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Ticking-clock performance enhanced by nonclassical temporal correlations
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We investigate the role of nonclassical temporal correlations in enhancing the performance of ticking clocks in
a discrete-time scenario. We show that the problem of optimal models for ticking clocks is related to the violation
of Leggett-Garg-type temporal inequalities formulated in terms of, possibly invasive, sequential measurements,
but on a system with a bounded memory capacity. Ticking clocks inspire the derivation of a family of temporal
inequalities showing a gap between classical and quantum correlations, despite involving no input. We show that
quantum ticking-clock models achieving accuracy beyond the classical bound are also those violating Leggett-
Garg-type temporal inequalities for finite sequences and we investigate their continuous-time limit. Interestingly,
we show that optimal classical clock models in the discrete-time scenario do not have a well-defined continuous-
time limit, a feature that is absent in quantum models.
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I. INTRODUCTION

The long-standing problem of understanding time in quan-
tum theory has recently acquired renewed interest from the
perspective of an operational definition of time and the practi-
cal and fundamental limitations to its measurement or even its
definition [1–7]. At the same time, quantum information pro-
cessing tasks involving temporal correlations and sequential
operations are ubiquitous: from random access codes [8–13]
to dimension witnesses [14–20], communication [21–24],
simulations of contextuality [25,26] (see also [27]), purity
certification [28], simulation of stochastic processes [29–31],
and memory asymmetry [32].

The first approach to the study of temporal correlations
dates back to Leggett and Garg [33], who defined classical
correlations from two assumptions: macrorealism per se, i.e.,
the existence of a definite value for a physical quantity at any
time, and noninvasive measurability (NIM), i.e., the possibil-
ity of measuring such a quantity without altering its value.
From this, they derived the so-called Leggett-Garg inequal-
ities (LGIs), which were tested in a wide variety of physical
systems (see the review [34] and Refs. [35–43] for more recent
experiments). A major challenge is the clumsiness loophole
[38,43–47]: the possibility that the NIM condition is violated
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due to an imperfect, or clumsy, measurement rather than
quantum effects. This strong restriction on allowed operations
makes it difficult to discuss in terms of Leggett-Garg in-
equalities quantum advantages in information-theoretic tasks
involving sequential operations: Any classical device with an
internal memory that is updated sequentially would violate
NIM. To overcome this problem, a new framework has been
proposed [48], which relaxes the NIM assumption to that of
bounded internal memory: The operations are allowed to be
invasive, but they can modify an internal memory of at most n
bits; NIM is recovered for the special case n = 0.

Here we address the problem of distinguishing quantum
from classical clocks based on temporal correlations in the
spirit of Leggett and Garg. We start from a discrete-time
structure and then analyze its continuous-time limit. We first
show how the notion of the accuracy of a ticking clock gives
rise to a family of temporal inequalities and prove analyti-
cally the bound for the bit case. Such inequalities, involving
first and second moments of the ticks’ distribution, however,
need infinitely long sequences. We then derive another family
of inequalities, which discriminates classical and quantum
systems for finite sequences. For the finite sequences, experi-
mental tests can be easily designed, in analogy Leggett-Garg
inequality tests. Finally, we show that quantum models that
achieve an accuracy above the classical bound are also those
that violate such inequalities. Interestingly, optimal classical
clocks do not always have a well-defined continuous limit, in
contrast with quantum clocks, which are readily extended to
the continuous-time limit in all cases.

II. PRELIMINARY NOTIONS

To relax the constraint of NIM, we adopt the framework
developed in [48–50], based on the notion of a finite-state
machine: a box that receives an input x ∈ X , produces an
output a ∈ A, then receives another input y, produces another

2643-1564/2021/3(3)/033051(18) 033051-1 Published by the American Physical Society

https://orcid.org/0000-0002-6562-7862
https://orcid.org/0000-0002-5563-3222
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.033051&domain=pdf&date_stamp=2021-07-15
https://doi.org/10.1103/PhysRevResearch.3.033051
https://creativecommons.org/licenses/by/4.0/


BUDRONI, VITAGLIANO, AND WOODS PHYSICAL REVIEW RESEARCH 3, 033051 (2021)

output b, and so on. The classical version of a finite-state
machine of dimension d can be compactly represented as

p(ab|xy) = πT (a|x)T (b|y)η. (1)

Here π ∈ Rd is a (row) vector with components [π ] j � 0 rep-
resenting the probability of being in the state j and satisfying∑

j[π ] j = 1 and the matrix T (o|i), associated with output o
and input i, is d × d and substochastic, i.e., [T (o|i)] jk � 0
and

∑
k[T (o|i)] jk � 1, such that

∑
o T (o|i) is a stochastic

matrix, i.e.,
∑

k,o[T (o|i)] jk = 1, where each entry [T (o|i)] jk

represents the probability of transitioning from the state i to
the state j when the input i is given and the output o is ob-
served. Finally, η ∈ Rd is the column vector (1, . . . , 1), which
provides a sum over all possible final states of the machine.
Note that the set of operations {T (o|i)}o,i is assumed to be
fixed along the sequence and whenever the same input-output
pair is observed, the same state transformation is applied.

In contrast, in quantum mechanics, probabilities are
given by

p(ab|xy) := tr[Ib|y ◦ Ia|x(ρ)], (2)

where ρ is the d-dimensional initial state, {Io|i}o is the quan-
tum instrument associated with the input i, i.e., Io|i is a
completely positive map for all o and

∑
o Io|i is a completely

positive and trace-preserving map, and ◦ denotes composition.
Similarly, {Io|i}o,i are assumed to be fixed along the sequence.

The classical case, extensively discussed in the literature
(see, e.g., [51]), corresponds to the quantum case of states
and operations diagonal in the same basis, as can be easily
verified, e.g., via the Choi-Jamiołkowski isomorphism. Clas-
sical and quantum models provide different correlations that
can be distinguished via Leggett-Garg-type inequalities [48].
The finite memory constraint can be interpreted as a relaxation
of Leggett and Garg’s NIM assumption: Measurements are
now allowed to be invasive, but up to a limited amount fixed
by the system memory. The constraint of bounded memory
is fundamental in the investigation of nonclassical temporal
correlations, since classical systems with unbounded memory
are able to simulate all temporal correlations [52] (see also the
discussion in [48,49]).

In its simplest instance, a ticking clock is modeled by
a physical system generating an output of 1 is equal to a
tick at some instants of time. In our model, time is discrete.
Our clock models are given by finite-state machines without
input (or, equivalently, with X = {0} consisting of only one
symbol), where the dynamics is described by either transition
matrices {T0, T1} or a quantum instrument {I0, I1} associated
with outputs A = {0, 1} = {tick, no tick}. We call this model
a discrete-time ticking clock. The choice of no input is re-
quired for the clock to be autonomous, namely, not relying
on some external input to generate the time signal. In contrast
to previous models, e.g., [3], we do not require a so-called
gear system assigning the output-memory allocation, and our
model closely resembles a discrete-time version of that in
[5]. This is the simplest measurement model one can imagine
in the temporal scenario. Nevertheless, due to its nontrivial
causal structure, this model already features observable differ-
ences between classical and quantum correlations, in contrast
to the standard Bell and Leggett-Garg scenarios, in which an
external input is needed.

III. ACCURACY OF DISCRETE-TIME CLOCKS

A figure of merit of the quality of a ticking clock (for a
clock that resets itself after each tick) is the accuracy [1]

R := μ2

σ 2
, (3)

where μ is the mean time interval between ticks and σ 2 its
variance. This quantity corresponds to the average number
of ticks that the clock can make before its uncertainty is
larger than μ. With this figure of merit, it has been shown
that continuous-time quantum clocks can outperform classical
clocks of the same dimension [2]. For a discrete-time clock,
defining by p(L) := p(00 . . . 01) the probability of the first oc-
currence of the outcome 1 at time step L, one defines the mean
and the variance of such a distribution as μ :=∑∞

L=1 Lp(L)
and σ 2 :=∑∞

L=1(L − μ)2 p(L). Using the arrow-of-time con-
ditions [53], namely, the condition of no signaling from the
future to the past, we can write

p(L) = p(0 . . . 0︸ ︷︷ ︸
L−1 zeros

) − p(0 . . . 0︸ ︷︷ ︸
L zeros

) := f (L − 1) − f (L),
(4)

where we defined the corresponding f : N → R. This expres-
sion has a convenient form that allows the employment of
the notion of Z-transform to simplify the calculations. This
is defined for f : N → R as

Z[ f ](z) :=
∞∑

n=0

f (n)z−n =: f̃ (z), (5)

where z is a complex variable. The Z-transform satisfies a
series of properties, such as linearity, bijectivity, or properties
associated with shifts and derivatives that will be useful in the
following (see, e.g., [54]). In particular, we use that

Z[ f (n + 1)] = z{Z[ f (n)] − f (0)}, (6)

Z[ f (n) − f (n − 1)] =
(

1 − 1

z

)
Z[ f (n)], (7)

which can be straightforwardly verified. Combining Eqs. (4)
and (7), we can write

Q(z) := Z[p(L)] = −
(

1 − 1

z

)
Z[ f (L)]

= −
(

1 − 1

z

)
f̃ (z). (8)

From the explicit expression Q(z) =∑∞
L=0 p(L)z−L, we see

that Q(z) is also a generating function for the moments of the
probability distribution p(L), namely,

μ =
∞∑

L=1

Lp(L) = − ∂Q(z)

∂z

∣∣∣∣
z=1

, (9)

σ 2 =
∞∑

L=1

L2 p(L) − μ2 = ∂2Q(z)

∂z2

∣∣∣∣
z=1

+ ∂Q(z)

∂z

∣∣∣∣
z=1

− μ2,

(10)

which combined with Eq. (8) give

μ = f̃ (1), σ 2 = −μ(μ − 1) − 2 f̃ ′(1), (11)
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where f̃ ′ := ∂ f̃
∂z . Note that so far the calculations do not

involve any particular model (i.e., classical or quantum) to
compute p(L). In the following, we specialize first to the
classical case, for which the linearity of the Z-transform can
be fully exploited.

