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Unusual excitations and double-peak specific heat in a bond-alternating spin-1 K-� chain
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One-dimensional gapped phases that avoid any symmetry breaking have drawn enduring attention. In this
paper, we study such phases in a bond-alternating spin-1 K-� chain built of a Kitaev (K) interaction and an off-
diagonal � term. In the case of isotropic bond strength, a Haldane phase, which resembles the ground state of a
spin-1 Heisenberg chain, is identified in a wide region. A gapped Kitaev phase situated at dominant ferromagnetic
and antiferromagnetic Kitaev limits is also found. The Kitaev phase has extremely short range spin correlations
and is characterized by finite Z2-valued quantities on bonds. Its lowest entanglement spectrum is unique, in
contrast to the Haldane phase, whose entanglement spectrum is doubly degenerate. In addition, the Kitaev phase
shows a double-peak structure in the specific heat at two different temperatures. In the pure Kitaev limit, the two
peaks are representative of the development of short-range spin correlation at Th � 0.5680 and the freezing of
Z2 quantities at Tl � 0.0562, respectively. By considering bond anisotropy, regions of Haldane phase and Kitaev
phase are enlarged, accompanied by the emergence of dimerized phases and three distinct magnetically ordered
states.

DOI: 10.1103/PhysRevResearch.3.033048

I. INTRODUCTION

The Kitaev honeycomb model [1], consisting of bond-
dependent Ising couplings of spin-1/2 degrees of freedom, is
a rare example which not only is exactly solvable but also
hosts a quantum spin liquid (QSL) ground state with frac-
tionalized excitations, e.g., itinerant Majorana fermions and
localized fluxes [2]. These excitations account for the double-
peak specific heat anomaly at two different energy scales [3].
During the last decade, a large family of rare-earth magnets
which could realize bond-directional interactions have gar-
nered huge interest, providing avenues for the exploration
of exotic phases of matter and emergent phenomena (for a
review, see Refs. [4,5]). According to the Jackeli-Khaliullin
mechanism [6], it was suggested that the Kitaev interaction
with Jeff = 1/2 moment could be realized in the 4d/5d-
electron honeycomb compounds by the interplay of spin-orbit
coupling and electron correlations. Recently, new scenarios
for the Kitaev interaction in f -electron systems have also been
proposed (see Ref. [7] and references therein). This theoretical
progress, as well as relevant material realizations, paves the
way for hunting Kitaev QSLs; yet this is hindered by several
essential non-Kitaev terms, such as Heisenberg coupling and
symmetric off-diagonal � interaction [8,9].
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Aligning with the efforts to study the ground state and ther-
modynamical properties in the spin-1/2 Kitaev honeycomb
model [1–3,10,11], high-spin analogs have also generated
much interest [12–14], inciting the materialization of Kitaev
interaction in magnetic compounds with S > 1/2 [15]. Re-
cently, it has been suggested that strong spin-orbit coupling
between anion sites together with strong Hund’s coupling in
the eg orbital might be a practical way to achieve the spin-1
Kitaev interaction in real materials [16]. In spite of there being
no exact solution for higher-spin counterparts, local conserved
Z2 quantities could still be constructed [12], and several in-
teresting phenomena of the spin-1/2 model, including the
double-peak specific heat [17] and field-induced intermediate
gapless QSL [18–20], could also be retained at least for the
spin-1 case.

Notwithstanding the bidimensionality of real materials,
quantum spin chains also play vital roles in understanding
peculiar quantum phenomena in two dimensions as they pro-
mote strong quantum fluctuations [21–28]. Over the past few
decades, quantum spin chains have attracted broad attention
for their ability to host unconventional quantum critical-
ity [29,30] and topological phases [31,32]. The Haldane phase
in the antiferromagnetic (AFM) spin-1 Heisenberg chain is
a paramount example which falls beyond Landau’s paradigm
of symmetry breaking and is now recognized as a symmetry-
protected topological (SPT) phase protected by time-reversal
symmetry, bond-centered inversion symmetry, and/or a dihe-
dral group of π rotations about cubic axes [33,34]. Its ground
state is unique under the periodic boundary condition (PBC),
while it is fourfold degenerate under the open boundary con-
dition (OBC) as a result of two spin-1/2 edge states [35].
Nevertheless, a novel “Kitaev” phase, the ground state of
the spin-1 Kitaev spin chain [36,37], emerges as another
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interesting phase which is also gapped and has the same
ground-state degeneracy pattern as that of the Haldane phase.

In this respect, a couple of attractive questions are natu-
rally raised. First of all, although the Kitaev phase owns all
the three symmetries that protect the Haldane phase [37],
the origin of the edge states that contribute to the ground-
state degeneracy is still unclear. To understand whether it is
a SPT phase or not, the entanglement spectrum is a useful
quantity to clarify the puzzle. Next, in the Kitaev phase,
degeneracy of the lowest-lying excited state goes with the
increase in system size, exhibiting a large density of states
just above the excitation gap. This phenomenon has been
demonstrated to trigger double-peak specific heat anomalies
in several frustrated systems [38,39]. Hence it is necessary
to check the low-temperature behavior of the specific heat.
Finally, in the spin-1/2 analogy, the ferromagnetic (FM) Ki-
taev limit is known to be a multicritical point as a confluence
of several topological quantum phase transitions (QPTs) [27].
By contrast, a spin-1 FM Kitaev point should survive against
competing interactions, giving rise to a possible region of the
Kitaev phase.

In this paper, we study the quantum phase diagram of a
bond-alternating spin-1 K-� chain using the density-matrix
renormalization group (DMRG) method [40–42]. For this
model, it is composed of two bond-directional frustrated in-
teractions, allowing us to explore the rich phase diagram by
tuning both the interaction intensity and the bond strength
relatively. Throughout the phase diagram, we identify the Ki-
taev phase and the Haldane phase in the vicinity of the Kitaev
and � limits, respectively. The natures of phases are revealed
by excitation gaps, spin-spin correlations, the nonlocal string
order parameter (SOP) [43], and Z2 quantities on bonds. Near
the FM Kitaev limit, there is a first-order Kitaev-Haldane
QPT at nonzero �/|K|, while a magnetically ordered state
intervenes in the AFM Kitaev region. We also calculate ther-
modynamic quantities (e.g., specific heat and thermal entropy)
of the Kitaev phase using the transfer-matrix renormalization
group (TMRG) method [44,45].

