
PHYSICAL REVIEW RESEARCH 3, 033049 (2021)

Tunable topological states hosted by unconventional superconductors with adatoms
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Chains of magnetic atoms, placed on the surface of s-wave superconductors, have been established as a
laboratory for the study of Majorana bound states. In such systems, the breaking of time reversal due to magnetic
moments gives rise to the formation of in-gap states, which hybridize to form one-dimensional topological
superconductors. However, in unconventional superconductors even nonmagnetic impurities induce in-gap states
since scattering of Cooper pairs change their momentum but not their phase. Here we propose a path for creating
topological superconductivity, which is based on an unconventional superconductor with a chain of nonmagnetic
adatoms on its surface. The topological phase can be reached by tuning the magnitude and direction of a Zeeman
field, such that Majorana zero modes at its boundary can be generated, moved, and fused. To demonstrate the
feasibility of this platform, we develop a general mapping of films with adatom chains to one-dimensional lattice
Hamiltonians. This allows us to study unconventional superconductors such as Sr2RuO4 exhibiting multiple
bands and an anisotropic order parameter.
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I. INTRODUCTION

Combining topology and superconductivity has been her-
alded as a new paradigm for the realization of exotic
new particles—Majorana zero modes (MZMs)—-whose non-
Abelian braiding statistics would enable fault-tolerant quan-
tum computations [1,2]. Moreover, the existence of MZMs is
topologically protected, making them inert to disorder effects.
To-date, two main approaches, based on the Kitaev chain [3],
have been pursued in the quest for topological supercon-
ductors. In the first approach s-wave superconductivity is
proximity induced in nanowires with strong spin-orbit cou-
pling [4–7], while in the second approach the hybridization
of impurity (Shiba) bound states gives rise to a topologically
nontrivial superconducting phase [8–13]. Experimentally, the
latter has been realized by placing a chain of magnetic atoms
on the surface of an s-wave superconductor [14–18]. In these
platforms, evidences for MZMs at the endpoints of the system
were found in transport measurements on nanowires [6,7] and
in scanning tunneling spectroscopy on Shiba chains [15–19].
While a number of possibilities of chains of addatoms of po-
tential scatterers, magnetic scatterers, and nanowires on top of
superconductors have been investigated theoretically [20–24]
and proposals for moving, fusing, and braiding the MZMs
have been brought forward [25–28], it remains an open chal-
lenge experimentally to implement those.
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In this work we propose a path to realize one-dimensional
topological superconductivity by placing nonmagnetic atoms
on the surface of an unconventional triplet superconductor,
see Fig. 1. The key advantage of our proposal is that it is
possible to move and fuse MZMs by controlling a magnetic
Zeeman field. Since candidate systems for the realization of
triplet superconductivity usually exhibit multiple bands, we
go beyond a single-band description and use a model for
Sr2RuO4 to demonstrate that our method can easily be ap-
plied to multiband superconductivity. At the same time, we
note that Sr2RuO4 has been subject to intense theoretical
and experimental investigations regarding the nature of the
superconducting pairing [29–33]. Implementing our proposal
in candidate systems for triplet superconductivity such as
UPt3 [34,35], UTe2 [36,37], and LaNiGa2 [38] could establish
a new MZM platform and improve the understanding of the
pairing symmetries in these systems.

II. MODEL

A. Bulk superconductor

Our starting point is a single-band Hamiltonian

H = HBdG + HZ, (1)

where HBdG describes a bulk triplet superconductor on a two-
dimensional lattice, and HZ is the Zeeman term in an external
field. In momentum space it has the matrix structure

H (p) =
(

h(p) �(p)
�(p)† −h(−p)T

)
, (2)

where h(p) = ξ (p) · σ0 + h · σ, ξ (p) is the energy-
momentum dispersion, h is the Zeeman field, and σ0 and
σ are the unit matrix and Pauli matrices acting in spin space.
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In the following we measure all energies in units of the Fermi
energy EF . In the off-diagonal, �(p) = i[d(p) · σ]σy is the
pairing term, whose minimum absolute value on the Fermi
surface we denote by �min; for details see Appendix A.
Here d(p) describes the vector order parameter of the triplet
superconductor. Here we concentrate on the case of a helical
p-wave order parameter

dh = −i�t (ex sin py + ey sin px ), (3)

and in the Supplemental Material [40] we discuss the gener-
alizations to a chiral p-wave order parameter and multiband
models using Sr2RuO4 as an example.