A. Classical case

For a classical automaton with transition matrices given by
(T0, T1) for the two outcomes 0 and 1 we have [see Eq. (1)]

fcl(L) = π0T L
0 η, (12)

where π0 is the initial state. To compute f̃cl(z) = Z[ fcl(L)] we
need Z[T L

0 ], which can be computed as follows. Let us denote
by π (L) the state at the time step L and by T0 the transition
matrix. We have the relation

π (0) := π0,

π (L + 1) = π (L)T0. (13)

By applying the Z-transform on both sides of the second
equation and using Eq. (6) and linearity we obtain

z[π̃ (z) − π0] = π̃ (z)T0,

⇒ π̃ (z)(1 − z−1T0) = π0,

⇒ π̃ (z) = Z[π (L)] = π0Z
[
T L

0

] = π0(1 − z−1T0)−1. (14)

This equation has a solution if and only if z is greater than the
spectral range of T0 (cf. Theorem 2.1 of Ref. [55]). We then
have

Q(z) = −
(

1 − 1

z

)
Z[ fcl(L)] = −

(
1 − 1

z

)
π0Z

[
T L

0

]
η

= −
(

1 − 1

z

)
π0(1 − z−1T0)−1η. (15)

Thus, simplifying a bit the expression (15) and transform-
ing back, we obtain

p(L) = π0

(
1

2π i

∮
C

zL−1(1 − z)(z1 − T0)−1dz

)
η, (16)

where C is a closed region inside the convergence region.
Note that the matrix inside the large parentheses is noth-
ing more than T L−1

0 (1 − T0). Interestingly, the above integral
representation resembles the spectral representation for Her-
mitian operators, where the matrix (z1 − T0)−1, called the
resolvent of T0, plays a role similar to the spectral projections
in computing a function of T0, a polynomial in this case,
but for a matrix T0 that is in general not Hermitian or even
diagonalizable.

In turn, the integral in (16) can be calculated from the
residues of the function

zL−2(1 − z) f̃cl(z) = zL−1(1 − z)π0(z1 − T0)−1η. (17)

The moments of p(L) can then be calculated from Eq. (11) as

μ = f̃cl(1) = π0(1 − T0)−1η,

σ 2 = μ(μ − 1) − 2 f̃ ′
cl(1)

= μ(1 − μ) + 2π0(1 − T0)−1T0(1 − T0)−1η

= −μ(μ + 1) + 2π0(1 − T0)−2η, (18)

since f̃ ′
cl(z) = −π0(1 − z−1T0)−1T0(1 − z−1T0)−1η and

where in the last line we used the property that
[T0, (1 − z−1T0)−1] = 0.

So far, the derivations have been carried out for an arbitrary
dimension. However, the actual calculations of the moments
and the p(L) become quickly very complicated as the dimen-
sion grows. In the following, we provide the full solution for
the most accurate classical clock model in the bit case.

Results in the bit case

Let us consider here a general transition matrix for an
automaton in d = 2,

T0 =
(

a b
c d

)
, (19)

with a, b, c, d � 0 and a + b, c + d � 1. We can now directly
compute the accuracy as a function of the model parameters
a, b, c, d via Eq. (18). Note that since p(L) is a linear function
of π , by convexity we can choose the initial state to be pure,
i.e., either π0 = (1, 0) or π0 = (0, 1). Up to a relabeling of the
basis elements, we can set the initial state to be π0 = (1, 0).

Our goal here is to maximize the accuracy. However, it
is easy to see that for μ = 2 the accuracy can be infinity, as
one can easily construct a bit clock that ticks every two time
steps. More in general, one can see that the accuracy of a
clock can be infinite if the mean is smaller than or equal to
the dimension. A nontrivial solution can be obtained only if
we set μ > 2, or μ > d in the general case.

Interestingly, it is possible to solve analytically for a
generic μ > 2, using the Karush-Kuhn-Tucker conditions
[56], a generalization of the Lagrange multiplier for inequality
constraints. The solution is given by b = 2/μ, a = d = 1 − b,
and c = 0. See Appendix A for the details. As a solution
we find that, as anticipated, for μ � 2 one can obtain a
perfect clock: σ 2 = 0 and R = ∞. For μ > 2 the maximum
accuracy is

Ropt = 2μ

μ − 2
, (20)

achieved by

T0 =
(

q 1 − q
0 q

)
, (21)

with q = 1 − 2
μ

, which we call the one-way or discrete-ladder
clock model. From this solution we can extract an inequality
for two-state machines

R � 2μ

μ − 2
μ>2⇒ μ(μ − 2) − 2σ 2 � 0. (22)

We have proven analytically the condition in Eq. (22) in the
case of a machine of dimension 2; however, on the basis of
an extensive numerical search, we expect to generalize to
arbitrary dimension as

μ(μ − d ) − dσ 2 � 0. (23)

See the discussion in Sec. VI and in Appendix F.
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FIG. 1. Classical discrete ladder clock model versus its quantum
counterpart. In the classical model, the system transitions with prob-
ability q to the next state or remains with probability 1 − q. The
probability of a tick is zero for all states, except the last one, where
it is 1 − q. In the quantum model, the no-tick instrument is of the
form I0 = exp(iHθ )

√
E0 and the initial state is a superposition of

the eigenbasis of H . Similarly to the classical case, the probability of
a tick is nonzero only in the last state (in the E0 eigenbasis); however,
the system is coherently rotated, by an angle θ at each step, such that
all these intermediate states have a nonzero overlap with the last state.

B. Qubit clock beating the classical accuracy

Inspired by the classical cyclic model, we construct a qubit
model able to violate Eq. (22), for any μ > 2, in terms of
only two real parameters q and u. The model is described
by a single Kraus operator for the no-tick output, namely,
K0 = U0

√
E0, with

E0 =
(

1 0
0 q2

)
, U0 =

( √
u

√
1 − u

−√
1 − u

√
u

)
(24)

(see also Fig. 1). Analogously to the classical case, μ and σ 2

can be computed via the Z-transform method, where now the
moment generating function is

Q(z) = −
(

1 − 1

z

)
Z[ fq(L)] = −

(
1 − 1

z

)
f̃q(z), (25)

and from Eq. (2) we find

fq(L) := 〈ψ |(K†
0 )LKL

0 |ψ〉, (26)

again considering simply a pure state by a similar convexity
argument. Note that in this case we cannot simplify much
further the problem with the aid of the Z-transform, due to
the fact that the expression is quadratic in the parameters of
|ψ〉 rather than linear, thus rendering a full optimization more
complicated in this case.

Nevertheless, for the particular model defined by Eq. (24),
we can optimize the parameters q and u to find the optimal
violation of Eq. (22). To do so, we minimize σ 2 over q and u
for fixed μ(q, u). Full details are presented in Appendix C.

The result of this optimization provides the values u =
2q/(1 + q2) and q = 1 − 2/μ. This solution gives, for the

left-hand side of Eq. (22) (for μ > 2),

μ(μ − 2) − 2σ 2 = μ2(μ − 2)2

2(μ − 1)2
> 0 (27)

and R → 4μ(μ − 1)2/{(μ − 2)[μ(μ − 2) + 2]}, giving R =
4 = d2 for μ → ∞. This model closely resembles a discrete
version of the quasi-ideal clock presented in [2,5,57], in that
it has a single Kraus operator with free evolution (i.e., U0)
and measurement (i.e., E0) having eigenbases related by the
(discrete in our case) Fourier transform.

IV. TEMPORAL INEQUALITIES FOR
FINITE-LENGTH SEQUENCES

A. Bit case

Equation (22) can be thought of as Leggett-Garg-type
inequality providing evidence for nonclassical temporal corre-
lations with respect to the finite-state machine framework. In
contrast to usual Leggett-Garg-type inequalities, however, it
involves an infinite sequence of measurements. Inspired by the
above construction, we find a family of temporal inequalities
for finite length L,

p(L) = p(00 . . . 01) � 	C
d=2,L, (28)

where 	C
d=2,L is an upper bound valid for all classical

finite-state machines with d = 2. By optimizing the above
probability a second model other than the ladder clock arises,
which we call the cyclic model

T0 =
(

0 1
r 0

)
, (29)

with r = 1 − �L/2�−1, where �·� is the ceiling function. Still,
the ladder model gives the optimum for certain specific L, and
we similarly obtain q = 1 − 2

L as the optimal corresponding
value of the model parameter. More details can be found in
Appendix B, where we also study generalizations of such a
model for higher dimensions.