The remainder of the paper is organized as follows. In
Sec. II we introduce the theoretical model and present the
quantum phase diagram. In Sec. III we study the excitations
of the Haldane phase and Kitaev phase in the isotropic K-
� chain. Effects of anisotropic bond strength are studied in
Sec. IV, with an emphasis on the Haldane-dimer transition and
three magnetically ordered states. In Sec. V, we confirm the
double-peak specific heat in the Kitaev phase and explain the
physical origins of the two peaks. Finally, a brief conclusion
is presented in Sec. VI. Further information about the specific
heat in the spin-1/2 and spin-1 Kitaev chains is given in
Appendixes A and B.

II. MODEL AND METHOD

The K-� spin model is defined on the zigzag chain as
illustrated in Fig. 1(a), where the spins sit on the edges of each
bond. The full Hamiltonian is composed of two analogical
terms,

H =
L/2∑
l=1

gxH(x)
2l−1,2l (θ ) + gyH(y)

2l,2l+1(θ ), (1)

FIG. 1. (a) Sketch of the bond structure in the original form.
Here, x (red bonds) and y (green bonds) stand for the γ index, and
bond widths indicate their strengths relatively. (b) Pictorial bond
structure of the rotated Hamiltonian. The shaded region represents
a period of six sites in the U6 rotation.

where L is the chain length and gx (gy) is the strength of the
odd (even) bond. The exchange part contains the Kitaev (K)
interaction and the off-diagonal � interaction, which is given
by

H(γ )
i, j (θ ) = KSγ

i Sγ

j + �
(
Sα

i Sβ
j + Sβ

i Sα
j

)
. (2)

Here, γ could be either x or y, and it refers to the type of
bond that connects spins i and j; see Fig. 1(a). The triad of
{α, β, γ } is {y, z, x} on the x bond and {z, x, y} on the y bond,
respectively. Following a U6 rotation with a period of six sites,
all the cross terms in Eq. (2) are eliminated, leading to the
following form [22]:

H̃(γ )
i, j (θ ) = −KS̃γ

i S̃γ
j − �

(
S̃α

i S̃α
j + S̃β

i S̃β
j

)
, (3)

where the bonds γ = x̃, ỹ, and z̃ circularly, as depicted in
Fig. 1(b). In light of Eq. (3), it can instantly be found that
SU(2) symmetry recovers along two lines K = ±|�|.

As demonstrated in Ref. [27], the Hamiltonian in Eq. (1)
possesses two peculiar properties concerning symmetries in
the parameter space. One is a self-dual relation, which im-
plies that the eigenvalue E of H satisfies E (g) = gE (1/g),
where g ≡ gy/gx is the relative bond strength. The other is a
mirror symmetry with respect to the � axis, i.e., E (K, �) =
E (K,−�). These relations cause us to consider the phase
diagram mainly in the right half circle of Fig. 2(a), where
� � 0 and g ∈ [0, 1].

The interactions are parametrized as K = sin θ and � =
cos θ with θ ∈ (−π, π ], and the ground-state phase diagram
is mapped out by the DMRG method [40–42]. In the DMRG
calculation, we mainly adopt the PBC to remove the edge
effect, while the OBC is also used to study edge excitations.
Given the structure of the unit cell in the U6 rotated basis, we
choose the chain length L to be strictly a multiple of 6. In
addition, up to 2000 block states are kept so as to maintain a
small truncation error of ∼10−7 at most.

Figure 2(a) depicts the full phase diagram within the region
g ∈ [0, 2] and θ ∈ (−π, π ] for the bond-alternating spin-1
K-� chain. In either the FM or AFM Kitaev limit, there is
a gapped Kitaev phase, whose regions shall be distinguished
as the Kitaev-I phase and the Kitaev-II phase, respectively,
for the sake of clarity. The Kitaev phases in the two regions
share the same ground-state and thermodynamic properties,
although the former is more fragile against � interaction. Re-
markably, such an asymmetric stability of the Kitaev phases
in the FM and AFM Kitaev limits also persists in the spin-1/2
analogy and may be a general feature of the K-� model.
For example, in the spin-1/2 K-� chain, it is found that the
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FIG. 2. (a) Quantum phase diagram of the bond-alternating spin-
1 K-� chain with K = sin θ and � = cos θ . The green dash-dotted
line marked “1” denotes the isotropic case of g = 1. Solid black
circles at θ = π/4 and −π/4 represent the hidden SU(2) FM and
AFM Heisenberg chains, respectively. In the right half circle, there
is a Haldane phase, a gapped Kitaev phase whose two regions are
distinguished as Kitaev-I (FM Kitaev region) and Kitaev-II (AFM
Kitaev region) domains, two dimerized phases located at g < 1 and
g > 1, respectively, and three magnetically ordered states termed
FMU6 , MI , and MO (see text for details). (b) Zoom-in region of
0.10π � θ � 0.18π .

FM Kitaev limit is merely a multicritical point while there is
a finite region near the AFM Kitaev side [22,24,27]. In the
spin-1/2 honeycomb-lattice K-� model, the region of the FM
Kitaev QSL is considerably shrunken when compared with
its AFM counterpart [8]. Of note is that the asymmetry is
proposed to come from the interplay of two flux-pair hop-
ping processes, whose magnitudes depend crucially on the
sign of the Kitaev interaction [46]. Going back to the spin-1
K-� chain, by increasing � interaction from the isotropic
FM Kitaev limit, the Kitaev-I phase survives up to |�|/K =
−0.10(1), followed by a Haldane phase which holds a non-
local SOP, a finite excitation gap, and also two gapless edge
modes. The Haldane phase exists in a wide anisotropic re-
gion of 0.60 � g � 1.70, and two partially dimerized phases
are then induced via continuous QPTs. The difference be-
tween the dimerized phases lies in that there is a stronger
x (y)-type bond in the inner (outer) circle of g = 1. Oppositely,
the Kitaev-II phase near the AFM Kitaev limit is more robust
and occupies a larger territory. When K and |�| are compara-

FIG. 3. (a) SOP Oz
H of the Haldane phase and (b) sublattice

magnetization (a, b, c) of the MO phase in the isotropic K-� chain
with g = 1. The length L of the chain is 48, and the results for L = 96
are extremely close (not shown) except for regions around transition
points.

ble, a magnetically ordered state with eightfold ground-state
degeneracy is favored. In addition, two narrow regions of
extra magnetic orderings are induced at modest anisotropy
[see Fig. 2(b)].