B. Chain of nonmagnetic impurities

The chain of atoms placed along the x direction rn = na0ex

(with integer n) is described by

Himp = Û
∑

n

δr,rn , (4)

with the matrix Û = Vimpτzσ0 mediating nonmagnetic impu-
rity scattering of strength Vimp. Although the scattering of
Bogoliubov quasiparticles preserves spin, there are still Shiba
in-gap states in this system because the scattering does not
change the phase in order to match the p-wave momentum
dependence of the order parameter. In the case of a chain,
Shiba states localized in the vicinity of the impurity atoms
hybridize and give rise to impurity bands within the bulk gap
�min of the superconductor. These bands can be accurately
described by an effective Hamiltonian

Heff (kx ) = Û −1G̃−1[GI (kx )Û − 1], (5)

which depends on the momentum kx in a supercell Brillouin
zone with lattice constant a0. We derive the matrices on the
right-hand side by linearizing the bulk Green function with
respect to energy, and obtain GI (kx ), which describes the prop-
agation of Bogoliubov quasiparticles between the impurities,
by Fourier transforming the bulk Green function at the impu-
rity sites. The matrix G̃−1 enters as a prefactor and contains
the renormalization of the bandwidth (see Appendix B).

III. EFFECTIVE HAMILTONIAN

The mapping onto the effective Hamiltonian Eq. (5) can
be understood as integrating out the quantum numbers py

of momenta perpendicular to the chain. Therefore, in the
absence of a Zeeman field the effective Hamiltonian has the
structure

H0
eff (kx ) = ξeff (kx )τzσ0 + �eff (kx )τxσ0, (6)

diagonal in spin space, and describing twofold degenerate
impurity bands inside the bulk superconducting gap. Here
ξeff (kx ) and �eff (kx ) are the effective dispersion and pairing
for the impurity chain, containing further-neighbor coupling
terms between the impurity states.

The Hamiltonian H0
eff (kx ) is time-reversal symmetric, so

that the system can support a topological phase with an even
number of MZMs at each end of the chain [39]. We can realize
unpaired MZMs by additionally breaking the symmetry down
to only particle-hole symmetry by use of a Zeeman field

FIG. 1. Setup: Nonmagnetic adatoms (purple balls) are placed
at a distance a0 to form a chain on the surface of a helical triplet
superconductor with order parameter �. The Cooper pairs exhibit
equal spin (red arrows), and their orbital angular momentum (black
arrow) points opposite to the spin direction. An external Zeeman
field h can be used to tune the system into the topological phase
supporting Majorana zero modes at the endpoints of the chain as
sketched by the yellow plot of the magnitude |ψ |2 of the wave
function.

such that the system, when tuned into the topological phase,
exhibits unpaired MZMs at the end of the impurity chain
A Zeeman field in z direction can be described by HZ

eff,z =
heff,zσzτz with a renormalized magnitude heff,z, which can be
calculated by including chemical potential shifts ξ (p) ± hz in
the bulk dispersion of the spin up and down electrons, respec-
tively. We find that heff,z � hz because the energy of Shiba
in-gap state depends only weakly on the chemical poten-
tial (see the Supplemental Material [40]). Thus, the effective
Hamiltonian is diagonal in spin space with each block H̃eff± =
[ξeff (kx ) ± heff,z]τz + �eff (kx )τx exhibiting the same topologi-
cal properties as the Kitaev chain. The effective field ±heff,z

plays the role of the chemical potential, which can drive a
topological phase transition. However, since the effective field
heff,z is parametrically small, the topological phase can only be
reached by fine tuning the impurity strength Vimp such that the
impurity bands almost touch zero already without a Zeeman
field.

For the Zeeman field pointing in y direction, the addi-
tional term to the effective Hamiltonian is HZ

eff,y = heff,yσyτ0.
In this case, the two BdG bands are shifted trivially in energy
with respect to each other, leaving their topological character
unchanged, i.e., a field in y direction cannot tune into the
topological phase.

Finally, for a field in x direction, the Zeeman term reads
HZ

eff,x = heff,xτzσx with weak renormalization of the effective
Zeeman field from the bulk value heff,x ∼ hx. The effective
Hamiltonian can now be rotated around the y axis in spin
space σx → σz, such that in the new basis the effective field
heff,x plays again the role of a chemical potential. The dif-
ference to the case of a Zeeman field in z direction is that
the weakly renormalized heff,x can drive a topological phase
transition much more efficiently than the strongly reduced
heff,z discussed above.

IV. TOPOLOGICAL PHASE DIAGRAM

To quantitatively demonstrate the tunability of topological
superconductivity, we compute the topological phase dia-
gram (see Figs. 2 and 3) as characterized by the topological
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FIG. 2. Topological phase diagram. (a) Helical single-band superconductor: the topological phase (Q = −1 with finite topological gap
�topo) can be reached for a wide range of impurity strengths Vimp by tuning an external Zeeman field hx . The phase boundary is marked with
a white dashed line. An energy gap �topo ≈ �min/5 can be reached in the topological phase, leading to well-localized MZMs at the length
scale ζ/a0 ≈ �min/�topo. Parameters are �0/EF ≈ 0.08, a0 ≈ 2.5ξ . (b) Multiband model for Sr2RuO4 with a realistic superconducting order
parameter (see the Supplemental Material [40]) shows similar tunability as the single-band model, with a maximum gap �topo ≈ �min/3.
(c) For the topological invariant Q = +1 the system is in the trivial phase (and we denote �topo = 0), while for Q = −1 MZMs at the ends of
the impurity chain exist and are protected against perturbations of the order of the topological gap �topo.

