rotation Eexp =
E0EN (c) + h̄2J (J + 1)/(2I ).

FIG. 2. Black: Experimental energy spectra, [46], of positive-
and negative-parity resonant states obtained in the collision of
α-particles on 28Si targets with formation of bound α-cluster states
in 32S, plotted vs J angular momentum. Red: The theoretical Bethe
spectra (10) are plotted for N = 3 and 4 with the parameter c chosen
to provide the best fit with experiments. The odd angular momentum
states are again associated with larger values of c, shown in the figure
on top of each column.

FIG. 3. Black: Experimental energy spectra, [54], of positive-
and negative-parity resonant states, plotted vs J , measured during
collisions of α-particles on 36Ar targets, with formation of bound
α-cluster states in 40Ca. Red: The theoretical Bethe spectra Eq. (10)
for N = 3 and 4 and c values shown in the figure above or below
each column.

In Fig. 1 we present a comparison between experimental
spectra [47] of resonant states obtained in the collision of
α +20 Ne →24 Mg generating bound α-cluster states J = 0+
to J = 7− and the theoretical Bethe spectra Eq. (10) for N = 3
and 4 from our model. We present the results for c providing
the best fit with the experiments. We notice that odd-parity
states are associated to larger values for c > ccrit , while even-
parity states are associated with relative smaller values for c.

In Figs. 2 and 3 we present medium heavy nuclei where
the α-daughter quasimolecular rotational bands are manifest.
From the slope of the mean positions of the rotational bands
we obtain the value of the moment of inertia: I = 3.3 ±
0.2h̄2/MeV for 28Si and I = 3.8 ± 0.3h̄2/MeV for 36Ar,
which are almost half of the values for rigid rotor configu-
ration for the given masses and radii.

In Fig. 2 we present a comparison between experimental
energy spectra [46] of resonant states for the elastic collision
of α-particles on 28Si targets and the theoretical Bethe spectra
(10) for N = 3 and 4 and with the parameter c chosen to
provide the best fit with experiments. We remark that the odd
angular momentum states are associated with larger values of
c. Also, the states with J = 6, 7 have the best theoretical fit for
rapidity N = 3, while all the other states are related to N = 4.

In Fig. 3 we present another set of experimental en-
ergy spectra [54] for the resonant states during collisions of
α-particles on 36Ar targets, in comparison with the theoretical
Bethe spectra (10). One notices more theoretical energy levels
than the experimental spectra, but this may be explained by
the limitations in data availability. There are two observations
in favor of the NLS droplet model support. On one hand,
experimental states with J = 5 present an anomaly of having
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FIG. 4. Solid black: Experimental energy spectra, angular mo-
menta, and parity of bound α-cluster states in 12C. Dotted and dashed
black: theoretical energy excitations calculated for 100% and 70%
condensation, respectively [55]. The Hoyle state is shifted here to 0
MeV. Under each of columns 2–5 we show the number of α-clusters
considered in the condensation model [55]: n = 6 clusters for 24Mg
(columns 2, 3) and n = 8 clusters for 32S (columns 4, 5). Red: The
theoretical Bethe spectra (10) for the best fit with parameters N, c,
shown on top of each column.

very few resonances, while the NLS model also predicts a
very sparse density of states when fitted at N = 3 with en-
ergies measured at this J value. On the other hand, all odd
parity nuclear states from the experiment fit the best at c ∼ 1
which represents solitons orbiting the equator of the droplet,
so high values of angular momentum, while even parity states
fit c � 1, which corresponds to solitons orbiting around the
poles of the droplet, hence low angular momentum.

In Fig. 4 we present two types of comparisons. In the first
column we plot the experimental energies of bound α-cluster
resonances in 12C together with the theoretical Bethe spectra
(10). We notice that, even for the best fit, our model generates
the first three energy levels below the Hoyle state. In the next
four columns we fit our theoretical spectra with a field theoret-
ical super-fluid cluster model [55]. In this model, spontaneous
symmetry breaks the global Wigner phase in a finite number n
of α clusters, a Bose-Einstein condensation process. We com-
pare our Bethe spectra for N = 4 with spectra resulting from

FIG. 5. Solid black: Energy, angular momentum and parity in
three columns representing spectra of bound α-cluster states, for
20Ne, 44Ti, and 212Po, respectively [56]. Red: Best fit for the theo-
retical Bethe spectra (10) with resulting parameters N, c shown on
top of each column.

condensation to n = 6 (24Mg) and n = 8 (32S) α-clusters, for
two different available condensation rates of 70% and 100%
calculated in [55]. In these cases, the comparison results in
a good match between the two models above the Hoyle state
(here 0 MeV).

Figure 5 represents a wide-range comparison for the ener-
gies of bound α-cluster states: From light 20Ne, to medium
44Ti, to superheavy 212Po nuclei, with the theoretical Bethe
spectra (10). While we do not have a perfect match for each
spectral line, the structure and density of spectral lines is
matched surprisingly well for all masses, energies, and angu-
lar momenta, in spite of the fact that we have only two free
parameters E0, c, plus the choice of which value for rapid-
ity N and which spectral tower to use. We note that lighter
nuclei are fitted better by smaller rapidity (N = 3) and larger
form parameter (c ∼ 5), while heavier nuclei are fitted better
by larger rapidity (N = 4) and smaller values for the form
parameter (c � 1), while obeying the same rule: The larger
the atomic mass or number of α clusters, the larger c values
fit better. Moreover, these experimental spectra were used for
comparisons with the predictions of the quartet model [56]
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or the density-dependent cluster model plus the two-potential
approach for heavy nuclei [60]. The intrinsic wave function
of the quartet acquires a cluster configuration, when it orbits a
radius above the core nucleus, similar to the surface formation
of the soliton solution, Eq. (7), in the defocusing NLS nuclear
shape model.

VI. CONCLUSIONS

In this paper we have developed an asymptotic descrip-
tion of azimuthal envelope solitons on spherical liquid layers
as solutions of defocusing nonlinear Schrödinger equation.
The quantum dynamics is analyzed using the algebraic Bethe
ansatz, showing a spectrum of a rigid rotor for weak nonlinear-
ity (measured by the coefficient of nonlinear term in the NLS
equation) and an oscillatory-type spectrum for strong nonlin-
earity. On the other hand the approximation used to get the

NLS equation needs to be improved to include the evolution
in the polar coordinate as well. We expect that fully localized
lump-type solutions to move on the surface of the spherical
liquid. However, because of the spherical geometry it is al-
most sure that such an equation will be a nonautonomous one,
and only numerical simulations will show interesting facts.
In order to validate the model, we compare its theoretical
predictions in terms of energy excitations with a large set
of nuclear experimental data of energies of cluster resonant
states or elastic collisions, for a variety of atomic masses from
light to superheavy nuclei, and for the corresponding angular
momenta and parities. The NLS models seem to offer a good
fit with the structure of experimental nuclear spectra. This
NLS droplet model is intended to elaborate on a number of
theoretical questions, in an effort to be a useful complement to
phenomenological and microscopic models, and help deepen
our understanding on clustering phenomena and decays across
the chart of nuclides.
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