III. ISOTROPIC K-� CHAIN

A. Character of the Haldane phase

First of all, let us consider the isotropic spin-1 K-� chain
with g = 1, which is amenable to the revealment of crucial
features of the entire phase diagram. The (K = −1, � = 1)
point at θ = −π/4 is a hidden SU(2) AFM Heisenberg point
whose ground state is the Haldane phase [31]. For this phase,
it owns a (bulk) excitation gap �e � 0.410 479 [47,48] and
possesses a nonlocal SOP defined as [43]

Oz
H = − lim

|q−p|→∞

〈
S̃z

p

( ∏
p<r<q

eiπ S̃z
r

)
S̃z

q

〉
, (4)

where spins are situated in the U6 rotated basis. The gapped
Haldane phase could survive against competing interactions
with θ �= −π/4 since it is a SPT phase which usually under-
goes a QPT with a closure of its excitation gap. To estimate the
region of the Haldane phase, we calculate the SOP Oz

H in the
range of θ ∈ [−π/2, π/2], as presented in Fig. 3(a). Except
for the accidental FM point at θ = π/4 where Oz

H is equal
to the saturated value, Oz

H is robust and suffers from a tiny
finite-size effect in a wide region of −0.4685(5) < θ/π <

0.1270(5). Here, the transition points and the corresponding
error bars are estimated from the vanishing points of SOP.
These values are consistent with the independent estimate
which shall be shown later. With increasing θ , Oz

H slowly
grows deep in the Haldane phase. Specially, the value of Oz

H
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is 0.4935(2) in the pure � limit of θ = 0, which is larger than
the value of 0.3743(1) for the AFM Heisenberg chain [47].
Near phase boundaries, Oz

H has a jump at θt,1 = −0.4685(5)
and varies smoothly around θt,2 = 0.1270(5), indicative of a
first-order and a continuous QPT, respectively.

In the vicinity of the FM SU(2) point, there is a
magnetically ordered phase with an eightfold ground-state
degeneracy. These degenerate states could be unified by the
so-called η notation [49], from which the spins within the
six-site unit cell are

〈S̃1〉 =
⎛
⎝ηxa

ηyb
ηzc

⎞
⎠, 〈S̃2〉 =

⎛
⎝ηxa

ηyc
ηzb

⎞
⎠, 〈S̃3〉 =

⎛
⎝ηxc

ηya
ηzb

⎞
⎠ (5)

and

〈S̃4〉 =
⎛
⎝ηxb

ηya
ηzc

⎞
⎠, 〈S̃5〉 =

⎛
⎝ηxb

ηyc
ηza

⎞
⎠, 〈S̃6〉 =

⎛
⎝ηxc

ηyb
ηza

⎞
⎠. (6)

Here, a, b, c (� 0) satisfy the restriction
√

a2 + b2 + c2 � S
with S = 1, while ηx, ηy, ηz (= ±1) are the Ising variables.
The three η’s are free to choose either 1 or −1 without altering
the energy, giving rise to the degenerate manifold. Figure 3(b)
shows the values of (a, b, c) in the same parameter region
as Fig. 3(a). a and b are equal as a reminiscence of g = 1,
and they compete with c when changing the relative value
of K and �. Since c is always different from a and b, the
phase exhibits an out-of-plane spin structure [cf. Eqs. (5)
and (6)] [27] and thus is termed the MO phase. The MO phase
is found to exist in the parameter range of θt,2 < θ < θt,3,
where θt,3 = 0.3845(5).

The Haldane phase is known to carry a finite excitation
gap, which is the key point of Haldane’s conjecture [31].
We find that finite-size effects of the energy of the ground
state and low-lying excited states are less pronounced in the
PBC, and the numerical result suggests that the Haldane phase
indeed possesses a nonzero excitation gap in the whole region
(not shown). Taking the isotropic � chain (θ = 0) as an ex-
ample, our result indicates that the ground-state energy eg =
−0.962 263 90(3) and the excitation gap �e = 0.229 135(7).
Noteworthily, the entanglement spectrum [50] is twofold
(fourfold) degenerate for the lowest-lying levels under the
OBC (PBC), which is a hallmark of the SPT phase [51].

In addition, the Haldane phase also acquires two free edge
spin-1/2s which account for the fourfold degenerate ground
state in the thermodynamical limit under the OBC [47]. In
the isotropic spin-1 Heisenberg chain with an even number
of sites, the spin-1/2 edge modes are coupled with an effec-
tive AFM interaction. Accordingly, the fourfold degeneracy
is split into a single state and a Kennedy triplet state for
finite-size systems [35]. However, this picture partially breaks
down if |K| �= |�|. To explain this, we have calculated the
first four energy levels Eυ (υ = 0–3) under an open chain
with L = 24. For the sake of comparison, we use the aver-
age energy Ē = (E0 + E1 + E2 + E3)/4 as a reference scale
and introduce a relative energy as ευ = Eυ − Ē . Figure 4
presents ευ in the window of θ/π ∈ [−0.5, 0.2]. Throughout
the Haldane phase, the lowest energy level (black asterisks)
is always unique, while higher ones are partially degenerate.
When θ < −π/4 (i.e., K < −|�|), the quasidegenerate states

FIG. 4. Relative energy ευ = Eυ − Ē among the four quaside-
generate ground states of the Haldane phase under an open chain
with L = 24. The lowest energy level E0 (black asterisks) is unique,
while higher ones are partially degenerate.

are of “1 + 2 + 1” structure, However, they are of “1 + 1 + 2”
structure when θ > −π/4 (i.e., K > −|�|). Higher levels re-
cover as a Kennedy triplet state once θ = −π/4, where the
model is reduced to the spin-1 SU(2) Heisenberg chain.

For the spin-1 Heisenberg chain, the existence of two
edge spin-1/2s could be measured numerically by calculat-
ing the on-site magnetization 〈S̃z

l 〉 in the S̃z
tot = 1 subspace,

which is found to decay exponentially towards the middle
of the chain [47,52]. Notably, the edge states can also be
probed by a couple of experimental methods (see Ref. [53]
and references therein). Unfortunately, detecting the edge
modes is more intractable in our case for the lack of U(1)
symmetry. In this regard, we adopt a cumulant correlation
function Cz

n = 〈S̃z
1→nS̃z

L−n+1→L〉, where S̃z
1→n = ∑n

l=1 S̃z
l and

S̃z
L−n+1→L = ∑n

l=1 S̃z
L+1−l are the accumulated magnetization

on the left and right edges, respectively [54]. Cz
n represents

the correlation between two edge spin-1/2s regardless of the
singlet or triplet sector. We calculate the cumulant correlation
function Cz

n on an open chain with 128 sites, the size of which
is far larger than the correlation length of the Haldane phase.
The behaviors of Cz

n in the Heisenberg chain (θ = −π/4) and
� chain (θ = 0) are shown in Fig. 5. While both curves have
strong oscillations when n is small, they saturate to −1/4 and
−1/6 or so, respectively, as n � 20. We note that, for the
lack of Kitaev interaction, the correlator Cz

n in the � chain
is thus only two-thirds of that in the Heisenberg chain. Given
the discrepancy between the saturated values of the correlator,
we confirm that there are two spin-1/2 edge modes which
interact antiferromagnetically with each other as revealed by
the minus sign of Cz

n.

