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Interpretable and unsupervised phase classification

Julian Arnold ,1,* Frank Schäfer ,1,† Martin Žonda ,2,3 and Axel U. J. Lode 2

1Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
2Institute of Physics, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg im Breisgau, Germany

3Department of Condensed Matter Physics, Faculty of Mathematics and Physics,
Charles University, Ke Karlovu 5, Praha 2 CZ-121 16, Czech Republic

(Received 16 October 2020; accepted 15 June 2021; published 15 July 2021)

Fully automated classification methods that provide direct physical insights into phase diagrams are of current
interest. Interpretable, i.e., fully explainable, methods are desired for which we understand why they yield a
given phase classification. Ideally, phase classification methods should also be unsupervised. That is, they should
not require prior labeling or knowledge of the phases of matter to be characterized. Here, we demonstrate an
unsupervised machine-learning method for phase classification, which is rendered interpretable via an analytical
derivation of the functional relationship between its optimal predictions and the input data. Based on these
findings, we propose and apply an alternative, physically-motivated, data-driven scheme, which relies on the
difference between mean input features. This mean-based method does not rely on any predictive model and is
thus computationally cheap and directly explainable. As an example, we consider the physically rich ground-state
phase diagram of the spinless Falicov-Kimball model.
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I. INTRODUCTION

Phase diagrams and phase transitions are of paramount
importance to physics [1–3]. While many-body systems have
a large number of degrees of freedom, their phases are usu-
ally characterized by a small set of physical quantities like
response functions or order parameters. However, the identifi-
cation of phases and their order parameters is often a complex
problem involving a large state space [4,5]. Machine-learning
methods are apt for this task [3,6–15] as they can deal with
large data sets and efficiently extract information from them.
Ideally, such machine-learning methods should not require
prior knowledge about the phases, e.g., in the form of samples
that are labeled by their correct phase, or even the number of
distinct phases. That is, the methods should be unsupervised
[7,9,16–33].

Yet, they should also allow for a straightforward physical
insight into the character of phases. Significant progress has
been made recently [28–33], but some open issues remain
regarding the interpretability [34,35] of phase classification
methods, i.e., why a method yields a certain phase classifica-
tion. Thus, unsupervised and interpretable phase classification
stays a challenging, but highly rewarding task.

A good example of both progress in the field and rele-
vant challenges regarding interpretability is the unsupervised
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method introduced in Ref. [21]. This approach is based
on a predictive model trained to infer the parameters of a
physical system from input data—obtained by experimen-
tal measurements or numerical simulations—that characterize
the system’s state. In the following, we refer to this approach
as the prediction-based method. The predictions for the sys-
tem parameters in the prediction-based method are changing
most strongly near phase boundaries. Hence, the vector-field
divergence of the deviations of the predicted system param-
eters with respect to their true values serves as an indicator
(label I in Fig. 1) of phase transitions.

The prediction-based method was hitherto successfully
applied to symmetry-breaking [21], driven-dissipative [21],
quantum [22], and topological phase transitions [22,36]
in various systems. The method requires a predictive
model with sufficient expressive power [37,38] to resolve
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FIG. 1. Our workflow to predict a phase diagram with indicators
I for phase transitions. Here, we illustrate the procedure for a two-
dimensional parameter space. The parameter space is sampled on a
grid, which yields a set of points {pi} of fixed system parameters. At
each such point pi a set of samples {Si} is generated. Based on these
samples, a scalar indicator for phase transitions I (pi ) is calculated.
This indicator highlights the boundaries (red) between phases (grey).
Different unsupervised phase classification schemes are established
via different indicators.
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different phases. Without prior system knowledge deep neu-
ral networks (DNNs) [38] constitute a good choice due to
their capability of approximating arbitrary target functions
efficiently [39]. However, the more expressive a machine-
learning model such as a DNN, the more difficult it is to
interpret the underlying functional dependence of the predic-
tions on the input features [30,31]. Additionally, the training
of DNNs is computationally demanding. Thus, the prediction-
based method typically functions as a black-box model that
solves a given phase classification task, but whose internal
workings remain a mystery to the user.

Herein, we make the prediction-based method fully in-
terpretable by deriving the form of its optimal predictions
as a function of the input data. Therefore, we gain a full
understanding of the resulting phase classification and the
associated values of the indicator for phase transitions. These
insights pave the way for the key result of this paper: A phys-
ically motivated, general, data-driven, unsupervised phase
classification approach. It relies on the difference between
mean input features as an indicator for phase transitions
(Fig. 1); thus it is conceptually simple. In the following, we
refer to this approach as the mean-based method. The mean-
based method does not rely on a black-box predictive model
and is thus computationally cheap and directly explainable.

This paper is organized as follows: In Sec. II, we introduce
the Falicov-Kimball model (FKM) as our physical model of
interest. In Sec. III, the FKM phase diagram is analysed with
the prediction-based method. In particular, we derive the form
of its optimal predictive model and discuss how this analytical
expression makes the prediction-based method and its cor-
responding phase classification explainable. The mean-based
method is introduced in Sec. IV. We demonstrate how the
mean-based method reveals the FKM phase diagram given
information about the prevalent correlations as input. More-
over, we discuss how the method can be used with other types
of inputs and applied to different parameter spaces. A com-
parison of the prediction-based and mean-based method to
another widespread unsupervised learning scheme for phase
classification—namely principal component analysis (PCA)
and k-means clustering—is provided in Sec. V. We conclude
in Sec. VI and discuss potential future applications.

II. FALICOV-KIMBALL MODEL

As a physical system, we consider the two-dimensional
spinless FKM [40–42]. This simple model of correlated elec-
trons is used to address a broad range of contemporary
physical problems including fractionalized metals [43], topo-
logical phenomena at finite temperature [44], nonthermal
steady states [45], classical-quantum liquid transitions [46], or
various quasiparticles [47,48]. It is also utilized as a standard
test bed for the development of new methods in the context of
strongly correlated systems [42,49–54] and recently machine
learning [54,55].

The FKM ground-state phase diagram features a large
number of different phases, e.g., charge stripes or various
phase separations [56–58]. The properties of these phases
play an important role in the investigation of numerous phys-
ical phenomena, e.g., metal-insulator and valence transitions
[48,59–62], pattern formations in ultracold atoms in optical

lattices [63–66], localization and correlations [67–73], or var-
ious nonequilibrium phenomena [45,49,74–79]. Hitherto, the
classification of ground-state phases in the FKM was a manual
and—due to the richness of the phase diagram [56–58]—
lengthy and cumbersome task. The complexity of the FKM
phase diagram makes it a challenging example for unsuper-
vised and interpretable phase classification methods. To the
best of our knowledge, neither supervised nor unsupervised
phase classification methods have been applied to systems
featuring a phase diagram with such a plethora of different
orderings so far.

