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Experimental characterization of the quantum many-body localization transition
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As strength of disorder enhances beyond a threshold value in many-body systems, a fundamental transforma-
tion happens through which the entire spectrum localizes, a phenomenon known as many-body localization.
This has profound implications as it breaks down fundamental principles of statistical mechanics, such as
thermalization and ergodicity. Due to the complexity of the problem, the investigation of the many-body
localization transition has remained a big challenge. The experimental exploration of the transition point is
even more challenging as most of the proposed quantities for studying such an effect are practically infeasible.
Here, we experimentally implement a scalable protocol for detecting the many-body localization transition point,
using the dynamics of an N = 12 superconducting qubit array. We show that the sensitivity of the dynamics to
random samples becomes maximum at the transition point, which leaves its fingerprints in all spatial scales.
By exploiting three quantities, each with a different spatial resolution, we identify the transition point with an
excellent match between simulation and experiment. In addition, one can detect the evidence of a mobility edge
through slight variation of the transition point as the initial state varies. The protocol is easily scalable and can
be performed across various physical platforms.

DOI: 10.1103/PhysRevResearch.3.033043

I. INTRODUCTION

Ergodicity and thermalization principles are the founda-
tions of statistical mechanics, which imply that a many-body
system forgets its local information as it evolves [1,2]. Strik-
ingly, these principles can be violated when the thermalizing
dynamics leads to the conservation of local information [3,4].
Many-body localization (MBL) is the most recognized
phenomenon for this remarkable feature [5–8]. MBL is rem-
iniscent of Anderson localization [9] when the particles of a
disordered many-body system interact. The most mysterious
feature of MBL physics is the transition point at which an
ergodic phase transforms into a localized one as the disorder
strength increases. Despite several theoretical breakthroughs
for characterizing the transition point [10–17], its observation
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is extremely challenging and has only been achieved for low
filling factors [18] and weak interaction [19] regimes.

The MBL transition takes place as the strength of disorder
exceeds a threshold value in comparison with the interaction
coupling. Unlike the quantum phase transition, which only
affects the ground state, the MBL transition is more drastic
and leaves its impact on the whole spectrum. This makes it dif-
ficult to investigate as, for instance, theoretically it can only be
explored via exact diagonalization, which restricts us to short
chains [20]. Interestingly, each energy eigenstate localizes at
a different disorder strength, with the midspectrum eigen-
vectors requiring the maximum disorder. This phenomenon,
schematically shown in Fig. 1(a), is known as the mobility
edge, which has been investigated theoretically [16] and some
of its features have been observed experimentally [21,22].
While ergodic and MBL phases are well explored through
thermalization studies [2] and investigating local conserva-
tion laws [4], several interesting features emerge around
the MBL phase transition point that are less understood.
This includes scaling properties [10,11,16], anomalous trans-
port [23], critical slowing down [24], and a change in
entanglement behavior [17] and energy level statistics [25].
Hence detection, characterization, and understanding of the
MBL transition point is highly desirable for both funda-
mental and practical purposes. Most of the quantities, e.g.,
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FIG. 1. Schematics of the experiment. (a) The illustration of the phase diagram of the system across the whole energy spectrum vs disorder
strength. Each energy eigenstate localizes at a different disorder strength, resulting in a many-body mobility edge. (b) The 12 transmon qubits,
illustrated as red crosses, are arranged in a 1D chain. The direct coupling between them is realized via capacitors. Each qubit has individual Z
(yellow) and XY (green) control lines for state manipulation. The 12 readout resonators (blue) are dispersively coupled to their corresponding
qubits, and then divided into two groups to couple to the transmission lines (orange). (c) The three steps of the experimental procedure are
depicted, namely initialization, evolution, and readout. For state preparation, the corresponding qubits are excited to |1〉 by applying X gates.
After that, for the state evolution, all the qubits are tuned to their working frequencies ω + h� with h� being a random number in the interval
[−h, h]. After time t , for readout, the qubits are detuned to stop the evolution and then simultaneously measured in the σz direction. (d) Our
protocol can be understood in a simple way. Each circle represents a qubit, and the filling color shows the corresponding average population.
Namely, empty, full, and fractional filling colors stand for 〈n̂�〉 = 0, 〈n̂�〉 = 1, and 0 < 〈n̂�〉 < 1, respectively. The dynamics start with a given
initial state. Each column shows the average population of each site at long time dynamics for a specific random instance of qubit frequencies.
In the ergodic regime, the system thermalizes with 〈n̂�〉 ∼ 1/2 and thus the variation with respect to different random realizations is small.
Deep in the MBL regime, the dynamics is almost frozen and 〈n̂�〉 remains close to its initial value, leading also to a weak dependence on the
different random realizations. Remarkably, around the MBL transition, the long time dynamics shows a strong dependence on the random
potential. We exploit this feature to identify the MBL transition point.