B. Unusual excitations of the Kitaev phase

We now turn to studying the nature of the Kitaev phase
in the vicinity of two Kitaev limits. In the spin-1 Kitaev
spin chain, the bond-directional Ising interactions allow for
the existence of many Z2 quantities that commute with the
Hamiltonian. To this end, it is natural to introduce an on-site
operator �α

l = eiπSα
l [36], which mutually commutes with the
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FIG. 5. The cumulant correlator Cz
n = 〈S̃z

1→nS̃z
L−n+1→L〉 as a func-

tion of segment n in the Haldane phase under an open chain with L =
128. Cz

n approaches to −1/4 for the Heisenberg chain (θ = −π/4,
red circles) and around −1/6 for the � chain (θ = 0, blue squares).

Hamiltonian and happens to be I − 2(Sα
l )2 for the spin-1 case.

The bond-parity operators Ŵl on the odd and even bonds [37],

Ŵ2l−1 = �
y
2l−1�

y
2l , Ŵ2l = �x

2l�
x
2l+1, (7)

commute with the Hamiltonian of the Kitaev spin chain with
eigenvalues being ±1 (which explains the Z2 nature). In the
Kitaev limit, the ground state is unique under the PBC and
lies in the sector with all Ŵl = +1 [36]. It is gapped with an
extremely short correlation length ξ � 1 since the spin-spin
correlation beyond the nearest-neighbor bonds is extremely
small. The first excited state corresponds to flipping the
eigenvalue of any of the bond-parity operators to −1 while
leaving the rest unchanged, generating an L-fold degenerate
first excited state [37]. We find that the ground-state energy
of the isotropic Kitaev chain is −0.603 560 592(3) [55],
which matches perfectly with a previous estimate using the
exact diagonalization method [36]. Also of interest is that the
energy is very close to that of the two-dimensional spin-1
Kitaev honeycomb model [56].

To capture the QPT driven by � interaction, we define the
averaged bond density

W b = 1

L

L∑
l=1

〈Ŵl〉, (8)

which should still be +1 for the ground state in the Kitaev
limit. Figure 6(a) shows W b as a function of θ for different
lengths L in both FM and AFM Kitaev limits. In the left panel,
W b experiences a dramatic jump at θt,1/π = −0.4685(5) (i.e.,
|�|/K � −0.10), favoring the first-order QPT as revealed by
the SOP of the neighboring Haldane phase [cf. Fig. 3(a)].
However, W b varies smoothly as θ decreases from π/2. To
locate the transition point, we take the first-order derivative of
W b with respect to θ (see inset). It can be observed that there
is a peak whose position is θt,3/π = 0.3845(5). In Fig. 6(b)
we show the excitation gap �e = E1 − Eg, defined as the
energy difference between the ground state (Eg) and the first
excited state (E1), around the transition points. In the range
−0.50π � θ � −0.40π , both the Kitaev-I phase and the

FIG. 6. (a) Bond density W b and (b) excitation gap �e of the
Kitaev phase in the isotropic K-� chain with g = 1. The length L
of the chain is 24 (red circles), 48 (green triangles), and 72 (blue
squares). The inset of (a) shows the first-order derivative of W b with
L = 24, while the inset of (b) presents the entanglement spectrum
of the Kitaev phase (θ = −0.50π and −0.49π ) and Haldane phase
(θ = −0.40π ) with L = 48.

Haldane phase are gapped, and the transition at θt,1 is of
first order due to the level crossing. In addition, the exci-
tation gap of the Kitaev-II phase at θ = 0.50π is equal to
that of the Kitaev-I phase at θ = −0.50π , with a value of
�e = 0.176 349 70(2). Within the Kitaev-II phase, �e de-
creases gradually and is vanishingly small when approaching
the phase boundary of the Kitaev-II-to-MO transition.

So far, we have shown that the Kitaev-Haldane transition
at θt,1/π = −0.4685(5) is a topological first-order transition
which can be recognized by the jumps in nonlocal SOP and
Z2 quantities. Both of the phases are gapped with unique
ground states. The Haldane phase, in particular, is a preem-
inent example of a SPT phase with short-range entanglement.
By contrast, the Kitaev phase is not a SPT phase since its
lowest entanglement spectrum is unique rather than doubly
degenerate. The entanglement spectrum is a quantity which
encodes the spectral information of the subsystem A with a
reduced density matrix ρA. It is defined as − ln λυ , where λυ is
the eigenvalue of ρA with

∑
υ λυ = 1 [50]. The entanglement

spectrum of the Haldane phase is universally known to be dou-
bly degenerate; it is twofold degenerate under the OBC, while
it is fourfold degenerate under the PBC [51]. As shown in the
inset of Fig. 6(b), the Haldane phase at θ = −0.40π indeed
has a fourfold degeneracy entanglement spectrum under the
PBC. However, spectra of the Kitaev phase at θ = −0.50π

and −0.48π are unique, in contradiction to the character of a
SPT phase.

033048-5



QIANG LUO, SHIJIE HU, AND HAE-YOUNG KEE PHYSICAL REVIEW RESEARCH 3, 033048 (2021)

FIG. 7. Distribution of excitation energy ωl in the whole system
(L = 48) under the OBC with (a) g = 1.0 and (b) g = 1.2, respec-
tively. The inset of (a) shows the positions of bond-dependent Z2

quantities Ŵl in an L-site chain. (c) Excitation gap �e as a function
of anisotropy g under the OBC (red circles) and PBC (blue squares)
in the thermodynamic limit (L → ∞).

