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Theory of classical metastability in open quantum systems
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We present a general theory of classical metastability in open quantum systems. Metastability is a consequence
of a large separation in timescales in the dynamics, leading to the existence of a regime when states of the system
appear stationary, before eventual relaxation toward a true stationary state at much larger times. In this work, we
focus on the emergence of classical metastability, i.e., when metastable states of an open quantum system with
separation of timescales can be approximated as probabilistic mixtures of a finite number of states. We find that
a number of classical features follow from this approximation, for the manifold of metastable states, long-time
dynamics between them, and symmetries of the dynamics. Namely, those states are approximately disjoint and
thus play the role of metastable phases, the relaxation toward the stationary state is approximated by a classical
stochastic dynamics between them, and weak symmetries correspond to their permutations. Importantly, the
classical dynamics is observed not only on average but also at the level of individual quantum trajectories: We
show that time coarse-grained continuous measurement records can be viewed as noisy classical trajectories,
while their statistics can be approximated by that of the classical dynamics. Among others, this explains how
first-order dynamical phase transitions arise from metastability. Finally, to verify the presence of classical
metastability in a given open quantum system, we develop an efficient numerical approach that delivers the set of
metastable phases together with the effective classical dynamics. Since the proximity to a first-order dissipative
phase transition manifests as metastability, the theory and tools introduced in this work can be used to investigate
such transitions—which occur in the large size limit—through the metastable behavior of many-body systems
of moderate sizes accessible to numerics.
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I. INTRODUCTION

With continuing advances in the control of experi-
mental platforms used as quantum simulators, such as
ultracold atomic gases, Rydberg atoms, and circuit quantum-
electrodynamics [1–7], a broad range of nonequilibrium
phenomena of open many-body quantum systems has been
observed recently. Theoretical studies have progressed via
the combination of methods from atomic physics, quantum
optics, and condensed matter, giving rise to a range of tech-
niques, including quantum jump Monte Carlo (QJMC) [8–12]
simulations via tensor network [13], and field theoretical ap-
proaches [14–16].

Often the focus of studies on nonequilibrium open many-
body quantum systems is a phase diagram of the stationary
state, and the related question of the structure of dissipative
phase transitions occurring in the thermodynamic limit of

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

infinite system size. This includes whether such systems can
exhibit bistability (or multistability) of the stationary state,
a topic covered both theoretically [17–21] and experimen-
tally [22,23], and which order parameters are relevant for
distinguishing the coexisting phases. Mean-field results often
suggest multiple stationary states in the thermodynamic limit
[16,24,25]; however, more sophisticated (albeit still approx-
imate) techniques such as variational approaches [26–28],
perturbative expansions in lattice connectivity [25,29], infinite
tensor network simulations [13], or a field-theoretical analysis
[16] can still indicate a unique stationary state.

While it is unusual to see phase transitions at finite system
sizes [30–33], first-order phase transitions in stationary states
manifest at large enough finite system sizes [34] through the
occurrence of metastability, i.e., distinct timescales in the
evolution of the system statistics: classically, in the proba-
bility distribution over configuration space [35–39]; quantum
mechanically, in the density matrix [40,41]. The statistics of
such systems at long times can be understood in terms of
metastable phases which generally correspond to the phases
on either side of the transition being distinct from the unique
stationary state for a given set of parameters. Therefore,
already at a finite system size the structure of a possible
first-order dissipative phase transition can be fully determined

2643-1564/2021/3(3)/033047(26) 033047-1 Published by the American Physical Society

https://orcid.org/0000-0002-9814-164X
https://orcid.org/0000-0001-5390-8635
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.033047&domain=pdf&date_stamp=2021-07-12
https://doi.org/10.1103/PhysRevResearch.3.033047
https://creativecommons.org/licenses/by/4.0/


KATARZYNA MACIESZCZAK et al. PHYSICAL REVIEW RESEARCH 3, 033047 (2021)

by investigating metastable states of the system [41,42], which
is of particular importance for many-body open quantum sys-
tems, where exact methods are often limited to numerical
simulations of finite systems of modest size.

Metastability can also emerge in complex relaxation to-
ward a unique stationary state, even without a phase transition
present in the thermodynamic limit. This is the case in clas-
sical kinetically constrained models [43–48] and spin glasses
[49] and recent open quantum generalizations of the models in
Refs. [50–52] and Ref. [53], respectively. Here, the study of
metastability can unfold the long-time dynamics responsible
for the complex relaxation to the stationary state [54], with
metastable phases corresponding to dynamical rather than
static phases.

For classical systems with Markovian dynamics [35–39]
and open quantum systems [40,56] described by the master
equation formalism [57,58], metastability necessarily requires
a large separation in the spectrum of the master operator
governing the system evolution. This separation leads to
metastable states residing in a space of a reduced dimension
given by the slow eigenmodes of the master operator, and
long-time dynamics taking place within that space. Since the
slow modes themselves do not represent system states, a gen-
eral structure of the metastable manifold (MM) is not known,
but conjectured to feature disjoint phases, decoherence free
subspaces and noiseless subsystems, while the long-time dy-
namics is expected to be analogous to perturbative dynamics
on such states [40].

In this work, we comprehensively prove this conjecture for
classical metastability in open quantum systems. We define
classical metastability as the case, where metastable states can
be approximated as probability distributions over a set of m
states, where m − 1 is the number of slow eigenmodes in the
dynamics. We then show that this definition is equivalent to a
simple geometric criterion, which can be verified using the
exact diagonalization of the master operator. Crucially, the
corresponding corrections play the role of a figure of merit
in emergent classical properties of the manifold of metastable
states and its long-time dynamics. Namely, we show that, for
classical metastability, m states can be considered as distinct
metastable phases, as they are approximately disjoint and
orthogonal to one another, while their basins of attraction form
the set of m order parameters to distinguish them. Further-
more, we find that the long-time dynamics of the system can
be approximated as a classical stochastic dynamics between
the metastable phases. This holds in the average system dy-
namics as well as in individual quantum trajectories [12,59],
as obtained via individual runs of an experimental system
or from QJMC simulations, where classical trajectories arise
via coarse graining of these in time. The classical dynamics
between the metastable phases is then responsible for the
occurrence of intermittence [24,41,51] or dynamical hetero-
geneity [50,52] in quantum trajectories, leading to multimodal
statistics of continuous measurements and system proximity
to a first-order dynamical phase transition [60]. Therefore,
classical metastability is a phenomenon occurring not only on
average, but in dynamics of individual quantum trajectories.
All these results are also discussed in the presence of further
hierarchy of relaxation timescales. Finally, while our approach
does not rely on the presence of any weak symmetries of

the dynamics [61–63] (cf. Ref. [42]), we also show that the
set of metastable phases is approximately invariant under any
present symmetries. Thus, weak symmetries lead to approxi-
mate cycles of metastable phases and permutation symmetries
of the classical long-time dynamics, and, as such, we find that
any nontrivial continuous symmetries of slow eigenmodes of
the dynamics preclude classical metastability.

To verify the classicality of metastability present in
a general open quantum system and uncover the set of
metastable phases together with the effective structure of
long-time dynamics, we develop an efficient numerical tech-
nique, which can be further simplified when a dynamical
symmetry is present. Our approach relies on the ability to
diagonalize the system master operator, which is usually
possible only for moderate system sizes, while metasta-
bility may become prominent only for large system sizes.
To mitigate this potential issue, we show that for classi-
cal metastability accompanied by intermittence or dynamical
heterogeneity in quantum trajectories, metastable phases can
be extracted from quantum trajectories through the use of
large-deviation methods, such as the “thermodynamics of tra-
jectories” [24,51,60,64,65]. Therefore, there is potential to
study classical metastability using QJMC simulations, which
are generally feasible at quadratically larger system sizes than
exact diagonalization of the generator.

This paper is organized as follows. In Sec. II, we review
the results of Ref. [40]. In Sec. III, we introduce the general
approach to classical metastability in open quantum systems.
We then discuss the resulting classical structure of the MM in
Sec. IV. The effectively classical system dynamics emerging
at large times is discussed in Sec. V. We refine these general
results considering symmetries of the system dynamics in
Sec. VI. Finally, we introduce numerical approaches to unfold
the structure of classical metastability in Sec. VII. Details
and proofs of our results are presented in the Supplemental
Material [55]. Our results are illustrated in Figs. 1–5 with
a system in proximity to an effectively classical dissipative
phase transition occurring at finite size. We discuss classical
metastability arising for such systems in Sec. A of the Supple-
mental Material [55]. The application of the general methods
introduced in this paper to a many-body system beyond this
class is given in the accompanying paper [54] which studies in
detail the metastability of the open quantum East glass model
[50].

II. METASTABILITY IN OPEN QUANTUM SYSTEMS

We begin by reviewing the spectral theory of metastability
of Ref. [40]. We then introduce a quantitative description of
those results by considering the corrections to the stationarity
during the metastable regime. In the next section, we build
on this to understand when metastability in open quantum
systems becomes classical, which is the main focus of this
work.

A. Dynamics of open quantum systems

We consider a finitely dimensional open quantum sys-
tem with ts average state at time t described by a density
matrix ρ(t ) evolving according to a master equation as
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dρ(t )/dt = L[ρ(t )], where the master operator [57,58]

L(ρ) = −i[H, ρ] +
∑

j

(
JjρJ†

j − 1

2
{J†

j J j, ρ}
)

. (1)

Here, H is the system Hamiltonian, while the jump operators
Jj provide coupling of the system to the surrounding environ-
ment (in this work we explicitly denote any time dependence;
in particular, the master equation is time-independent). If the
interactions between the system and the environment are as-
sociated to emissions of an energy quanta, then the action
of jump operators can be detected through continuous mea-
surements [59], e.g., counting of photons emitted by atoms
coupled to the vacuum electromagnetic field [24,50–52].
Equation (1) is a general dynamics of a time-homogeneous
Markovian open quantum system [57,58], which arises for
systems interacting weakly with an effectively memoryless
environment [59].

Since the master operator L acts linearly on ρ(t ), the
evolution can be understood in terms of its eigenmatrices Rk

and their corresponding eigenvalues λk = λR
k + i λI

k [66]. The
real parts of these eigenvalues are not greater than 0, λR

k � 0,
as the dynamics in Eq. (1) is (completely) positive and trace
preserving; we order the eigenvalues by decreasing real part
λR

k . In particular, zero eigenvalues correspond to stationary
states [61,67]. In this work, we assume a generic case of a
unique stationary state R1 = ρss [30–33]. The system state at
time t can be then decomposed as

ρ(t ) = etL[ρ(0)] = ρss +
∑
k�2

cketλk Rk, (2)

where the coefficients ck ≡ Tr[Lkρ(0)] are bounded by the
eigenvalues of Lk , with Lk being eigenmatrices of L† normal-
ized such that Tr(LkRl ) = δkl (there is a freedom of choice to
normalize by scaling either Rk or Lk). The values of these coef-
ficients for a given physical state are closely tied, such that the
corresponding linear combination of Rk results in a positive
matrix. We refer to Lk and Rk as left and right eigenmatrices
(eigenmodes), respectively. Note that the trace preservation
of the dynamics implies that L1 = 1, and thus beyond ρss

other right eigenmatrices do not correspond to quantum states,
Tr(Rk ) = Tr(L1Rk ) = 0 for k � 2. The timescale τ of the final
relaxation to ρss from Eq. (2) can be seen to depend on the gap
in the spectrum, τ � −1/λR

2 .

B. Spectral theory of metastability

Metastability corresponds to a large separation in the real
part of the spectrum [40], λR

m/λR
m+1 � 1, which denotes the

ratio of eigenvalues being of a lower order than 1; see
Fig. 1(a). Time t after the initial relaxation correspond to the
terms beyond the m-th in the sum in Eq. (2) being negligible,
etλk ≈ 0 for k � m + 1, and the reduced expansion

ρ(t ) = ρss +
m∑

k=2

cketλk Rk + · · · , (3)

where ... stands for negligible corrections [cf. Eq. (2)].
When the separation in the spectrum is big enough, it is

possible to further consider times when decay of the remain-
ing terms can be neglected, etλR

k ≈ 1 for k � m; cf. Ref. [68].

FIG. 1. Metastability in Markovian open quantum systems:
(a) Metastability corresponds to a separation in the real part of master
operator spectrum, between m−1 slow (blue dashed) and fast modes
(black solid), while the stationary state corresponds to 0 eigenvalue
(red solid); here m = 4. (b) The manifold of metastable states is de-
scribed by coefficients ck [Eq. (4)], k = 2, . . . , m, of decomposition
between slow modes (dots for random initial pure states). The long-
time dynamics takes place within that manifold, with the exponential
decay of the coefficients toward the stationary state (red sphere)
[Eqs. (3) and (5)]. Metastability can be observed experimentally as
a plateau in the dynamics of observable averages (c) or two-point
correlations (d) appearing during the metastable regime [Eqs. (8) and
(9)]. Black (solid) lines show observable dynamics, blue (dashed)
lines the approximation by slow modes holding after the initial relax-
ation, and red (solid) lines the stationary value achieved after the final
relaxation. (e) Long timescales can also be observed in continuous
measurement records, e.g., as intermittence in detection of quanta
emitted due to jumps occurring in the system (two types shown in
blue and red; gray - without associated quanta), with regimes of
jump activity having a length comparable to the long-time relaxation
timescale. See Sec. A1 in Ref. [55] for details on the model.

This is the metastable regime, during which the system state
is approximately stationary, i.e., metastable, as captured by

ρ(t ) = ρss +
m∑

k=2

ckRk + · · · ≡ P[ρ(0)] + · · · , (4)
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where we defined P as the projection onto the low-lying
eigenmodes of the master operator, which is trace and Her-
miticity preserving [69]. From Eq. (4) the manifold of
metastable states is fully characterized by the bounded coef-
ficients (c2, . . . , cm) and thus it is (m − 1)-dimensional. The
MM is also convex, as a linear transformation of the convex
set of initial states [see Fig. 1(b)].

At later times, only the slow modes contribute to the
evolution [cf. Eq. (3)]. Therefore, the dynamics toward
the stationary state takes place essentially inside the MM
[see Fig. 1(b)],

ρ(t ) = etLMMP[ρ(0)] + · · · , (5)

and is generated by [cf. Figs. 1(c) and 1(d)]

LMM ≡ PLP . (6)

Denoting by τ ′′ the timescale of the initial relaxation, from
Eq. (3) we have τ ′′ � −1/λR

m+1. Similarly, for τ ′ being the
smallest timescale of the long-time dynamics we have τ ′ �
−1/λR

m from Eq. (5). Then for times within the metastable
regime we have τ ′′ � t � τ ′ from Eq. (4) [cf. Fig. 1(b)].