The Hamiltonian of the spinless FKM is

H = −t
∑

〈i j〉
(d†

i d j + d†
j di ) + U

∑

i

d†
i di f †

i fi . (1)

Here, t is the hopping integral (energy unit throughout this
paper), U is the on-site Coulomb interaction strength, f †

i ( fi )
and d†

i (di ) are the creation (annihilation) operators of heavy
( f ) and light (d ) fermions at lattice site i. The number op-
erator n f ,i = f †

i fi commutes with the Hamiltonian for all i,
such that we can replace it by its eigenvalues wi ∈ {0, 1}.
The ground state is thus determined by the classical f -particle
configuration w0 = {w0,i} that minimizes the system energy.
We focus on the “neutral” case [56], characterized by an equal
density of heavy and light particles ρ = Nf /L2 = Nd/L2.
Here, Nf (Nd ) is the total number of heavy (light) particles
and L = 20—which we fix throughout this paper—is the lin-
ear size of the square two-dimensional lattice with periodic
boundary conditions (plane symmetry group: p4m [80]).

Figure 2(a) shows a sketch of the expected phase diagram
in two-dimensional parameter space [56]. It highlights the re-
gions of stability of three main types of orderings, namely, (1)
segregated, (2) diagonal, and (3) axial orderings. A multitude
of other phases with smaller stability regions are expected to
be present in the full diagram [56,57].

Sample generation

We determine the ground-state configuration w0 approx-
imately for a given p = (U, ρ) using an adaptive simulated
annealing algorithm (see Appendix A) where ρ ranges from
1/L2 to half-filling (�ρ = 1/L2) and U ranges from 1 to
8 (�U = 0.2). For each p we performed upwards of 64 inde-
pendent simulations. For large systems, simulated annealing
does not always converge to the ground state. This is akin to an
experimental setting, where an experimentalist may not have
access to all parameters of the underlying Hamiltonian and
the system inevitably suffers from thermal (or other types of)
noise. A crucial characteristic of any robust phase classifica-
tion method is its ability to perform in such a “noisy” setting.
Thus, we investigate two distinct cases: a “noise-free” case
where the best estimate w0 is taken as the ground-state and
a “noisy” case where we take into account 10 configurations
with the smallest energies at each p.

III. PREDICTION-BASED METHOD

In the first part of this paper, we analyze the FKM phase
diagram using the prediction-based method with DNNs as
predictive models m : x → p̂(x) = (Û (x), ρ̂(x)). For this, we

033052-2



INTERPRETABLE AND UNSUPERVISED PHASE … PHYSICAL REVIEW RESEARCH 3, 033052 (2021)

FIG. 2. (a) Sketch of the ground-state phase diagram of the spinless FKM. Red-dashed lines highlight the boundaries of the phases with
(1) segregated, (2) diagonal, and (3) axial orderings. For each ordering (1)–(3), an example of a typical ground-state configuration w0 (L = 20)
is shown on top. Here, the absence (w0,i = 0) and presence (w0,i = 1) of an f particle at lattice site i is denoted by a white or black square,
respectively. [(b), (c)] ∇p · δp [Eq. (4)] based on the predictions of a DNN trained using |F | as input in the (b) noise-free and (c) noisy
case. The color scale in (b) and (c) was cut off at –1 and –2, respectively, for better visualization. There were very few distinct points in
parameter space with a divergence signal ∇p · δp below these cut-off values. (d) Illustration of the correlation functions that measure square
(κ sq

n ), axial (κax
n ), and diagonal (κdi

n ) correlation at a distance n from the origin [cf. Eq. (14)]. Blue squares denote the lattice sites marked by
the corresponding stencil, where red denotes the origin. [(e), (f)] Correlation indicator �κ̄ [Eq. (15)] in the (e) noise-free and (f) noisy case.
Both ∇p · δp and �κ̄ serve as indicators for phase transitions (Fig. 1). The dashed line in (c) and (f) marks the cut along ρ = 63/400 ≈ 0.16
analyzed in Fig. 3. Representative configurations (1)–(9) for some of the largest predicted regions of stability (connected regions marked in
blue by the indicator), i.e., phases, are shown on the top. These regions connect configurations of the same character. We checked this manually
and selected a representative example configuration for some of the regions as a guidance for the reader. This post-process labeling is necessary
as the system’s phases are, in principle, not known beforehand. A finite-size scaling of the FKM phase diagram with square lattices of linear
size L = 10 and L = 16 is provided in Appendix E.

train a DNN to predict the underlying set of system parameters
{p = (U, ρ)} from input data {x} for each sampled point p
in parameter space (see Sec. II). Here the input data may
be the raw ground-state configuration samples {w0} or alter-
native representations of the system’s state derived thereof.
We use DNNs with convolutional layers to process image-
like inputs, and DNNs with fully-connected layers otherwise.
During training, the weights and biases of the DNNs are op-
timized through minimization of a mean-square error (MSE)
loss function defined as

LMSE = 1

NpNx

∑

p

∑

x

‖ p̂(x) − p‖2, (2)

where the sum runs over all Np sampled points {p} in parame-
ter space and all Nx inputs {x} at each point p. To incorporate
configurations related through transformations of p4m, we use
online data augmentation, i.e., each time a configuration is
revisited during training a random transformation of p4m is
performed. Note that if we use inputs that are invariant under

transformations of p4m, we do not need to use data aug-
mentation. In case of inputs, which are only invariant under
transformations of a particular subgroup of p4m, we instead
perform data augmentation using random transformation of
the corresponding subgroup. For further details on the DNN
architectures and training procedure, see Appendix B.

Given a trained DNN, the predictions p̂ as a function of
the system parameters p are obtained by averaging over the
predictions for all Nx inputs {x} at p:

p̂(p) = 1

Nx

∑

x

p̂(x). (3)

The phase diagram can be revealed by analyzing the vec-
tor field δp(p) = p̂(p) − p whose individual components are
given by δU (p) = Û (p) − U and δρ(p) = ρ̂(p) − ρ. In par-
ticular, because the predictions p̂(p) are most susceptible near
the phase boundaries, maxima in the vector-field divergence

∇p · δp = ∂δU

∂U

∣∣∣∣
p
+ ∂δρ

∂ρ

∣∣∣∣
p

(4)
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serve as an indicator I (p) (Fig. 1) of phase transitions. We ap-
proximate the corresponding derivatives using the symmetric
difference quotient as

∂δU

∂U

∣∣∣∣
p

≈ δU (U + �U, ρ) − δU (U − �U, ρ)

2�U
,

∂δρ

∂ρ

∣∣∣∣
p

≈ δρ(U, ρ + �ρ) − δρ(U, ρ − �ρ)

2�ρ
. (5)

A. Phase diagrams

We start the analysis of the FKM phase diagram with the
prediction-based method using a DNN to predict p = (U, ρ)
that takes the magnitude of the two-dimensional discrete
Fourier transform |F | of each ground-state configuration w0

as input. Here, the elements of F are given as

Fu,v =
L−1∑

x,y=0

wx,y · e−2π i(ux+vy)/N , (6)

where wx,y ∈ {0, 1} denotes the absence (0) or presence (1) of
an f particle at site (x, y) on the 2D square lattice and u, v ∈
{0, 1, . . . , L − 1} [81]. The lattice sites in x and y direction are
labeled from 0 to L − 1 and L is the number of lattice sites in
x and y direction. In practice, we calculate F in Eq. (6) using
the fast Fourier transform algorithm [82]. Figures 2(b) and
2(c) show the resulting divergence signal in the noise-free and
the noisy case, respectively. The usage of |F | instead of w0

results in a shorter training time because data augmentation
by lattice translations is not necessary. Moreover, it yields
an improved signal-to-noise ratio for ∇p · δp, because |F0,0|
corresponds to Nf , i.e., ρ is directly fed into the DNN. The
vector field δp exhibits a horizontal structure (see Fig. 6 in
Appendix B), meaning that ρ is predicted with near-perfect
accuracy in both cases. The horizontal structure of δp implies
that maxima in ∇p · δp indicate phase transitions along U at
fixed ρ. The (U, ρ) parameter space can thus be analyzed with
cuts along U—we will do this later in this section.