In the case of the OBC, the Haldane phase has a four-
fold degenerate ground state owing to the two spin-1/2 edge
states. Interestingly, the ground state of the Kitaev phase
under the OBC is also fourfold degenerate, relating to the
breakdown of two marginal Z2 quantities Ŵ1 and ŴL−1; see
the inset of Fig. 7(a). Here, both quantities are situated at
odd bonds, and their eigenvalues are fractional, while the
remaining Z2 quantities are +1. Regarding values of Ŵ1 and
ŴL−1 on the fourfold degenerate ground state, they are some-
what random as a consequence of arbitrary superpositions,
and one of the computations on a 48-site open chain in-
dicates that 〈Ŵ1〉 ∈ {0.6965,−0.8076,−0.8307, 0.9418} and
〈ŴL−1〉 ∈ {0.8647,−0.5202, 0.5520,−0.8965}. The nontriv-
ial observation is that summations of both 〈Ŵ1〉 and 〈ŴL−1〉
within the degenerate ground state are extremely close to zero,
which resemble those of zero edge modes. Above the ground
state, the lowest excitations come from flipping further Z2

quantities Ŵ3 and ŴL−3 near the boundaries. To detect the
trails of excitations, we define the local excitation energy ωl

as

ω2l−1 = 〈
Sx

2l−1Sx
2l

〉
e − 〈

Sx
2l−1Sx

2l

〉
g,

ω2l = 〈
Sy

2l S
y
2l+1

〉
e
− 〈

Sy
2l S

y
2l+1

〉
g
, (9)

where 〈·〉g and 〈·〉e represent the expectation values with
respect to the first and fifth energy levels, respectively.
Figure 7(a) shows the distribution of excitation energy ωl

for the isotropic Kitaev spin chain (g = 1) under the OBC.
It can be found that the excitation energy is indeed localized
in the parts very close to the boundary, with ωl being zero
in the central region. The total excitation gap �e = ∑

l ωl

is 0.115 949 09(2), which is roughly 2/3 of the bulk gap
0.176 349 70(2) reserved in the PBC case.

We propose that the loss of the excitation gap is attributed
to Ising-type couplings and the short correlation length ξ �
1 of the Kitaev spin chain. Because of the OBC imposed,
correlations within the marginal x-type bonds of (1,2) and
(L − 1, L) are enhanced, leading to effective x-type couplings
among these four sites. Hence the excitations are entangled,
and the marginal Z2 quantities are no longer conserved. Be-
cause of the extremely short correlation length, the excitations
are gathered at edges of the chain. Unfortunately, the emergent
Sx

1Sx
L correlation does not contribute to the energy. Instead, it

trammels the excitations and thus reduces the excitation gap.
Our analysis implies that, if excitations are not bounded at
the edges, then the excitation gap �e would not depend on
the boundary condition severely. To check this conjecture,
we consider a stronger y-type bond, say, g = 1.2. We show
the distribution of excitation energy ωl in Fig. 7(b), and it is
clearly found that the excitation comes from the very middle
of the chain. More importantly, the discrepancy of the exci-
tation gap between the OBC and PBC is insignificant. We
have shown the excitation gap �e as a function of anisotropy g
under both the OBC (red circles) and the PBC (blue squares)
in Fig. 7(c). When g � 1.06, the excitations are localized at
edges, and the excitation gap under the OBC is somewhat
smaller.

IV. EFFECT OF IMBALANCED BOND STRENGTH

A. Haldane-dimer transition

In this section we study the effect of imbalanced bond
strength with g �= 1. We recall that our model (1) is re-
duced to the bond-alternating spin-1 Heisenberg chain when
θ = −π/4, which undergoes a Haldane-dimer transition at
g = 0.587(2) that belongs to the Gaussian universality class
with a central charge c = 1 [57–60]. The dimerized phase
is characterized by a stable alternation of nearest-neighbor
spin-spin correlations, which is equivalent to the difference
of 〈S̃z

i S̃z
j〉 between the odd bonds and even bonds within the

six-site unit cell, namely,

Oz
D =

∑
l=1,2,3

∣∣〈S̃z
2l−1S̃z

2l

〉∣∣ − ∣∣〈S̃z
2l S̃

z
2l+1

〉∣∣. (10)

Due to the inherent bond alternation, the transitional symme-
try of the neighboring sites is broken innately. When g < 1,
the x-type bond is stronger than the y type, and vice versa.
Hence the ground state of the dimerized phase is unique with
a finite energy gap.

Figure 8(a) shows the energy gap �e for three different
lengths L = 48, 96, and 144. As g goes from 0 to 2, �e exhibits
two remarkable valleys where the value becomes smaller and
smaller as L is increased. We make a linear extrapolation of
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FIG. 8. (a) Excitation gap �e of the dimerized phase and the
Haldane phase in the pure � chain with θ = 0. The length L of
the chain is 48 (red circles), 96 (green triangles), and 144 (blue
squares). Inset: Extrapolations of the minimal excitation gaps around
the transition points marked by the diamonds and stars, respectively.
(b) SOP Oz

H of the Haldane phase (solid symbols) and dimer order
parameter Oz

D of the dimerized phase (open symbols) as a function
of g.

the series of minimal values around each valley marked by a
pink diamond (g < 1) or a cyan star (g > 1), and it is shown
in the inset that the excitation gap �e indeed closes at the
transition point in the thermodynamic limit. Noteworthily, we
find that the transition points are gt,1 = 0.613(2) and gt,2 =
1.633(2), satisfying the self-dual relation as gt,1 · gt,2 � 1.
In Fig. 8(b), the SOP Oz

H [see Eq. (4); solid symbols] of
the Haldane phase and the dimer order parameter Oz

D [see
Eq. (10); open symbols] of the dimerized phase are plotted in
the window of g ∈ [0, 1]. It is found that Oz

H is finite when
g > 0.613(2) and is vanishingly small otherwise. Although
Oz

D is nonzero as long as g �= 1, it changes abruptly on the
brink of the Haldane phase. We have taken the first-order
derivative of Oz

D (not shown), and the peak position coincides
with the critical point gc = 0.613(2) where the SOP of the
Haldane phase nicely vanishes.

B. Magnetically ordered phases

As demonstrated, the dimerized phase is favored by suffi-
cient bond alternation. In the case of strong anisotropy where
g � 0.4 or g � 2.5, there is a direct transition between the
dimerized phase and the MO phase. Otherwise an interme-
diate region is stabilized as a consequence of the interplay
between competing interactions and modest bond alternation.
A more careful inspection shows that it harbors two magneti-
cally ordered states [see Fig. 2(b)] with distinct spin patterns.

FIG. 9. Sublattice magnetization (a, b, c) of the FMU6 phase, MI

phase, and MO phase in a 72-site K-� chain with g = 2.