Metastability can be observed in the behavior of statistical
quantities such as expectation values or autocorrelations of
system observables [40,41,70]. For a system observable, e.g.,
spin magnetization, we have

〈O(t )〉 ≡ Tr[O ρ(t )] = Tr{O etL[ρ(0)]}
= 〈O〉ss +

∑
k

bk ck etλk , (7)

where we introduced decomposition of the observable into
the left eigenmodes with the coefficients bk ≡ Tr(O Rk )
[cf. Eq. (2)], and b1 = 〈O〉ss = Tr(O ρss) is the static average.
After the initial relaxation, the contribution from fast modes
can be neglected [cf. Eq. (3)],

〈O(t )〉 = 〈O〉ss +
m∑

k=2

bk ck etλk + · · ·

= Tr{O etLMMP[ρ(0)]} + · · · , (8)

and the observable dynamics in Eq. (7) is accurately captured
by the effective long-time dynamics in Eq. (6). Importantly,
during the metastable regime, the observable average is ap-
proximately stationary [cf. Eq. (3)], before the final relaxation
to 〈O〉ss [see Fig. 1(c)], allowing for a direct observation
of the metastability. This, however, requires preparation of
an initial system state different from the stationary state,
ρ(0) �= ρss, something often difficult to achieve in experi-
mental settings. Nevertheless, for the system in the stationary
state, metastability can be observed as double-step decay in
the time-autocorrelation of a system observable. This is a
consequence of the first measurement perturbing the station-
ary state, thus causing its subsequent evolution, which for
times after the initial relaxation follows the effective dynamics
[cf. Eq. (8)],

〈O(t )O(0)〉ss − 〈O〉2
ss

= Tr[OetLO(ρss)] − 〈O〉2
ss

= Tr[OetLMMPO(ρss)] − 〈O〉2
ss + · · · , (9)

where O denotes the superoperator representing the mea-
surement of the observable O on a system state [40,41].
The autocorrelation initially decays from the observable vari-
ance in the stationary state, 〈O2〉ss − 〈O〉2

ss, to the plateau at
Tr[OPO(ρss)] − 〈O〉2

ss in the metastable regime, and after-
wards to 0 during the final relaxation [see Fig. 1(d)].

C. Quantitative approach

In this work, we introduce a quantitative description of
metastability. We later use this approach to prove our main
results: emerging classical features of metastable manifold,
long-time dynamics, and weak symmetries in the case of
classical metastability.

We consider errors of the approximation of the system
dynamics by the projection on the low-lying modes of the
spectrum in Eq. (4) during a time regime t ′′ � t � t ′,

CMM(t ′′, t ′) ≡ sup
ρ(0)

sup
t ′′�t�t ′

‖ρ(t ) − P[ρ(0)]‖

= sup
t ′′�t�t ′

‖etL − P‖, (10)

which we refer to as the corrections to the stationarity. Here,
‖X‖ = Tr(

√
X †X ) denotes the trace norm for an operator X ,

while for a superoperator it denotes the norm induced by the
trace norm [71]. For the time regime such that

CMM(t ′′, t ′) � 1, (11)

the corrections in Eq. (4) are negligible (note that density
matrices are normalized in the trace norm), which re-
quires t ′′ > −1/λR

m+1 and t ′ � −1/λR
m (i.e., −λR

mt ′ � 1); see
Sec. B2 in Ref. [55]. We refer to such a time regime as a
metastable time regime.

We now argue that the corrections to the stationarity can
be considered as the central figure of merit in the theory
of metastability. Indeed, the corrections to the positivity of
metastable states projected on the low-lying modes are de-
fined by the distance to the set of density matrices,

C+ ≡ sup
ρ(0)

inf
ρ

‖P[ρ(0)] − ρ‖

= sup
ρ(0)

‖P[ρ(0)]‖ − 1 ≡ ‖P‖ − 1, (12)

with ρ and ρ(0) being density matrices [71] (see Sec. B1 in
Ref. [55]), and can be bounded by the corrections to the sta-
tionarity in Eq. (10), by considering the distance to ρ ≡ ρ(t )
within the metastable regime,

C+ � inf
t ′′�t�t ′

‖etL − P‖ ≡ C̃+(t ′′, t ′) � CMM(t ′′, t ′). (13)

Furthermore, the corrections to the stationarity in Eq. (10)
establish a bound not only on Eq. (12), but also on the cor-
rections in Eqs. (2), (5), (8), and (9). In fact, beyond the
metastable regime, the corrections in Eq. (5) decay exponen-
tially, as in the leading order they can be shown to be bounded
by 2Cn

MM(t ′′, t ′), where n is an integer such that t/n be-
longs to the metastable regime [72]. Similarly, the corrections
to observable averages and correlations in Eqs. (8) and (9)
are bounded by 2Cn

MM(t ′′, t ′)‖O‖max and 2Cn
MM(t ′′, t ′)‖O‖2

max,
respectively, where ‖O‖max denotes the maximum singular
value of O. We thus conclude that the corrections to the
stationarity in Eq. (10) are a figure of merit in the theory of
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metastability. This is further confirmed by the role played
by them in the errors of classical approximations for the
structure of the metastable states and the long-time dynamics
when classical metastability occurs, which we discuss in later
sections.

We note that due to the way the condition in Eq. (11) is
formulated, a choice of the metastable regime is not unique.
Indeed, the corrections in Eq. (10) grow when t ′ increases
or t ′′ decreases. In particular, extending the length t ′ − t ′′
of the metastable regime n times leads to the corresponding
corrections the stationarity bounded in the leading order by
(n + 3)CMM(t ′′, t ′) [73]. In the rest of this work, we consider
a given choice of the metastable regime for an open quan-
tum system displaying metastability and denote CMM(t ′′, t ′)
and C̃+(t ′′, t ′) by CMM and C̃+, respectively. As a pronounced
metastable regime is a hallmark of metastability phenomenon,
however, some of our results rely on it being much longer
than the initial relaxation time: the classical hierarchy of
metastable phases discussed in Sec. IV on t ′ − t ′′ � t ′′, and
the correspondence of coarse-grained quantum trajectories to
classical stochastic trajectories discussed in Secs. V B 3 and
VII B on t ′ − t ′′ � nt ′′ with 1/n � 1.

Finally, an analogous approach to Eq. (10) can be intro-
duced to formally define the timescales τ ′′, τ ′ and τ ; see Sec.
B3 in Ref. [55]. In particular, the relations −1/λR

m+1 � τ ′′ <

t ′′, t ′ � τ ′ � −1/λR
m, and −1/λR

2 � τ follow (cf. Sec. II B).

D. Dissipative phase transitions

When metastability is a consequence of approaching a
first-order dissipative phase transition, we have by definition
λR

m/λR
m+1 → 0 and the ratios of the timescales for the final and

the initial relaxation diverge (τ ′/τ ′′, τ/τ ′′ → ∞). Therefore,
the ratios t ′′/τ ′′ and τ ′/t ′ for the metastable regime can be
chosen arbitrarily large leading to all corrections arbitrarily
small, C+, CMM → 0; cf. Sec. B3 in Ref. [55].

III. CLASSICAL METASTABILITY IN OPEN
QUANTUM SYSTEMS

We now introduce the notion of classical metastability,
by the virtue of approximation of metastable states by prob-
abilistic mixtures of a finite number of system states. We
show that this definition can be translated into a geometric
criterion on the decomposition of metastable states in projec-
tions of those states. The corresponding corrections, together
with the corrections to the stationarity and the positivity, play
the central role in emerging classical approximations to the
structure of the metastable manifold, long-time dynamics, and
weak symmetries, discussed in Secs. IV–VI. Therefore, our
criterion identifies the parent feature and the figure of merit
that govern the phenomenon of classical metastability in open
quantum systems.

A. Definition of classical metastability

We define classical metastability to take place when any
state of the system during the metastable regime t ′′ � t � t ′
can be approximated as a probabilistic mixture of m states

ρl � 0 with Tr(ρl ) = 1, l = 1, . . . , m

ρ(t ) =
m∑

l=1

plρl + · · · , (14)

where pl � 0 with
∑m

l=1 pl = 1 represent the probabilities
that depend only on an initial system state ρ(0), while ρl ,
l = 1, . . . , m, are independent from both time and the initial
state. That is, the corresponding corrections in the trace norm

C(ρ1, . . . , ρm) ≡ sup
ρ(0)

inf
p1,..,pm

sup
t ′′�t�t ′

∥∥∥∥∥ρ(t ) −
m∑

l=1

plρl

∥∥∥∥∥, (15)

fulfill

C(ρ1, . . . , ρm) � 1. (16)

Here, the corrections depend on the choice of a metastable
regime, but, for simplicity, we do not include it in the notation.
We refer to ρl as metastable phases (although their metastabil-
ity is not assumed, but it is proven to follow together with their
approximate disjointness in Sec. IV, where we also discuss
their nonuniqueness). The number of phases in Eq. (14) is mo-
tivated by uniqueness of the decomposition (see also Sec. C1
of Ref. [55]) and the structure of first-order phase transitions
in classical Markovian dynamics, where m disjoint stationary
probability distributions constitute stable phases of the sys-
tem, and the system is asymptotically found in a probabilistic
mixture of those phases, with probabilities depending on the
initial system configuration. In later Secs. IV–V B we show
that classical properties of metastable phases and long-time
dynamics akin to those in proximity to a first-order transition
in a classical system follow as well.

Remarkably, any metastable state in classical Markovian
dynamics can be approximated by a probabilistic mixture of
approximately disjoint metastable phases [35–39], whether
metastability results from proximity to a first-order phase
transition, or from constrained dynamics as in glassy systems.
In open quantum dynamics, for the bimodal case m = 2, it
is known that any metastable state is a probabilistic mixture
of two approximately disjoint metastable phases [40,41]. For
higher dimensional MMs, however, the general structure is not
known. Furthermore, it may be no longer classical [40], as
not only disjoint phases, but also decoherence free subspaces
[74–76] and noiseless subsystems [77,78] can be metastable,
e.g., when perturbed away from a dissipative phase transition
at a finite system size [61] (see also Supplemental Material in
Ref. [40] and cf. Refs. [79–82]). Therefore, it is important to
be able to verify whether a MM of an open quantum system is
classical as defined in Eq. (14). In this section, we introduce
such a systematic approach based on a geometric criterion
equivalent to the definition in Eq. (14), and refer to it as the
test of classicality.

B. Test of classicality

For a given set of m candidate system states, the test of clas-
sicality enables one to verify the approximation of Eq. (14)
and thus the classical metastability. Furthermore, it facilitates
a check of whether a given set of m initial states evolve into
such metastable phases. Based on this, in Sec. VII A we in-
troduce an efficient numerical technique delivering candidate
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FIG. 2. Classical metastability: (left) In the space of coefficients (c2, c3, c4) [Eq. (4)], the MM features the stationary state at (0,0,0)
(red sphere) and is approximated by the simplex (blue lines) of m = 4 metastable phases (green spheres at the vertices). The dots represent
metastable states from randomly generated pure states found inside (blue) and outside (black) the simplex. (right) Barycentric coordinates
( p̃1, p̃2, p̃3) (with p̃4 = 1 − ∑3

l=1 p̃l ) obtained by the transformation C [Eq. (18)] to the physical basis of metastable phases [Eq. (17)] yield
probability distributions for states inside the simplex (green), while for states outside the simplex (black) the maximal distance Ccl becomes
the figure of merit for classical metastability [Eq. (21)].

states which, with the help of the test of classicality, can be
postselected into metastable phases forming classical MMs.

We first note that the definition of classicality in Eq. (14)
leads to the MM in the space of coefficients being approxi-
mated by a simplex (see Fig. 2). When the MM is classical,
the coefficients ck of a general initial state ρ(0) can be ap-
proximated from Eq. (4) as

∑m
l=1 plc

(l )
k , up to C + C̃+, where

C is the correction in trace norm in Eq. (14) and C̃+ is given in
Eq. (13) [83]. Here, c(l )

k = Tr(Lkρl ) represent the metastable
phases ρl in the coefficient space [cf. Eq. (4)],

ρ̃l ≡ P (ρl ) = ρss +
m∑

k=2

c(l )
k Rk, l = 1, . . . , m. (17)

Thus, the MM is approximated by a simplex in the coefficient
space with vertices given by the metastable phases. For low-
dimensional MMs (m � 4), this can be verified visually by
projecting a randomly generated set of initial conditions on
their metastable states (to sample the MM) and checking that
they are found approximately within the chosen simplex (cf.
Fig. 2).

Motivated by the structure of classical MMs in the co-
efficient space, we now introduce the test of classicality—a
geometric way of checking whether degrees of freedom
describing metastable states during the metastable regime cor-
respond, approximately, to probability distributions. Degrees
of freedom in the MM are described by the coefficients of
decomposition into the eigenmodes Rk , k = 1, . . . , m, so that,
with c1 = 1, their number is m − 1. Motivated by Eq. (14),
here we instead consider the decomposition in the new basis
given by the projections of metastable phases in Eq. (17),
which is encoded by the transformation

(C)kl ≡ c(l )
k , k, l = 1, . . . , m, (18)

so that ρ̃l = ∑m
k=1(C)kl Rk . In particular, the volume of the

corresponding simplex in the coefficient space is |det C|/
(m−1)! [84]. The decomposition of a metastable state in this

new basis [cf. Eq. (4)]

P[ρ(0)] =
m∑

l=1

p̃l ρ̃l , (19)

is given by the barycentric coordinates p̃l = ∑m
k=1(C−1)lkck

of the simplex in the coefficient space, so that p̃l = Tr[P̃lρ(0)]
with the new dual basis

P̃l ≡
m∑

k=1

(C−1)lk Lk, l = 1, . . . , m. (20)

When ρ̃l are linearly independent for l = 1, . . . , m, |det C| >

0 and C is invertible so that Eq. (20) is well defined. In this
case, Tr(P̃k ρ̃l ) = ∑m

n=1 (C−1)kn(C)nl = (C−1C)kl = δkl and
the normalization of the dual basis in Eq. (20) is fixed by the
traces of metastable states in Eq. (17) being 1.

Although for the barycentric coordinates we have∑m
l=1 p̃l = 1, and thus

∑m
l=1 P̃l = 1, they do not in general

correspond to probability distributions. Indeed, they are not all
positive whenever a metastable state lies outside the simplex
in the coefficient space corresponding to ρ̃l , l = 1, . . . , m (see
Fig. 2), as the distance in L1 norm of barycentric coordinates
to the simplex is given by ‖p̃ − p‖1 = ‖p̃‖1 − 1, where p is
the closest probability distribution to barycentric coordinates
p̃ [here, (p)l = pl and (p̃)l = p̃l , l = 1, . . . , m]. Nevertheless,
when the maximum distance to the simplex (cf. Fig. 2),

Ccl(ρ̃1, . . . , ρ̃m) ≡ max
ρ(0)

‖p̃‖1 − 1, (21)

is small, it follows that the metastability is classical, with the
corrections in Eq. (14) bounded as∥∥∥∥∥ρ(t ) −

m∑
l=1

plρl

∥∥∥∥∥ � Ccl(ρ̃1, . . . , ρ̃m) + C+ + CMM, (22)

where t ′′ � t � t ′ and � stands for � in the leading order of
the corrections (see Sec. C2 in Ref. [55]), while pl is chosen
as the closest probability distribution to the barycentric coor-
dinates, ρl as the closest state to ρ̃l , so that ‖ρ̃l − ρl‖ � C+
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[cf. Eq. (12)], and CMM bounds the approximation of ρ(t )
by the projection on the low-lying modes [cf. Eqs. (10) and
(19)]. Similarly, the average distance to the simplex can be
considered (cf. Refs. [85,86] and see Sec. C2 in Ref. [55]).