For the case d = 2 we are indeed able to prove, up to
L = 20, an analytical upper bound to 	C

2,L, with a gap of
10−4 with respect to the maximum achieved by the cyclic
and the one-way models. Such a precise upper bound can be
obtained via grid-search methods, exploiting the fact that the
probability function depends only on four parameters, i.e., the
entries of T0 defined in Eq. (19). Let us give a brief sketch
of the main ideas. Given a function f : RD → R with proper
continuity properties, we can write it in the lowest order in a
Taylor expansion with a Lagrange remainder as

f (x) = f (y) + ∇ f (z) · (x − y), (30)

with z = λx + (1 − λ)y for some 0 � λ � 1. In our case, f
represents the probability p(L) as a function of a, b, c, d in
Eq. (19), on a compact subset B defined by positivity and
normalization constraints. First, note that f and ‖∇ f ‖ are
continuous functions and B is compact, so they have a maxi-
mum in B. Thus, if instead of evaluating f on x we evaluate on
some other point y, e.g., belonging to a (hyper)cubic lattice of
step δ, Lδ := δZD ∩ B, we can bound the error in this approx-
imation as the maximum of the gradient times the maximal
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(a) (b) (c)

FIG. 2. Pictorial description of the iterative grid-search method in one dimension. (a) Function we want to maximize (blue curve) and
estimated maximum (orange line). (b) Computation of the function on a lattice with corresponding error (red dots and bars). According to
the error estimate, only the points in the blue region are able to reach the estimated maximum. (c) As a subsequent step, the computation is
performed on a refined lattice, with refined error, corresponding to the blue region in (b). Only a subset of those points is able to violate the
maximum (new blue region), on which a new refined lattice is defined. These steps are repeated until the desired error is reached. Obviously,
the same algorithm works even without an initial estimate of the maximum (orange line), by simply using the maximum on the lattice as an
estimate.

distance between B and Lδ , namely,

max
x∈B

f (x) � max
x∈Lδ

f (x) + δ
√

D

2
max
x∈B

‖∇ f (x)‖, (31)

where we used that δ
√

D/2 is the maximal distance between
B and Lδ . A peculiar property of our probability function f is
that also the components of its gradient can be interpreted as
probabilities; hence they are bounded between 0 and 1. The
details of this calculation are presented in Appendix E. The
evaluation of the function on a lattice offers two advantages
that are central for obtaining a feasible computation. First, the
algorithm can be highly parallelized, as each lattice point can
be evaluated independently of the others. Second, the algo-
rithm can be made iterative: One first gets a rough estimate,
in which many points of the lattice can already removed, and
then refines the lattice for the remaining points. A represen-
tation of this method is shown in Fig. 2. This allows us to
estimate our functions on lattices of approximately 1018 and
1019 points. See Appendix E for further details.

A natural question arises regarding the relation between
the saturation of the temporal inequality in Eq. (28) and the
optimal accuracy of classical clocks. We see that the optimal
clock in terms of accuracy, i.e., the one-way model, is also
optimal for the finite sequence with L = 3, but in the other
cases it is outperformed by the cyclic model. The latter in turn
has a nonoptimal accuracy and, as shown in Sec. V, does not
have a continuous limit. Both models can be seen as special
instances of what we call the multicyclic model that gener-
alizes to arbitrary dimension and for which p(L), μ, σ , and
R have analytic expressions in terms of the single parameter
q. The multicylic model is discussed more in Sec. VI and its

TABLE I. Summary of relevant quantities for the multicyclic
model of dimension d and block size k.

Model max pπs (L) μ σ 2 R

mcd,k

(m−1
n−1

)(
1 − n

m

)m−n( n
m

)n d
1−q

kdq
(1−q)2

d
kq = dμ

k(d−μ)

for n = d
k , m = ⌈ L

k

⌉
, s = (L modd ) + 1

properties are summarized in Table I. See also Appendix B for
more details on the derivation of such properties.

B. Quantum violations

Again, given a classical bound as in Eq. (28), we can look
for violations with a quantum model of the same dimension.
For the qubit case, it turns out that the same model described
in the preceding section is also able to violate the classi-
cal inequality in Eq. (28). In fact, substituting in Eq. (24)
u = 2q/(1 + q2) and q = 1 − 2/μ, as before, and choosing
μ = L, one obtains a violation of the classical bound p(L) �
	C

2,L. A maximization over u and q as free parameters, on the
other hand, provides only a slightly better value. The result
of this optimization are shown in Fig. 3. A similar model
can be observed to outperform the multicyclic models also in
higher dimensions. Details of the calculation are presented in
Appendix C.

V. CONTINUOUS LIMIT OF CLOCK MODELS

We now investigate the limit of continuous time and how
this recovers known results in the literature. Let us denote
by δ > 0 the discrete time step and by {I (δ)

0 , I (δ)
1 } the cor-

FIG. 3. Classical bound (blue) for p(L) and quantum value for
the model in Eq. (24), for u = 2q/(1 + q2) and q = 1 − 2/L (green)
or maximized over (u, q) (yellow).
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responding quantum instrument. The continuous-time limit
corresponds to δ → 0+, so in order to characterize the case
of no tick in a finite interval [0, t], we need to consider a
diverging number N of applications of the instrument, namely,
N = t/δ ∈ N, with the composite instrument

Ĩ (t )
0 := lim

N→+∞
(
I (t/N )

0

)◦N
. (32)

To find the form of Ĩ (t )
0 , we impose some very natural

properties, which we can compactly write as (with id the
identity channel)

Ĩ (0)
0 = id, (33)

Ĩ (t1+t2 )
0 = Ĩ (t1 )

0 ◦ Ĩ (t2 )
0 ∀ t1, t2 � 0, (34)

lim
t→0+

∥∥Ĩ (t )
0 − id

∥∥ = 0 (35)

and interpret as follows. First, if no time has passed, noth-
ing happens [Eq. (33)]; second, the application is divisible
[Eq. (34)]; third, we want the clock not to move instan-
taneously [Eq. (35)]. For every map that satisfies these
properties (see [58]), there exists a liner operator L̂ such
that Ĩ (t )

0 forms a semigroup with a generator representation,
namely, Ĩ (t )

0 = exp(t L̂). It is then straightforward to verify
that the choice I (t/N )

0 = exp[(t/N )L̂] in Eq. (32) implies that
the conditions are satisfied. This guarantees self-consistency
between the definition (32) and the properties it must satisfy,
i.e., (33)–(35). At this stage, we have not used the fact that the
map I (t/N )

0 is completely positive. Now, in order to prove that
the generator L̂ must be of the Lindblad form, it suffices to
note that Ĩ (t )

0 is completely positive since I (t/N )
0 is. Therefore,

by Theorem 2.2 in [59] it follows that the generator L̂ must
be of the Lindblad form, namely, there exist a Hamiltonian H
and operators Am such that for a d-dimensional clock

L(·) = − i

h̄
[H, ·] − 1

2
{A†

0A0, ·} +
d2−1∑
n=1

An(·)A†
n − 1

2
{A†

nAn, ·},

(36)

with Ĩ (t )
0 = exp tL and I (δ)

0 = exp δL. Note the addition of the
operator A0. This is because the channel is not trace preserv-
ing but rather trace nonincreasing. Therefore, the generator
L can always be found by evaluating limδ→0+ (I (δ)

0 − id)/δ.
The classical case is a special case of the above and leads to
the substochastic matrices T̃ (t )

0 = etA0 and T (δ)
0 = eδA0 , where

A0 is a substochastic generator giving rise to an evolution
π (t ) = π1etA0 for t � 0.

From the continuity condition limδ→0+ ‖T (δ)
0 − id‖ = 0 it

is clear that the cyclic model does not have a continuous limit.
In the one-way model, the condition is satisfied for q(0) = 1.
For δ ≈ 0, we can approximate q via a Taylor expansion as
q(δ) ≈ 1 − αδ, with α > 0. The condition on the first deriva-
tive comes from the fact that q � 1.1

1The first derivative equal to zero is excluded since it is inconsistent
with the assumption of a time-independent generator of the continu-
ous model.

FIG. 4. Example of multicyclic model for d = 6 and k = 2.
Within each block of length k = 2, the machine cycles with probabil-
ity q or moves forward with probability 1 − q. When the last state of
the last block is reached, the machine can output 1 with probability
1 − q.

For the d-dimensional cyclic model (see Appendix B), the
generator is A0 = limδ→0+ T0−1

δ
and consists of a bidiagonal

matrix with −1 on the diagonal and 1 on the upper diagonal.
This is the ladder clock defined in [4] and proven to be the
most accurate classical continuous-time clock in [2], achiev-
ing an accuracy R = d . This clock can also be approached
thermodynamically [1], in the limit of semiclassical dynamics
and infinite entropy cost.

Similarly, we investigate the limit of the quantum model
in Eq. (24) and compare it with the quasi-ideal clock from
[2,5,57]. For a single Kraus operator, a general continuous-
time evolution can be written as |ψ (t )〉 = e(iHt−V t )|ψ (0)〉,
with H Hermitian and V positive semidefinite. The discrete
evolution is |ψn〉 = Kn

0 |ψ0〉 with Kraus operator K0 = U0
√

E0

and we can set K0 = eδ(−V +iH ) ≈ 1 + δ(−V + iH ) for δ ≈
0. From this relation and with q = q(δ), we can associate,
similarly to the classical case, −V + iH = limδ→0+ K0−1

δ
. By

substituting explicitly the quantum model from Eq. (24) and
computing the limit (see Appendix D) we identify V = (1 +
σz )/2 and H = σy/

√
2 and obtain in this way the continuous

limit of our quantum model, which indeed closely resembles
the quasi-ideal clock of [2,5,57], in that the Lindblad operator
decomposes into a free evolution H and a measurement V ,
with the corresponding basis of eigenvectors related by a
Fourier transform.