On the side near the dimerized phase, it is a FMU6 phase whose
spins align along one specific direction of ±x̂, ±ŷ, or ±ẑ. For
example, it could be

(〈S̃1〉, 〈S̃2〉, 〈S̃3〉; 〈S̃4〉, 〈S̃5〉, 〈S̃6〉)= (c, b, b; c, a, a)ẑ, (11)

where a, b, and c are intensities of the magnetization along the
ẑ direction and a, b, c � 1. The other is an in-plane magnetic
phase (termed MI ), where one of the spin components is zero.
We find that spins within the magnetic unit cell read

〈S̃1〉 =
⎛
⎝c

0
c

⎞
⎠, 〈S̃2〉 =

⎛
⎝a

0
b

⎞
⎠, 〈S̃3〉 =

⎛
⎝a

0
b

⎞
⎠ (12)

and

〈S̃4〉 =
⎛
⎝b

0
a

⎞
⎠, 〈S̃5〉 =

⎛
⎝b

0
a

⎞
⎠, 〈S̃6〉 =

⎛
⎝c

0
c

⎞
⎠. (13)

For this phase, the value of a, b, c should be bounded by√
a2 + b2 � 1 and c � 1/

√
2.

The series of QPTs between the magnetically ordered
states could be signified by the magnetization of (a, b, c).
In this regard, we focus on the line of g = 2.0 (which is
equivalent to g = 0.5 because of the self-dual relation) and
calculate these values from the spin-spin correlation functions
on a chain of length L = 72. Figure 9 shows the values of (a,
b, c) as a function of θ in the range 0.10π � θ � 0.18π . Due
to the finite-size effect, a, b, and c are nonzero but very tiny
when θ/π < 0.1345(5). We have checked that they will even-
tually go to zero in the thermodynamic limit. As θ exceeds
0.1345(5), the system enters into the FMU6 phase, whose val-
ues of (a, b, c) are accidentally bigger than 1/2. Afterwards,
the system undergoes another two first-order QPTs at which
the ground state evolves from the MI phase to the MO phase,
respectively.

V. DOUBLE-PEAK SPECIFIC HEAT
IN THE KITAEV PHASE

In this section we go beyond the ground-state study by
calculating thermodynamic quantities in the spin-1 Kitaev

033048-7



QIANG LUO, SHIJIE HU, AND HAE-YOUNG KEE PHYSICAL REVIEW RESEARCH 3, 033048 (2021)

TABLE I. Energy spectrum of the spin-1 Kitaev spin model on
a six-site closed chain. The first four columns are the energy level
index υ, energy Eυ , degeneracy ρυ , and energy gap �υ = Eυ − E0.
The last column (�̃υ ) represents the approximation of the energy gap
�υ in a unit of �κ ≈ 0.180 185 74.

υ Eυ ρυ �υ �̃υ/�κ

0 −3.63027662 1 0.00000000 0
1 −3.45009088 6 0.18018574 1
2 −3.38928222 6 0.24099440 ∼4/3
3 −3.33005874 2 0.30021788 ∼5/3

chain to elucidate the unusual excitations of the Kitaev phase.
We recall that the specific heat Cv of the spin-1/2 Kitaev
honeycomb model is well recognized to exhibit a double-peak
structure at two different energy scales, signifying two kinds
of Majorana fermions resulting from fractionalization of spin
degrees of freedom [2]. The high-temperature peak relates to
the enhancement of short-range spin-spin correlations, while
the low-temperature peak comes from freezing of fluxes [3].
In addition, the thermal entropy displays an approximately
half plateau with the value 1

2 ln 2kB per site in the intermediate
crossover region, in accordance with a half release of entropy
around each peak. Moreover, existence of double-peak spe-
cific heat is also reported in the spin-1 Kitaev honeycomb
model; yet the precise position of the low-temperature peak
is blurry because of the strong finite-size effect [17]. We
note in passing that there has been a renascent interest in the
thermodynamics of the Kitaev QSL quite recently [61–64].

In contrast to the spin-1/2 Kitaev chain, which only pos-
sesses a sole peak in the specific heat (see Appendix A for
detail), our study unambiguously suggests that the spin-1
Kitaev chain displays a double-peak specific heat. To illus-
trate this, we begin by introducing the partition function � =
Tre−βH with β = 1/kBT (hereinafter, the Boltzmann constant
kB = 1), which is generally the starting point to calculate
thermodynamic quantities. Consequently, the free energy is
F = −β−1 ln �, and the internal energy is U = − ∂ ln �

∂β
. The

specific heat is thus calculated by

Cv = 1

N

(
∂U

∂T

)
V

= −β2

N

∂U

∂β
, (14)

and the thermal entropy is given by

S = β

N
(U − F ) = S0 +

∫ T

0

Cv (T ′)
T ′ dT ′, (15)

with S0 being the residual entropy at zero temperature.
The direct way to calculate the partition function � is

by diagonalizing the Hamiltonian from which the entire en-
ergy spectrum {Eυ} is readily available. Needless to say, this
route is strongly limited by the system size, and we consider
a six-site closed chain for simplicity. Surprisingly, physical
quantities such as Cv and S suffer from a weak finite-size
effect, and the results are fairly close to those in the thermody-
namic limit. The first few energy levels are shown in Table I,
and their degeneracies ρυ are {1, 6, 6, 2, . . .}.

A more reliable way to obtain � is by virtue of finite-
temperature computational techniques such as the TMRG

FIG. 10. Temperature dependencies of (a) specific heat Cv ,
(b) thermal entropy S, and (c) expectation values of W b and Sb

obtained by the TMRG method. Results on a six-site closed chain
(black dotted line) are also shown in (a) and (b) for comparison.
Based on the energy spectrum shown in Table I, (a) also presents
the specific heat of two-level (pink dashed line) and four-level (blue
dash-dotted line) systems around the low-T peak.

method [44,45], which is an extension of the DMRG method
to finite temperature (T �= 0). The TMRG method relies on
the quantum-classical correspondence by way of the Trotter-
Suzuki decomposition and represents the partition function as
a trace of a series of transfer matrices. It deals directly with
an infinite spin chain, and the errors come from the Trotter-
Suzuki step τ = β/M (M is the Trotter-Suzuki number) and
truncated number of states m [44,45]. We note that an addi-
tional reorthogonalization procedure is applied so that more
block states can be kept [65]. The TMRG method has been
successfully applied to various quantum spin chains, where
several thermodynamic quantities such as specific heat and
magnetic susceptibility could be calculated with high preci-
sion [66–69]. For the sake of accuracy, we fix τ = 0.01 and
m = 1024, which is enough to give a satisfactory precision in
our simulation down to the lowest temperature of 0.0033.