von Neumann entropy [17], level spacing statistics [25],
Schmidt gap [10], and entanglement negativity [11], which
have been introduced for identifying the transition point,
are not experimentally friendly, demanding either costly
state tomography protocols [26] or full knowledge of the
energy spectrum [16]. Therefore, most of the experiments
[18,19,26–32] are performed either in the ergodic phase or
deep in the MBL regime, leaving the MBL transition point
unexplored.

Here, we propose and experimentally implement a protocol
for detecting the MBL transition point using a supercon-
ducting transmon qubit array with size N = 12 qubits. We
initialize the system in various product states and let it evolve
under the action of its disordered Hamiltonian until it reaches
local equilibrium. Then, we measure three different quantities,
namely time autocorrelation, number entropy, and Hamming
distance, which capture different spatial resolutions varying
from a single site to a block of finite size and the entire
system, respectively. To see the effect of the mobility edge,
various initial states with different overlap patterns with the
eigenstates of the system are considered. Each quantity is
measured for several random ensembles. While the averaged
quantities vary smoothly across the phase diagram, their stan-

dard deviation with respect to different random ensembles
peaks at the critical point, revealing the MBL transition.

II. SUPERCONDUCTING QUBIT ARRAY

We demonstrate our experiment on an array of N = 12
superconducting transmon qubits, described by the Bose-
Hubbard model (h̄ = 1)

Ĥ =
N−1∑
�=1

J (�)
1 (̂a†

� â�+1 + â�̂a†
�+1) +

N−2∑
�=1

J (�)
2 (̂a†

� â�+2 + â�̂a†
�+2)

+
N∑

�=1

[
(ω + h

�
)̂n� + U

2
n̂� (̂n� − 1)

]
, (1)

where â†
� (̂a�) are the bosonic creation (annihilation) oper-

ators at site �, and n̂� = â†
� â� is the corresponding number

operator. The capacitive dipole-dipole interaction leads to
the nearest-neighbor hopping J (�)

1 , with the average value of
J1 = 1/N

∑
� J (�)

1 � 2π × 11.5 MHz, and the next-nearest-
neighbor coupling J (�)

2 , with the average value of J2 =
1/N

∑
� J (�)

2 � 2π × 0.3 MHz. To generate disorder in the
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potential of the system, the qubit frequencies are tuned by DC
and pulse signals to be the sum of a constant central frequency
ω and a random value h

�
which is drawn from a uniform

distribution [−h, h], with h being the disorder strength. The
nonlinear on-site interaction U ≈ −22J1 represents the excess
of energy needed for having more than one boson at each site.
The schematic of the quantum simulator is shown in Fig. 1(b),
and more details about the device and its parameters are given
in Appendix A.

III. EXPERIMENTAL PROTOCOL

We initialize the system in 10 different product states
|�s(0)〉 = |s〉 = |s1, s2, . . . , sN 〉 (where s� = 0, 1 represents
the number of bosons at site �) such that the filling factor
is f = ∑N

�=1〈̂n�〉/N = 1/2. The system evolves under the ac-
tion of the Hamiltonian as |�s(t )〉 = e−ıĤt |�s(0)〉 and then
the population configuration is measured for all sites. The
protocol is schematically shown in Fig. 1(c). We note that
the Hamiltonian commutes with the total number of particles,
i.e.,

∑N
�=1 n̂�, resulting in the conservation of the number of

bosons during the evolution. Each measurement was repeated
at least 3000 times. The measurement outcomes that do not
have the right filling factors are excluded (see Appendix B for
detailed discussions). To ensure that we observe the general
behavior of the disordered Hamiltonian, we also consider R =
60 distinct random realizations for each initial state. This is
accompanied by numerical simulations in which the bosonic
modes of each site are truncated to nmax

� = 3.
We first consider the autocorrelation function, which we

adopt from Ref. [33], and it is defined as

C(t ) = 1

N

N∑
�=1

([2〈�s(t )|n̂�|�s(t )〉 − 1]

× [2〈�s(0)|n̂�|�s(0)〉 − 1]). (2)

In the ergodic phase, the local population thermalizes at
long times reaching 〈�s(t )|n̂�|�s(t )〉 ∼ 1/2, which results
in C ∼ 0. Deep in the MBL phase, the evolution of the
system is almost frozen, i.e., entanglement grows only log-
arithmically in time [34]. This means that 〈�s(t )|n̂�|�s(t )〉 ∼
〈�s(0)|n̂�|�s(0)〉, which then leads to C ∼ 1.