invariant

Q =
∏

kx∈TRIM

Q(kx ), Q(kx ) = sgn(Pf[H (kx )τx]). (7)

It is given as the product of Pfaffians Q(kx ) at the
time-reversal invariant momenta of the corresponding one-
dimensional Brillouin zone, details on its derivation can be
found in Appendix C. We supplement the fully numerical
supercell calculation by computing the topological invari-
ant also using Qeff (kx ) = sgn(Pf[Heff (kx )τx]). The excellent
agreement between Qeff and Q (see the Supplemental Ma-
terial [40]) indicates that Heff (kx ) indeed faithfully describes
the low-energy physics of the impurity chain. In the nontriv-
ial case Q = −1 we define the topological gap �topo as the
minimum of the eigenenergies of H (kx ) in the Brillouin zone,
see Appendix D. To detect the non-Abelian properties of the
MZMs, it is necessary that the coupling between MZMs is
weak. Thus, the distance between neighboring MZMs needs

to be much larger than ζ ≈ h̄vF,eff/�topo, where vF,eff is the
Fermi velocity for the impurity band. An estimate of vF,eff

yields ζ/a0 ≈ �min/�topo. In order to avoid thermal excita-
tions, the temperature needs to be smaller than the topological
gap kBT < �topo.

In Fig. 2 we present the topological phase diagram for
the single-band model and for a multiband description of
Sr2RuO4, revealing that the topological phase can be reached
in both cases by application of a Zeeman field hx in the
direction along the impurity chain for a large range of the
impurity potential Vimp. Experimentally, suitable adatoms can
be identified by examining the appearance of in-gap states in
the tunneling spectra. We summarize that our proposal might
be feasible in a helical p-wave superconductor where impu-
rity adatoms can be controlled experimentally. The multiband
helical p-wave order parameter considered in Fig. 2 is one of
the possible candidate pairing symmetries for Sr2RuO4 [32].
Controllable placing of adatoms might be facilitated by step

FIG. 3. Field direction dependence of the topological gap. (a) The direction of the Zeeman field relative to the direction of the impurity
chain is parametrized by the azimuthal angle φ and the polar angle θ . Changing the direction of the field allows us to enter or leave the
topological phase. (b) Topological phase diagram for a single-band system with parameters Vimp/EF = −1.2, |h|/EF = 0.03, a0 ≈ 2.5ξ ; the
white dashed line is the boundary between topological and trivial phase. (c) Similar phase diagram for Sr2RuO4 (Vimp/EF = −5.2, |h|/EF =
0.015, a0 ≈ 0.8ξ ). In both cases, the topological gap �topo is maximal for the field along the impurity chain (φ = 0, θ = π/2), and the
topologically trivial phase can be reached by either tuning to φ = π/2, or towards θ = 0, π , i.e., to a transverse directions relative to the chain.
The isolated point at which the system remains gapless (white cross) corresponds to an in-plane field perpendicular to the chain.
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FIG. 4. Moving and fusion of Majorana zero modes. A curved impurity chain might be tuned partially into the topological state (red arcs)
if the the angle between the Zeeman field and the local direction of the chain puts it into the topological phase. MZMs (yellow dots) occur at
the boundaries of trivial and nontrivial regions, which can be moved in two different ways: (a) Rotating the field around the axis perpendicular
to the plane moves the Majoranas in the same direction, while (b) changing the field magnitude or polar angle can move them in opposite
directions. (c) In a wiggly impurity chain MZMs 1 and 2, 3 and 4 can be created pairwise from the vacuum by changing the field magnitude,
and by tuning deeper into the topological phase one eventually fuses the MZMs 2 and 3.

edges, and in the Supplemental Material [40] we show that the
topological phase can be reached by application of a Zeeman
field also in this case. In Fig. 3 we illustrate that the direction
of the Zeeman field can be used to tune a system into and out
of the topological phase. Namely, tuning the azimuthal angle
φ has a strong effect on the topological gap �topo. A similar
analysis of the tunability of a system with chiral p-wave order
parameter (see the Supplemental Material [40]) reveals that
rotating the Zeeman field within the x-y plane has no effect
at all. Hence, this difference in behavior could be used to
experimentally diagnose and discriminate the helical p wave
from a chiral p-wave order parameter, an important question
for example in the Sr2RuO4 system [29–32].