Figure 10(a) shows the specific heat Cv as a function of
temperature T up to 10. Here, the exact result on an ex-
tremely small system size of L = 6 (black dotted line) and
the TMRG calculation on an infinite-size system (red solid
line) are shown. It can be found that Cv is almost system-size
independent as the difference between the two limit cases is
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quite small. The specific heat Cv acquires two peaks at a low
temperature Tl � 0.0582 and a high temperature Th � 0.5860,
respectively. The low-temperature peak is more pronounced,
and we propose that it relates to the large degeneracy of
the low-lying excited states. To demonstrate this, we firstly
consider a two-level system which consists of the ground state
and the first excited state out of the six-site closed chain (see
Table I). The degeneracies of the two states are ρ0 = 1 and
ρ1 = 6, respectively, with an energy gap �κ ≈ 0.180 185 74
between them. For this system, the partition function � =
ρ0 + ρ1e−β�κ , and the specific heat is

Cv = ρ1

ρ0

(β�κ )2(
eβ�κ/2 + ρ1

ρ0
e−β�κ/2

)2 , (16)

which depends on the energy gap �κ and relative degen-
eracy ρ1/ρ0 = 6. The specific heat in Eq. (16) shows a
peak at the extreme temperature Tp = �κ/xp, where xp =
3.235 652 05 · · · is determined by the transcendental equation
x−2
x+2 ex = ρ1/ρ0 = 6. This yields the extreme temperature Tp ≈
0.0557, which is fairly close to Tl � 0.0582. The drawback
of this oversimplified approximation is that the intensity of
the specific heat is smaller than the actual value. However,
the intensity could be significantly improved by considering a
four-level system with a partition function

� = ρ0 + ρ1e−β�κ + ρ2e−4β�κ/3 + ρ3e−5β�κ/3. (17)

The corresponding specific heat is also shown in Fig. 10(a)
(blue dash-dotted line), and the position and extremum are
both close to the TMRG result on the infinite system. With
increasing system size, the dimension of the Hilbert space will
enlarge exponentially, and a further multilevel system should
be considered to reproduce the low-T peak (see Appendix B
for a discussion on a 12-site closed chain).

Figure 10(b) shows the behavior of entropy S defined in
Eq. (15). The entropy decreases from its saturated value of ln 3
rapidly with the lowering of the temperature in the neighbor-
hood of Th and Tl . The half plateau of the entropy is smeared
out in the intermediate region between the two temperature
scales. Instead, a shoulder in entropy is observed, and the
entropy becomes ∼ 1

2 ln 3 at a temperature of Tm � 0.20. Inter-
estingly, this is exactly the same temperature at which specific
heat shows its local minimum. To understand the physical
mechanisms of the double-peak structure in the specific heat,
we calculate the averaged bond density W b [see Eq. (8)] and
the averaged nearest-neighbor correlator

Sb = 1

L

∑
〈i j〉γ

〈
Sγ

i Sγ
j

〉
. (18)

The results of W b and Sb are shown in Fig. 10(c). Below the
low-T peak at Tl , W b is almost unchanged with a value of
∼1. It then decreases to 1/9 successively with the increase
in temperature in the intermediate region [70]. Therefore the
low-T peak originates from the local conserved quantity. On
the other hand, the high-T peak is closely related to the growth
of short-range spin-spin correlations. Above the high-T peak
at Th, Sb is very small, signifying a paramagnetic phase. It is
then enhanced dramatically by decreasing the temperature and

FIG. 11. Temperature dependencies of (a) specific heat Cv and
(b) entropy S of the anisotropic spin-1 Kitaev chain in the infinite-
size system. The anisotropy g is 1.0 (red), 1.2 (cyan), 1.5 (pink), 1.8
(blue), and 2.0 (green).

is stabilized around 0.60, which is merely the absolute value
of the ground-state energy of the isotropic spin-1 Kitaev chain.

We would emphasize that the double-peak specific heat is
a universal behavior of the Kitaev phase in spite of anisotropy
g. For this purpose, we have calculated the specific heat and
entropy for several different g up to 2.0; see Fig. 11. It can
be found that the high-T peak is very pronounced while the
low-T peak is shifted to a lower temperature as g is increased.
As can be seen from Fig. 11(b), there is a 1

2 ln 2 plateau of
entropy in the middle region, and the plateau will last for a
larger temperature scale with increasing anisotropy. Thus, in
the large-anisotropy limit where g is infinity (or equivalently,
g → 0), the low-T peak vanishes, and there is a residual en-
tropy at the zero temperature due to the 2L/2-fold ground-state
degeneracy. In this circumstance, a spin-1 Ising bond of either
x type or y type is capable of revealing the residual entropy.
The energy spectrum of this two-site model is {−1, 0, 1},
with a degeneracy of {2, 5, 2}, respectively. Thus the partition
function is known to be � = 4 cosh(βK ) + 5. According to
Eq. (15), we arrive at the entropy

S = 1

2
ln[4 cosh(βK ) + 5] − 2(βK ) cosh(βK )

4 cosh(βK ) + 5
. (19)

For large enough temperature, the entropy in Eq. (19) is
expected to yield ln 3. As T becomes infinitely small, we
find that S (T → 0) = 1

2 ln 2. In this circumstance, the low-
temperature peak in the specific heat disappears, and the
sole peak locates at T � 0.3896 with the maximal value
C̄v � 0.4974.
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VI. CONCLUSION

In this paper, we studied a bond-alternating spin-1 K-�
chain, focusing on the nonmagnetic Haldane phase and Kitaev
phase that exhibit unusual excitations. The Haldane phase
is an outstanding example of a SPT phase which is gapped
with short-range entanglement, while the Kitaev phase is a
one-dimensional incarnation of the Kitaev QSL and is not a
SPT phase since its lowest entanglement spectrum is unique.
Whereas both of the phases have unique ground states under
the PBC, the degeneracies of the first excited states are dif-
ferent. It is triplet degenerate for the former, while it is L-fold
degenerate (with L being the chain length) for the latter as a
result of the bond-resolved Z2 quantities. Interestingly, they
both possess fourfold degenerate ground states in the case of
the OBC. The degeneracy in the Haldane phase comes from
the spin-1/2 edge states, while it originates from two marginal
Z2 quantities in the Kitaev phase. On top of the degenerate
ground state in the Kitaev phase, the spatial profile of the ex-
citations highly relies on the relative bond strength g ≡ gy/gx.
The excitations are confined at the boundaries of the chain
when g � 1.06 and locate at the very middle otherwise. In the
former case, the excitations at edges are entangled, weakening
the excitation gap as compared with its PBC counterpart. The
quantum phase diagram also contains two dimerized phases
which undergo continuous QPTs to the Haldane phase when
tuning the anisotropy g. In addition, three magnetically or-
dered states are identified, of which the MO phase is the
most energetically favored and is situated alongside the AFM
Kitaev phase.