The largest connected region with a negative divergence
signal covering the bottom right half of the sampled parameter
space displayed in Fig. 2(b) coincides with the main region of
segregated orderings labeled 1 in the sketched phase diagram
displayed in Fig. 2(a). Its character can be confirmed by a
simple order parameter analysis (see Appendix C). However,
the remaining phase boundaries are not reproduced with a
large contrast. It is difficult to identify stability regions be-
sides the main region of segregated orderings labeled 1, in
particular the main regions of the diagonal and axial orderings
[2, 3 in Fig. 2(a)]. Specifically, the prediction-based method
indicates changes of the phase at several points within sta-
ble phase regions [Fig. 2(b)]. These artefacts intensify in the
noisy case [Fig. 2(c)], where, in addition, the training of the
DNN becomes computationally more demanding. Moreover,
a large(er) amount of input data is needed to obtain the phase
diagram with sufficient accuracy. To resolve these problems,
it is first necessary to understand the DNN predictions.

B. Optimal predictive model

For this purpose, we analytically derive the form of the
optimal model predictions when using the prediction-based
method for phase classification. Here, an optimal predictive
model mopt is any model m, which minimizes the MSE loss
in Eq. (2). In the general noisy case, the prediction of mopt

trained for the prediction-based method given the input x is

p̂opt (x) =
∑

i Pi(x)pi∑
i Pi(x)

. (7)

Here, the sum runs over all sampled points {pi} in parameter
space. The probability of drawing the input x at pi is governed
by the distribution Pi(x).

Proof—In general, the system to be analyzed is
characterized by a set of d tunable parameters p =
(p(1), p(2), . . . , p(d ) ), which we sample on an equidistant grid
with grid spacings �p = (�p(1),�p(2), . . . , �p(d ) ). At each
grid point pi in parameter space, we have Nx inputs {x},
which constitute our training data and we train a predictive
model m : x → p̂(x) to minimize the MSE loss function LMSE

specified in Eq. (2). Now, consider a particular input x j : We
can determine the optimal model prediction p̂opt (x j ) for this
input by minimizing the loss function in Eq. (2) with respect
to p̂(x j ), i.e., by solving

∂LMSE

∂ p̂(x j )
= 2

NpNx

∑

p

N j
x (p)( p̂opt (x j ) − p) = 0. (8)

Here, N j
x (pi ) denotes the number of times the particular input

x j is drawn at point pi, and Pi(x j ) ≈ N j
x (pi )/Nx is the associ-

ated probability. Solving Eq. (8) yields

p̂opt (x j ) =
∑

i Pi(x j )pi∑
i Pi(x j )

. (9)

Repeating this step for all available training data {x}, we
recover Eq. (7). �

Equation (7) implies that an optimal model mopt predicts
the center of mass for a particular input x j , where each grid
point i is weighted according to the probability to draw the
input x j given by Pi(x j )/

∑
i Pi(x j ). Consequently, the predic-

tion of an optimal model mopt at a sampled point p is given by
p̂opt (p) = 1/Nx

∑
x p̂opt (x) [see Eq. (3)], where the sum runs

over all Nx inputs {x} at p. The optimal divergence signal at
a point p is thus given by ∇p · δpopt, where δpopt = p̂opt − p
and the derivatives are approximated using the symmetric
difference quotient [see Eq. (5)].

We have thus derived a simple analytical expression for
the divergence signal of an optimal model mopt in the general
noisy case. Because this describes the optimal relationship
between the input data and the indicator of the prediction-
based method, we have made its phase classification—and
thus the method itself—fully explainable. This is because the
expression removes the need for further interpretation of the
DNN, as it merely serves to approximate mopt. The key to this
analytical analysis of the prediction-based method is the fact
that the method only requires the underlying predictive model
to be evaluated on the training data; both during training and
when calculating the indicator value. One may first choose to
evaluate the prediction-based method on a test set to assess the
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quality of the training data. However, for best performance the
model should eventually be retrained using the entire available
data. As such, the predictions for inputs that lie outside the
training data, i.e., where the model needs to generalize, do
not need to be analysed. This would constitute a much harder
task. Nevertheless, note that the predictive models utilized in
the prediction-based method, such as DNNs, can typically
generalize to inputs that lie outside the training data after
training and may thus still be of interest for other tasks.

C. Interpretation

The gain of interpretability granted by the analytical ex-
pressions can be best illustrated for the noise-free case, where
the parameter space is divided into regions along U (at
ρ = const.) with distinct input data: The prevalent ground-
state configuration and all configurations related to it through
transformations of p4m. That is, the probability distributions
{Pi(x)} governing the input data in a given region are iden-
tical and the probability to draw the same input data outside
the region vanishes. Thus, the optimal model predictions are
identical for all grid points in such a region and are placed
at its center of mass according to Eq. (7). In particular, ρ is
predicted with perfect accuracy at all sampled points p. This
results in a vanishing optimal derivative along that direction
in parameter space

∂δρopt

∂ρ

∣∣∣∣
p
≈ 0, (10)

and the optimal divergence signal corresponds to the deriva-
tive along U

∇p · δpopt ≈ ∂δUopt

∂U

∣∣∣∣
p
. (11)

In what follows, we consider regions that contain at least
two points in parameter space. This becomes the prevalent
case when the parameter space is sampled sufficiently dense.
For all other cases, see the analogous analysis in Appendix B.
At all points in the interior of a region, the optimal divergence
signal is then given by

∇p · δpopt ≈ −1. (12)

At the two points in parameter space that make up the bound-
ary of two neighboring regions along U , labeled I and II, the
divergence signal is

∇p · δpopt ≈ 〈U 〉II − 〈U 〉I

2�U
− 1 � 0. (13)

Here, 〈U 〉I/II = 1/N I/II
p

∑
U∈I/II U denotes the center of mass

in U of the two regions, which each contain N I/II
p � 2 grid

points. As such, the value of ∇p · δpopt spikes at the points that
constitute a region’s boundary. The prediction-based method
thus classifies these regions in parameter space as distinct
phases. In particular, the method predicts a phase boundary
whenever neighboring configurations in U (at ρ = const.) are
not related by transformations of p4m. The divergence signal
at the phase boundaries measures the mean extent of the
two neighboring phases (along U ). Equivalently, it assesses

the stability of the two phases, i.e., their robustness against
variations in the system parameters.

One can confirm that the divergence signal ∇p · δp shown
in Fig. 2(b) obtained using a DNN to approximate the optimal
predictive model mopt matches this description, i.e., it coin-
cides with the indicator obtained based on mopt [see Fig. 7 in
Appendix B]. Consequently, one can identify the large extent
of the segregated phase in parameter space as the cause for the
large, isolated maxima in ∇p · δp within it, see Fig. 2(b). Such
isolated points are physically meaningless.