V. DISCUSSION

For the case of magnetic adatoms, the dependence of
adatom magnetic order on an external Zeeman field has been
suggested as a means to to create, braid, and fuse MZMs [27].
Here we exploit the direct dependence of the topological
phase diagram on the Zeeman field (see Fig. 3). So far we have
arbitrarily chosen that the impurity chain is oriented along
the x axis, and as a result a Zeeman field in x direction was
most suitable to induce a topological phase. More generally
however, the relevant parameter is the relative angle of the
Zeeman field with the impurity chain, and for a curved chain
the relevant angle would be the angle between the field and
the local tangential direction as defined in Fig. 3(a). Thus,
MZMs on curved impurity chains are located at all interfaces
between trivial and nontrivial regions, i.e., at positions where
the local tangent and the external field draw a critical angle,
see Fig. 4. Hence, MZMs can be moved along the impurity
chain by either rotating the direction of the Zeeman field or
by changing the magnitude of the field, which modifies the
critical angle.

Increasing the Zeeman field along a wiggly impurity chain
creates two pairs of Majoranas which can formally be de-
scribed by operators γi, i = 1, 2, 3, 4, satisfying γi = γ

†
i and

anticommutation relations {γi, γ j} = 2δi j [for the labeling of
MZMs see Fig. 4(c)]. Grouping the MZMs in pairs of two,
we can define the left and right number operators nl = 1

2 (1 +
iγ1γ2) and nr = 1

2 (1 + iγ3γ4) with eigenvalues 0 and 1, and
define a Hilbert space spanned by basis states |nlnr〉. Creating
the MZMs from the vacuum, the initial state is given by
|ψ〉 = |00〉 in this basis. Tuning deeper into the topological
phase, the inner MZMs 2 and 3 will fuse such that the final

state will be a statistical mixture of 0 and 1 for the operator
no = 1

2 (1 + iγ1γ4) (see the Supplemental Material [40]). In
the fusion process the projective measurement can be per-
formed by detecting the charge acquired by MZMs 2 and 3
after they have hybridized [28]. The movement and projec-
tive measurements are the key ingredients for manipulation
of MZMs, and they can be realized by controlling external
magnetic field as discussed above. However, we also need to
preserve the quantum information stored in the MZMs. In the
Supplementary Material [40] we discuss the corresponding
requirements and propose to manipulate the local magnetiza-
tion by spintronic means to obtain signatures of non-Abelian
statistics of MZMs.

In summary, we have shown that topological supercon-
ductivity can be realized by placing nonmagnetic adatoms on
the surface of an unconventional superconductor, and that the
topological invariant can be controlled with the magnitude and
direction of a Zeeman field. Our considerations are based on a
lattice Hamiltonian which can describe materials exhibiting a
complex structure of the order parameter and multiple bands.
We have identified the field direction which can most effi-
ciently tune the system into the topological phase and we have
proposed a scheme to move and fuse MZMs. An experimental
realization of this proposal could become a scalable platform
for topological quantum information processing based on the
non-Abelian statistics of MZMs.
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APPENDIX A: TIGHT-BINDING MODEL

For the single-band model, we use the normal state dis-
persion ξ (p) = −2t (cos px + cos py) − μ on a square lattice,
where t is the nearest-neighbor hopping and μ ≈ −1.44t is
the chemical potential fixed such that the filling is one quarter
and the Fermi energy EF ≈ 2.56t .
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The superconducting order parameter can be written in real
space as

� =
∑

i j

∑
αβ

∑
σσ ′

�i j,αβ,σσ ′c†
i,α,σ c†

j,β,σ ′ + H.c. (A1)

For the single-band system with a triplet order parameter,
the coefficients read �i j,αβ,σσ ′ = �0di, j · σiσy with the Pauli
operators σ = [σx, σy, σz] and a vector di, j . In the main text
we consider the physical consequences of the helical p-wave
order parameter d = −i�t (sin pyex + sin pxey) which in real

space leads to nearest-neighbor pairings �0 = δi(
−1 0
0 1) with

δi = ∓�t/2 for the relative lattice vector (0,±1), and �0 =
δi(

i 0
0 i ) with δi = ∓�t/2 for the relative lattice vector

(±1, 0).
The multiband model for Sr2RuO4 [41] is discussed in the

Supplemental Material [40].

APPENDIX B: GREEN FUNCTION APPROACH AND
EFFECTIVE HAMILTONIAN

Derivations of effective Hamiltonians for continuum mod-
els have been worked out in detail for example for helical
Shiba chains in Ref. [10] and spinless superconductors [22].
Here we generalize this approach to multiband lattice models
and derive the effective Hamiltonian for the impurity bands as
cited in Eq. (5) of the main text. Starting point is the eigen-
value equation of the Bogoliubov–de Gennes Hamiltonian
(including the impurity chain) (HBdG + HZ + Himp)� = E�

with the eigenstate � and eigenenergy E . Next, we introduce
the Green function operator of the bulk system

G(E ) = (E − HBdG − HZ)−1 (B1)

to obtain a nonlinear eigenproblem

� = G(E )Himp�. (B2)

Evaluating Eq. (B2) only at the impurity sites rm = a0mex,
and using that the impurity Hamiltonian [Eq. (4)] is diagonal,
we obtain

�(rm) =
∑

rn

G(E , rm − rn)Û�(rn).