VI. OUTLOOK ON HIGHER-DIMENSIONAL CLOCKS

The classical models arising for d = 2 can be generalized
to a family of higher-dimensional models that we call multi-
cyclic models. They are parametrized by a positive integer k,
which gives the size of each block within which the behavior
is cyclic, but with the possibility of a transition from one block
to the other, as in the one-way model. Only once the last state
is reached, there is a nonzero probability of emitting the output
tick. (See Fig. 4 for a pictorial description and Appendix B for
further details). The one-way and cyclic models are recovered
for k = 1 and k = d , respectively. The main properties of the
multicyclic model, namely, the expressions for the probability,
mean, variance, and accuracy in terms of the model’s param-
eters, are collected in Table I.

We investigate the optimality of the multicyclic model
via an extensive numerical search based on techniques from
machine learning, specifically the Adam algorithm [60]. For
Eq. (23) we search for a violation for d = 3, . . . , 10, and
we explore the bounds for Eq. (28) for d = 3, . . . , 10 and
L = d + 1, . . . , d + 10 and compare the results with the mul-
ticyclic model. In no case does the numerical search provide
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better solutions. Details on numerical searches are collected in
Appendix F. Moreover, the conjectured inequality presented
in Eq. (23) is also supported by the optimality of the one-way
model in the continuous-time limit [2]. These generalized
classical models inspired quantum models beyond the qubit
case, which are presented in Appendix C.

Recently, Ref. [61] extended the multicyclic model to
the so-called enhanced multicyclic model, able to provide
higher values for p(L) for certain lengths and dimensions,
specifically for (L, d ) = (7, 5), (9, 7), (10, 7). Moreover, the
work also presents a high-dimensional quantum model, based
on the ideas described here, for the special case L = d + 1
and saturating the algebraic maximum p(L) = 1 in the limit
L → ∞.

VII. DISCUSSION AND CONCLUSIONS

We have investigated the operational notion of ticking
clocks in the context of temporal sequences of measurements
and have observed how the performance of such clocks is
connected to a memory resource. We have shown that genuine
quantum measurements outperform classical ones as regularly
ticking devices by making a more efficient use of memory. It
is natural to ask what the relation is between our results and
present-day time-keeping devices such as the atomic fountain
clocks currently providing time and frequency standards [62].
In simple terms, an atomic clock works by tuning a microwave
synthesizer to the frequency corresponding to the hyperfine
atomic transition of the ground state of the 133Cs atom. All
relevant operations involve transitions or measurements in the
energy eigenbasis; hence they do not involve typical quantum
elements such as noncommuting/incompatible measurements
and can straightforwardly be described by a classical hidden-
variable model. In this description, an atomic clock produces
ticks, e.g., every second, by counting approximately 9 × 109

oscillations, for which a high internal (classical) memory is
needed. Our work instead, despite still being far from practical
applications and involving simple (low-memory) systems, fo-
cuses on genuinely quantum models, i.e., models that feature
a more efficient generation of information exploiting quan-
tum coherence or, in other words, truly quantum temporal
correlations. In this respect, our results complement recent
literature [1,2,5,6,57,63] in contributing to rethinking what
fundamental quantum resources are involved in the generation
of time signals and possibly inspire future designs of truly
quantum-improved clocks.

From the point of view of quantum clock models, our
results confirm recent intuition about optimal quantum clocks
[2] and extend it to the discrete-time scenario, revealing its
richer mathematical structure: We found that optimal clas-
sical models arise that do not have a continuous-time limit,
a feature absent in the quantum case, where the continuous
limit is always valid. This suggests that some fundamental
difference between classical and quantum models arises also
in this respect.

Complementing recent works [1,2,6], we understand quan-
tum advantages in a general framework of nonclassical
temporal correlations. Notwithstanding role of Leggett-Garg
inequalities in a foundational perspective, such inequalities
are not suitable for discussing tasks involving microscopic
systems and invasive operations. By allowing for a relax-
ation of NIM to limited invasiveness, we are able to discuss
nonclassical temporal correlations in relation to technological
applications such as the design of time-keeping devices.

Interestingly, the gap found between classical and quantum
clocks also reveals what is the simplest yet nontrivial tem-
poral correlation scenario, namely, a scenario with just one
input and two outputs. This is in contrast with standard Bell
and Leggett-Garg inequalities, where at least two inputs are
needed to find a gap between classical and quantum correla-
tions. This is due to the nontrivial causal structure associated
with the finite-state machine model (not even representable
by a directed acyclic graph), which is analogous to recently
investigated nontrivial causal structures in nonlocality where
no inputs are needed to witness a gap between classical and
quantum correlations (e.g., the triangle scenario analyzed in
[64]). The analytical and numerical tools developed here,
together with the limited number of parameters of our mod-
els, suggest that it may be possible to derive inequalities for
arbitrary sequences and dimensions. This is a subject left for
future research.

Finally, finite- and discrete-time sequences are, similarly to
Bell inequalities, more experimentally friendly and we hope
our results will stimulate also an experimental investigation
of temporal correlations in the finite-memory scenario in the
near future.
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APPENDIX A: DERIVATION OF OPTIMAL BIT CLOCK

Let us consider a two-state classical machine with an ar-
bitrary transition matrix T0 = (a b

c d). Computing the inverse
of 1 − T0 and setting the initial state to be π0 = (1, 0), we
can directly compute the accuracy as a function of the model
parameters a, b, c, d via Eq. (18). We obtain

μ = −b + d − 1

−ad + a + bc + d − 1
, σ 2 = a[(d − 1)2 − b(d + 1)] + b[b(c − 1) − cd + 3c + d + 1]

(−ad + a + bc + d − 1)2
(A1)
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and in turn the accuracy reads

R = μ2

σ 2
= (b − d + 1)2

a[(d − 1)2 − b(d + 1)] + b[b(c − 1) − cd + 3c + d + 1]
. (A2)

This expression can be optimized analytically for any fixed value of μ > 2, while for μ � 2 the accuracy tends to infinity. To
perform the optimization with a fixed mean μ, it is helpful to express the parameter d as a function of a, b, c, μ,

d = aμ + bcμ + b − (μ − 1)

aμ − (μ − 1)
, (A3)

which can be verified by direct substitution in Eq. (A1).
With the above substitution, we are now able to prove that the solution is given by the one-way model, namely, b = 2/μ,

a = d = 1 − b, and c = 0, where our parameter q appearing in Eq. (21) is simply q = a = 1 − 2/μ. The proof is based on the
Karush-Kuhn-Tucker (KKT) conditions [56], a generalization of Lagrange multiplier for inequality constraints, which can be
applied to a problem of the form

maximize f (x)

subject to gi(x) � 0, i = 1, . . . , m,
(A4)

where the optimization is performed over a convex set in Rn and both the objective function f and the constraints gi satisfy some
regularity conditions. In our case, the constraints gi are all affine functions of the parameters, which guarantees that for a global
maximum x∗ the KKT conditions are satisfied [56].

A necessary condition for a point x∗ to be a global maximum is that there exists λi for i = 1, . . . , m such that

∇ f (x∗) −
m∑

i=1

λi∇gi(x
∗) = 0,

gi(x
∗) � 0 for all i,

λi � 0 for all i,

λigi(x
∗) = 0 for all i. (A5)

In our case, we want to optimize the function R(a, b, c) for a given μ, namely,

R(a, b, c) = bμ2(−a + c + 1)

μ[(a − 1)μ(2a + b − 2) + ab + 4a + bcμ − bc + b − 4] + 2
(A6)

with the constraints gi(a, b, c) � 0 defined via

g1 = − a, g2 = −b, g3 = −c, g4 = a + b − 1, g5 = c − 1. (A7)

Now the set of equations

∇R(x) −
5∑

i=1

λi∇gi(x) = 0,

gi(x) � 0, i = 1, . . . , 5,

λi � 0, i = 1, . . . , 5,

λigi(x) = 0, i = 1, . . . , 5 (A8)

can be solved explicitly, with the aid of a computer algebra
system, for μ > 2 and give, for the case b = 0, i.e., g2 = 0,
the solution

μ > 2, a = 1, b = c = λ1 = λ2 = λ3 = λ4 = λ5 = 0,

(A9)

and for the case b > 0, the solution

μ > 2, b = 2

μ
, a = 1 − b, c = λ1 = λ2 = λ5 = 0,

λ3 = λ4 = 2bμ2(bμ − 1)2

{bμ[b(m − 1) − 2] + 2}2
. (A10)

It is straightforward to check that only the second solution cor-
responds to a maximum, giving R = 2μ

μ−2 , and it is precisely
the one obtained by the one-way model in the bit case.