The noisy case can be understood from a single line scan.
At ρ = 63/400 [dashed line in Fig. 2(c)] a broad transi-
tion from a nonsegregated to a segregated ordering occurs.
Figures 3(a) and 3(d) show that the predictions Û and the cor-
responding divergence ∂δU/∂U obtained with a DNN trained
on the line scan indicate the corresponding phase boundary.
Finite-sample statistics cause significant fluctuations in the
local probability distributions Pi(|F |). This can lead to vary-
ing predictions Û and divergence signals close to zero that,
again, correspond to misleading predictions of phase bound-
aries within the segregated phase.

IV. MEAN-BASED METHOD

The analytical expression for the optimal model predic-
tions has significantly strengthened our understanding of the
prediction-based method. While we have so far relied on
DNNs to approximate mopt, it opens up the possibility to com-
pute the indicator of the prediction-based method ∇p · δpopt
directly from the input data, i.e., the underlying probability
distributions {Pi(x)} without the need of universal function
approximators. More generally, it paves the way for a class
of alternative, computationally cheap algorithms for unsuper-
vised phase classification without any predictive model.

To reproduce the phase classification in the noise-free case
obtained using the prediction-based method [Fig. 2(b)], for
example, a method simply needs to detect changes in neigh-
boring configurations (up to transformations of p4m) in U (at
ρ = const.). If a change is detected, a new phase is declared.
Once all the points in parameter space are analysed, the phase
diagram can be fully recovered by setting the indicator values
according to Eqs. (12) and (13) given the phase classification
at hand. To detect changes in neighboring configurations one
can, for example, search for an appropriate symmetry transfor-
mation that relates the two or compare their energy. For further
details on these two approaches, see Appendix D. While the
first approach is computationally inefficient, the second re-
quires perfect knowledge of the system Hamiltonian, which is
typically absent in experimental settings. Instead, one can also
detect changes in the configurations (up to transformations of
p4m) by a direct comparison of observables derived from the
configurations, which are invariant under transformations of
p4m. In this section, we will discuss this approach in detail.

A. Correlation indicator

In Figs. 2(b) and 2(c) we have seen that the indicator of
the prediction-based method can result in misleading predic-
tions of phase boundaries within the large stability regions,
such as the segregated phase. This is because the value of
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FIG. 3. Analysis of the transition from nonsegregated to segregated orderings occurring at U ≈ 2 along the line scan [dashed line in
Figs. 2(c) and 2(f)] from Umin = 1 to Umax = 8 at fixed ρ = 63/400 ≈ 0.16. [(a), (d)] Predictions Û and corresponding divergence ∂δU/∂U
of a DNN trained on the line scan with |F | as input, as well as the indicator �x̄ [Eq. (16)] based on (b), (e) the entire set of correlation
functions κ (points) or a subset thereof denoted as κ1,2−6,7−10 (dashed lines), and (c), (f) |F |. Here, κ1,2−6,7−10 denotes the set of correlation
functions measuring square (sq), axial (ax), and diagonal (di) correlations over 1, 2–6, and 7–10 lattice sites, respectively. 〈�x̄〉 denotes the
average difference signal over the entire line scan and is subtracted to account for noise arising due to finite sample statistics. The inset in
panel (b) shows the average input κ for the nonsegregated phase (I) and segregated phase (II) obtained from averaging over all inputs for U
ranging from U = 1.0 to U = 1.2 and U = 2.6 to U = 8.0, respectively. The results shown in panels (c) and (f) are obtained using ntrafo = 20
for offline data augmentation at which we find the indicator to converge. The degree of red in (a)–(c) denotes an increasingly positive value of
the respective indicator for phase transitions (Fig. 1); (d)–(f) configurations visualized using the same color scale as for the points in (a)–(c),
respectively (see Fig. 5 in Appendix A for all configurations).

the indicator at phase boundaries reflects the mean extent of
the neighboring phases, irrespective of how small or large the
actual change in the ground-state configurations w0 is when
moving from one stability region to another. To resolve these
problems we propose an alternative indicator, which is instead
given by the magnitude of the change in the configurations as
measured in a representation that is invariant under transfor-
mations of p4m. Ideally, the resulting observable should not
be very sensitive to small changes in w0 (up to transforma-
tions of p4m) within a stability region. This establishes an
alternative, physically motivated, data-driven, unsupervised
phase classification approach, which we call the mean-based
method.

The probing of correlations is a standard procedure
for studying phase transitions. As such, correlations also
represent a suitable physically-motivated choice for a rep-
resentation in any data-driven phase classification method,
irrespective of the system at hand. Given that the FKM is
defined on a square lattice with periodic boundary conditions,
we consider the following set of correlation functions that
measure the order of a given classical configuration:

κsq
n = 1

8nL2

L−1∑

i, j=0

n∑

α,β=−n

Ssq
n,α,βw̃i, jw̃i+α, j+β,

κax
n = 1

4L2

L−1∑

i, j=0

∑

α,β∈{−n,n}
Sax

n,α,βw̃i, jw̃i+α, j+β, (14)

κdi
n = 1

4L2

L−1∑

i, j=0

∑

α,β∈{−n,n}
Sdi

n,α,βw̃i, jw̃i+α, j+β,

where w̃i, j = 2wi, j − 1 and Ssq
n,α,β = (δ|α|,n + δ|β|,n −

δ|α|+|β|,2n), Sax
n,α,β = δ|α|+|β|,n, Sdi

n,α,β = δ|α|+|β|,2n are the
corresponding stencils with lattice points matching three
types of orders that measure square (sq), axial (ax), and
diagonal (di) correlations over n lattice sites. Given periodic
boundary conditions, the largest unique n is given by
nmax = L/2. The computation of the correlation functions
from Eq. (14) is illustrated in Fig. 2(d). Note that we choose
these correlation functions as one possible representation out
of many, which render configuration samples related through
transformations of p4m identical.

With the correlation functions in Eq. (14), we define the
following correlation indicator for the mean-based method:

�κ̄ (U, ρ) = ‖κ̄(U + �U, ρ) − κ̄(U − �U, ρ)‖, (15)

at each point p = (U, ρ), where κ̄ =
(κ̄sq

1 , ..., κ̄
sq
L/2, κ̄

ax
1 , ..., κ̄ax

L/2, κ̄
di
1 , ..., κ̄di

L/2). Here, the ·̄ notation
indicates the average over all inputs at a given point p,
if multiple inputs are considered. The indicator for phase
transitions �κ̄ (Fig. 1) measures the magnitude of the mean
change of order quantified by κ̄. To account for variations in
the grid spacing one may rescale the correlation indicator [Eq.
(15)] by an additional factor of 1/2�U (that we omit here).
Note that the correlation indicator can be computed from the
input data via a simple analytical expression without relying
on a black-box predictive model. Thus, the mean-based
method is computationally cheap and fully interpretable.