Finally, the corrections in Eq. (21), which we refer to as
the corrections to the classicality, can be efficiently estimated
using the dual basis,

Ccl(ρ̃1, . . . , ρ̃m) � 2
m∑

l=1

(− p̃min
l

) ≡ C̃cl(ρ̃1, . . . , ρ̃m), (23)

where p̃min
l � 0 is the minimum eigenvalue of P̃l in Eq. (20),

so that

C̃cl(ρ̃1, . . . , ρ̃m) � m Ccl(ρ̃1, . . . , ρ̃m). (24)

Apart from being easy to compute, C̃cl(ρ̃1, . . . , ρ̃m) also car-
ries the operational meaning of being an upper bound on the
distance of the operators P̃l to the set of POVMs; cf. Sec. IV B
and see Sec. D1 in Ref. [55].

C. Figures of merit

From Eq. (21), we obtain a criterion for verification of
whether for a given set of states, the MM can be approximated
as a probabilistic mixture of the corresponding metastable
states [Eq. (17)]. In particular, whenever

Ccl(ρ̃1, . . . , ρ̃m) � 1, (25)

the metastability is classical. Moreover, it can be shown
that Ccl(ρ̃1, . . . , ρ̃m) � C(ρ1, . . . , ρm) + C̃+, provided
that m[C(ρ1, . . . , ρm) + C̃+] � 1, which also implies
C̃cl(ρ̃1, . . . , ρ̃m) � 1 (cf. Eqs. (15) and (23), and see Sec. C2
in Ref. [55]). Since for the classical metastability we have
Eq. (16), assuming these corrections decrease when changing
a dynamical parameter or when increasing system size, but
m remains constant, Eq. (25) follows. We thus conclude
that it is a necessary and sufficient condition for classical
metastability.

Interestingly, the bimodal case of m = 2 is always classical
as the metastable phases ρ̃1 and ρ̃2 leading to Ccl(ρ̃1, ρ̃2) =
C̃cl(ρ̃1, ρ̃2) = 0 can be constructed explicitly [40,41]. For
higher dimensional MMs, the presence of classical metastabil-
ity can be uncovered using the bound in Eq. (23) for candidate
states generated by the numerical approaches of Sec. VII,
see, e.g., Ref. [54]. In particular, approaching an effectively
classical first-order dissipative phase transition with a finite
m requires the possibility of choosing m candidate states
such that Ccl(ρ̃1, . . . , ρ̃m) → 0 (cf. Sec. II D). Importantly,
the condition in Eq. (25) is independent from the presence
of weak symmetries (which, nevertheless, can be efficiently
incorporated; cf. Sec. VI B 5).

In Sec. IV, we show that the metastable phases in Eq. (17)
are approximately disjoint, while the operators in Eq. (20)
take the role of basins of attractions. Moreover, in Sec. V,
we explain how the long-time dynamics toward the station-
ary state corresponds approximately to classical stochastic
dynamics between metastable phases. Since corrections in
those results depend only on the corrections to the stationarity,
the positivity, and the classicality defined in Eqs. (10), (12),
and (21), these quantities can be viewed as a complete set of
figures of merit characterizing classical metastability in open

quantum systems. As in the most of this work, we consider a
given choice of m states, we denote C(ρ1, . . . , ρm) by C and
Ccl(ρ̃1, . . . , ρ̃m) by Ccl for simplicity.

IV. CLASSICAL METASTABLE PHASES

In Sec. III, we introduced the definition of classical
metastability of when MMs of open quantum systems can
be approximated as probabilistic mixtures of a set of states.
We now show that in this case, those states are necessarily
metastable and constitute a physical basis of the MM as dis-
tinct phases of the system. To this aim, we demonstrate that
the probabilities that represent the degrees of freedom in the
MM can be accessed with negligible disturbance, so that the
metastable phases can be distinguished with a negligible error.
We further argue that their supports and basins of attraction
are approximately disjoint, in analogy to first-order phase
transitions and metastability in classical Markovian systems
[38]. Finally, we also discuss how, in the case of any further
separation in the low-lying spectrum, later MMs are necessar-
ily classical as well.

A. Physical representation of metastable manifold

We begin by noting that phases given in Eq. (14) are
uniquely defined up to the so far considered corrections when
the condition in Eq. (16) is fulfilled. Indeed, for states ρl

in Eq. (14), the distance to their projections ρ̃l in Eq. (17)
is bounded by 2(C + C̃+) when C̃cl � 1 (see Sec. C2 in
Ref. [55]), so that they are metastable. It then follows that
their distance to the states chosen in Eq. (22) as closest states
to the projections ρ̃l in Eq. (17) is bounded by � 2(C +
C̃+) + C+. Finally, for two different sets of m metastable
phases corresponding to different projections in Eq. (17) and
the corrections to the classicality Ccl and C ′

cl, which fulfill
Eq. (25), the distance in trace norm between the projection
of a metastable phase in one set to the closest projection of a
metastable phase in the other set is bounded by � Ccl + C ′

cl +
min(Ccl, C ′

cl ) (see Sec. D in Ref. [55]).
Furthermore, in contrast to the right eigenmodes of the

master operator with Tr(Rk ) = 0 for k = 2, . . . , m [from L1 =
1 and Tr(LkRl ) = δkl ], the projections of metastable phases in
Eq. (17) feature normalized trace, Tr(ρ̃l ) = 1, l = 1, . . . , m,
are Hermitian, and approximately positive [see Sec. II A and
cf. Eq. (12)]. Moreover, when the condition in Eq. (25) is
fulfilled, any metastable state is approximated well by their
probabilistic mixture [cf. Eq. (22) and Fig. 2]. Thus, the pro-
jections in Eq. (17) can be considered as physical basis of the
MM and approximate metastable phases.

While the left low-lying eigenmodes Lk , k = 2, . . . , m,
describe quantities conserved in the system during the ini-
tial relaxation and the metastable regime [cf. Eq. (8) for
t � t ′, where bk = δkl for O = Ll ] the dual basis operators in
Eq. (20) determine the decomposition of a metastable state
into the basis in Eq. (17), and as such, when the condition in
Eq. (25) is fulfilled, they represent approximate basins of at-
traction for metastable phases (see also Sec. D1 in Ref. [55]).
Importantly, via barycentric coordinates in Eq. (35), they de-
fine order parameters that distinguish the metastable phases,
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Tr(P̃k ρ̃l ) = δkl , with system observable averages being their
linear combinations [cf. Eq. (8)].

Finally, the barycentric coordinates are a physical repre-
sentation of m-1 degrees of freedom present in the metastable
regime, as they approximate probability distributions. As a
consequence, we next show that they are classical from an
operational perspective of measuring the system.

B. Classical degrees of freedom

We now argue that in the case of classical metastability, the
degrees of freedom determining the MM can be accessed with
a negligible disturbance of metastable states. It then follows
that metastable phases can be distinguished with a negligible
error. We also discuss consequences for measurements of
system observables.

The MM is determined by the coefficients ck of decom-
position into low-lying eigenmodes Lk , k = 2, . . . , m [cf.
Eq. (4)], or, equivalently, by the barycentric coordinates p̃l of
decomposition into the projections ρ̃l of metastable phases,
l = 1, . . . , m [cf. Eqs. (17) and (19)]. Furthermore, system
states can be probed by POVMs (Pl = P†

l , Pl � 0,
∑

l Pl =
1), including von Neumann measurements (PkPl = δklPl ) cor-
responding to measuring system observables. Considering the
POVM

Pl ≡ P̃l − p̃min
l 1

1 + C̃cl
2

, l = 1, . . . , m, (26)

the distance of the probability distribution (p)l ≡ Tr[Plρ(0)],
l = 1, . . . , m, to the barycentric coordinates is bounded by
‖p̃ − p‖1 � C̃cl (cf. Eq. (23) and see Sec. D1 in Ref. [55]).
Therefore, by measuring a metastable state ρ(t ), the barycen-
tric coordinates can be accessed with the error up to C̃cl + CMM

[cf. Eq. (10)], while the state can be reconstructed by prepar-
ing the closest state ρl to ρ̃l upon obtaining lth outcome, with
the resulting disturbance [87]

‖ρ(t ) −
m∑

l=1

Tr[Plρ(t )] ρl‖ � C̃cl + C+ + CMM, (27)

where t ′′ � t � t ′. This result should be contrasted with the
case of measuring a general system state where no information
is available without disturbance (see, e.g., Ref. [88]).

The minimal average error of distinguishing equally prob-
able two states according to Holevo-Helstrom theorem is
determined by the distance in the trace norm as 1/2 − ‖ρ (1) −
ρ (2)‖/4 (see, e.g., Ref. [89]). For metastable states, this error
is approximately determined by the distance between their
barycentric coordinates as

‖ρ (1)(t )−ρ (2)(t )‖ � ‖p̃(1)−p̃(2)‖1

(
1 − C̃cl

2

)
−2CMM, (28a)

‖ρ (1)(t ) − ρ (2)(t )‖ � ‖p̃(1)− p̃(2)‖1(1 + C+) + 2CMM, (28b)

where the first bound corresponds to the error when mea-
suring the POVM in Eq. (26). In particular, a pair of
metastable phases can be distinguished with the error
�[min(C̃cl/2, Ccl ) + C+]/2, since

‖ρk − ρl‖ � 2(1 − Ccl − C+), k �= l, (29)

for ρl being the closest state to ρ̃l in Eq. (17), which corre-
sponds to a measuring the POVM with two elements: P ≡
(P̃l − p̃min

l 1)/( p̃max
l − p̃min

l ) and 1 − P. For ρl that projects
on ρ̃l , the bound in Eq. (29) reduces to �2(1 − Ccl ). For
derivations, see Sec. D2 in Ref. [55].

Finally, during the metastable regime, t ′′ � t � t ′, the
probability distribution for any measurement of the system is
approximated as a probabilistic mixture of probability distri-
bution for individual metastable phases, as

∑
k

∣∣∣∣∣Tr[Pkρ(t )] −
m∑

l=1

pl Tr[Pkρl ]

∣∣∣∣∣ �
∥∥∥∥∥ρ(t ) −

m∑
l=1

plρl

∥∥∥∥∥,

(30)

where {Pk}k is a POVM and the right-hand side is bounded
by corrections in Eqs. (14) or (22), depending on the choice
of metastable phases. This conditional structure of the prob-
ability distribution, however, is not directly related to the
classicality, since it is present for any system state being
a probabilistic mixture of not necessarily orthogonal states,
while, as we argue next, metastable phases are approximately
disjoint.

C. Approximate disjointness of metastable phases

Below we show that the metastable phases in Eqs. (14) and
(22) are approximately disjoint, that is, they describe states
restricted to distinct regions of the system space. Furthermore,
we also find that their basins of attraction are approximately
disjoint.

First, note that the distance in the trace norm equals 2
only for disjoint (mutually orthogonal, states). Therefore, the
bound in Eq. (29) implies that the metastable phases are
approximately disjoint. This is further corroborated by simi-
lar bounds on scalar products of

√
ρl or ρl ; see Sec. D3 of

Ref. [55].
Second, to capture approximately disjoint supports of

metastable phases, we consider the subspaces Hl defined as
the space spanned by eigenstates of P̃l in Eq. (20) with eigen-
values equal or above 1/2, l = 1, . . . , m. We have (see Sec.
D3 in Ref. [55])

Tr
(
1Hk ρl

)
� Ccl + 2C+, k �= l, (31)

Tr
(
1Hl ρl

)
� 1 − Ccl − 2C+, (32)

where ρl is the closest state to ρ̃l , k, l = 1, . . . , m. Further-
more, we also have [cf. Eq. (23)]∑

1 � k � m :
k �= l

Tr
(
1Hk ρl

)
� C̃cl + 2C+. (33)

The bounds in Eqs. (31)–(33) support the statement that the
metastable phases reside in approximately disjoint areas of the
state space. The bounds in Eqs. (31)–(33) also hold well for ρ̃l

in Eq. (17) as |Tr(1Hk ρl ) − Tr(1Hk ρ̃l )| � C+, while for the
states in Eq. (14) that project on ρ̃l , they are further reduced to
� Ccl, �1 − Ccl and � C̃cl, respectively. For the bimodal case
of open quantum dynamics, m = 2, approximate disjointness
was already argued in Refs. [40,41].
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Finally, the subspace Hl in Eqs. (31)–(33) captures not
only majority of ρl support, but by its definition also the
corresponding basin of attraction, i.e., the initial states which
evolve into metastable states close to ρ̃l , i.e., with 1 − p̃l � 1.
Indeed, in Sec. D3 of Ref. [55], we show that Tr[1Hl ρ(0)] �
1 − 2|1 − p̃l | − Ccl. Furthermore, we have Tr[1Hk ρ(0)] �
2|1 − p̃l | + Ccl for k �= l , and

∑
1�k�m: k �=l Tr[1Hk ρ(0)] �

2|1 − p̃l | + C̃cl. Thus, we conclude that the basins of attrac-
tions are approximately disjoint. We note, however, that in
general subspaces Hl themselves are not disjoint as they fea-
ture states that decay into multiple metastable phases (it can be
shown that subspaces spanned by the P̃l eigenstates with the
eigenvalues separated from 0 and 1 by distance 
 Ccl + C+,
l = 1, . . . , m, can be neglected in the support of metastable
phases; see Sec. D3 in Ref. [55]).

D. Classical hierarchy of metastable phases

A second metastable regime corresponds to a further sep-
aration in the low-lying spectrum of the master operator
in Eq. (1), λR

m2
/λR

m2+1 � 1 with m2 < m (cf. Ref. [90]). In
Sec. F of Ref. [55], we show that metastable states during the
second metastable regime, t ′′

2 � t � t ′
2, also form a classical

MM, i.e., are mixtures of m2 metastable phases provided
that t ′

2 � 2t ′′
2 . Those m2 metastable phases are approximately

disjoint mixtures of m metastable phases of the first MM,
and their supports as well as their basins of attraction are
approximately disjoint [cf. Eqs. (29)–(33)]. Therefore, each
metastable phase of the first MM evolves approximately into
a single metastable phase in the second MM, unless the second
MM is not supported on that phase (the phase belongs to the
decay subspace).

These results are a direct consequence of long-time dynam-
ics in a classical MM being well approximated by classical
stochastic dynamics, which we discuss in next, as metastable
states of classical stochastic dynamics are known to be mix-
tures of as many metastable phases as the number of low-lying
modes [36,38].

V. CLASSICAL LONG-TIME DYNAMICS

The definition of classical metastability in Eq. (14) deter-
mines not only the structure of metastable states. Remarkably,
as a consequence of the long-time relaxation toward the
stationary state effectively taking place inside the MM, the
long-time dynamics is approximately classical as well. We
prove that it corresponds to classical stochastic dynamics
occurring between disjoint metastable phases and can be ac-
cessed by measuring averages or time-correlations of system
observables whenever metastable phases differ in the aver-
ages. We also discuss the role played by a further separation of
timescales in the long-time dynamics, i.e., another metastable
regime. Finally, we show that stochastic transitions between
metastable phases can be observed directly by means of
continuous measurements of quanta emitted during system
interaction with the environment, provided that metastable
phases differ in the average measurement rates. In that case,
the statistics of integrated continuous measurement is gen-
erally multimodal for times within the metastable regime,
which for times after the final relaxation can lead to a high

fluctuations rate, reminiscent of the proximity to a dynamical
phase transition [60].