Finally, it is interesting to compute explicitly the probabil-
ity p(L), as a function of L and the model parameters a, b, c, d
for the bit case. This amounts to calculating explicitly the
integral form

p(L) = π0

(
1

2π i

∮
C

zL−1(1 − z)(z1 − T0)−1dz

)
η (A11)

from the residues of the function

zL−2(1 − z) f̃cl(z) = zL−1(1 − z)π0(z1 − T0)−1η

= zL−1(1 − z)

det(z1 − T0)
π0adj(z1 − T0)η, (A12)

where adj(A) denotes the adjugate matrix of A, i.e.,
[adj(A)]i j = (−1)i+ jMji, where Mji is the ( j, i) minor of the
matrix A, namely, the determinant of the matrix obtained by
deleting the row j and column i of A (see, e.g., [65]). In the

033051-8



TICKING-CLOCK PERFORMANCE ENHANCED BY … PHYSICAL REVIEW RESEARCH 3, 033051 (2021)

bit case, the adjugate of z1 − T0 is

adj(z1 − T0) =
(

z − d b
c z − a

)
, (A13)

and thus, fixing the initial state as π0 = (1, 0), we have
π0adj(z1 − T0)η = (z − d + b). By Eq. (A12) we have

zL−2(1 − z) f̃cl(z) = zL−1(1 − z)

(z − t+)(z − t−)
(z − d + b), (A14)

where t± = 1
2 (a + d ± √


), with 
 = (a − d )2 + 4bc, are
the eigenvalues of T0.

First, let us assume that T0 has two distinct eigenvalues
t+ �= t−. Calculating the residues of the function in Eq. (A14),
we obtain the expression for the probability as

p(L) = tL−1
+ (1 − t+)

t+ − t−
(t+−d+b)− tL−1

− (1 − t−)

t+ − t−
(t− − d + b)

= 1

2L+1
√



[(

√

 − a − d + 2)(

√

 − a − 2b + d )

× (−
√


 + a + d )L−1 − (
√


 + a + 2b − d )

× (
√


 + a + d − 2)(
√


 + a + d )L−1]. (A15)

In the case of identical eigenvalues, i.e., t+ = t− = t0, ei-
ther T0 is proportional to the identity, i.e., a = d = t0 and b =
c = 0, or T0 is not diagonalizable, i.e., a = d and c = 0 �= b.
The former case is trivial and the latter can be computed sim-
ilarly to the previous case. Notice, however, that the function
zL−1(1 − z)(z − d + b)/(z − t0)2 has a second-order pole in
t0, so we cannot directly substitute t+, t− �→ t0 in Eq. (A15),
but the residue must be computed with the formula for the
second-order poles.

APPENDIX B: CLASSICAL CLOCK MODELS FOR
GENERAL DIMENSION

In the following, we discuss in detail the classical models
presented in the main text, which are all special instances of
what we call the multicyclic model. As we discussed in the
main text, in the bit case two classical models arise, namely,
the one-way model and the cyclic model. It is instructive to
summarize their main properties to understand how to gener-
alize them. In the one-way model, the machine either remains
in the same state with probability q or transitions to the subse-
quent state with probability 1 − q, always emitting the output
0. When the last state is reached, the output 1 is emitted with
probability 1 − q. In the cyclic model, the machine transitions
from one state to the next with probability one always emitting
the output 0, except in the last state where it may cycle, i.e.,
go back to the first state emitting 0, with probability q, or emit
the output 1 with probability 1 − q.

The multicyclic model generalizes both ideas to arbitrary
dimension. A simple example for dimension 6 is depicted in

Fig. 4 and is described by the matrix

T mc,k
0 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
q 0 1 − q 0 0 0
0 0 0 1 0 0
0 0 q 0 1 − q 0
0 0 0 0 0 1
0 0 0 0 q 0

⎞
⎟⎟⎟⎟⎟⎠. (B1)

The behavior of the machine can be interpreted as follows.
(i) The matrix consists of blocks of size k [k = 2 in the

example of Eq. (B1) and Fig. 4]. Starting from the first state
π1 := (1, 0, . . . , 0), the machine transitions to the next state
with probability 1, always emitting the output 0.

(ii) When the last state of the first block is reached, the
machine may cycle with probability q, i.e., go back to the
first state of the block, or transition to the next block with
probability 1 − q, again emitting the output 0 with probability
1. The same behavior is repeated in the second block and all
the other blocks except the last one.

(iii) When the last state of the last block is reached, the ma-
chine may cycle to the first state of the block with probability
q and emit the output 0, or emit the output 1, for which the
sequence is terminated, so the subsequent state does not need
to be specified.

For the bit case, i.e., d = 2, the multicyclic model corre-
sponds to the one-way model in the case of blocks of size
k = 1 and to the cyclic model in the case of one block of
size k = 2. We generalize this terminology to arbitrary dimen-
sions, i.e., we call a multicyclic model with k = 1 a one-way
model and one with k = d a cyclic model.

1. Probability p(L)

To compute the probability p(L), let us first consider the
case in which d = nk and L = mk with k, m, n ∈ N+ and m >

n. Then the probability p(L) can be written as

pmc(L) = π1T L
0 (1 − T0)η =

(
m − 1

n − 1

)
(1 − q)nqm−n, (B2)

valid for m = Ln
d = L

k . The expression (B2) can be understood
as follows. The output 1 is generated only in the last state, giv-
ing a factor 1 − q to the total expression. A factor (1 − q)n−1

comes from the probability of transitioning from the first to
the last block, as each transition contributes to a factor 1 − q
and we need n − 1 of them, n being the number of blocks. The
binomial coefficient

(m−1
n−1

)
comes as a combinatorial factor

from the possible choices of n − 1 transitions out of m − 1
possibilities, as the total length is L = mk and each block has
size k. Finally, qm−n is the probability of cycling m − n times,
i.e., in the remaining (m − n)k steps, in order to output 1 at
the correct step L = mk.

The expression (B2) can be optimized over q simply by
taking the derivative of the expression (1 − q)nqm−n, giving

qopt = 1 − n

m
= 1 − d

L
. (B3)

For a fixed initial state π1 = (1, 0, . . . , 0), the length of the
sequence must be a multiple of the block length k in order to
have a nonzero probability of outputting 1 at the correct time,
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TABLE II. Optimal block size k maximizing p(L) for the multicyclic model for dimension d = 3, . . . , 10 and length L = d +
1, . . . , d + 10. The cases k = 1 and k = d correspond, respectively, to the one-way and the cyclic model. The other cases, e.g., (d, L) =
(4, 6), (6, 8), (6, 9), . . ., correspond to the multicyclic model with blocks of size k �= 1, d . Typically, the one-way model (k = 1) is optimal
for L = d + 1 nontrivial block sizes, i.e., k �= 1, d appear when d and L have some common factor, e.g., d = 4, 6, 8, but not necessarily, e.g.,
d = 10, in all other cases, the cyclic model is optimal (k = d).

�����d
L

d + 1 d + 2 d + 3 d + 4 d + 5 d + 6 d + 7 d + 8 d + 9 d + 10

3 1 3 3 3 3 3 3 3 3 3
4 1 2 4 4 4 4 4 4 4 4
5 1 5 5 5 5 5 5 5 5 5
6 1 2 3 6 6 6 6 6 6 6
7 1 7 7 7 7 7 7 7 7 7
8 1 2 4 4 8 8 8 8 8 8
9 1 3 3 9 9 9 9 9 9 9
10 1 2 5 5 5 10 10 10 10 10

namely,

pmc,π1 (L) =
{(m−1

n−1

)
(1 − q)nqm−n for L

k = m ∈ N+

0 otherwise.
(B4)

In order to maximize p(L) for different lengths, one may de-
cide to start from a different initial state, within the first block,
namely, from the sth state πs where s + L − 1 = 0 mod k
and the −1 comes from starting counting from 1, i.e., first,
second, etc. Intuitively, since the first k − 1 transitions are
deterministic, the probability obtained with the initial state
πs is equivalent to the probability obtained starting from the
initial state π1 for length L + s − 1. As a consequence, instead
of m = L

k appearing in Eq. (B2), we have a factor m = � L
k �.

Alternatively, one can verify by direct computation that for
each block of size k,

Bk :=

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

...

0 · · · 0 1
q · · · 0 0

⎞
⎟⎟⎟⎟⎠, (B5)

the nth power is given by

[
Bn

k

]
i j =

{
q� n+i−1

k � for j = (n + i − 1 mod k) + 1,

0 otherwise.

We thus have the general expression for the multicyclic
model of dimension d and block size k, with d

k = n ∈ N+,

pmc,πs (L) =
(

m − 1

n − 1

)
(1 − q)nqm−n

=
(

m − 1

n − 1

)( n

m

)n(
1 − n

m

)m−n

for m =
⌈L

k

⌉
, s = L mod d + 1. (B6)

As an example, we provide in Table II the optimal k
maximizing the expression p(L) for d = 3, . . . , 10 and
L = d + 1, . . . , d + 10, obtained simply by comparing all
multicyclic models with kn = d .