Our results for both noisy and noise-free cases demonstrate
that the mean-based method with the indicator �κ̄ reveals the
phase diagram more clearly than ∇p · δp, compare Figs. 2(e),
2(f) and 2(b), 2(c). The indicator �κ̄ reproduces the main
characteristics of the FKM phase diagram [Fig. 2(a)]: �κ̄
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almost vanishes within the stability region of segregated or-
derings, in the presence or absence of noise [Figs. 2(e) and
2(f)], and marks all phase boundaries of Fig. 2(a) (order
parameter analysis in Appendix C). Moreover, we obtain
a detailed, physical subdivision of the phase diagram—see
the identified orderings in Fig. 2 (top) and labels (1)–(9)
in Fig. 2(e). In particular, the method is able to distinguish
between dimer structures (7), different stable tile patterns (8),
(9), or orderings exhibiting a complicated phase separation
(4). Thus, the mean-based method with the correlation in-
dicator �κ̄ in Eq. (15) is an excellent tool to detect phase
transitions.

Let us take a closer look at the line scan ρ = 63/400 where
a broad transition from a nonsegregated to a segregated order-
ing occurs at U ≈ 2 [Figs. 3(b) and 3(e)]. More precisely, we
see that the system undergoes complete segregation starting
from a most homogeneous ordering of dimers (which we
call nonsegregated for simplicity) with increasing U . In the
process of segregation, we first observe the formation of inde-
pendent clusters. The correlation indicator of the mean-based
method shows two distinct peaks (or “one broad peak”), which
correctly highlights that the transition from nonsegregated to
segregated orderings proceeds via this intermediate ordering
of independent clusters. Looking at Figs. 2(e) and 2(f), we see
that the investigated line scan at ρ = 63/400 ≈ 0.16 (dashed
line) indeed passes through the edge of a small stability region
at U ≈ 2 comprised of this intermediate ordering of indepen-
dent clusters. These results highlight the performance of the
mean-based method, as it is capable of resolving even such
small stability regions and capture the competition of distinct
orders in the vicinity of phase boundaries. Note that such a
competition of different orders at transitions is of contem-
porary interest [83]. A more detailed study focused on this
region of parameter space together with a proper finite-size
scaling could be done to confirm that this stability region
does not correspond to a finite-size effect but persists in the
thermodynamic limit.

Using the mean-based method, we can obtain information
about the relevant change in order governing a phase transition
straightforwardly by calculating an indicator, Eq. (15), based
on individual features of the overall input (here κ). Calculat-
ing individual indicators based on the correlation functions
measuring short-, medium-, and long-range correlations, for
example, one can identify which type changes the most at
a given phase boundary [Fig. 3(b)]. The prevalent order in
a predicted phase can be characterized by calculating the
mean input for the corresponding region in parameter space
[Fig. 3(b), inset]. For the transition along ρ = 63/400 (Fig. 3),
this approach reveals the decrease in long-range correlations
in the transition from nonsegregated to segregated orderings
and quantifies its importance compared to changes in short-
range correlations. This demonstrates that the application of
the mean-based method allows for direct physical insight into
the predicted phase diagram.

B. Generic indicators

We now ask the question whether the mean-based method
can be applied to the phase classification problem without a
specific physically-motivated input. To this end, we extend the

mean-based method to arbitrary inputs by defining an input-
generic indicator:

�x̄(p) = ‖x̄(U + �U, ρ) − x̄(U − �U, ρ)‖. (16)

Here, x̄(pi ) = ∑
j Pi(x j )x j ≈ ∑

j N j
x (pi )/Nxx j denotes the

average input at a point pi. Because the inputs {x} do not gen-
erally need to be invariant under transformations of p4m, we
perform offline data augmentation by applying ntrafo random
symmetry transformations to the configurations analogous to
online data augmentation (see Sec. III). Based on the aug-
mented set of configurations, we then compute the input data
{x} (such as {κ} or {|F |}) and the corresponding averages.
Similar to the prediction-based method, the computational
cost of data augmentation can be significantly reduced by
choosing a representation in which the inputs are invariant
under transformations of p4m (or a subgroup thereof).

In a data-driven approach such as the mean-based method,
the choice of representation for the input data also crucially
affects the performance of the phase classification; Figs. 2(e)
and 2(f) show that the set of correlation functions κ are an
appropriate choice in the case of the FKM. In general, based
on the knowledge that the system is defined on a square
lattice with periodic boundary conditions one can identify
the Fourier transformed configuration |F | as a suitable rep-
resentation for the input because it removes the translational
symmetry. Even with such a generic choice of input, the
difference signal is a good indicator for phase transitions and
reveals the main characteristics of the phase diagram both
in the noise-free and noisy case, see line scan along U in
Figs. 3(c), 3(f), and 4. This underpins the generality and
robustness of the mean-based method and shows its possible
applicability to other models beyond the FKM, where differ-
ent data representations may be chosen.

The increased level of noise when using |F | compared
to κ as input [compare Fig. 4 to Figs. 2(e) and 2(f)] can
be attributed to the fact that |F | is not fully invariant under
transformations of p4m. As such, differences in the input
that can be resolved through application of transformations
of p4m nevertheless contribute to the indicator. This effect
is even more pronounced when using the raw configuration
samples w0 as input. In this case, we observe that the phase
boundaries get washed out. This highlights the importance of
a representation in which samples that are related through the
system’s symmetries are identical for the success of the mean-
based method. In contrast, the prediction-based method does
not fundamentally rely on such a representation. Knowledge
of the system’s symmetries is, however, required to perform
data augmentation that saves computation time during sample
generation and training of the predictive model.

In case of the FKM, the parameter space can be effectively
analyzed with cuts along a single parameter (here U ). We
made use of this fact when defining the indicators of the mean-
based method [Eq. (15) and (16)]. Note, however, that these
indicators can easily be extended to include changes in ρ. This
can, for example, be accomplished by a parameter-generic
indicator of the form

�x̄tot (p) = �x̄(p) + �x̄ρ (p), (17)

where �x̄(p) [Eq. (16)] measures changes along U
and �x̄ρ (p) = ‖x̄(U, ρ + �ρ) − x̄(U, ρ − �ρ)‖ measures
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FIG. 4. Indicator �x̄ [Eq. (16)] of the mean-based method based
on |F | as input on the two-dimensional parameter space of the FKM
in the (a) noise-free and (b) noisy case. For offline data augmentation
we use ntrafo = 20 at which we find the indicator to converge.

changes along ρ. As expected, the FKM phase diagrams ob-
tained with the parameter-generic indicator in Eq. (17) of the
mean-based method do not differ significantly from the phase
diagrams obtained using Eq. (16), see Fig. 11 in Appendix F.
Similarly, one can extend the indicator to parameter spaces of
arbitrary dimension. This establishes the mean-based method
as a general, unsupervised phase classification method that
can be applied to arbitrary phase diagrams.

V. COMPARISON WITH PRINCIPAL COMPONENT
ANALYSIS AND k-MEANS CLUSTERING

As a final step, let us compare the prediction-based and
mean-based method to PCA and k-means clustering—a sim-
ple but widespread unsupervised learning scheme for phase
classification [9,84]. We find that PCA and k-means clustering
assigns configuration samples related through transforma-
tions of p4m to different clusters (phases) when using the
raw configuration samples as input in the noise-free case.
Here, we used the scikit-learn implementation of PCA and k-
means clustering with default settings [85]. Thereby, without
adopting a different data representation, this method fails at
classifying the phases of the FKM.