A. Classical average dynamics of system and observables

1. Long-time dynamics

From Eq. (5) the evolution for times t � t ′′ effectively
takes place on the MM with the effective generator LMM

defined in Eq. (6). This generator can be expressed in the basis
of the metastable phases [Eqs. (17) and (20)] as

(W̃)kl ≡ Tr[P̃kLMM(ρ̃l )], (34)

where k, l = 1, .., m, and thus W̃ = C−1�C with (�)kl ≡
λkδkl [cf. Eq. (18) and see Fig. 3(a)]. The dynamics of the sys-
tem state within the MM is then determined by the dynamics
of the barycentric coordinates

p̃(t ) = etW̃p̃, (35)

where (p̃)l ≡ Tr[P̃lρ(0)], so that P[ρ(t )] = ∑m
l=1[p̃(t )]l ρ̃l

[cf. Eq. (19) and see Fig. 3(b)].
By definition, the long-time evolution in Eq. (6) trans-

forms the MM onto itself, see, e.g., Fig. 1(b). This does not
guarantee, however, that the simplex of m metastable phases
is transformed onto itself, as the evolution may cause states
inside the simplex to evolve toward states outside, and thus
an initial probability distribution (positive barycentric coordi-
nates) acquiring some negative values at later times [see the
inset in Fig. 3(b)]. Therefore, the dynamics generated by W̃ is
in general not positive [cf. Fig. 3(a)]. Nevertheless, as we dis-
cuss below, when the simplex of metastable phases is a good
approximation for the MM in the sense of the condition in
Eq. (25), W̃ is well approximated by a generator of stochastic
classical dynamics between metastable phases.

2. Classical generator

Dynamics generated by W̃ conserves the probability, as
from

∑m
k=1 P̃k = 1 we have

∑m
k=1(W̃)kl = 0 (cf. Sec. E1

in Ref. [55]). Furthermore, it can be shown to be approxi-
mately positive, with W̃ approximated by the closest classical
stochastic generator W (cf. Fig. 3(a) and see Secs. E2a and
E2b in Ref. [55]),

(W)kl ≡ max[(W̃)kl , 0], k �= l,

(W)ll ≡ (W̃)ll +
∑
k �=l

min[(W̃)kl , 0], (36)

k, l = 1, . . . , m, as

‖W̃ − W‖1

‖W̃‖1
� 2

√
Ccl, (37)

where the norm ‖X‖1 ≡ max1�l�m
∑m

k=1 |(X)kl | [91] and
(1 − C+ − Ccl )‖LMM‖ � ‖W̃‖1 � (1 + C̃cl/2)‖LMM‖ (see
Sec. D2 of in Ref. [55]). From Eq. (37) the normalized
distance between the generators is bounded as

�+ ≡ ‖W̃ − W‖1

‖W̃‖1 + ‖W‖1
�

√
Ccl. (38)
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FIG. 3. Classical long-time dynamics: (a) The long-time dynam-
ics [Eq. (5)] can be understood as dynamics between metastable
phases [Eq. (35)], governed by the trace-preserving generator W̃
[Eq. (34)], which can be approximated by a classical stochastic
generator W [Eqs. (36) and (37)], which is both trace preserving and
positive; here a negative transition rate from ρ̃2 to ρ̃3 (marked by
red cross) is put to 0. (b) The long-time dynamics in the barycentric
coordinates (cf. Fig. 2): green simplex corresponds to t � τ ′, blue to
t = τ ′, and red to t = τ , while the stationary state is marked by red
sphere.Positive dynamics corresponds to the simplex of metastable
phases mapped onto itself, which requires all metastable phases to
be mapped inside the simplex at all times. Here, ρ̃2 initially acquires
a negative probability p̃3(t ) at small t [red cross in the inset; cf. W̃
in panel (a)]. (c) Approximating by W alters the dynamics, with
corrections increasing in time [Eq. (39)]; blue dashed simplex cor-
responds to t = τ ′ and orange dashed to t = τ [cf. panel (b)]. This
ultimately leads to a different stationary state (yellow sphere) [cf.
Eq. (41)], which is close to the true stationary state when Eq. (40)
is fulfilled.

Note that columns of W sum to 0, and then negativity of its
diagonal terms follows from the positivity of the off-diagonal
terms, so that dynamics generated by W is indeed positive
and probability-conserving (cf. Sec. E1 in Ref. [55]). For
the bimodal case of m = 2, the MM is always classical with
Ccl = 0, and thus W̃ = W is exactly a generator of stochastic
classical dynamics [41].

3. Classical system dynamics

We now discuss how the dynamics generated by W̃ is
approximated by the classical dynamics generated by W. We
also discuss conditions for the stationary state to be approxi-
mated in terms of stationary distribution of W.

In Sec. E2c of Ref. [55], we show it follows from Eq. (37)
that

‖etW̃ − etW‖1 � 2
√
Ccl t ‖W̃‖1. (39)

Therefore, for times t‖W̃‖1 � 1/
√
Ccl the effective dynamics

in the MM is well approximated by the classical dynamics, as
‖p̃(t ) − p(t )‖1 � ‖etW̃ − etW‖1‖p̃‖1 � ‖etW̃ − etW‖1 [where
p(t ) = etWp̃, cf. Eq. (35); p̃ can further replaced by the closest
probability distribution with additional corrections bounded
by Ccl, which are of the higher-order for times after the
metastable regime, e.g., t � 1/‖W̃‖1]; see Fig. 3(c). This also
holds true for the corresponding density matrices (see Sec. D2
of Ref. [55]).

When the approximation in Eq. (39) holds for times after
the relaxation in the MM, which requires

τ‖W̃‖1 � 1√
Ccl

, (40)

the stationary state ρss described within the MM by (p̃ss)k =
Tr(P̃kρss) is well approximated by the stationary probability
pss of the classical dynamics W [92]; cf. Fig. 3(c). Indeed,

‖p̃ss − pss‖1 � ‖P̃ss − etW̃‖1 + 2
√
Ccl t ‖W̃‖1, (41)

where P̃ss denotes the projection on p̃ss. Therefore, ‖p̃ss −
pss‖1 � 1 follows provided that t‖W̃‖1 � 1/

√
Ccl for t such

that ‖P̃ss − etW̃‖1 � 1 [93]. As a corollary of Eq. (41),the
stationary probability distribution pss of classical dynamical
generator W in Eq. (36) is unique. Thus, the classical dynam-
ics is ergodic with the average time spent in lth metastable
phase equal (pss)l , l = 1, . . . , m. Furthermore, the approxi-
mation also holds true for the distance in the trace norm of the
corresponding density matrices (see Sec. D2 in Ref. [55]).

Similarly, not only the stationary state but all eigenmodes
of the long-time dynamics in the MM can be approximated
by those of the classical stochastic dynamics. In particular,
in Sec. E2e of Ref. [55], we discuss approximation of the
pseudoinverse of W̃ in Eq. (34) by the pseudoinverse of W
in Eq. (36), a result which plays an important role in the
approximation of quantum trajectory statistics that we discuss
in Sec. V B.

We note that the quality of the classical approximations for
the structure of the long-time dynamics depends not only on
the corrections Ccl within the metastability regime [Eq. (21)],
but also on the timescale of the final relaxation (cf. Eq. (41)
and Secs. E2d and E2e in Ref. [55]). This is due to the fact
that the approximation in Eq. (37) captures the fastest among
the low-lying modes, while the final relaxation timescale is
governed by the slowest among them. In particular, in the
case of another metastable regime [90], which corresponds to
further separation in the spectrum of the master operator in
Eq. (1), the condition in Eq. (40) may generally not be valid.
For example, when a classical first-order phase transition oc-
curs at finite system size, in its proximity 1/(τ‖W̃‖1) is finite
when the degeneracy of m stable phases is lifted in the same
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order 1/(τ‖W̃‖1), so that time t can be chosen τ‖W̃‖1 �
t‖W̃‖1 � 1/

√
Ccl leading to ‖p̃ss − pss‖1 � 1. But when the

perturbation away from the transition lifts the degeneracy of
m phases in several different orders (so that Ccl is of a lower
order in the perturbation than 1/τ ), Eq. (40) is no longer
fulfilled (see Sec. A2 in Ref. [55]). We discuss next how
the approximation of the long-time dynamics by classical
stochastic dynamics can be refined to take into account the
hierarchy of metastabilities.

Finally, we note it is also possible to approximate etW̃ by
discrete classical dynamics. This again leads to corrections
scaling linearly in time, but proportional to Ccl rather than√
Ccl; see Sec. E2f in Ref. [55].

4. Hierarchy of classical long-time dynamics

When there exists a second metastable regime in the system
dynamics, t ′′

2 � t � t ′
2, the corresponding metastable states

of the system are simply approximated by the projection on
the low-lying modes of the classical stochastic dynamics in
Eq. (36) provided that t ′′

2 � 1/
√
Ccl [cf. Eqs. (4) and (39)].

When, t ′
2 � 2t ′′

2 , after the second metastable regime, t � t ′
2,

the system dynamics toward the stationary state is approxi-
mated by classical dynamics taking place only between m2

metastable phases of the second MM [cf. Eqs. (4) and (39),
and see Sec. IV D]. Moreover, when that approximation holds
also after the final relaxation, the system stationary state ρss

is well approximated by the stationary distribution of that
classical dynamics [cf. Eq. (41)]. For further discussion, see
Sec. F in Ref. [55].

5. Classical observable dynamics

We now argue how at times after the initial relaxation, the
classical long-time dynamics can be observed in the behavior
of expectation values or autocorrelations of general system
observables. In particular, it can be directly accessed by mea-
suring the dual basis in Eq. (20).

For times t � t ′′, the dynamics of the average for an ob-
servable O depends only on the evolution of the distribution
between the metastable phases,

〈O(t )〉 = õT etW̃ p̃ + · · · = õT p̃(t ) + · · ·
= õT etW p̃ + · · · = õT p(t ) + · · · , (42)

where (õ)l = Tr(Oρ̃l ), l = 1, . . . , m, are the averages of the
observable O in the metastable phases. The first line corre-
sponds to Eq. (8), while the second line follows from Eq. (39)
introducing additional corrections bounded in the leading or-
der by 2t‖W̃‖1

√
Ccl max1�l�m |(õ)l |.

Similarly, the autocorrelation

〈O(t )O(0)〉ss − 〈O〉2
ss = õT etW̃ Õ p̃ss − (õT p̃ss )2 + · · ·

= õT etW Õ pss − (õT pss )2 + · · · , (43)

where (Õ)kl = Tr[P̃kO(ρ̃l )] (cf. Ref. [41]). The first line
corresponds to Eq. (9), while the second line follows
from Eq. (39) with the additional corrections bounded
by max1�l�m |(õ)l [|‖Õ‖1(2t‖W̃‖1

√
Ccl + ‖p̃ss − pss‖1) +

2|〈O〉ss| ‖p̃ss − pss‖1] in the leading order.

Therefore, when metastable phases differ in observable
averages [up to the correction in Eq. (8)], the long-time
dynamics can be observed by measuring the observable av-
erage or autocorrelation. For example, for an observable
chosen as a dual basis operator O = P̃l in Eq. (20), we sim-
ply have õT p(t ) = [p(t )]l , l = 1, . . . , m. Furthermore, when
the approximation in Eq. (39) holds for times after the fi-
nal relaxation [cf. Eq. (40)], the dynamics of averages and
autocorrelations of all system observables is effectively clas-
sical [cf. Eq. (41)]. In particular, if the measurement of an
observable O is noninvasive, i.e., does not disrupt basins
of attractions of metastable phases, (Õ)kl ≈ δkl (õ)l , k, l =
1, . . . , m, the long-time dynamics leads to the decay of the
autocorrelations exactly as the decay of the autocorrelation of
õ in the classical dynamics: from the observable õ variance
in pss during the metastable regime, toward 0 achieved after
the final relaxation (cf. Ref. [94]). This is the case for the
dual basis operators in Eq. (20), with the distance between
the matrices bounded by � 3(C+ + C̃cl + Ccl/2) (see Sec. D1c
in Ref. [55]). Finally, higher-order correlations, also between
different observables, can be analogously approximated by
correlations in classical dynamics.

B. Classical characteristics of quantum trajectories

In Sec. V A, we showed that the dynamics of the av-
erage system state can be approximated with the classical
dynamics generated by a classical stochastic generator. Now
we argue that this relation pertains to individual exper-
imental realizations of system evolution [59]. Therefore,
stochastic transitions between metastable phases can be ob-
served in continuous measurement records or the system state
sampled in QJMC simulations [8–12]—so called quantum
trajectories (see Fig. 4). First, we show that statistics of
quantum trajectories can be directly related to the statistics
of classical stochastic trajectories. Second, we argue how
coarse-graining in time returns classical trajectories between
metastable phases, which for metastable phases differing in
activity is the mechanism behind the phenomena of intermit-
tence [24,60] and dynamical heterogeneity [50,51], and leads
to multimodal distribution of integrated measurement records
during the metastable regime. Finally, we explain how system
metastability can manifest itself as proximity to a first-order
dynamical phase transition in the ensemble of quantum trajec-
tories [60].