Because of the periodicity with respect to translations by the
impurity chain lattice vector a0ex, it is useful to transform this
equation to momentum space (with respect to the supercell)
�(kx ) = ∑

m �(rm)e−ikxa0m such that the eigenvalue equation
can be rewritten as

�(kx ) =
∑

n

G(E , rn)e−ikxa0nÛ�(kx ). (B3)

The real space Green function can be obtained via its
Fourier representation

G(E , r) = 1

�BZ

∫
BZ

d2 p G(E , p)eip·r,

G(E , p) = [E − HBdG(p) − HZ ]−1, (B4)

where the integral is over the bulk Brillouin zone with
momentum space area �BZ. By linearizing the bulk Green

function at E = 0, we obtain

G(E , p) = G(0, p) − EG̃(p), (B5)

where G(0, p) = −[HBdG(p) + HZ]−1 and G̃(p) =
[HBdG(p) + HZ]−2 exist for fully gapped systems.
Furthermore, we keep the linear correction ∝ E only in
the on-site term of the Green function to obtain

G(E , rn) = G(0, rn) − Eδrn,0G̃, (B6)

where

G̃ = 1

�BZ

∫
BZ

d2 p [HBdG(p) + HZ]−2. (B7)

We now insert Eqs. (B4), (B5), and (B6) into Eq. (B3) and
introduce the Fourier transforms with respect to the supercell
as

GI (kx ) =
∑

n

G(0, rn)e−ia0nkx (B8)

to obtain

�(kx ) = [GI (kx )Û − EG̃Û ]�(kx ). (B9)

Rearranging the terms and multiplication with inverse matri-
ces brings the eigenvalue equation in the form

Heff (kx )�(kx ) = E�(kx ), (B10)

where the effective Hamiltonian is

Heff (kx ) = Û −1G̃−1[GI (kx )Û − 1]. (B11)

This Hamiltonian becomes exact at E = 0 where the topo-
logical phase transition occurs and therefore can be used to
determine the phase diagram exactly.

This approach is general and can be applied to all lat-
tice Hamiltonians. In this work we have applied it to the
single-band p-wave superconductors and multiband model for
Sr2RuO4 [41], but similar theoretical investigations can be
performed also for other candidate materials for multiband
triplet superconductors [34–38].

APPENDIX C: TOPOLOGICAL INVARIANT

A finite magnetic field breaks time-reversal symmetry such
that the remaining symmetry of the Hamiltonian, Eq. (1), is
particle-hole symmetry, described by a particle-hole opera-
tor P anticommuting with the Hamiltonian {H, P} = 0. The
superconducting pairing has the property �T = −� and the
normal state block is Hermitian, h† = h. Therefore, P = τxK
is the desired anticommuting operator, where τx is the Pauli
matrix in particle-hole space and K is the complex conjuga-
tion. The parity operator P̂ = (−1)N̂ , with N̂ being the particle
number operator, commutes with the Hamiltonian [H, P̂] = 0,
thus there is a common system of eigenstates. Since the parity
operator has the eigenvalues ±1, the ground state of the sys-
tem is either of odd or even parity. The parity can be calculated
by Eq. (7), where we formally have factorized out a prefactor
of (−1)n because Pf(Hiτx ) = Pf(Hτx ) for matrices of size 4n
with n an integer number. In the fully numerical approach,
we set up the Hamiltonian for the superconductor subject to
the Zeeman field and including the impurity potential, and
use a supercell method to obtain H (kx ) of an (infinite) im-
purity chain along the x direction. For the calculation of the
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invariant using Eq. (7) the supercell Hamiltonian needs to be
constructed for the two time-reversal invariant momenta, kx =
0, π/a0, corresponding to periodic or antiperiodic boundary
conditions. Finally, the Pfaffian is calculated using an efficient
numerical algorithm [42].

The effective Hamiltonian Eq. (5) inherits the symme-
tries from the bulk Hamiltonian in Eq. (2), i.e., it satisfies
the particle-hole symmetry τxH∗

eff (−kx )τx = −Heff (kx ), which
can be read from Eq. (5) by using that also the other matrices
in the expression obey the same symmetry, e.g., τxÛ ∗τx =
−Û , τxG̃∗τx = G̃, τxG∗

I (−kx )τx = −GI (kx ), which can be
derived from the original property τx[HBdG(p) + HZ]∗τx =
−[HBdG(p) + HZ] of the bulk Hamiltonian. Therefore, the
effective Hamiltonian can be used to calculate the topolog-
ical invariant using Eq. (7), while the numerical effort is
greatly reduced because of the small size of the corresponding
matrices.