2. Accuracy

Using Eq. (B4), we can compute directly the mean and variance of the distribution p(L) and consequently its accuracy R, for
a multicyclic model of dimension d and block size k, with d = nk, n, k ∈ N+. First, let us notice that from the normalization
condition

1 =
∞∑

L=1

p(L) =
∞∑

L=d

p(L) =
∞∑

m=n

(
m − 1

n − 1

)
qm−n(1 − q)n = (1 − q)n

qn−1

∞∑
m=n

(
m − 1

n − 1

)
qm−1 (B7)

we obtain
∞∑

N=k

(
N

k

)
yN = yk

(1 − y)k+1
for all y ∈ [0, 1). (B8)

We can now proceed to calculate μ,

μ =
∞∑

m=n

mk

(
m − 1

n − 1

)
qm−n(1 − q)n = kn(1 − q)n

qn

∞∑
m=1

m

n

(
m − 1

n − 1

)
qm

= kn(1 − q)n

qn

∞∑
m=n

(
m

n

)
qm = kn(1 − q)n

qn

qn

(1 − q)n+1
= kn

1 − q
, (B9)
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where we used the identity (B8). Similarly, we can compute the variance and obtain

σ 2 =
∞∑

L=1

(L − μ)2 p(L) = k2
∞∑

m=n

(
m − n

(1 − q)

)2(m − 1

n − 1

)
qm−n(1 − q)n. (B10)

By using the identity
∞∑

m=n

m(m + 1)

(
m − 1

n − 1

)
qm−n(1 − q)n = (1 − q)nn(n + 1)

qn+1

∞∑
m=n

(
m + 1

n + 1

)
qm+1

= (1 − q)nn(n + 1)

qn+1

qn+1

(1 − q)n+2
= n(n + 1)

(1 − q)2
, (B11)

we can write

σ 2 =
∞∑

L=d

(
L − kn

1 − q

)2

p(L) = k2
∞∑

m=n

[
m(m + 1) + m

(
2n

1 − q
+ 1

)
+ n2

(1 − q)2

](
m − 1

n − 1

)
qm−n(1 − q)n

= k2 n(n + 1) − n[2n + (1 − q)] + n2

(1 − q)2
= k2nq

(1 − q)2
. (B12)

The accuracy can then be written as

R = μ2

σ 2
= n

q
= d

kq
. (B13)

We then recover the fact that the accuracy is optimal for the one-way model, i.e., k = 1, as it is for the bit case, whereas the
cyclic model gives the worst accuracy, i.e., R = 1/q, which is even independent of the dimension.

APPENDIX C: QUANTUM MODELS

Here we present an explicit construction of quantum clock
models that are able to outperform the optimal classical clock
in d = 2 and the multicyclic clocks in d = 3. First, let us
derive in detail the qubit clock model described in the main
text and observe how it violates the classical bounds on our
temporal inequalities in d = 2.

1. Qubit clock model

An explicit quantum model that violates the inequality (7)
for arbitrary values of μ is constructed as follows. Consider
a qubit in the initial state |ψ〉 = (1, 0) that evolves via a
single Kraus operator K0 associated with the outcome 0, i.e.,
I0(ρ) = K0ρK†

0 , defined as K0 = U0
√

E0, with

E0 :=
(

1 0
0 q2

)
, U0 :=

( √
u

√
1 − u

−√
1 − u

√
u

)
. (C1)

The mean value and variance of the corresponding distribution
can be obtained via the Z-transform method, where now the
moment generating function is

Q(z) = −
(

1 − 1

z

)
Z[ f (L)] := −

(
1 − 1

z

)
f̃qbit (z), (C2)

where

fqbit (L) = 〈ψ |(K†
0 )LKL

0 |ψ〉. (C3)

To write down the above expression, it is helpful to consider
K0 in its Jordan normal form K0 = P�K P−1, where for our
model we have �K = diag(κ+, κ−), i.e., the Kraus operator is
diagonalizable. In particular, we have that K0 has eigenvalues
κ± = 1

2 [(1 + q)
√

u ±√�q,u], where �q,u = (1 + q)2u − 4q

and (not orthonormal) eigenvectors given by (v±, 1), where

v± = −(1 − q)
√

u ±√�q,u

2
√

1 − u
, (C4)

which corresponds to the columns of P. Given this
decomposition, we write (K†

0 )LKL
0 = (P−1)T �L

K PT P�L
K P−1,

where we used the fact that our P is real, and we
define |P−1ψ〉=P−1|ψ〉=(1/(v+ − v−),−1/(v+ − v−)) =
(

√
1−u√
�q,u

,−
√

1−u√
�q,u

). This way we have fqbit (L) =
〈P−1ψ |FL|P−1ψ〉, with

FL := �L
K PT P�L

K =
(

(1 + v2
+)κ2L

+ (1 + v+v−)κL
+κL

−
(1 + v+v−)κL

+κL
− (1 + v2

−)κ2L
−

)

=
(

(1 + v2
+)κ2L

+ (1 + q)qL

(1 + q)qL (1 + v2
−)κ2L

−

)
, (C5)

where we used that v+v− = κ+κ− = q. At this point, we can
calculate the probability as

p(L) = fqbit (L − 1)− fqbit (L) = 〈P−1ψ |(FL − FL−1)|P−1ψ〉,
(C6)

which results in

p(L) = 1 − u

q2�q,u
[(1 + v2

−)κ2L
− (κ2

+ − q2) − 2(1 − q2)qL+1

+ (1 + v2
+)κ2L

+ (κ2
− − q2)]. (C7)
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Furthermore, we can now calculate f̃qbit (z) from the element-
wise Z-transform of FL, which is given by

F̃ (z) =
(

(1 + v2
+) 1

1−κ2+z−1 (1 + q) 1
1−qz−1

(1 + q) 1
1−qz−1 (1 + v2

−) 1
1−κ2−z−1

)
, (C8)

where we used the known Z-transform Z[aL] = 1
1−az−1 .

Now, to calculate the mean and variance of our proba-
bility distribution we need to calculate f̃qbit (1) and f̃ ′

qbit (1).
For the former, we can just substitute the value 1 into
F̃ (z) and multiply by the vectors 〈P−1ψ | and |P−1ψ〉;

we obtain

f̃qbit (1) = 1 − u

�q,u

(
2

q + 1

q − 1
− v2

+ + 1

κ2+ − 1
− v2

− + 1

κ2− − 1

)

= (q − 2)qu − (u − 2)

(q2 − 1)(u − 1)
. (C9)

Similarly, to calculate the first derivative we can first derive
F̃ (z) entrywise,

F̃ ′(z) =
(

− (1+v2
+ )κ2

+
(κ+−z)2 − q(1+q)

(z−q)2

− q(1+q)
(z−q)2 − (1+v2

− )κ2
−

(κ−−z)2

)
, (C10)

and then substitute the value 1 and multiply, obtaining

f ′
qbit (1) = 1 − u

�q,u

(
2

q(q + 1)

(q − 1)2
− (v2

+ + 1)κ2
+

(κ2+ − 1)2
− (v2

− + 1)κ2
−

(κ2− − 1)2

)

= − q{2(q + 1)u2 + qu[q(q − 4) + 1] − 6u + 3} + 1

(q2 − 1)2(u − 1)2
. (C11)

In turn, those lead to the following expressions for the mean and variance:

μ = f̃qbit (1) = qu(q − 2) − (u − 2)

(q2 − 1)(u − 1)
, (C12)

σ 2 = −μ(1 − μ) − 2 f̃ ′
qbit (1) = 2(q2 + 1)qu2 + [q(q − 6) + 1](q2 + 1)u + 4q2

(q2 − 1)2(u − 1)2
. (C13)

The expression on the left-hand side of Eq. (22) reads

μ(μ − 2) − 2σ 2 = 3μ2 − 4μ + 4 f̃ ′
qbit (1) = −4q2 − (q{q[q(q + 4) − 6] + 4} + 1)u2 + 8[(q − 1)q + 1]qu

(q2 − 1)2(u − 1)2
; (C14)

we can try to maximize it over the parameters q and u for each fixed value of μ. Note that, for fixed μ the expression (C14) can
be maximized by just minimizing f̃ ′

qbit (1). At first, since we want μ to be fixed, we can invert Eq. (C12) and find a functional
dependence of q(μ, u) that is given by

q =
√

u2 + ν2 + 2ν − u

ν
, (C15)

where ν := uμ − (μ + u). Then, by substituting this expression for q into Eq. (C11) we obtain

f ′
qbit (1) = −ν[u(u + 5) − 2] + u{2 − Nν + u[3(u + 1) + Nν]} + ν{3 + u[9 − Nν + u(3 + u + Nν )]}

2(1 − u2)2
, (C16)

where Nν = √
u2 + ν2 + 2ν. Using a computer algebra sys-

tem, we can finally maximize the expression (C16) over 0 �
u � 1 for fixed μ > 2 and we find the maximum value

max
u

[μ(μ − 2) − 2σ 2] = μ2(μ − 2)2

2(μ − 1)2
> 0, (C17)

which is obtained for

u = 2μ(μ − 2)

2μ2 − 4μ + 4
. (C18)

Substituting this solution into the above relations between q,
u, and μ we get

q = 1 − 2

μ
, u = 2q

1 + q2
, (C19)

which is the model described in the main text. With the above
substitution, we obtain

σ 2 = μ(μ − 2)[μ(μ − 2) + 2]/4(μ − 1)2 (C20)

and the corresponding expression for the accuracy

R = 4μ(μ − 1)2/(μ − 2)[μ(μ − 2) + 2], (C21)

giving R = 4 = d2 for μ → ∞. We can also write U0

as U0 = exp(iθσy), where σy is the Pauli y matrix and
θ = arctan(

√
1 − u/

√
u), which becomes, with the optimal

value for u and q,

θ = arctan[(1 − q)/
√

2q] = arctan[
√

2/
√

μ(μ − 2)].