1. Statistics of quantum trajectories

Quantum trajectories describe the system state conditioned
on a continuous measurement record, e.g., counting or homo-
dyne measurement of photons emitted by the system due to
action of jump operators in Eq. (1). In particular, the statistics
of the total number of jumps in a quantum trajectory (total
number of detected photons) is encoded by the biased or
“tilted” master operator [24,60]

Ls(ρ) = L(ρ) + (e−s − 1)J (ρ), (44)

where J (ρ) ≡ ∑
j J jρJ†

j . That is, �(s, t ) ≡ ln(Tr{etLs

[ρ(0)]}) is the cumulant generating function for the num-
ber K (t ) of jumps that occurred until time t for quantum
trajectories initialized in ρ(0). The rates of the asymptotic
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FIG. 4. Classical features of quantum trajectories: (a), (b) Approximating the biased operator of jump activity Ls [Eq. (44)] by the biased
classical generator Ws [Eq. (47)] gives the approximations of: ρss(s) (black solid) by the maximal eigenvector of Ws (green short-dashed)
[panel (a); we plot Tr[P̃lρss(s)], l = 1, . . . , m; cf. Eq. (20)], θ (s) by the cumulant generating function of total activity in classical trajectories
[panel (b)], which are valid for s in the perturbative regime of the statistics captured by m = 4 slow modes (blue dashed) [Eq. (48)], as given by
Eqs. (50) and (51). (c), (d) Similarly, −dθ (s)/ds = e−s

∑
j Tr[J†

j Jjρss(s)] − (e−s − 1)
∑

j Tr[J†
j Jj dρss(s)/ds] (black solid), with the first term

being the activity of ρss(s) (red solid), is captured by the first derivative of the classical cumulant generating function (green short-dashed),
up to non-Poissonian contribution to fluctuations in metastable phases [cf. Eq. (54)]. This contribution can be neglected for internal activity
dominating classical dynamics, in which case the leading contribution to fluctuations is the result of long timescales of mixing between
metastable phases rather than fluctuations within, as demonstrated in panel (d). (e), (f) Not only asymptotically, but already for times after the
initial relaxation, the average rate and the fluctuation rate of jump number K (t ) (black solid) can be approximated by the constant contribution
K̃ from before the metastable regime and the contribution from the dynamics within the MM (blue dashed), with the latter approximated by
the corresponding rate for classical total activity Kcl(t ) (green short-dashed) [cf. Eqs. (52) and (54)]. (g) Coarse-graining of jump records (top)
in time gives values close to metastable phases activity (upper center) [cf. panel (c)], up to fluctuations which decrease with grain size (here
δt = 0.7τ ′; cf. Sec. V B 4). In turn, they capture the average activity of the conditional system state |ψ (t )〉 (lower center; we plot running
average over δt), and the metastable phase support where |ψ (t )〉 is found [bottom; we plot 〈ψ (t )|P̃l |ψ (t )〉, l = 1, 3].

statistics are determined then by θ (s) ≡ limt→∞ �(s, t )/t ,
which is simply the eigenvalue of Ls with the largest real
part. We denote the associated (positive) eigenmatrix as ρss(s)
and choose the normalization Tr[ρss(s)] = 1, so that θ (s) =
Tr{Ls[ρss(s)]} = (e−s − 1)

∑
j Tr[J†

j J jρss(s)]. Then, ρss(s) is
the average asymptotic state of the system in trajectories
with the probability biased by the factor e−sK (t ), while the
derivatives of θ (s) correspond to asymptotic rate of the cor-
responding cumulants. In particular, for a unique stationary
state ρss and the bias |s| small enough with respect to the gap
−Re(λ2), ρss(s) = ρss + · · · , while

θ (s) = (e−s − 1) μss + · · · , (45)

k(s) ≡ − d

ds
θ (s) = e−s μss + · · · (46)

where μss ≡ ∑
j Tr[J†

j J jρss] (cf. Ref. [95]), so that the asymp-
totic jump rate—the asymptotic activity—is determined by
the stationary state.

The nonanalyticities of θ (s) can be recognized as dynam-
ical phase transitions [60], in analogy to nonanalyticities of
the free energy in equilibrium statistical mechanics. In par-

ticular, a first-order dynamical phase transition occurs at sc

for which the maximal eigenvalue of Lsc is not unique, so
that the asymptotic activity k(s) = −dθ (s)/ds is no longer
continuous, but features a jump at sc [24,51,60,64].

Similarly, statistics for integrated homodyne current and
for time-integral of system observables are considered
[96–101] (see also Secs. E3b and E3c in Ref. [55]).

2. Classical tilted generator

We now present our first result regarding classicality of
quantum trajectories. We argue that the tilted master operator
in Eq. (44) can be approximated by a tilted classical generator
encoding the statistics in stochastic trajectories of the classical
dynamics in Eq. (36). This leads to classical approximations
for the asymptotic rate of the cumulant generating function
and for the asymptotic system state in biased quantum trajec-
tories.

The statistics of total activity [102–104] in classical dy-
namics is encoded by a biased or “tilted” classical generator
[for reviews see Refs. [105,106]; cf. Eqs. (36) and (44)]

Ws = W + (e−s − 1) (J + μ̃in), (47)
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where (J)kl ≡ (1 − δkl )(W)kl , k, l = 1, . . . , m encodes the
transition rates in the classical dynamics, while (μ̃in )kl ≡
δkl [μ̃l + (W̃)ll ] with μ̃l ≡ ∑

j Tr(J†
j J j ρ̃l ), k, l = 1, . . . , m,

encodes the average internal activity in metastable phases
(which here is assumed Poissonian distributed; cf. Sec. E1 in
Ref. [55]).

In Sec. E3d of Ref. [55], we show that the tilted classical
generator Ws approximates, in the metastable phase basis, the
tiled master operator Ls when the latter is restricted to the
low-lying modes [cf. Eq. (34)],

(W̃s)kl ≡ Tr[P̃kLs(ρ̃l )], (48)

k, l = 1, . . . , m, with the corrections bounded as [107]

‖W̃s − Ws‖ � 2e−s‖W̃‖1

√
Ccl + |e−s − 1|m

×
∥∥∥∥∥H + i

2

∑
j

J†
j J j

∥∥∥∥∥
max

√
2Ccl + 4C+. (49)

For dynamics of classical systems with metastability, or, more
generally, for the basis of metastable phases in Eq. (17) com-
muting with the dual basis in Eq. (20), m

√
2Ccl + 4C+ in

Eq. (49) can be reduced to 2(C̃cl + C+).
Since the biased dynamics Ls in Eq. (44) can be considered

as the perturbation of the master operator L in Eq. (1) with
(e−s − 1)J , for bias |s| much smaller than the separation to
the fast eigenmodes, λR

m − λR
m+1, the m low-lying eigenmodes

and eigenvalues of Ls in Eq. (44) are approximated by those
of PLsP [95] or, in the metastable phase basis, those of W̃s

in Eq. (48). From Eq. (49), it then follows that the average
asymptotic state in biased quantum trajectories is approxi-
mated by the asymptotic probability distribution in biased
classical trajectories,

ρss(s) =
m∑

l=1

[pss(s)]l ρ̃l + · · · , (50)

where pss(s) is the maximal eigenmode of Ws [see Fig. 4(a)],
while the asymptotic rate of the cumulant generating function
is approximated via the asymptotic total activity in biased
classical trajectories,

θ (s) = (e−s − 1)
m∑

l=1

[pss(s)]l μ̃tot
l + · · · , (51)

where μ̃tot
l ≡ ∑m

k=1(J)kl + μ̃in
l , l = 1, . . . , m, are the aver-

age total activities in the metastable phases (cf. Sec. E3f
in Ref. [55]), so that the right-hand side of Eq. (51) is
the maximal eigenvalue of Ws [see Fig. 4(b)]. For cor-
rections from non-Hermitian perturbation theory [95], see
Sec. E3a in Ref. [55]. One can consider similarly approxi-
mating dθ (s)/ds and d2θ (s)/ds2, but additional contributions
arise from non-Poissonian fluctuations in metastable phases
(see Sec. V B 3 and Sec. E3a in Ref. [55]). Nevertheless, those
can be neglected when the internal activities of metastable
phases dominate transition rates of classical dynamics [see
Figs. 4(c) and 4(d)], making Eq. (49) the crucial result in the
link between the system metastability and its proximity to a
first-order dynamical phase transition, which we discuss in
Sec. V B 5.

In Secs. E3b and E3c of Ref. [55], we show that in the
presence of classical metastability generators of statistics of
integrated homodyne current and time-integral of system ob-
servables can be similarly linked to generators of statistics in
classical trajectories, but with respect to time-integrals of their
average value in metastable phases.

3. Classical cumulants

We now discuss how the dynamics of the first and the
second cumulants of the jump number, directly accessible
in experiments via counting measurement, are governed by
the classical long-time dynamics for times after the initial
relaxation. In particular, we argue how the asymptotic activity
and fluctuation rate are approximated by the total activity
and total fluctuation rates in the classical dynamics. These
results establish a further correspondence between statistics
of quantum and classical trajectories for times during and after
the metastable regime, and, even asymptotically, they do not
directly follow from Eq. (51) as cumulants are encoded by
derivatives of the rate function [cf. Figs. 4(c) and 4(d)].

Classical dynamics of first cumulant. For times t � t ′′ such
that t‖W̃‖1 � 1/

√
Ccl, the rate of average jump number is

approximated by the time-integral of the total activity in clas-
sical trajectories, Kcl(t ), whose statistics in encoded by Ws

of Eq. (47), together with the constant contribution K̃ to the
jump number accumulated before the metastable regime (cf.
Fig. 4(e) and see Sec. E3e of Ref. [55]),

〈K (t )〉
t

= 〈Kcl(t )〉
t

+ K̃

t
+ · · · ,

≡ 1

t

∫ t

0
dt1

m∑
l=1

[μ̃totp(t1)]l − Tr{JSQ[ρ(0)]}
t

+ · · · ,

(52)

where (μ̃tot )kl ≡ δkl μ̃
tot
l , p(t ) = etWp̃, S is the pseudoinverse

of the master operator L in Eq. (1), Q ≡ I − P is the pro-
jection on the fast-modes of the dynamics [cf. Eq. (4)].
Therefore, similarly as for averages of system observables
[Eq. (42)], the classical dynamics can be observed by mea-
suring 〈K (t )〉 when the metastable phases differ in the total
activity.

When the approximation in Eq. (52) holds for time t after
the final relaxation [cf. Fig. 3(c)], the asymptotic activity in
quantum trajectories is approximated by the asymptotic total
activity of classical trajectories [cf. Fig. 4(e)]

μss ≡ lim
t→∞

〈K(t )〉
t

=
∑

j

Tr(J†
j J jρss )

= lim
t→∞

〈Kcl(t )〉
t

+ · · · =
m∑

l=1

(μ̃totpss)l + · · · , (53)

where pss is the stationary distribution of the clas-
sical dynamics W. The corrections are bounded by
� max1�l�m|μ̃l |‖p̃ss − pss‖1 + ‖W̃‖√Ccl [as Tr[J (ρss)] =∑m

l=1(μ̃p̃ss)l ; cf. Eqs. (41) and (37)].
Classical dynamics of second cumulant. For

times such that ‖SQ‖‖J ‖ � t‖μ̃‖1 and t‖W̃‖1 �
min(1/

√
Ccl,

√
‖R̃‖1‖W̃‖1/

√
Ccl ), where R̃ denotes the
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pseudoinverse of the long-time-dynamics generator W̃
in Eq. (34), the rate of fluctuations of jump number is
approximated by the rate of fluctuations of total activity in
classical trajectories, corrected by non-Poissonian fluctuations
in metastable phases and by the contribution to the average
from before the metastable regime (see Fig. 4(f) and Sec. E3e
in Ref. [55])

〈K2(t )〉 − 〈K (t )〉2

t

=
〈
K2

cl(t )
〉 − 〈Kcl(t )〉2

t
+ 〈�cl(t )〉

t

−
m∑

k,l=1

p̃k p̃l

〈
K (k)

cl (t )
〉 − 〈

K (l )
cl (t )

〉
t

(K̃k − K̃l ) + · · · , (54)

where〈
K2

cl(t )
〉 =

∫ t

0
dt1

m∑
l=1

[μ̃totp(t1)]l + 2
∫ t

0
dt1

∫ t−t1

0
dt2

×
m∑

l=1

[(J + μ̃in)et2W(J + μ̃in)p(t1)]l , (55)

and we denoted

〈�cl(t )〉 ≡
∫ t

0
dt1

m∑
l=1

[δσ̃2 p(t1)]l , (56)

with (δσ̃2 )kl ≡ −δkl 2Tr[JSQJ (ρ̃l )], k, l = 1, . . . , m, so that
(σ̃ tot )2 ≡ μ̃tot + δσ̃2 are rates of total fluctuations in metastable
phases (see Sec. E3f in Ref. [55]), 〈K (l )

cl (t )〉 is the average of
Kcl(t ) for lth metastable phase in Eq. (52), i.e., (p̃)k = δkl , and
K̃l ≡ Tr{P̃lJSQ[ρ(0)]}/Tr[P̃lρ(0)] is the contribution to the
jump number from before the metastable regime conditioned
on the metastable phase that the system evolves into. There-
fore, similarly as for autocorrelations of system observables
[Eq. (43)], the classical dynamics can be observed even for the
stationary state, by measuring fluctuations of K (t ) whenever
the metastable phases differ in the total activity.

When the approximation in Eq. (54) is valid for times after
the final relaxation, the asymptotic fluctuation rate [40,108]

σ 2
ss ≡ lim

t→∞
〈K2(t )〉 − 〈K (t )〉2

t

=
∑

j

Tr(J†
j J jρss ) − 2Tr[JSJ (ρss)] (57)

is approximated by the asymptotic rate of fluctuations of total
activity in classical trajectories, corrected by non-Poissonian
contribution to fluctuations in metastable phases (cf. Fig. 4(f)
and see Secs. B1 and E3g in Ref. [55])

σ 2
ss = lim

t→∞

[〈
K2

cl(t )
〉 − 〈Kcl(t )〉2

t
+ 〈�cl(t )〉

t

]
+ · · ·

=
m∑

l=1

{[μ̃tot − 2(J + μ̃in)R(J + μ̃in) + δσ̃2 ]pss}l + · · ·

=
m∑

l=1

[(μ̃tot − 2μ̃totRμ̃tot + δσ̃2 )pss]l + · · · , (58)

where R denotes the pseudoinverse of the classical stochastic
generator W in Eq. (36) and the last equality follows by noting
that J + μ̃in = W + μ̃tot and thus (J + μ̃in)pss = μ̃totpss.

Other statistics. Similarly to Eqs. (52), (54), (53), and
(58), the first and the second cumulants for integrated ho-
modyne current or for time-integrals of system observables
can be related to the statistics in classical dynamics with
respect to observables given by the corresponding averages
for metastable phases (see Secs. E3b and E3c in Ref. [55]).
Furthermore, the integrals of average and autocorrelations of
system measurements in Eqs. (42) and (43) can be approxi-
mated analogously.

4. Classical dynamics of quantum trajectories

For systems exhibiting metastability in the system dynam-
ics, individual evolutions of the system over time typically
exhibit intermittence (distinct periods of jump activity iso-
lated in time) or dynamical heterogeneity (distinct periods of
jump activity isolated both in time and space) in the emis-
sion measurement record or time-integral of observables [see
Fig. 1(e)]. We now explain that these features can be under-
stood in terms of classical dynamics between the metastable
phases whose differences in internal (global or local) jump
activity dominate transition rates of that dynamics (see also
Refs. [41,109]). To this aim, using results of Sec. V B 3,
we establish a direct relation between classical trajectories
and time-coarse-grained records of continuous measurements.
Therefore, we prove that metastability can be observed not
only on average [cf. Eqs. (42) and (43)], but also in individ-
ual realizations of continuous measurement experiments and
individual samples of QJMC simulations provided that the
metastable regime is long enough.

As a corollary of our results, integrated continuous mea-
surements can be used to distinguish metastable phases during
the metastable regime, as their distribution is multimodal with
distinct modes corresponding to the metastable phases dif-
fering in the rate of the measurement average. Interestingly,
during the metastable regime all continuous measurements
lead to negligible disturbance of the system as on average
they simply correspond to the system dynamics, so that the
disturbance is bounded by 2CMM [cf. Eq. (10) and Sec. IV B].

Time-coarse-grained measurement records as classical tra-
jectories. We focus here on the measurement of total number
of jumps that occur in the system, but analogous argu-
ments hold for the measurements of local jump activity (see
Sec. E3a in Ref. [55]) and of homodyne current (cf. Sec. E3b
in Ref. [55]).