APPENDIX D: TOPOLOGICAL GAP

For the calculation of the topological gap, i.e., the minimal
positive eigenvalue of the supercell Hamiltonian as a function
of kx, we calculate the eigenvalues for a grid of a few kx

points between 0 and π/a0, select the kx with the smallest
positive eigenvalue, and then use an iterative procedure to
find the smallest positive eigenvalue by a bisection bracketing
algorithm to obtain �topo. This procedure is is implemented
for both the supercell and the effective Hamiltonian approach
to investigate the reliability of the approximation in deriving
Eq. (5), see the Supplemental Material [40]. Finding very
good agreement, we show in the main text only results stem-
ming from the effective Hamiltonian since the calculation of
eigenvalues is orders of magnitude faster once the expansion
coefficients [Eqs. (B7) and (B8)] for Heff (kx ) have been calcu-
lated.

[1] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[2] S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero modes
and topological quantum computation, npj Quantum Inf. 1,
15001 (2015).

[3] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[4] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Ma-
jorana Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures, Phys. Rev.
Lett. 105, 077001 (2010).

[5] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and
Majorana Bound States in Quantum Wires, Phys. Rev. Lett. 105,
177002 (2010).

[6] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
fermions in hybrid superconductor-semiconductor nanowire de-
vices, Science 336, 1003 (2012).

[7] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P.
Krogstrup, C. M. Marcus, and Y. Oreg, Majorana zero modes
in superconductor–semiconductor heterostructures, Nat. Rev.
Mater. 3, 52 (2018).

[8] T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C. W. J.
Beenakker, Majorana fermions emerging from magnetic
nanoparticles on a superconductor without spin-orbit coupling,
Phys. Rev. B 84, 195442 (2011).

[9] I. Martin and A. F. Morpurgo, Majorana fermions in supercon-
ducting helical magnets, Phys. Rev. B 85, 144505 (2012).

[10] F. Pientka, L. I. Glazman, and F. von Oppen, Topological su-
perconducting phase in helical Shiba chains, Phys. Rev. B 88,
155420 (2013).

[11] P. M. R. Brydon, S. Das Sarma, H.-Y. Hui, and J. D. Sau,
Topological Yu-Shiba-Rusinov chain from spin-orbit coupling,
Phys. Rev. B 91, 064505 (2015).

[12] L. Kimme and T. Hyart, Existence of zero-energy impurity
states in different classes of topological insulators and super-
conductors and their relation to topological phase transitions,
Phys. Rev. B 93, 035134 (2016).

[13] I. Sahlberg, A. Westström, K. Pöyhönen, and T. Ojanen,
Engineering one-dimensional topological phases on p-wave su-
perconductors, Phys. Rev. B 95, 184512 (2017).

[14] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,
Proposal for realizing Majorana fermions in chains of mag-
netic atoms on a superconductor, Phys. Rev. B 88, 020407(R)
(2013).

[15] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observa-
tion of Majorana fermions in ferromagnetic atomic chains on a
superconductor, Science 346, 602 (2014).

[16] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B. W. Heinrich, and
K. J. Franke, End States and Subgap Structure in Proximity-
Coupled Chains of Magnetic Adatoms, Phys. Rev. Lett. 115,
197204 (2015).

[17] R. Pawlak, M. Kisiel, J. Klinovaja, T. Meier, S. Kawai, T.
Glatzel, D. Loss, and E. Meyer, Probing atomic structure and
Majorana wavefunctions in mono-atomic Fe chains on super-
conducting Pb surface, npj Quantum Inf. 2, 16035 (2016).

[18] H. Kim, A. Palacio-Morales, T. Posske, L. Rózsa, K. Palotás,
L. Szunyogh, M. Thorwart, and R. Wiesendanger, Toward
tailoring Majorana bound states in artificially constructed mag-
netic atom chains on elemental superconductors, Sci. Adv. 4,
eaar5251 (2018).

[19] H. Zhang, D. E. Liu, M. Wimmer, and L. P. Kouwenhoven, Next
steps of quantum transport in Majorana nanowire devices, Nat.
Commun. 10, 5128 (2019).

[20] S. Nakosai, J. C. Budich, Y. Tanaka, B. Trauzettel, and N.
Nagaosa, Majorana Bound States and Nonlocal Spin Correla-
tions in a Quantum Wire on an Unconventional Superconductor,
Phys. Rev. Lett. 110, 117002 (2013).

[21] V. Kaladzhyan, J. Röntynen, P. Simon, and T. Ojanen, Topo-
logical state engineering by potential impurities on chiral
superconductors, Phys. Rev. B 94, 060505(R) (2016).

[22] T. Neupert, A. Yazdani, and B. A. Bernevig, Shiba chains
of scalar impurities on unconventional superconductors, Phys.
Rev. B 93, 094508 (2016).

[23] V. Kaladzhyan, C. Bena, and P. Simon, Topology from triviality,
Phys. Rev. B 97, 104512 (2018).