We also investigated the thermodynamic behaviors of the
Kitaev phase, which is found to exhibit a fascinating double-
peak structure in the specific heat. During the low-temperature
and high-temperature crossover region, the entropy is released
gradually without generating a plateau. Pertaining to the ori-
gin of the double peaks, we propose that the high-temperature
peak relates to the enhancement of nearest-neighbor spin cor-
relation while the low-temperature peak comes from freezing
of Z2 quantities and is relevant to the highly degenerate
low-lying excited states. We also find that the double-peak
specific heat is robust against anisotropy g, although the low-
temperature peak is shifted to lower temperature steadily as g
deviates from 1. Notably, a 1

2 ln 2 plateau of entropy appears
in the crossover region.

In closing, we would like to make some remarks on the
connection between the Kitaev phase and the sought-after
QSL in the spin-1 Kitaev honeycomb model [17–20]. The
spin-1 Kitaev QSL has been gaining much attention over the
years because of the growing interest in high-spin Kitaev
materials [16]. For both phases, there is no spontaneous sym-
metry breaking in the ground states, and they are gapped with
extremely short range spin-spin correlations. Noteworthily,
they both exhibit anomalous double peaks in their specific
heat. However, the intrinsic nature of the one-dimensional
gapped Kitaev phase remains to be explored in future works.
For example, it would be intriguing to know to which class
the Kitaev phase belongs from the perspective of symmetry
fractionalization [71]. Also, calculation of the low-energy ex-
citation spectrum from the dynamic structure factor is capable
of probing elementary excitations [72]. On all counts, by using

a high-precision numerical study of the Kitaev phase, our
work would offer some insights into the spin-1 Kitaev QSL
on the honeycomb lattice.
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APPENDIX A: SPECIFIC HEAT OF THE SPIN-1/2
KITAEV CHAIN

The Hamiltonian of the Kitaev spin chain reads [73,74]

HK =
L/2∑
l=1

(
gxSx

2l−1Sx
2l + gySy

2l S
y
2l+1

)
, (A1)

where Sl = (Sx
l , Sy

l , Sz
l ) is the spin-1/2 operator at site l and L

is the total number of sites. By using a spin duality transfor-
mation, it could be rewritten as [10]

HK =
L∑

l=1

(
gxS̃x

2l S̃
x
2l+2 + gy

2
S̃y

2l

)
, (A2)

which is a diluted transverse field Ising model. For this model,
the specific heat is exactly known as [75]

Cv = 1

2

∫ π

0

dk

π

(
βεk

2

)2

sech2

(
βεk

2

)
, (A3)

where β = 1/(kBT ), and the dispersion energy is εk =
gx

√
1 + g2 + 2gcos k/2 with g = gy/gx. We note that the

prefactor 1/2 in Eq. (A3) comes from the fact that only one-
half of the spins (i.e., spins at even sites) are involved in the
Hamiltonian of Eq. (A2).

Figure 12(a) shows the specific heat Cv of the isotropic
(g = 1) spin-1/2 Kitaev chain in a finite-size system of L = 6
(red), L = 8 (green), L = 10 (blue), and L = 12 (pink). It
can be found that there is a pronounced peak at T � 0.3162,
below which there is a subleading peak at a lower temperature
which becomes smaller and smaller as L is increased. We
emphasize that the low-temperature peak is a finite-size effect
and it will disappear as L goes to infinity (see the thick black
line). As shown in Fig. 12(b), a linear extrapolation of the
subleading peaks indeed gives a zero value when L → ∞. In
the low-temperature region where T � 0.1, the specific heat
is subject to the asymptotic behavior Cv (T ) � πT/6 [76],
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FIG. 12. (a) Specific heat Cv of the isotropic (g = 1) spin-1/2
Kitaev chain on a closed chain of length L = 6 (red), 8 (green), 10
(blue), and 12 (pink). The solid circles mark the extreme subleading
peaks C̄v at the given chain length. The thick solid line represents
the exact specific heat [see Eq. (A3)] in the thermodynamic limit.
(b) Linear extrapolation of the subleading peaks C̄v to the infinite-size
limit.

signifying a gapless system. This, in turn, demonstrates the
dramatic difference between the spin-1/2 and spin-1 Kitaev
chains as the latter is gapped and presents a stable double-peak
structure in the specific heat.

APPENDIX B: LOW-TEMPERATURE PEAK
IN A 12-SITE SPIN-1 KITAEV CHAIN

In Fig. 10(a), we have demonstrated that the low-T peak
of the specific heat in the spin-1 Kitaev chain relates to the
large degeneracy of the low-lying excited states. To further

FIG. 13. Specific heat Cv of the isotropic (g = 1) spin-1 Kitaev
chain. The thick black line represents the TMRG result on an infinite-
size system. Based on the energy spectrum of a 12-site closed chain,
the specific heat on a two-level ansatz (with the first 13 energy levels,
red dot-dashed line) and a nine-level ansatz (with the first 103 energy
levels, blue dotted line) is shown around the low-temperature peak.

strengthen such a conclusion, we now show the evolution of
the low-T peak by increasing the number of energy levels in
a 12-site closed chain. For this system, the ground state is
unique while the first excited state is 12-fold degenerate, sep-
arated by an excitation gap �κ ≈ 0.176 303 43. Furthermore,
the degeneracies of the first nine energy levels are successively
{1, 12, 12, 12, 6, 12, 12, 24, 12}. Figure 13 shows the low-T
peak based on a two-level ansatz (with the first 13 energy
levels, red dot-dashed line) and a nine-level ansatz (with the
first 103 energy levels, blue dotted line). The TMRG result
(thick black line) is also shown for comparison. We find that
the two-level system could roughly recover the low-T peak,
although the position and height of the peak deviate from
the TMRG result. However, the nine-level system with 103
energy levels could significantly improve the result. We note
that the number of energy levels is only a rather small portion
(∼2 × 10−4) of the whole energy spectrum whose dimension
is 312 = 531 441. With the increase in the system size, we
believe that an even smaller portion of the whole energy levels
will nicely produce the low-T peak. In this sense, we highlight
the importance of the degenerate low-lying excited states in
generating the low-temperature peak of the specific heat.
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