Consider course-graining in time of a record of jump
counting measurement, with the activity in time bins δt ,

k(n) ≡ K[(n + 1)δt] − K (nδt )

δt
, (59)

for n = 0, 1, 2, . . .. We argue that time-coarse-grained mea-
surement records can be interpreted as classical trajectories
between metastable phases when the internal activity dom-
inates the long time dynamics, ‖μ̃‖1 
 ‖W̃‖1, and δt is
chosen long enough within the metastable regime, as in this
case the activity typically attains only values of the internal
activities in metastable phases [see Fig. 4(g)].
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From Eq. (52), for δt � t ′ such that ‖SQ‖‖J ‖ � δt‖μ̃‖1

and t‖W̃‖1 � 1/
√
Ccl, the average activity in trajectories

originating in ρcond(t ) at time t = nδt is approximated as

〈k(n)〉ρcond(t ) =
m∑

l=1

μ̃in
l p̃l (n) + · · · , (60)

where p̃l (n) ≡ Tr[P̃lρcond(t )] determines the metastable state.
Similarly, from Eq. (54), the variance

〈k2(n)〉ρcond(t ) − 〈k(n)〉2
ρcond(t )

=
m∑

l=1

p̃l (n)

(
σ̃ tot

l

)2

δt

+
m∑

k,l=1

p̃k (n) p̃l (n)

(
μ̃in

k − μ̃in
l

)2

2

+
m∑

k,l=1

p̃k (n) p̃l (n)

(
μ̃in

k − μ̃in
l

)
(K̃k − K̃l )

δt
+ · · · (61)

(by assuming (1 + C̃cl/2)CMM � 1; see Sec. E3f in Ref. [55]).
When the conditional state evolves into a single metastable

phase P[ρcond(t )] = ρ̃l , the average activity is approximated
by the activity μ̃in

l of lth metastable phase [cf. Fig. 4(e)] and
its variance (σ̃ tot

l )2/δt decays inversely with the increasing
time-bin length δt [cf. Fig. 4(f)]. Therefore, for long enough
metastable regime, δt can be chosen so that the fluctuations
between measurement records become negligible, and the
activity typically takes values approximately equal the av-
erage μ̃in

l [cf. Fig. 4(g) (center)]. For ρcond(t ) evolving into
a mixture of metastable phases, however, a constant term is
present in Eq. (61) because of a multimodal distribution of
the activity number in nth time bin. Namely, when C̃cl �
1, the distribution can be approximated, up to corrections
2(CMM + C̃cl ) + Ccl, as a mixture, with probabilities approx-
imating p̃l (n), of distributions with averages equal internal
activities of metastable phase, μ̃in

l , and variances inversely
proportional to δt , l = 1, . . . , m.

This is proved in Sec. E3h of Ref. [55], by postselecting
trajectories in terms of probability of the final state in the time
bin, ρcond(t + δt ), evolving (on average) into a metastable
phase ρ̃l , which, formally, corresponds to performing at t + δt
the measurement in Eq. (26) that approximates P̃l in Eq. (20)
[cf. Fig. 4(g) (bottom)].

We conclude that, for long enough δt , the activity k(n),
n = 0, 1, 2, . . ., takes in typical measurement records only m
values μ̃in

l , l = 1, . . . , m, corresponding to the internal activi-
ties of m metastable phases (approximately, up to fluctuations
decaying inversely in δt). For the bimodal case m = 2, see
also Ref. [41].

Dynamics of time-coarse-grained measurement records as
classical long-time dynamics. We now argue that transitions
in coarse-grained measurement records are captured by the
generator of the effective long-time dynamics W [Eq. (36)].
In particular, the effective lifetime of the lth metastable
phase in coarse-grained trajectories is approximated by τl ≡
−1/(W)ll , l = 1, . . . , m.

From the discussion above, for an initial state ρ(0), the
distribution of activity k(0) can be approximated, up to small

fluctuations, by a probability distribution over metastable
phase activities μ̃in

l , with probabilities approximated by p̃l =
Tr[P̃lρ(0)], l = 1, . . . , m. Analogously, the distribution of the
activity k(n) in a later nth time bin is approximated by p̃k (n) =
[(eδtW̃)np̃]k , where t = nδt , which is further approximated
by [(eδtW)np̃]k , k = 1, . . . , m (cf. Eq. (39); corrections can
be further reduced to nCcl by considering discrete stochastic
dynamics; see Sec. E2f in Ref. [55]). Therefore, the transition
matrix, i.e., the probability of observing k(n) ≈ μ̃in

k condi-
tioned on the observation of the initial activity k(0) ≈ μ̃in

l ,
is approximated by the classical dynamics transition matrix
(eδtW)kl (or a discrete stochastic dynamics; see Sec. E2f in
Ref. [55]). This relation is further corroborated by Eqs. (52)
and (54), with the average and variance of the integrated activ-
ity,

∑�t/δt�
n=0 k(n) = K (�t/δt�δt )/δt , approximately governed

by the classical long-time dynamics W [cf. Figs. 4(e) and
4(f)].

5. Classical metastability and dynamical phase transitions

Finally, we explain how classical metastability can man-
ifest itself as proximity to a first-order dynamical phase
transition in the ensemble of quantum trajectories [60], i.e.,
to a first-order nonanalyticity of θ (s).

Metastable phases as eigenmodes of tilted generator. Build-
ing on the results of Sec. V B 2, when the differences in the
activity of the metastable phases dominate the transition rates
of the classical dynamics between them, we can approximate
W̃s in Eq. (48) as

W̃s = W − hsμ̃
in + · · · ≡ Whs + · · · , (62)

where hs ≡ 1 − e−s and Whs encodes the statistics of the time-
integral of the observable μ̃in in classical trajectories, rather
than their activity (cf. Sec. E1 in Ref. [55]). The corrections
in Eq. (62) additional to Eq. (49) are � hs‖W̃‖1/2 [replacing
μ̃in by μ̃ or μ̃tot doubles them]. Furthermore, for the bias
large enough, so that hs is finite, the contribution from W in
Whs of Eq. (62) can be neglected. In that case, if the bias
is still negligible with respect to the gap to the fast eigen-
modes, λR

m − λR
m+1, m low-lying eigenmodes of Ls are simply

approximated by the metastable phases and the corresponding
eigenvalues and their derivatives approximated analogously
to Eqs. (45) and (46). In particular, the maximal eigenmode
corresponds to the metastable phase with the maximum (for
s < 0) or minimum activity (for s > 0), and

θ (s) = (e−s − 1) μ̃l (s) + · · · , (63)

k(s) = e−s μ̃l (s) + · · · , (64)

where

μ̃l (s) ≡
{

max1�l�m μ̃in
l , s < 0,

min1�l�m μ̃in
l , s > 0.

(65)

(cf. Figs. 4(a)–4(c), and see Sec. E3a in Ref. [55] for correc-
tions from non-Hermitian perturbation theory [95]). This is
a key observation for the numerical method we introduce in
Sec. VII B to find metastable phases as well as for the relation
of metastability to dynamical phase transitions we explain
next.
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Metastability as proximity to first-order dynamical phase
transitions. For metastable phases differing in activity (or
observable averages or homodyne current), Eq. (64) implies
a sharp change in the derivative of θ (s), i.e., −k(s), close to
s = 0 [see Fig. 4(c)]. This sharp change can be interpreted
as the proximity to a first-order dynamical phase transition
[24,51,60,64]. An analogous argument was made for the clas-
sical Markovian dynamics in Ref. [39].

A sharp change in k(s) around s = 0, implies in turn a
large second derivative of θ (s) [see Fig. 4(d)]. In particular,
d2θ (s)/ds2 at s = 0 determines the rate of fluctuations in
jump number, which can be approximated as [cf. Eqs. (58)
and (62)]

σ 2
ss =

m∑
l=1

[(σ̃ in)2pss − 2μ̃inRμ̃inpss]l + · · · , (66)

where (σ̃ in)2 ≡ μ̃in + δσ̃2 and the additional corrections are
bounded by ‖W̃‖1(1 + 2 max1�l�m |μ̃l |‖R̃‖1). The fluctua-
tion rate is indeed large for the stationary state being a
mixture of metastable phases with different activities [cf.
Figs. 4(a) and 4(d)]. This is a consequence of long timescales
of the effective classical dynamics between metastable phases
which govern the intermittence in emission records [24,109]
and are captured by the resolvent in the second term of
Eq. (66). In contrast, when the stationary state corresponds
to a single metastable phase (so that Rμ̃inpss ∝ Rpss = 0),
the fluctuation rate is finite as fluctuations originate inside
that metastable phase alone [up to corrections of Eq. (66)]. A
large second derivative of θ (s) occurs then away from s = 0
at intermediate (negative or positive) s values.

In terms of phase-transition phenomenology, the proximity
of a first-order dynamical phase transition manifests itself in
a multimodal distribution of a dynamical quantity (i.e., the
jump number) in (biased) trajectories for times within the
metastability regime, while at longer times in the coexistence,
within individual trajectories, of active and inactive regimes
that can be considered as dynamical phases [cf. Fig. 4(g)].
These dynamical phases correspond directly to metastable
phases (cf. Sec. V B 4).

Other statistics. Similar results to Eqs. (63) and (64),
and thus the relation of metastability to dynamical phase
transitions, also follow for: individual jump activity (see
Sec. E 3a in Ref. [55]), integrated homodyne current (see
Sec. E3b in Ref. [55] and cf. Ref. [100]) and time-integrals
of system observables (see Sec. E3c in Ref. [55] and cf.
Ref. [101]).

VI. CLASSICAL WEAK SYMMETRIES

Here, we discuss how weak symmetries of the dynamics,
i.e., symmetries of the master operator in Eq. (1), are inherited
by MMs and long-time dynamics. For classical metastability,
we find that nontrivial symmetries are necessarily discrete
as they correspond to classical symmetries, i.e., approximate
permutations of metastable phases, which are inherited by
the classical long-time dynamics. Since first-order dissipative
phase transitions occurring in thermodynamic limit manifest
themselves as metastability for finite system size, our results

FIG. 5. Symmetry of dynamics and classical metastability: (a) A
weak symmetry leads to the MM being symmetric under the corre-
sponding transformation of coefficients, here c3 �→ −c3 [cf. UMM in
panel (b)], which is also preserved by the long-time dynamics (blue
simplex at t � τ ′, red simplex at t = τ ′). States invariant under the
symmetry, e.g., metastable phases ρ̃2 and ρ̃4 and the stationary state
ρss (red sphere), necessarily feature c3 = 0. (b) The transformation
C′ to the symmetric set of metastable phases in Eqs. (72) and (73)
yields the classical long-time dynamics W′ symmetric with respect
to the permutation � that corresponds to the action of the symmetry
on metastable phases, and in this case swaps ρ̃1 and ρ̃3 [cf. Eqs. (69)
and (77)].

pave a way for understanding symmetry breaking in open
quantum systems (see also Ref. [42]).

By a weak symmetry we refer to the generator of the system
dynamics L obeying a symmetry on the master operator level,

[L,U ] = 0, (67)

where U (ρ) ≡ Uρ U † with a unitary operator U of a symme-
try (see Refs. [61–63]). As we consider a unique stationary
state, we are interested in the case when the symmetry opera-
tor U is not itself conserved by the dynamics, so that in general
L†(U ) �= 0 (as the number of distinct stationary states is the
same as the number of linearly independent conserved quan-
tities [61,63]). For example, U can describe the translation
symmetry in homogeneous dissipative systems with periodic
boundary conditions.

From Eq. (67) it follows that L is block diagonal in the
operator basis of eigenmatrices of U . Therefore, the eigenma-
trices of L, Rk (and Lk of L†) can be simultaneously chosen as
eigenmatrices of U (and U†), in which case U (Rk ) = eiδφk Rk

[U†(Lk ) = eiφk Lk], where φk equals a difference in arguments
of U eigenvalues (mod 2π ) (cf. Fig. 5 and see Sec. G1 in
Ref. [55]).

A. Symmetry and general metastability

We first discuss how a weak symmetry in Eq. (67) affects
the structure of a general MM and the long-time dynamics
within it.
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1. Symmetry of metastable manifolds

As the set of all density matrices is invariant under any
symmetry, its image under the dynamics featuring a weak
symmetry is also symmetric at any time t , U{etL[ρ(0)]} =
etL{U [ρ(0)]}. In particular, a unique stationary state achieved
asymptotically is necessarily symmetric U (ρss) = ρss (or, in
the case of degeneracy, the manifold of stationary states
is invariant). Similarly, the set of system states during the
metastable regime, i.e., the set of metastable states, is invariant
under the symmetry U . This can be seen from the MM being
determined by the projection P on the low-lying modes in
Eq. (4), which in the presence of the weak symmetry fulfills

[P,U ] = 0 (68)

[cf. Eq. (67)]. This is a direct consequence of the
modes of L being eigenmatrices of the symmetry, so
that the coefficients gain a phase under the symmetry,
Tr{LkU [ρ(0)]} = Tr[U†(Lk )ρ(0)] = eiφk Tr[Lkρ(0)] = eiφk ck ,
and thus P{U [ρ(0)]} = ∑m

k=1 eiφk Tr[Lkρ(0)] Rk =∑m
k=1 Tr[Lkρ(0)]U (Rk ) = U{P[ρ(0)]}; see Fig. 5(a).

2. Symmetry of long-time dynamics

The weak symmetry in Eq. (67) together with the symme-
try of the MM in Eq. (68) yields the symmetry of the long-time
dynamics in the MM in Eq. (6) as

[LMM,U ] = 0 = [LMM,UMM], (69)

where UMM ≡ PUP; see Fig. 5(b). This follows
since [PLP,U ] = P[L,U ]P = 0 and [PLP,PUP] =
P[L,U ]P = 0 from Eq. (68) and [L,P] = 0.

B. Symmetry and classical metastability

We now explain how weak symmetries for classical
metastability necessarily correspond to approximate permuta-
tions of metastable phases and thus any nontrivial continuous
weak symmetries of low-lying modes preclude classical
metastability. We also show the set of metastable phases
can be chosen invariant under the symmetry, in which case,
the sets of supports and basins of attractions of metastable
phases are also invariant. Furthermore, both the long-time
dynamics and its classical approximation are then symmetric
with respect to the corresponding permutation. This restricts
the structure of the low-lying eigenmodes, including the sta-
tionary state, and, in turn, simplifies the test of classicality
introduced in Sec. III.

1. Approximate symmetry of metastable phases

The symmetry U in Eq. (67) transforms the projections
ρ̃1, . . ., ρ̃m in Eq. (17) into U (ρ̃1), . . ., U (ρ̃1), which are
also projections of system states [e.g., U (ρ1), . . ., U (ρm) for
states in Eq. (14)]. In the space of coefficients, the symme-
try transformation is unitary, and does not change distances.
Therefore, as the simplex with vertices corresponding to
ρ̃1, . . ., ρ̃m approximates well the MM in the space of coeffi-
cients, so does the simplex of the transformed new vertices.
In fact, it can be shown that the corrections of classicality
in Eq. (21) are the same for both choices (see Sec. G2a of

Ref. [55]). We thus expect that the new vertices to be close to
the those of metastable phases.