(C22)

This will be useful later, in Appendix D, in order to compute
the continuous limit. As a final remark for this section we note
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(a) (b)

FIG. 5. (a) Plot of p(L) for the best multicyclic model (blue) and the quantum model described here with the parameters u = 2q/(1 + q2)
and q = 1 − 3/L (yellow). (b) Plot of the left-hand side of Eq. (23), i.e., μ(μ − d ) − dσ 2 for d = 3, achieved with the same quantum model
with q = 1 − 3/μ and μ � 4.

that with this relation between u and q we get

�q,u = −2q(1 − q)2

1 + q2
, (C23)

and substituting the optimal value for q we get

v± = − (1 ± i)

√
μ − 2

2μ
,

κ± = (μ − 1 ± i)

√
μ − 2

μ[μ(μ − 2) + 2]
. (C24)

2. Generalizations to higher dimensions

As an outlook to construct a quantum clock model
for general dimensions, we can now make a series of
considerations from what we have learned from the classical
case and from the qubit clock model described above. First of
all, by convexity one can fix the initial state to be an arbitrary
pure state, say, the state |0〉 of the computational basis, and
since we are interested in the sequence 00 . . . 01, it is enough
to define only the map I0, which can be parametrized, e.g.,
in terms of its Kraus operators I0(ρ) =∑d2

i=1 K (i)
0 ρ(K (i)

0 )†.

However, such a problem is already too complex to be treated,
e.g., to perform some basic numerical optimization. Since we
are now interested only in obtaining a quantum model that
violates the classical bound and not in computing the quantum
bound, we can simplify the problem assuming only one Kraus
operator K0, i.e., I0(ρ) := K0ρK†

0 . This is a simplified model
and it is not guaranteed to give the maximal quantum value.
Even in this simplified scenario, a full optimization is still very
difficult to do, even in small dimensions. However, we impose
the form of the Kraus operator by analogy with the classical
strategy and based on what we learned in the qubit case. Then
one possible solution has the following properties.

(i) There is a single Kraus operator for the outcome 0,
which has the form K0 = U

√
E0.

(ii) The initial state is |ψ〉 = |0〉 in the computational basis.
(iii) The effect E0 has the diagonal form E0 =

diag(1, . . . , 1, q2) in the computational basis.
(iv) The unitary is a one-parameter family of the form

U (θ ) = exp(iHclockθ ), (C25)

where Hclock = F (
∑

k k|k〉〈k|)F † is obtained by Fourier trans-
forming the computational basis.

Afterward, there is still the optimization over the parame-
ters q and θ . This oversimplified optimization, however, is still
too hard to solve for general dimensions.

In the following, we provide some example of a quantum model beating the (conjectured) classical bound for the case d = 3.
To use real parameters we parametrize the unitary as

U = 1

3

⎛
⎝ 4u − 1 2(1 − u) + 2

√
3u(1 − u) 2(1 − u) − 2

√
3u(1 − u)

2(1 − u) − 2
√

3u(1 − u) 4u − 1 2(1 − u) + 2
√

3u(1 − u)
2(1 − u) + 2

√
3u(1 − u) 2(1 − u) − 2

√
3u(1 − u) 4u − 1

⎞
⎠, (C26)

where 0 � u � 1. Numerical results are shown in Fig. 5,
where we plot the probability p(L) for the quantum model
described above, optimized over q and u together with the
maximum achieved by the multicyclic models [Fig. 5(a)],
and the value of the expression 3σ 2 − μ(μ − 3) for the same

model, but where we also set the functional relation between
the parameters q and u to be the same as what we found in the
qubit case [Fig. 5(b)], namely,

u = 2q

1 + q2
(C27)
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and the value of q as

q = 1 − d

μ
. (C28)

Thus, we find from numerics that such a model, even if
resulting from an oversimplified optimization, already outper-
forms the classical multicyclic models for d = 3 in both cases.
Thus, we believe that a similar model would work for general
dimension.

APPENDIX D: CONTINUOUS LIMIT OF QUANTUM
CLOCK MODELS

We now compute explicitly the continuous limit of the
quantum model presented in the main text. For an initial pure
state and single-Kraus-operator evolution, we write |ψ (t )〉 =
e(iHt−V t )|ψ (0)〉, with H Hermitian and V positive semidef-
inite. The Kraus operator is K0 = U0

√
E0, so the discrete

evolution is |ψn〉 = Kn
0 |ψ0〉 and we can set K0 = eδ(−V +iH ) ≈

1 + δ(−V + iH ) for δ ≈ 0. From this relation and with q =
q(δ) we can associate

−V + iH = lim
δ→0+

K0 − 1

δ
= lim

δ→0+

ln K0

δ
. (D1)

To calculate the logarithm of K0 we can make use of the
Baker-Campbell-Hausdorff formula and obtain

ln K0 = ln[q(δ)]

2
(1 + σz ) + iθ (q(δ))σy + o(q(δ)). (D2)

Finally, substituting the value of θ (q) from (C22) and recall-
ing q(δ) ≈ 1 − αδ to first order, we have

1

δ
ln K0 ≈ 1

δ

[−αδ

2
(1 + σz ) + i

αδ√
2
σy

]
= α[(1 + σz )/2 + iσy/

√
2]. (D3)

Thus we can identify V = (1 + σz )/2 and H = σy/
√

2 and
obtain in this way the continuous limit of our quantum model.

APPENDIX E: COMPUTING LOWER AND UPPER
BOUNDS ON MAXIMUM CLASSICAL CORRELATIONS

VIA GRID-SEARCH METHODS

In this Appendix we show how the maximum classi-
cal correlations can be estimated via grid-search methods.
Intuitively, since the function we want to maximize is a
polynomial defined on a compact set (a Cartesian product of
simplexes, each associated with the parameters of a row of
the transition matrix T0), its gradient will be bounded. Hence,
it is possible to obtain an approximation with a bounded error,
by evaluating the function only on a finite number of lattice
points in the parameter space.

1. General considerations

Consider a function f : B ⊂ RD → R, where B is a com-
pact set and f is at least C1. Let us consider the following
optimization problem:

maximize f (x)

subject to x ∈ B.
(E1)

Since f and ‖∇ f ‖ are continuous functions and B is compact,
they have a maximum in B. For δ ∈ R+, let us define Lδ =
(δZD) ∩ B, i.e., the intersection of the cubic lattice of step δ

with the compact set B. By construction, we have that each
point in B is at a distance at most δ

√
D/2 from Lδ , namely,

max
x∈B

min
y∈Lδ

(‖x − y‖) = δ
√

D/2, (E2)

where x corresponds to the intersection of all the diagonals of
the D-dimensional hypercube with edge of length δ.

We can now prove simple upper and lower bounds for the
problem in Eq. (E1),

max
x∈Lδ

f (x) � max
x∈B

f (x) � max
x∈Lδ

f (x) + δ
√

D

2
max
x∈B

‖∇ f (x)‖.
(E3)

The proof is straightforward: For the first inequality it is
sufficient to use the inclusion Lδ ⊂ B, whereas for the second
it is sufficient to use the zeroth-order Taylor expansion with
the Lagrange remainder, i.e.,

f (x) = f (y) + ∇ f (z) · (x − y), (E4)

where z = λx + (1 − λ)y for some 0 � λ � 1.
Notwithstanding the generality of this idea, it may work

only if (a) the set B is easily characterized (e.g., a product
of simplexes for the classical model), (b) the space of pa-
rameters is small (e.g., small dimensional machines), and (c)
the gradient is easily upper bounded (e.g., for a sequence of
length L generated by a classical machine the gradient can be
interpreted as a vector of probabilities, where each component
is bounded by one). In fact, the number of points of the
lattice scales polynomially with the inverse of the error, e.g.,
if we are inside the [0, 1]D cube and we take δ = 1/N , we
need to compute ND points. Moreover, since the error can be
evaluated at the beginning (e.g., as δ

√
DL) and computations

on a lattice points are independent of each other, this process
can be highly parallelized, e.g., on a GPU.

2. Classical case

We now specialize the above result to the case of classi-
cal d-state machines, corresponding to D = d2 parameters.
Equation (E1) for the case of pL(T ) then becomes

maximize pL(T ) = πT L−1(1 − T )η

subject to Ti j � 0 for i, j,= 1, . . . , d,

d∑
j=1

Ti j � 1 for i = 1, . . . , d. (E5)

We can compute the partial derivative of this
expression as

∂T n

∂Ti j
=

n−1∑
r=0

T rJi jT n−r−1, (E6)

where Ji j is the matrix with a 1 in position (i, j) and 0 other-
wise. It is convenient to represent using the Dirac notation as
Ji j = |i〉〈 j|, even though the model is classical. Let us define
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also π = 〈1| and η = |η〉. We can then write

∂

∂Ti j
〈1|T L−1(1 − T )|η〉

=
L−2∑
r=0

〈1|T r |i〉〈 j|T L−r−2(1 − T )|η〉 − 〈1|T L−1|i〉〈 j|η〉

=
L−2∑
r=0

p1,i(0
r )p j,−(0L−r−21) − p1,i(0

L−1), (E7)

where pα,β (0k1h) is defined as the probability of outputting
first k zeros and then h ones, when starting from the state α

and ending in the state β, whereas the notation p j,− denotes a
sum over the final state.

One can prove that the expression (E7) is smaller than
one in absolute value, giving maxT ∈B ‖∇pL(T )‖ �

√
D = d .