033049-6

https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1126/science.1222360
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1103/PhysRevB.84.195442
https://doi.org/10.1103/PhysRevB.85.144505
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.91.064505
https://doi.org/10.1103/PhysRevB.93.035134
https://doi.org/10.1103/PhysRevB.95.184512
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1126/sciadv.aar5251
https://doi.org/10.1038/s41467-019-13133-1
https://doi.org/10.1103/PhysRevLett.110.117002
https://doi.org/10.1103/PhysRevB.94.060505
https://doi.org/10.1103/PhysRevB.93.094508
https://doi.org/10.1103/PhysRevB.97.104512


TUNABLE TOPOLOGICAL STATES HOSTED BY … PHYSICAL REVIEW RESEARCH 3, 033049 (2021)

[24] N. Sedlmayr, V. Kaladzhyan, and C. Bena, New tools
to determine the topological character of Shiba chains,
arXiv:2102.02214.

[25] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher,
Non-Abelian statistics and topological quantum information
processing in 1D wire networks, Nat. Phys. 7, 412 (2011).

[26] T. Hyart, B. van Heck, I. C. Fulga, M. Burrello, A. R.
Akhmerov, and C. W. J. Beenakker, Flux-controlled quantum
computation with Majorana fermions, Phys. Rev. B 88, 035121
(2013).

[27] J. Li, T. Neupert, B. A. Bernevig, and A. Yazdani, Manipulating
Majorana zero modes on atomic rings with an external magnetic
field, Nat. Commun. 7, 10395 (2016).

[28] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J.
Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K.
Flensberg, and J. Alicea, Milestones Toward Majorana-Based
Quantum Computing, Phys. Rev. X 6, 031016 (2016).

[29] A. P. Mackenzie, T. Scaffidi, C. W. Hicks, and Y. Maeno, Even
odder after twenty-three years: The superconducting order pa-
rameter puzzle of Sr2RuO4, npj Quantum Mater. 2, 40 (2017).

[30] S. A. Kivelson, A. C. Yuan, B. Ramshaw, and R. Thomale, A
proposal for reconciling diverse experiments on the supercon-
ducting state in Sr2RuO4, npj Quantum Mater. 5, 43 (2020).

[31] A. Pustogow, Y. Luo, A. Chronister, Y.-S. Su, D. A. Sokolov,
F. Jerzembeck, A. P. Mackenzie, C. W. Hicks, N. Kikugawa,
S. Raghu, E. D. Bauer, and S. E. Brown, Constraints on the
superconducting order parameter in Sr2RuO4from oxygen-17
nuclear magnetic resonance, Nature (London) 574, 72 (2019).

[32] A. J. Leggett and Y. Liu, Symmetry properties of superconduct-
ing order parameter in Sr2RuO4, J. Supercond. Novel Magn. 34,
1647 (2020).

[33] A. Chronister, A. Pustogow, N. Kikugawa, D. A. Sokolov,
F. Jerzembeck, C. W. Hicks, A. P. Mackenzie, E. D. Bauer,
and S. E. Brown, Evidence for even parity unconventional su-
perconductivity in Sr2RuO4, Proc. Natl. Acad. Sci. USA 118,
e2025313118 (2021).

[34] E. R. Schemm, W. J. Gannon, C. M. Wishne, W. P. Halperin, and
A. Kapitulnik, Observation of broken time-reversal symmetry
in the heavy-fermion superconductor UPt3, Science 345, 190
(2014).

[35] R. Joynt and L. Taillefer, The superconducting phases of UPt3,
Rev. Mod. Phys. 74, 235 (2002).

[36] S. Ran, C. Eckberg, Q.-P. Ding, Y. Furukawa, T. Metz, S. R.
Saha, I.-L. Liu, M. Zic, H. Kim, J. Paglione, and N. P. Butch,
Nearly ferromagnetic spin-triplet superconductivity, Science
365, 684 (2019).

[37] L. Jiao, S. Howard, S. Ran, Z. Wang, J. O. Rodriguez, M.
Sigrist, Z. Wang, N. P. Butch, and V. Madhavan, Chiral su-
perconductivity in heavy-fermion metal UTe2, Nature (London)
579, 523 (2020).

[38] Z. F. Weng, J. L. Zhang, M. Smidman, T. Shang, J. Quintanilla,
J. F. Annett, M. Nicklas, G. M. Pang, L. Jiao, W. B. Jiang, Y.
Chen, F. Steglich, and H. Q. Yuan, Two-Gap Superconductivity
in LaNiGa2 with Nonunitary Triplet Pairing and Even Parity
Gap Symmetry, Phys. Rev. Lett. 117, 027001 (2016).

[39] L. Kimme, T. Hyart, and B. Rosenow, Symmetry-protected
topological invariant and Majorana impurity states in time-
reversal-invariant superconductors, Phys. Rev. B 91, 220501(R)
(2015).