Indeed, it can be shown that the set of metastable phases is
approximately invariant under the symmetries of the dynam-
ics. In Sec. G2a of Ref. [55], we prove that the action of the
symmetry on the metastable phases

(U)kl ≡ Tr[P̃k U (ρ̃l )] = Tr[P̃k UMM(ρ̃l )], (70)

k, l = 1, . . . , m, can be understood as an approximate permu-
tation of metastable phases, that is,

‖Un − �n‖1 � 3 Ccl, (71)

where � is a permutation matrix and n = 1, 2, . . . are powers
of the transformation [110]. Therefore, from Eq. (71) we
obtain that ρ̃l is approximately transformed into πn(l ) under
symmetry applied n times, ‖Un(ρ̃l ) − ρ̃πn(l )‖ � 3Ccl, where
π is the permutation corresponding to �. Similarly for ρl

being the closest state to ρ̃l we have ‖Un(ρl ) − ρπn (l )‖ �
3Ccl + 2C+ [cf. Eq. (12)].

2. No continuous symmetries

We now argue that any continuous weak symmetry acts
trivially on the low-lying modes of the master operator when
metastability is classical. A continuous weak symmetry is a
symmetry [Uφ,L] = 0 [cf. Eq. (67)] for all φ, where Uφ ≡
eφG with G(ρ) ≡ i[G, ρ] for a Hermitian operator G. For a
small enough φ, Uφ is approximated by the identity transfor-
mation, and therefore for such values of φ we have � = I
in Eq. (71) with n = 1. Since, Un

φ = Unφ , from Eq. (71) the
symmetry Uφ is approximated by I for any φ. But this is
only possible when Uφ = I, i.e., the symmetry leaves each
metastable phase invariant, otherwise the corrections, as given
by the Taylor series, could accumulate beyond 3Ccl � 1 (see
Sec. G2b in Ref. [55] for a formal proof). Therefore, all slow
eigenmodes of the dynamics must be invariant as well. As a
corollary, we obtain that any nontrivial continuous symmetry
of slow eigenmodes precludes classical metastability.

3. Symmetric set of metastable phases

We now show that the set of metastable phases can be
chosen invariant under the action of a weak symmetry.

For a discrete symmetry, there exist a smallest nonzero
integer D such that UDP = P . We then have UD = I, and
thus from Eq. (71) also �D = I. Let be π be a permutation
associated with �, that is, (�)kl = δkπ (l ), k, l = 1, . . . , m. For
each cycle in the permutation, we choose an element l and
define

ρ̃ ′
l ≡ dl

D

D
dl

−1∑
n=0

Undl (ρ̃l ), (72)

where dl is the length of the cycle πdl (l ) = l (and thus D is
divisible by dl ), while for the other elements of that cycle we
define

ρ̃ ′
πn(l ) ≡ Un(ρ̃ ′

l ), n = 1, . . . , dl − 1, (73)

and denote the transformation from the eigenmodes to this ba-
sis as C′ [cf. Eq. (18)]. This gives a symmetric set of metastable
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states,

U (ρ̃ ′
l ) ≡ ρ̃ ′

π (l ), l = 1, . . . , m, (74)

for which the distance to system states is again bounded by
C+ in Eq. (12). Furthermore, from Eq. (71) it can be shown
that ‖ρ̃ ′

l − ρ̃l‖ � 6Ccl, l = 1, . . . , m, and the corresponding
corrections to the classicality, C ′

cl, defined analogously to
Eq. (21), can increase at most by � 6Ccl (see Sec. G2c in
Ref. [55] for the proofs). Therefore, without loss of generality,
the set of metastable phases can be considered invariant under
the symmetry. In Sec. VII A, we show how symmetric sets of
m candidate sets can be generated efficiently.

In the invariant basis of metastable phases, the action of the
symmetry is exactly the permutation [see Fig. 5(b)]

U′ ≡ �, (75)

where (U′)kl ≡ Tr[P̃′
k U (ρ̃ ′

l )] = Tr[P̃′
k UMM(ρ̃ ′

l )], k, l =
1, . . . , m, and P̃′

l is the dual basis to ρ̃ ′
l in Eqs. (72) and

(73), l = 1, . . . , m; that is, Tr(P̃′
k ρ̃ ′

l ) = δkl , from which it
follows U (P̃′

l ) = P̃′
π (l ) [cf. Eq. (74)].

Finally, the set of corresponding basins of attraction is
symmetric. That is, not only supports of the metastable phases
in a cycle are connected by the symmetry operator U , but
also their basins of attractions. Indeed, for p̃′

l = Tr[P̃′
l ρ(0)],

we have p̃′
l = Tr{U (P̃′

l )U [ρ(0)]} = Tr{P̃′
π (l )U [ρ(0)]}, l =

1, . . . , m. Thus, when ρ(0) belongs to the basis of attraction
of ρ̃l , i.e., |1 − p̃′

l | � 1, U [ρ(0)] belongs to the basis of attrac-
tion of ρ̃π (l ). Similarly, U (1H′

l
) = 1H′

π (l )
for H′

l defined for P̃′
l

as in Eqs. (31)–(33).

4. Symmetry of classical long-time dynamics

Permutation symmetry. The weak symmetry of the long-
time dynamics in Eq. (69) in the basis of the metastable phases
reads

[W̃, U] = 0 (76)

[cf. Eqs. (34) and (70)]. For the set of m metastable phases
chosen invariant under the symmetry [Eqs. (72) and (73)], the
classical stochastic dynamics between metastable phases W′
that approximates the long-time-dynamics W̃′ [Eq. (36)] also
features the weak symmetry with respect to the permutation
�,

[W̃′,�] = 0 = [W′,�] (77)

[cf. Eq. (75) and Fig. 5(b) and see Sec. G3a in Ref. [55] for
the proof].

Structure of low-lying eigenmodes. We now show that,
as a consequence of the symmetry in Eq. (77), the long-
time dynamics may couple only plane waves over cycles of
metastable phases with the same momentum, which results in
the low-lying eigenmodes being their linear combinations. In
particular, a unique stationary state is composed of uniform
mixtures of states in cycles,

ρss =
∑

l

(p̃′
ss)l

1

dl

dl −1∑
n=0

ρ̃ ′
πn(l ), (78)

where l runs over cycles representatives with dl denoting the
length of the corresponding cycle [cf. Eqs. (72)–(74)], and
(p̃′

ss)l = Tr(P̃′
l ρss ) corresponds to the stationary distribution of

approximately classical dynamics of the symmetric degrees of
freedom (see Fig. 5(a) and cf. Secs. E1c and G3b in Ref. [55]).

In the presence of a weak symmetry in Eq. (77), the long-
time dynamics generator W̃′ is block diagonal in an eigenbasis
of �, which we can choose as plane waves over the cycles
in the corresponding permutation π . Thus, the weak symme-
try limits the number of free parameters of W̃′ to the sum
of squared degeneracies of the symmetry eigenvalues, i.e.,
the plane-wave momenta (less 1 from the trace-preservation
condition), and results in the eigenvectors of W̃′ being linear
combination of the plane waves with the same momenta. In
particular, W̃′ restricted to the symmetric plane waves, i.e., the
uniform mixtures of metastable phases in each cycle, governs
the long-time dynamics of symmetric states, which is trace-
preserving and approximately positive with the corrections
� 2

√
C ′

cl (see Sec. G3b in Ref. [55]).
Eigenvectors of W̃′ correspond directly to the low-lying

eigenmodes of the master operator L, as they determine
the coefficients in the basis of the metastable phases [cf.
Eqs. (72)–(74)],

Rk =
m∑

l=1

(C′−1)kl ρ̃ ′
l , Lk =

m∑
l=1

(C′)kl P̃′
l , (79)

where k = 1, . . . , m. In particular, the left eigenvector of W̃′
corresponding to the eigenmode Lk is simply the vector of
kth coefficient for the metastable phases [cf. Eq. (18)]. Analo-
gously, the plane waves correspond to the eigenmodes of UMM

[cf. Eq. (79)],

R′
π j (l ) ≡ 1

dl

dl −1∑
n=0

(
e−i2π

j
dl

)n
ρ̃ ′

πn(l ), (80a)

L′
π j (l ) ≡

dl −1∑
n=0

(
ei2π

j
dl

)n
P̃′

πn (l ), (80b)

with j = 0, 1, . . . , dl − 1, dl being the length of the con-
sidered cycle, and ei2π j/dl the corresponding symmetry
eigenvalue [cf. Eqs. (72) and (73)]. Therefore, the low-lying
modes are their linear combinations,

Rk =
m∑

l=1

(
C−1

U

)
kl

R′
l , Lk =

m∑
l=1

(CU)klL
′
l , (81)

where CU is the transformation from the basis of the low-lying
eigenmodes to the basis of Eq. (80),

(CU)kπ j (l ) = c′(l )
k if eiφk = ei2π

j
dl ,

(CU)kπ j (l ) = 0 otherwise, (82)

with k = 1, 2, . . . , m, j = 0, . . . , dl − 1, and c′(l )
k = Tr(Lkρ

′
l )

[cf. Eq. (18) and Fig. 5(a)]. Importantly, CU is block diag-
onal in the eigenspaces of �, so that Rk and Lk are only
linear combinations of the eigenmatrices in Eq. (80) that fulfill
ei2π j/dl = eiφk . In particular, the number of symmetric low-
lying modes equals the number of cycles in the permutation,
the corresponding block of CU is determined by coefficients
for uniform mixtures of metastable phases in each cycle, and
the symmetric stationary state is given by Eq. (78). Further-
more, when the symmetry eigenvalue eiφk is unique among
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low-lying spectrum modes, Rk and Lk are necessarily propor-
tional to Eqs. (80a) and (80b), but this is not the case for
multiple cycles in general, e.g., for symmetric eigenmodes.
For a single cycle, however, all symmetry eigenvalues are
unique, so that CU is diagonal and determined by the co-
efficients of a single candidate phase. Thus, all low-lying
eigenmodes are determined uniquely and the stationary state
is an equal mixture of m metastable phases [cf. Eq. (78)], as
discussed in Ref. [42].

(No) conservation of symmetry. Finally, note that the
symmetry of the MM can take place without the unitary op-
erator U being conserved during the initial relaxation and the
metastable regime U , P†(U ) = U , analogously as is the case
for the symmetric manifold of stationary states [61,63,111].
Indeed, U itself is a symmetric operator, U†(U ) = U , and
thus, if conserved, it is spanned by the symmetric eigenmodes,
U = ∑

l ul
∑dl −1

n=0 P̃πn (l ), where ul ≡ Tr(U ρ̃l ) and l runs over
cycles representatives. For a MM with a single cycle, however,
the conservation would lead to contradiction, as it would im-
ply a trivial symmetry, U ∝ 1, with m, rather than one, cycles.

5. Symmetric test of classicality

We now use the structure of eigenmodes of the dynamics in
the presence of symmetry in Eqs. (81) and (82) to simplify the
test of classicality introduced in Sec. III B. It is important to
note beforehand that Eq. (80) forms a valid basis for any sym-
metric set of m candidate states that are linearly independent.
Thus, to verify whether candidate states indeed correspond to
m metastable phases, the test of classicality is necessary even
in the case of a single cycle (see Sec. G4 in Ref. [55] for an
example).

Exploiting the structure of the eigenmodes, the test of clas-
sicality can be simplified as follows. First, only coefficients of
cycle representatives are needed to construct CU in Eq. (82).
Second, as CU is block diagonal, to find the dual basis to
the plane waves [Eq. (80b)], only matrices of the size of
the permutation eigenspaces need to be inverted [112]. The
dual basis to metastable phases in Eq. (20) can then be found
by the inverse transformation to Eq. (80b), that is, with the
coefficients as in Eq. (80a). Finally, to estimate the corrections
to the classicality as in Eq. (23), it is enough to consider the
elements of the dual basis corresponding to the chosen cycle
representatives, P̃′

l [Eq. (80b) averaged over j], and multiply
their contribution by dl [113].

VII. UNFOLDING CLASSICAL METASTABILITY
NUMERICALLY

With the theory of classical metastability now established,
we turn to the question of how to efficiently uncover the
structure of a MM and long-time dynamics in a given open
quantum system governed by a master equation. We introduce
two numerical methods to analyze the classical metastability
in such systems with or without weak symmetries. The first
approach in Sec. VII A requires diagonalizing the master op-
erator and its low-lying eigenmodes. It verifies the presence of
classical metastability, delivers the set of metastable phases,
and uncovers the structure of the long-time dynamics. The
second approach in Sec. VII B instead utilizes quantum trajec-

tories with probabilities biased according to their activity, so
that the metastable phases with the extreme activity are found.

A. Metastable phases from master operator spectrum

Efficient algorithms to uncover the structure of the station-
ary state manifold [114,115] (which utilize Ref. [116]; see
also Ref. [117]) rely on the exact diagonalization of the master
operator and the von Neumann algebra structure of the sta-
tionary left eigenmodes which arises when they are restricted
to the maximal support of stationary states. This algebraic
structure, however, is not generally present for the low-lying
left eigenmodes, as visible, e.g., in first-order corrections to
the formerly stationary modes when they are perturbed away
from a dissipative phase transition at a finite system size by
excitation of decaying modes (see Supplemental Material of
Refs. [40]).

Here, we introduce a general approach which delivers the
set metastable phases and the structure of the long-time dy-
namics when the metastability is classical. Similarly to the
algorithm in Refs. [114,115], it is based on the low-lying left
eigenmodes of the master operator in Eq. (1), but their connec-
tion to basins of attractions is utilized by the observation that
extreme values of the corresponding coefficients are achieved
by metastable phases (cf. Fig. 2), which thus correspond to
the projections on the MM of the extreme eigenstates of
left eigenmodes. To guarantee that all metastable phases are
found, random rotations of low-lying modes are employed
until the corrections to the classicality are small. This way,
the algorithm remains efficient, as it does not simply probe the
whole space system space of pure states (cf., e.g., Ref. [118]).
Furthermore, symmetries of the dynamics can be exploited to
simplify the method. We also consider how observable aver-
ages distinguishing metastable phases (i.e., order parameters)
can be utilized. Finally, we note that this method has been
recently successfully applied in Ref. [54] to the open quantum
East model [50] featuring a hierarchy of metastabilities and
translation symmetry.

1. Metastable phases construction

Our approach consists of the following steps (see also
Fig. 6):

(1) Diagonalize L to find the left eigenmatrices Lk below
the gap in the spectrum, k = 2, . . . , m.

(2) Construct candidate metastable states:
(i) diagonalize the (rotated) eigenmatrices Lk ,
(ii) choose the eigenstates associated to their extreme

eigenvalues as initial states for candidate metastable states,
(iii) discard repetitions in candidate metastable states—

cluster in the coefficients space.
(3) Find best candidate metastable states:

(i) If the number of candidate states � m, then choose
the set of m states providing the simplex with the largest
volume, i.e., the largest |detC| [cf. Eq. (18)] and calculate the
corresponding corrections to the classicality in Eq. (21), as
can be easily bounded by Eq. (23).