These issues can be explained by the fact that configura-
tion samples related through transformations of p4m are not
necessarily close in configuration space. Because the k-means
clustering algorithm relies on Euclidean distance as a mea-
sure of similarity, such configurations do not necessarily get
clustered together as the number of distinct clusters increases.
When performing dimensionality reduction using PCA, the
data is projected into the subspace that contains most of the
variance present in the data. If two configuration samples
related through transformation of p4m are separated far in the
original configuration space, they are likely to also going to be
separated far after performing PCA. This is because the cor-
responding direction is of large variance and therefore of high
priority when reducing the dimensionality. Note that this prob-
lem will remain in more elaborate nonlinear dimensionality
reduction methods, such as t-distributed stochastic neighbor
embedding [86] (t-SNE) or uniform manifold approximation
and projection [87] (UMAP), as they all try to preserve the
distance (similarity) of the data within the original space [84].

A way to resolve these symmetry-related issues is to adapt
an alternative representation in which configurations related
through transformation of p4m are identical such as the set
of correlation functions κ. In particular, using inputs that are
only invariant under transformations of a subgroup of p4m
such as |F | is not sufficient. However, we have seen that the
phase classification problem in the noise-free case is rendered
trivial given such a representation and can equally be solved
by other simple algorithms—in particular the mean-based
method. Moreover, the indicator signals of the prediction-
based and mean-based method entail additional information
about the nature of the phases and corresponding phase transi-
tions. Recall that it is precisely the alternative indicator signal
of the mean-based method that allowed us to address the
remaining issues of the prediction-based method. The appli-
cation of PCA and k-means clustering does not yield such
insights. Note that a possible approach to extend PCA and
k-means clustering towards different inputs and the general
noisy case is to apply it on averaged inputs, similar to the
mean-based method. However, it is unclear what advantages
such an approach would have over using the mean-based
method directly.

VI. CONCLUSION AND OUTLOOK

In conclusion, we have made the prediction-based method
fully interpretable with a derivation of its optimal model
predictions. This opens up the possibility to compute the
indicator of the prediction-based method directly from the
input data {x}, i.e., the corresponding probability distributions
{Pi(x)}, without the need of predictive models, such as DNNs.
Moreover, the analytical expressions of the optimal model
predictions have guided us to propose the mean-based method
that works outstandingly well as an unsupervised phase clas-
sification approach for various types of inputs and in the
presence of noise. We infer that applications of our mean-
based method to arbitrary phase diagrams featuring, e.g.,
quantum or topological phase transitions are feasible. Specif-
ically, applications to quantum-classical systems such as the
FKM and its numerous generalizations [44,49,58,88,89] are
now straightforward. Finally, we note that the indicators of
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phase transitions in the prediction-based [Eq. (4)] and mean-
based method [Eq. (16)] differ fundamentally. They constitute
two distinct approaches to characterize changes in the prob-
ability distributions {Pi(x)} that govern the input data and
provide complementary insights into the phase diagram. The
success of the mean-based method suggests extensions to
unsupervised phase classification methods whose indicator is,
e.g., based on the magnitude of the change in the higher-order
moments of the underlying probability distributions or mea-
sures of similarity such as the Hellinger distance [90].

The code for the prediction-based and mean-based method
that was utilized in this paper is open source [91].
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APPENDIX A: DETAILS ON THE SAMPLE GENERATION

In this Appendix, we provide further details on the sample
generation procedure (see Sec. II of the main text). For a fixed
f -particle configuration w, the Hamiltonian of the FKM in
Eq. (1) of the main text can be transformed into

Hw =
∑

j, j′
h j j′d

†
j d j′ =

∑

α

λw
α b†

αbα, (A1)

where we introduce the matrix elements h j j′ = Uw jδ j j′ −
tδ〈 j j′〉. Its eigenvalues λw

α are obtained by numerical diago-
nalization. Finding the ground state of the FKM then means
to find the configuration w, which leads to the lowest energy

Egs(w) =
Nd∑

α=1

λw
α . (A2)

However, even after accounting for the lattice symmetries, the
ground-state configurations of systems with linear size L =
20, in general, cannot be determined exactly by comparing
the energies of all possible configurations w. An approximate
method is required. Instead of using a reduced set of chosen
orderings, as was done in previous studies [56,57] of the
model, we determine the corresponding f -particle ground-
state configuration w0 using simulated annealing.

We use an algorithm based on a semiclassical Metropolis
Monte Carlo [92] with Egs(w) in the statistical weight’s en-

ergy instead of the free energy. This means, that the candidate
configuration wc, generated by a random displacement of a
single f particle from the current configuration w, is accepted
as a new w if Egs(wc) � Egs(w) or min (1, exp[−β(Egs(wc) −
Egs(w))]) > r, where r is a random number drawn from a
uniform distribution r ∈ [0, 1] and β = 1/T is the inverse
temperature. We first used a classical protocol, where we
started at relatively high temperature T ∼ 0.1t and cooled
the sample in 20 − 40 discrete temperature steps to zero. A
thermalization process consisting of 102 − 103 × L2 updates
was done at every time step.

However, we found that an alternative adaptive protocol
is much more efficient in lowering the energy. Namely, we
started the annealing with a long thermalization at a low tem-
perature (typically T = 0.003t). In the next steps, depending
whether the algorithm has found a configuration with lower
energy at the current temperature or not, the temperature was
either lowered by dividing it by a factor between one and
two (typically 1.25) or increased by multiplying it by the
same factor. The modified protocol is better in escaping local
minima and has less troubles with the fact, that the FKM
can go through more than one ordered phase with decreasing
temperature [93,94].

We have typically used a number of independent runs
with random initial conditions. For small lattices (L � 10) all
simulations converged to configurations identical up to trans-
formations of p4m. For L = 20 we used 64 runs with random
initial conditions, plus several runs with initial configurations
reflecting typical ground-state orderings identified for smaller
lattices (L � 16). In this case, we obtained several distinct
configuration samples at each investigated point in parameter
space p = (U, ρ) from independent simulated annealing runs
that converged to nearby local energy minima, as opposed
to the global minimum. Thus, we distinguished between the
“noise-free” and “noisy” case.

In the noisy case, we considered the 10 configurations with
the lowest energies at each sampled point in parameter space.
Figure 5 shows all such 10 configurations for each sampled
point in parameter space along the line scan at fixed ρ =
63/400, which was analysed in Fig. 3 in the main text. In the
noise-free case, we performed one additional step: Namely, at
each investigated p = (U, ρ) we took the configuration with
the lowest energy and compared it with the energy calculated
using the configuration obtained as the ground state for the
same ρ, but different (neighboring) U . The configuration with
the lowest energy was then taken as the final ground-state
approximation.

APPENDIX B: DETAILS ON THE
PREDICTION-BASED METHOD

Here, we provide further details on the prediction-based
method (see Sec. III of the main text). In particular, we dis-
cuss the architecture of the DNNs employed in this paper
and how they were trained. Moreover, we discuss the vector
field whose divergence corresponds to the indicator of phase
transitions in the prediction-based method and we extend our
analysis of the optimal model predictions in the noise-free
case.
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FIG. 5. Ground-state configurations (L = 20) along the line scan from Umin = 1 to Umax = 8 at fixed ρ = 63/400 ≈ 0.16 [cf. dashed line
in Figs. 2(c) and 2(f) in the main text]. At each value of U , we show the 10 configurations arising from independent simulated annealing runs
that are considered in the noisy case.