[40] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.3.033049 for technical details re-
lated to the tight-binding models, the derivation and properties
of the effective Hamiltonian, a comparison of numerical results
obtained for the lattice model with those from the effec-
tive Hamiltonian, and additional discussions of routes towards
movement, fusion, and braiding of Majorana zero modes. The
supplemental material includes Refs. [43–54].

[41] T. Scaffidi and S. H. Simon, Large Chern Number and Edge
Currents in Sr2RuO4, Phys. Rev. Lett. 115, 087003 (2015).

[42] M. Wimmer, Algorithm 923: Efficient numerical computation
of the Pfaffian for dense and banded skew-symmetric matrices,
ACM Trans. Math. Softw. 38, 30 (2012).

[43] A. T. Rømer, A. Kreisel, M. A. Müller, P. J. Hirschfeld, I. M.
Eremin, and B. M. Andersen, Theory of strain-induced mag-
netic order and splitting of Tc and TTRSB in Sr2RuO4, Phys. Rev.
B 102, 054506 (2020).

[44] T. Hyart, A. R. Wright, and B. Rosenow, Zeeman-field-induced
topological phase transitions in triplet superconductors, Phys.
Rev. B 90, 064507 (2014).

[45] C. W. J. Beenakker, Search for non-Abelian Majorana braiding
statistics in superconductors, SciPost Phys. Lect. Notes, 15
(2020), doi: 10.21468/SciPostPhysLectNotes.15.

[46] S.-B. Zhang, W. B. Rui, A. Calzona, S.-J. Choi, A. P. Schnyder,
and B. Trauzettel, Topological and holonomic quantum com-
putation based on second-order topological superconductors,
Phys. Rev. Research 2, 043025 (2020).

[47] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin,
Nonlocal magnetization dynamics in ferromagnetic heterostruc-
tures, Rev. Mod. Phys. 77, 1375 (2005).

[48] S. S. P. Parkin, M. Hayashi, and L. Thomas, Magnetic domain-
wall racetrack memory, Science 320, 190 (2008).

[49] F. Matsukura, Y. Tokura, and H. Ohno, Control of magnetism
by electric fields, Nat. Nanotechnol. 10, 209 (2015).

[50] A. Hoffmann and S. D. Bader, Opportunities at the frontiers of
spintronics, Phys. Rev. Appl. 4, 047001 (2015).

[51] Y. Tokura, K. Yasuda, and A. Tsukazaki, Magnetic topological
insulators, Nat. Rev. Phys. 1, 126 (2019).

[52] A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Diény,
P. Pirro, and B. Hillebrands, Review on spintronics: Principles
and device applications, J. Magn. Magn. Mater. 509, 166711
(2020).

[53] P. Bonderson, M. Freedman, and C. Nayak, Measurement-
Only Topological Quantum Computation, Phys. Rev. Lett. 101,
010501 (2008).

[54] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B.
Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y.
Oreg, C. M. Marcus, and M. H. Freedman, Scalable designs for
quasiparticle-poisoning-protected topological quantum compu-
tation with Majorana zero modes, Phys. Rev. B 95, 235305
(2017).

033049-7

http://arxiv.org/abs/arXiv:2102.02214
https://doi.org/10.1038/nphys1915
https://doi.org/10.1103/PhysRevB.88.035121
https://doi.org/10.1038/ncomms10395
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1038/s41535-017-0045-4
https://doi.org/10.1038/s41535-020-0245-1
https://doi.org/10.1038/s41586-019-1596-2
https://doi.org/10.1007/s10948-020-05717-6
https://doi.org/10.1073/pnas.2025313118
https://doi.org/10.1126/science.1248552
https://doi.org/10.1103/RevModPhys.74.235
https://doi.org/10.1126/science.aav8645
https://doi.org/10.1038/s41586-020-2122-2
https://doi.org/10.1103/PhysRevLett.117.027001
https://doi.org/10.1103/PhysRevB.91.220501
http://link.aps.org/supplemental/10.1103/PhysRevResearch.3.033049
https://doi.org/10.1103/PhysRevLett.115.087003
https://doi.org/10.1145/2331130.2331138
https://doi.org/10.1103/PhysRevB.102.054506
https://doi.org/10.1103/PhysRevB.90.064507
https://doi.org/10.21468/SciPostPhysLectNotes.15
https://doi.org/10.21468/SciPostPhysLectNotes.15
https://doi.org/10.1103/PhysRevResearch.2.043025
https://doi.org/10.1103/RevModPhys.77.1375
https://doi.org/10.1126/science.1145799
https://doi.org/10.1038/nnano.2015.22
https://doi.org/10.1103/PhysRevApplied.4.047001
https://doi.org/10.1038/s42254-018-0011-5
https://doi.org/10.1016/j.jmmm.2020.166711
https://doi.org/10.1103/PhysRevLett.101.010501
https://doi.org/10.1103/PhysRevB.95.235305