(ii) If the number of candidate states < m, or the cor-
rections to the classicality in Step 3i are not negligible,
then enlarge the set of candidates obtained from Step 3 by
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FIG. 6. Metastable phases construction. We sketch the approach
to construct a candidate set of m metastable phases within a given
MM that provides the best classical approximation in terms of cor-
rections in Eq. (21). The construction can be refined by considering
symmetries of the dynamics.

considering a random rotation of the basis of the left eigen-
matrices in Step 2.

Step 1 in the above construction provides the low-
dimensional description of the MM, and, as explained in
Sec. III, allows for testing the approximation of the MM
as mixtures of m candidate states. We choose Hermitian Lk

replacing conjugate pairs of eigenmodes Lk , L†
k [69] by

LR
k ≡ e−iϕk Lk + eiϕk L†

k√
2

, LI
k ≡ e−iϕk Lk − eiϕk L†

k√
2i

, (83)

where e−iϕk is an arbitrary phase. Step 2 relies on the result
in Sec. H1 of Ref. [55], that metastable states arising from
extreme eigenstates of the dynamics eigenmodes can be used
to approximate metastable phases in classical MMs, as long
as only a single metastable phase is close to the extreme
value of the corresponding coefficient ck (which we refer to
as the case without degeneracy); cf. Figs. 2 and 5(a). We
then discard any repetitions in the set of candidate states (to
treat all coefficients on equal footing, we set the normalization
cmax

k − cmin
k = 1, where cmax

k and cmin
k are extreme eigenvalues

of Lk). Indeed, for a given left basis we obtain 2(m − 1)
candidate metastable states corresponding to 2(m − 1) ex-
treme eigenvalues of the basis elements, which may provide
up to m metastable phases. In the case without degeneracy,
each candidate corresponds to one of m metastable phases. In
the case with degeneracy, some of extreme eigenstates may
correspond to mixtures of metastable phases: provided that
the set of candidate states features all metastable phases, such
a candidate state should be discarded in Step 3i (this relies
on the result from Sec. H3 in Ref. [55], that the simplex of
metastable phase is approximately the largest simplex inside
the MM; cf. Fig. 2). However, such mixtures may cause less
than m candidates to remain after clustering, or result in a
set of phases which provides a poor approximation to the
true MM; even without degeneracy, it is possible that some
metastable phases may reside on the interior of the hyper-

cube defined by the extreme values of the coefficients, and
as such will not appear in the set of candidate states taken
from extreme eigenvalues of the eigenmodes. Nevertheless,
random rotations in Step 3ii ensure that each metastable phase
is eventually exposed, i.e., a basis in which that metastable
phase achieves an extreme coefficient value without degener-
acy is eventually considered (with the probability 1 achieved
exponentially in the number of rotations; cf. Sec. H2 in
Ref. [55]). When the set of metastable phases leading to
small corrections to the classicality is found, the dual basis
in Eq. (20) can be constructed, and the long-time dynamics
decomposed as in Eq. (34).

Naturally, instead of considering distances between candi-
date states in the space of coefficients, as used in Steps 2 and
3i, candidate states can be clustered with respect to the trace
distance in the space of density matrices, while the best m
candidate states can be chosen to achieve minimal corrections
to the classicality instead of the maximal simplex volume.
These modifications, however, require working with operators
on the system Hilbert space, rather than on the space of coef-
ficients, and thus are in general more expensive numerically
[for classical MMs, m � dim(H)], while not necessary for
MMs with nonnegligible volumes (cf. Secs. H2 and H3 in
Ref. [55]).

Our approach will not deliver a set of metastable phases
with negligible corrections to the classicality whenever the
MM is not classical. In particular, quantum MMs [40]
featuring decoherence free subspaces [74–76] or noiseless
subsystems [77,78]: which, e.g., at m = 4 amount to Bloch-
sphere in the coefficient space, rather than a tetrahedron (see
also Ref. [119]), cannot be approximated as probabilistic mix-
tures of m metastable phases. Even for classical metastability
emerging in many-body open quantum systems, the approach
relies on the condition in Eq. (25), which may be fulfilled only
at larger system sizes, when the low-lying part of the master
operator spectrum to be sufficiently separated from the fast
modes. In this case, our approach may not succeed for smaller
system sizes with less pronounced metastability.

While degeneracies are unlikely to occur in a generic
model, they typically appear in the presence a hierarchy of
metastabilities or as a consequence of symmetries of the dy-
namics, which we discuss in detail below. In particular, in the
presence of a weak symmetry, not only the degeneracy can be
efficiently remedied, but also the search for candidates states
made even more efficient.

2. Construction for hierarchy of metastable manifolds

In the presence of hierarchy of metastabilities with a fur-
ther separation at m2 < m in the spectrum of the master
operator, the degeneracy appears as a consequence of the
fact that the simplex of m metastable phases of the first
MM, when projected onto the coefficients (c2, . . . , cm2 ), is
approximated by a simplex with m2 vertices corresponding
to m2 metastable phases of the second MM. This requires (at
least) m2 metastable phases in the first MM to evolve directly
into m2 metastable phases of the second MM. Each of other
m − m2 metastable phases of the first MM either evolves into
a single phase of the second MM, or it belongs to the decay
subspace in which case it in general evolves into a mixture of
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m2 metastable phases of the second MM. In the former case,
the metastable phases in the first MM that evolve into the same
phase in the second MM are degenerate in the coefficients
(c2, . . . , cm2 ). In the latter case, they do cannot take extreme
values of those coefficients, even after a rotation of the first
m2 modes (see Secs. F1 and H4 in Ref. [55]). Nevertheless,
rotations of all m modes allow both for the degeneracy to be
lifted and for every metastable phase to take an extreme value
in one of the coefficients.

3. Construction for metastable manifolds with symmetries

In the presence of a weak symmetry U [Eq. (67)], the mas-
ter operator L is block diagonal in the eigenspaces of U , which
simplifies its diagonalization [61–63]. As a consequence, the
low-lying eigenmodes of the dynamics are chosen as linear
combinations of the plane waves over the cycles induced
by the symmetry on m metastable phases [cf. Eq. (81)]. In
particular, for an eigenmode Lk , k = 2, . . . , m with a symme-
try eigenvalue eiφk , U†(Lk ) = eiφk Lk , and the minimal integer
nk > 0 leading to einkφk = 1, Lk is supported on cycles with
the length equal nk or larger but divisible by nk . The latter
case, of subcycles with length nk , leads to degeneracy of the
coefficient ck for the metastable phases connected by Unk ,
with its extreme eigenstates generically projecting onto their
uniform mixture [cf. Eq. (80b) and Fig. 5(a), where ρ̃1 and
ρ̃3 are degenerate in c2 and c4 (n2 = n4 = 1)]. Nevertheless,
coefficient degeneracy can be remedied and the structure of
the low-lying eigenmodes can be used to actually enhance the
introduced approach, as we now explain (see also Sec. H5 in
Ref. [55]).

We note that when GCF(nk, nl ) < nk for all nl �= nk , k, l =
2, . . . , m, the eigenmode Lk is supported only on cycles of
length nk , as there are no longer cycles with the length di-
visible by nk . The symmetry Unk then acts trivially on the
corresponding metastable phases and the above discussed
degeneracy is absent. Analogously to the general case, any
plane wave in Lk can then be exposed by random rotations of
the eigenmodes with the same symmetry eigenvalue eiφk ,
while at least a single metastable phase from each cycle can
be obtained by considering extreme eigenstates of both LR

k and
LI

k [120]. Other metastable phases in the considered cycles
can be recovered by applying the symmetry nk − 1 times, so
there is no need to consider eigenmodes Ll with a different
symmetry eigenvalue supported on the same cycles (i.e., Ll

with eiφk �= eiφk but nl = nk).
Furthermore, metastable phases in cycles with the length

corresponding to subcycles, e.g., invariant metastable phases,
can also be found. For Ll such that nl is divides only nk > nl

for the above considered eigenmodes Lk , when the degeneracy
of eiφl equals the number of already considered cycles with nk

divisible by nl (i.e., the sum of the corresponding symmetry
eigenvalue degeneracy for all such nk values), Ll is supported
on the already considered cycles. Otherwise, Ll features new
cycles with the length nl , which can be unfolded, as before,
by rotations of all eigenmodes with the same symmetry eigen-
value as eiφl and considering both LR

l and LI
l [120]. Here, equal

mixtures of already considered phases connected by Unk/nl

will also be found, but such candidate states will not lead to
the maximal volume simplex. Again, by applying symmetry U

the full (sub)cycles can be recovered, and other eigenmodes Lj

with n j = nl , but a different symmetry eigenvalue can be dis-
carded. Analogous results hold for the remaining eigenmodes,
but with respect to Ll and eiφl degeneracy.

In summary, the set of eigenmodes considered in Step 2
is significantly reduced, with its size equal to the number of
cycles and the subcycles with other cycle’s length. Further-
more, only rotations of eigenmodes with the same symmetry
eigenvalue are necessary in Step 3ii. Importantly, as the eigen-
states of LR

k and LI
k and the corresponding metastable states

are invariant under Unk , that is, generate cycles of candidate
states with the length dividing nk , following the prescription
above, we arrive at an invariant set of candidate states. This
invariance can be maintained by clustering whole cycles of
candidate states rather than individual states in Step 2. Then,
without loss of generality, in Step 3i, instead of considering
subsets of all candidate states, we can choose candidate states
as sets of cycles with their lengths summing to m. In that
case, the volume of the simplex can be efficiently calculated
as | det CU|/(m − 1)!

∏
l

√
dl , where CU is the block-diagonal

matrix in Eq. (82) and the product, which runs over cycle
representatives, is the same for all sets of linearly independent
candidates [112], while the corrections to the classicality can
be efficiently calculated with the symmetric test of classicality
of Sec. VI B 5.

4. Construction utilizing order parameters

Instead of considering the eigenmodes of the dynam-
ics, we can choose a left eigenbasis formed by a set of
m observables Ol , l = 1, . . . , m projected onto the low-
lying eigenmodes, i.e., P†(Ol ) = ∑m

k=1 b(l )
k Lk , where b(l )

k ≡
Tr(OlRk ) [cf. Eq. (4)], provided that those projections are
linearly independent. In this case, the extreme eigenstates of
P†(Ok ) will give metastable states attaining extreme values
in the average of the observable Ok . Those metastable states
will correspond to metastable phases, up to degeneracy of
metastable phase averages of Ok (in particular, in the presence
of nontrivial weak symmetry of low-lying eigenmodes, it is
necessary to consider observables breaking the symmetry).
Among others, this can be helpful when the volume of MM
in the space of coefficients is negligible. In the next section,
we extend this approach by considering continuous measure-
ments instead of system observables.

B. Metastable phases from biased quantum trajectories

In some systems, the metastability can be a collective effect
emerging as the system size increases [41]. If large system
sizes are required for prominent metastability, then exact
diagonalization may not be feasible. Therefore, we now intro-
duce an alternative numerical approach to finding metastable
phases in classical MMs using QJMC simulations [8–12] and
biased sampling in the framework of large deviation theory
(see Ref. [121] for a review). In classical stochastic dynamics
biased sampling can be efficiently incorporated into the gen-
eration of trajectories, with techniques such as transition path
sampling [122] and cloning [123].

Trajectories of the biased master equation Ls in Eq. (44)
can be viewed as trajectories of L with their probability mul-
tiplied by e−sK (t ), where K (t ) is the total number of jumps
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occurring in a quantum trajectory of length t . The maximal
eigenmode ρss(s) of Ls corresponds then to the asymptotic
system state in quantum trajectories averaged with the bi-
ased probability. In Sec. V B 5, we argued that ρss(s) can
approximate metastable phases of extreme activity for appro-
priately chosen s when the activity dominates the transition
rates of long-time dynamics [cf. Figs. 4(a) and 4(c)]. Thus, if
the efficient biased sampling could be generalized to QJMC
sampling, metastable phases with extreme activity could be
accessed via time-average of a biased trajectory over time-
length within the metastable regime [124].

Similarly as in the case of degeneracy of coefficients, when
more than a single metastable phase corresponds to the maxi-
mum or the minimum activity, ρss(s) corresponds to a mixture
of the metastable phases with the extreme value (e.g., when
both L and J obey a symmetry that is broken in the MM,
the mixture is symmetric). Nevertheless, the discussion in
Sec. V B 5 is analogous for the activity of individual jumps,
and thus a further distinction between metastable phases
can be enabled this way, e.g., by breaking the translation
symmetry of Ls in the case of identical local jumps (see
Sec. E3a in Ref. [55]). Finally, we note that in the
case of general metastability, this approach will return the
metastable states corresponding to the extreme values of jump
activity.

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we formulated a comprehensive theory for
the emergence of classical metastability for open quantum
systems whose dynamics is governed by a master operator.
We showed that classical metastability is characterized by the
approximation of metastable states as probabilistic mixtures
of m metastable phases, where m is the number of low-lying
modes of the master operator. Namely, in terms of the cor-
responding corrections, metastable phases are approximately
disjoint, while the long-time dynamics, both on average and in
individual quantum trajectories, is approximately governed by
an effective classical stochastic generator. Furthermore, any
nontrivial weak symmetries present at long times are necessar-
ily discrete as they correspond to approximate permutations of
metastable phases, under which the classical dynamics is in-
variant. To investigate metastability for a given open quantum
system, we introduced the test of classicality—an approach
to verify the approximation of the MM by a set of candi-
date metastable phases. We also developed a complementary
numerical approach to deliver sets of candidate metastable
phases. Since that approach requires diagonalization of the
master operator—a difficult task in systems of larger size—we

also discussed an alternative based on the concept of biased
trajectory sampling.

The techniques we introduced here allow us to achieve a
complete understanding of classical metastability emerging
in an open quantum system. A concrete application of the
methods described here to a many-body system of an open
quantum East model [50] is given in Ref. [54], where despite
the stationary state being analytic in dynamics parameters,
the dynamics is found to feature a hierarchy of classical
metastabilities, with metastable phases breaking the transla-
tion symmetry of the model and their number increasing with
the system size. This structure is then shown to be analogous
to metastability in the classical East model, but with an effec-
tive temperature and coherent excitations.

While our general approach relies only on the Marko-
vian approximation of system dynamics, non-Markovian
effects could be included via the chain partial diagonalization
[125–127] (see also Ref. [128]). However, an open quantum
system and its environment form an isolated system, which
raises a question about the relation of classical metastability
to separation of timescales in closed system dynamics, which
generically leads to prethermalization of subsystem states
[129]. Furthermore, as in this work no assumptions were made
on the structure of system Hamiltonian or jump operators, it
should be explored how metastable phases and their basins of
attraction can be further characterized in systems with local
interactions and local dissipation (see also Ref. [25]). Finally,
it remains an open question what is the structure of general
quantum metastability and how it can be efficiently investi-
gated, e.g., to uncover metastable coherences [40]. Extending
the methods described here to this general case would inform,
among others, the study of a general structure of first-order
dissipative phase transitions in open quantum systems.
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[118] W. H. Żurek, Preferred states, predictability, classicality, and
the environment-induced decoherence, Prog. Theor. Phys. 89,
281 (1993).

[119] C. I. Bengtsson and K. Życzkowski, Geometry of Quantum
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