Moreover, by the geometry of the set B we can have as a
maximal distance δ

√
D/2, providing

max
T ∈Lδ

pL(T ) � max
T ∈B

pL(T ) � max
T ∈Lδ

pL(T ) + δ
√

D/2 (L−1)
√

D

= max
T ∈Lδ

pL(T ) + δd2/2. (E8)

Let us prove the above estimate for the gradient. First, notice
that, since both terms are positive,∣∣∣∣∣

L−2∑
r=0

p1,i(0
r )p j,−(0L−r−21) − p1,i(0

L−1)

∣∣∣∣∣
� max

{
L−2∑
r=0

p1,i(0
r )p j,−(0L−r−21), p1,i(0

L−1)

}
. (E9)

We can then proceed to bound each term separately. Clearly
p1,i(0L−1) � 1, since it is a probability. Actually, one can
also prove that

∑
i p1,i(0L−1) = p1,−(0L−1) � 1. For the other

term, we just notice that

L−2∑
r=0

p1,i(0
r )p j,−(0L−r−21) �

L−2∑
r=0

p j,−(0L−r−21)

�
∞∑

r=0

p j,−(0r1) � 1, (E10)

where we used that p1,i(0r ) � 1 and we identified∑∞
r=0 p j,−(0r1) with the probability of occurrence of

the output 1 for a given machine starting in the state j,
which is either 0, when the outcome 1 never appears, or 1.
Again, notice that we obtain that also the sum over i, i.e.,∑

i

∑L−2
r=0 p1,i(0r )p j,−(0L−r−21), is smaller than 1. Since each

term ∂i j pL(T ) � 1, we obtain ‖∇pL(T )‖ �
√

D = d .
Given the above estimate of the gradient, we can compute

an upper bound on the maximum of the problem in Eq. (E5)
by calculating the value of pL(T ) on a lattice in the space of
parameters with lattice step δ. Moreover, since in our case we
already have a guess of the optimal solution, such a computa-
tion can be reduced by an iterative method that evaluates the
function on more and more refined lattices, defined as follows.

(i) We start with an estimated optimal value pestC
max , a lattice

step δ and the corresponding lattice Lδ , and an error ε(δ) :=

TABLE III. Numerical values obtained for classical and quantum
models of dimension 2: pnum Q

max is the value obtained numerically for
the quantum case with the explicit model described in Appendix C 1;
pestC

max is the estimated optimal solution coming from the cyclic model,
except for L = 3, where the one-way model is better; and pUBC

max is the
analytical upper bound for the classical case computed via lattice
calculations.

L pnum Q
max pestC

max pUBC
max

3 0.3792 0.2963 0.29641
4 0.2525 0.25 0.2501
5 0.1907 0.14815 0.1483
6 0.1528 0.14815 0.1483
7 0.1274 0.105469 0.1056
8 0.1093 0.105469 0.1056
9 0.0957 0.08192 0.0821
10 0.0851 0.08192 0.08195
11 0.07659 0.0669796 0.06701
12 0.06963 0.0669796 0.06701
13 0.06384 0.0566528 0.05668
14 0.05893 0.0566528 0.05668
15 0.05473 0.049087 0.04912
16 0.05107 0.049087 0.04912
17 0.04790 0.0433049 0.04333
18 0.04508 0.0433049 0.04333
19 0.04258 0.038742 0.03877
20 0.04034 0.038742 0.03877

δd2 (we omit the factor 1/2 for reasons that will be clear
later). For each T ∈ Lδ , if pL(T ) + ε(δ) < pmax, we remove
the point from the lattice. After this procedure, we obtain a
new lattice L′

δ . If for some T , pL(T ) > pestC
max , we update pestC

max
with the this new value.

(ii) For each of the remaining points in L′
δ , we create a new

lattice of length δ in each direction and lattice step δ2. Let
us denote this lattice by L1

δ2 and the corresponding error by
ε(δ2). Again, for each T ∈ L1

δ2 , if pL(T ) + ε(δ2) < pestC
max , we

remove the point from the lattice. We obtain the new lattice
L′1

δ2 and we update pestC
max if a better estimate is found.

(iii) We iterate the procedure until the desired error ε is
reached.

Notice that, with the exception of the last iteration, the fac-
tor 1/2 for the error estimate cannot be used as a consequence
of the way we construct the refined lattice. Such a procedure
is illustrated for the simple one-dimensional case in Fig. 2.

With the above iterative method, we are able to evaluate
max pL(T ) for d = 2 and L = 3, 4, . . . , 9 over a lattice of
1018 points and L = 10, 11, . . . , 20 over a lattice of 1019

points. As a result, we can certify that the one-way model
for L = 3 and the cyclic model for L = 4, . . . , 20 provide the
optimal value for the problem in Eq. (E5), up to an error of
10−4 for L = 3, . . . , 9 and 3 × 10−5 for L = 10, . . . , 20. The
results are collected in Table III.

APPENDIX F: NUMERICAL SEARCH FOR INEQUALITIES
IN HIGHER DIMENSION

In this Appendix we discuss the numerical search for vio-
lation of the generalized inequalities

dσ 2 − μ(μ − d ) � 0, (F1)

p(L) � 	C
d,L. (F2)
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TABLE IV. Results of the numerical search for d = 3, . . . , 10 and L = d + 1, . . . , d + 10. The letter F denotes that the optimal model has
been found by the numerical search, up to a numerical precision of 10−5. In all other cases, the numerical search found a worse result. The
ratio between the gap and the optimal value is indicated in percentage; e.g., for d = 3 and L = 8 the algorithm found an optimum which has a
gap of 28% with respect to the optimum of the cyclic (k = 3) model, i.e., (optcy − optAdam )/optcy = 28%.

�����d
L

d + 1 d + 2 d + 3 d + 4 d + 5 d + 6 d + 7 d + 8 d + 9 d + 10

3 F F F F 28% 39% 22% 32% 39% 39%
4 F F F 25% 22% 32% 40% 46% 32% 32%
5 F 19% 30% 42% 51% 28% 36% 42% 47% 47%
6 F 26% 39% 40% 48% 55% 32% 39% 44% 44%
7 F 5% 25% 38% 47% 53% 57% 36% 42% 42%
8 F 26% 36% 46% 45% 52% 56% 61% 39% 39%
9 F 23% 39% 35% 44% 50% 55% 60% 63% 63%
10 F 26% 34% 44% 52% 49% 54% 59% 62% 62%

To perform the optimization, we used the Adam algorithm
[60] implementation present in the PYTORCH package [66].
The space of parameters for our optimization consists in
the space of substochastic matrices, which are constrained
by positivity and normalization conditions. We first trans-
form the problem into an unconstrained one. For a given
dimension d , we construct our transition matrices as follows.
Let B0 and B1 be two d × d matrices with real coefficients.
We define

[Tk]i j := ([Bk]i j )2∑
j{([B0]i j )2 + ([B1]i j )2} for k = 0, 1 (F3)

such that T0 and T1 are substochastic matrices and T0 + T1 is
stochastic, for any choices of B0 and B1. This transforms the
constrained optimization problem into an unconstrained one,
which can be attacked with the Adam algorithm. We fix the
parameter of the optimization, i.e., number of steps, learning
rate, i.e., the size of each step, and number of repetitions of
the optimization after a few simple tests. We tried to perform
the same optimization with the stochastic gradient descent
algorithm, but obtained worse results.

1. Accuracy

By using Eq. (18) we have

dσ 2 − μ(μ − d ) = 2dπ1(1 − T0)−2η

− (d + 1)[π1(1 − T0)−1η]2 � 0. (F4)

We recall that (1 − T0)−1 = 1
det(1−T0 ) adj(1 − T0), where adj

denotes the adjugate matrix (cf. Appendix A). Since we are
interested only in the positivity of the expression (F4), we can
multiply it by [det(1 − T0)]2. Hence, we obtain the expression

F [B0, B1] := 2dπ1(adj[1 − T0])2η

− (d + 1)(π1adj[1 − T0]η)2. (F5)

To find a violation of Eq. (F1), we perform the following
minimization:

minimize F [B0, B1]

subject to [B0]i j, [B1]i j ∈ R for all i, j = 1, . . . , d. (F6)

The package PYTORCH automatically computes the gradient of
the expression (F5) and performs the optimization. For each
d ∈ {3, . . . , 10}, we performed 100 times the optimization
starting from a random initial point and with 104 optimization
steps and a learning rate of 0.005. For all dimensions, the
optimization converges to a value of 10−5, i.e., approximately
0, consistent with the conjectured inequality and optimality of
the one-way model.

2. Finite sequences

Using again the parametrization of T0 and T1 in terms of B0

and B1, we have

G[B0, B1] = π1T L−1
0 (1 − T0)η (F7)

and the problem

maximize G[B0, B1]

subject to [B0]i j, [B1]i j ∈ R for all i, j = 1, . . . , d, (F8)

which we optimize again via Adam for d ∈ {3, . . . , 10}
and L ∈ {d + 1, . . . , d + 10}. For each pair (d, L) we re-
peat the optimization 100 times with a randomly generated
initial point, 104 steps for each optimization, and a learn-
ing rate of 0.005. Typically, Adam is able to find the
correct value for low dimension and short sequences, as
expected. In no case did the algorithm find a better value
than those already known. The results are summarized in
Table IV.
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