1. Neural network architecture

The DNNs utilized in this paper are built as follows:
if the inputs are image-like, such as ground-state config-
urations {w0} or the magnitude of their two-dimensional
discrete Fourier transform {|F |}, we first apply K different
square filters with the same linear size L as the input image.
Subsequently, we apply a rectified linear unit, ReLU(z) =
max(0, z), as an activation function. This results in an output
feature map of size 1 × 1 × K , which is then flattened to a fea-
ture vector with K elements. In case of vector-like inputs, we
skip this step. In both cases, we feed the corresponding vectors
into a series of fully-connected layers (FCLs), where ReLUs
are used as activation functions [38]. While this architecture
remains to be optimized systematically to achieve a similar or
improved accuracy at lower computational cost, such DNNs
satisfy a universal approximation theorem [95].

2. Training procedure

For training the DNNs, each input x = {xi} is standardized
by the map S : x → x′ whose element-wise action is given by
the following affine transformation

x′
i = xi − 〈xi〉

σxi

. (B1)

Each output p = {pi} is normalized by the map N : p → p′,
where each element is transformed as

p′
i = pi

σpi

. (B2)

Here, {〈xi〉} ({〈pi〉}) and {σxi} ({σpi}) denote the mean val-
ues and standard deviations of the distributions of the inputs
(outputs) over the entire training data, respectively. Standard-
ization ensures that the distribution of each transformed input
x′

i over the entire training data is characterized by (〈x′
i〉 =

0, σx′
i
= 1). Whereas normalization results in the distribution

of each transformed output p′
i over the entire training data

being characterized by (〈p′
i〉 = 〈pi〉/σpi , σp′

i
= 1). Scaling of

the inputs, here by means of standardization, is common

practice in the data pre-processing step of machine-learning
tasks relying on gradient descent for optimization, because
it generally leads to a faster rate of convergence [96]. The
additional normalization of the outputs generally improves
the model accuracy when training with a mean-square error
(MSE) loss function, as it ensures that the outputs do not
differ in size or spread and consequently enter the problem
with equal weight during the optimization. Here, the MSE loss
function is defined as

L′
MSE = 1

NpNx

∑

p

∑

x

‖p̂′(S(x)) − N(p)‖2
, (B3)

where the sum runs over all Np sampled points p in
parameter space and all Nx inputs x at each point p.
Here, p̂′(x′) = (Û ′(x′), ρ̂ ′(x′)) denotes the prediction of
the DNN : x′ → p̂′(x′) given a transformed input x′ =
S(x). The function composition m = N−1 ◦ DNN ◦ S : x →
p̂(x) = (Û (x), ρ̂(x)) then yields the desired predictive model,
which maps an untransformed input x to a prediction p̂ =
(Û , ρ̂ ) that approximates the underlying system parameters
p. In particular, given a DNN that minimizes the MSE loss
function in Eq. (B3) (DNNopt) the resulting predictive model
m minimizes the MSE loss function in Eq. (2) of the main text:
mopt = N−1 ◦ DNNopt ◦ S.

The DNNs are implemented in PyTorch [97], where
the weights and biases are optimized using the stochastic
gradient-based optimizer Adam [98] to minimize the loss
function [Eq. (B3)] over a series of training epochs. The learn-
ing rate is reduced by a fixed factor fr if the loss L′

MSE does not
drop below a certain relative threshold value within a given
number of epochs, referred to as “patience”. Gradients are
calculated using backpropagation. During training, weights
and biases are updated batch-wise, i.e., during each epoch the
entire training data is randomly split into batches of equal size.
For each batch, the predictions and the resulting loss are cal-
culated and the NN parameters are then updated accordingly.
To incorporate configurations related through transformations
of p4m we use online data augmentation (see Sec. III of the
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TABLE I. DNN hyperparameters employed in this paper. Here,
the number of inputs nin and outputs nout of each fully-connected
layer (FCL) is denoted as (nin, nout). The total number of NN param-
eters (weights and biases) is denoted as Ntot . Default settings are used
except where explicitly stated.

Figure 2(b) 2(c) 3(a)

K 2048 2048 512
FCL 1 (2048,1024) (2048,1024) (512,256)
FCL 2 (1024,512) (1024,512) (256,64)
FCL 3 (512,512) (512,256) (64,1)
FCL 4 (512,256) (256,2)
FCL 5 (256,2)
Ntot 3838722 3576066 353153
learning rate 0.001 0.0001 0.0001
batch size 700 7000 355
fr 0.5 0.5 0.5
patience 50 50 50
epochs 1576 1485 770

main text). The DNN hyperparameters employed in this paper
are collected in Table I.

3. Vector field

Figure 6 shows the vector field δp = p̂ − p whose diver-
gence signal is shown in Figs. 2(b) and 2(c) in the main text
and serves as an indicator for phase transitions. All vectors
in the vector field are horizontal; this demonstrates that ρ

is predicted with near-perfect accuracy. The largest stability
regions identified based on the prediction-based method, i.e.,
the connected regions with large ‖δp‖, roughly coincide with
the three main stability regions of the FKM where segregated
(1), diagonal (2), and axial ordering (3) are prevalent, see
sketched phase diagram displayed in Fig. 2(a) in the main text.
These regions are particularly well highlighted in the noisy
case [Fig. 6(b)], whereas it is more difficult to identify these
regions based on the vector-field divergence signal [Fig. 2(c)
in the main text]. These discrepancies may be resolved by
using an alternative indicator derived from the vector-field, as
has already been suggested in Ref. [21].

4. Optimal predictive model in noise-free case

In the main text (see Sec. III B), we have derived the
optimal divergence signal in the noise-free case where the pa-
rameter space is divided into regions along U (at ρ = const.)
with distinct input data. We restricted our analysis to regions
that contain at least two grid points. In the following, we
call such regions large (L) to distinguish them from small
(S) regions that only contain a single grid point. In general,
the parameter space in the noise-free case consists of regions
along U of both types. Note that Eqs. (12) and (13) derived
in the main text still hold for all points in large regions, even
in the presence of small regions. Thus, we only need to de-
rive analogous expressions for the single points within small
regions. All possible types of region boundaries can be char-
acterized by a three letter code XIXIIXIII, where X ∈ {L, S}.
Here, XIXIIXIII denotes the case where a region labeled I of
type XI is followed by a region labeled II of type XII and a

FIG. 6. Vector field δp = p̂ − p obtained using a DNN trained
with |F | as input for the FKM phase diagram in (a) the noise-free
and (b) noisy case [see Figs. 2(b) and 2(c) in the main text for the
vector-field divergence signal, respectively].

FIG. 7. Vector-field divergence ∇p · δp as a function of U at at
fixed ρ = 63/400 ≈ 0.16 obtained analytically based on Eqs. (12)
and (13), as well as numerically using a DNN trained with |F |
as input for the two-dimensional ground-state phase diagram in the
noise-free case [see Fig. 2(b) in the main text for full phase diagram].
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FIG. 8. Representative filters for computing the order parameter
for diagonal (Fdi) or axial (Fax) orderings. Here, black denotes 1 and
white denotes –1.

region labeled III of type XIII along U . The cases that remain
to be analysed correspond to letter codes of the form XISIIXIII

with X ∈ {L, S}, i.e., {SSS, LSL, SSL, LSS}. The optimal di-
vergence signal at the point that constitutes region II (SII) is
then given as

∇p · δpopt ≈ 〈U 〉III − 〈U 〉I

2�U
− 1 � 0. (B4)

Figure 7 shows the vector-field divergence ∇p · δp as a
function of U at ρ = 35/400 for the DNN trained using |F | as
input in the noise-free case. The corresponding predicted two-
dimensional ground-state phase diagram of the FKM is shown
in Fig. 2(b) in the main text. The values of the divergence
match the results in Eqs. (12) and (13) in the main text with
near perfect accuracy. This confirms that our trained predictive
model is indeed optimal, i.e., minimizes LMSE [Eq. (2) in the
main text].

APPENDIX C: ORDER PARAMETER ANALYSIS

Here, we discuss order parameters for segregated, diagonal
and axial orderings [cf. labels (1)–(3) in Fig. 2 in the main
text]. To define order parameters for the diagonal (di), as
well as axial (ax) orderings, we introduce appropriate fil-
ters Fξ , ξ ∈ {di, ax}. The values of the order parameters are
obtained by taking the Frobenius scalar product of the raw
configurations w with the corresponding filters. To account
for configurations that are related through transformations
of p4m, we also subject the filters to the corresponding
transformations. Ultimately, we take the maximum value over
all symmetry-related filters {Fξ } as the value of the order
parameter Oξ for a particular configuration sample w:

Oξ (w) = max
Fξ

1

L2

L−1∑

i, j=0

(Fξ � (2w − 1))i j, (C1)

where � denotes the element-wise product and 1 is the iden-
tity matrix. Figure 8 displays representative filters for the
order parameters of diagonal and axial orderings, where all
other filters can be obtained from these examples through
transformations of p4m. Note that the filters have the same
size as the configurations they are applied to, here L = 20. The
filters for lattices of different size can be defined analogously
by retaining the same patterns as in Fig. 8. If necessary, order
parameters for other orderings [cf. labels (4)–(9) in Fig. 2 in
the main text] can be defined in a similar manner.

Defining an order parameter for the segregated (sg)
ordering is conceptually simple. It amounts to determining
whether the configuration sample contains a single, connected
cluster of f particles. This is implemented by a backtracking
algorithm [99]. We define a binary order parameter Osg tak-
ing on the value 1(0) if the configuration sample does(not)

FIG. 9. Values of order parameters [(a), (d)] Osg, [(b), (e)] Oax, and [(c), (f)] Odi on the two-dimensional parameter space of the FKM in
the (a)–(c) noise-free and (d)–(f) noisy case.
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FIG. 10. Indicator �x̄ [Eq. (16) in the main text] of the mean-based method based on κ as input on the two-dimensional parameter space of
the FKM in the noise-free case for two-dimensional square lattices of linear size (a) L = 10, (b) L = 16, and (c) L = 20. The density of heavy
particles ρ ranges from 1/L2 to half-filling (�ρ = 1/L2) and U ranges from 1 to 8 (�U = 0.2). This allows for an assessment of finite-size
effects on the FKM phase diagram. In particular, we observe that the phase diagram is converging with increasing lattice size but still displays
some finite-size effects at L = 20.

contains a single, connected cluster of f particles (as deter-
mined by the algorithm).

Clearly, all three order parameters Oξ , ξ ∈ {di, ax, sg}
share a common set of desired properties [100]. In particu-
lar, the order parameters remain unchanged when the input
configuration samples are subjected to transformations of
p4m. Furthermore, the maximum value of the order param-
eters is maxw Oξ (w) = 1, which is only achieved for samples
showing perfect ordering of type ξ . Additionally, the three
order parameters defined by means of filters can take on values
ranging from 0 to 1, indicating the partial presence of the
corresponding pattern.

Figure 9 shows the values of all three order parameters
Oξ , ξ ∈ {di, ax, sg} for each sampled point p = (U, ρ) in
parameter space for the FKM in the noise-free and noisy
case. In the noisy case, we average the value of a given order
parameter over all available configurations at each point p
to recover a scalar quantity. The order parameters reveal the
presence of segregated, diagonal, and axial orderings marked
as (1), (2), and (3) in Fig. 2 in the main text, respectively.

APPENDIX D: DETAILS ON ALTERNATIVE PHASE
CLASSIFICATION METHODS

In Sec. IV of the main text we discussed alternative phase
classification methods, which reproduce the results of the
prediction-based method in the noise-free case. Such methods
simply need to detect changes in neighboring configurations
(up to transformations of p4m) in U (at ρ = const.). Here,
we provide further details on the two approaches that were
discussed to detect such changes.

In a naïve first approach, one searches for an appropriate
symmetry transformations that relates neighboring configu-
rations. That is, one compares the ground-state configuration
samples of two neighboring points in parameter space along
U . If a symmetry transformation is found that relates the
configuration samples, the corresponding points belong to
the same phase. Otherwise, a new phase is declared. Clearly,
the computational complexity of such an approach is reduced
significantly by using |F | instead of w0, because the Fourier
representation removes the need to consider lattice transla-
tions.

In the second approach that is motivated by the simulated
annealing procedure, we propose to use the system Hamil-

tonian. For a given point in parameter space (point I), we
take the corresponding ground-state configuration sample and
calculate its energy using the system Hamiltonian at a neigh-
boring point along U (point II). Additionally, we evaluate the
energy of the ground-state configuration sample at point II

FIG. 11. Parameter-generic indicator �x̄tot [Eq. (17) in the main
text] of the mean-based method based on κ as input on the two-
dimensional parameter space of the FKM in the (a) noise-free and
(b) noisy case.
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using the system Hamiltonian at point II. If the difference
in energy is smaller than an appropriate threshold value, we
can consider the two samples to be degenerate and assign
them to the same phase. This is valid, since both samples are
equally likely to be generated using the simulated annealing
procedure. Otherwise, a new phase is declared. Note that an
extension of these two approaches to the general noisy case
may not be straightforward.

APPENDIX E: FINITE-SIZE SCALING

In this Appendix, we discuss the effect of a finite lattice
size on the FKM phase diagram. Figure 10 displays the indi-
cator [Eq. (16) in the main text] based on κ as input on the
two-dimensional parameter space of the FKM in the noise-
free case for square lattices of linear size L = 10, 16, 20.
These results show that the phase boundaries become sharper
with increasing lattice size. Hence, the corresponding stability
regions become more defined. In particular, most of the largest

stability regions discussed in the main text are stable both at
L = 16 and L = 20. This points to the fast convergence of
the phase diagram. Note, however, that the phase diagram
at L = 20 still displays finite-size effects. An extraction of
a sharper and more detailed phase diagram that truthfully
reflects the expected complexity of the thermodynamic limit
result would require an investigation of even larger lattices.
This, however, goes beyond the scope of our paper.

APPENDIX F: DETAILS ON THE PARAMETER-GENERIC
MEAN-BASED METHOD

In Eq. (17) of the main text, we have extended the indicator
of the mean-based method to measure both changes along U
and ρ. Figure 11 shows the FKM phase diagram obtained
using this indicator with κ as input both in the noise-free
and noisy case. The resulting phase diagrams closely match
the results shown in Figs. 2(e) and 2(f) obtained with the
correlation indicator in Eq. (15) of the main text that is only
sensitive to changes in the input along U .
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