To go beyond the single site resolution, it is highly de-
sirable to investigate entanglement dynamics in the system.
In practice, evaluating a true measure of entanglement, such
as the von Neumann entropy, is challenging as it demands
full quantum state tomography. Here, we measure instead the
number entropy [35,36] for a block of size m (for 1 � m �
N/2), which is defined as

S(m)(t ) = −
∑

n

pn ln(pn), (3)

where pn is the probability of finding n bosons in the block
of size m. Since the system conserves the total number of
bosons, the number entropy S(m)(t ) is a lower bound for the
von Neumann entropy [36], and recently it has attracted a lot
of attention [35]. While in the main text we focus on m = N/2,
we provide more detailed analysis for other choices of m in
Appendix E.

Finally, we consider a global quantity, namely Hamming
distance [37], which quantifies how different configurations
emerge in the global wave function of the system, making
it distinct from the initial one. For a system initialized in
|�s(0)〉 = |s〉, the Hamming distance is define as

D(t ) =
∑

s′
d (s′, s)P(s′, t ), (4)

where s′ is the configuration that one finds at the output
with probability P(s′, t ), and 0 � d (s′, s) � 1 is the classical
Hamming distance between the two configurations s and s′
(i.e., the number of flips that converts s to s′ divided by N
for normalization). In the ergodic phase, D(t ) is expected
to grow in time, ideally reaching 1, due to superposition of
multiple configurations in the wave function of the system.
In contrast, in the MBL phase the Hamming distance remains
small as the dynamics is almost frozen and cannot generate
many new configurations. The Hamming distance has already
been employed to distinguish the ergodic and MBL phases
experimentally [28].

Following the footsteps of previous experi-
ments [18,19,26,28–32], we first plot the three quantities,
namely C(t ), S(N/2)(t ), and D(t ), as a function of time
for one instance of random realization with different
disorder strengths varying from ergodic to MBL phases
in Figs. 2(a)–2(c). All three quantities tend to equilibrate after
a short transition time, and we find good agreement between
the experiments and our numerical simulations, showing that
the unitary evolution under the action of the Hamiltonian in
Eq. (1) reasonably simulates the behavior of the real quantum
device. The scrambling nature of the dynamics in the ergodic
phase (i.e., h/J1 = 1) makes it very distinct from and an
almost frozen evolution in the MBL phase (i.e., h/J1 = 7).

To better characterize the difference between the ergodic
and MBL phases, we focus on the equilibrium values. Let
Q(s,r)(t ) represent any of the three quantities, which depend
on time t , a single random instance r, and the initial state s.
We define the equilibrium value as Q(s,r)

eq = 1
M

∑M
i=1 Q(s,r)(ti ),

where ti’s are the measured times in the equilibrium regime,
and we specifically choose M = 5 points in the range 7.9 �
Jt � 10.8. To have a statistical analysis of the behavior at
the equilibrium with respect to random realizations for a
given disorder strength h, we define the ensemble average
〈Q(s)

eq 〉 = 1
R

∑R
r=1 Q(s,r)

eq and its corresponding standard devi-

ation �Q(s)
eq = 1

R1/2

√∑R
r=1[(Q(s,r)

eq − 〈Q(s)
eq 〉]2, where R = 60 is

the total number of random realizations. To see the behavior
of the system independent of the choice of s, one can av-
erage over different initial states to get 〈Qeq〉 = 1

I

∑
s〈Q(s)

eq 〉
and �Qeq = 1

I

∑
s �Q(s)

eq , where I = 10 is the total number
of initial states (see Appendix A for the exact choices of the
initial states). In Figs. 2(d)–2(f), we plot the average quantities

〈Ceq〉, 〈S(N/2)
eq 〉, and 〈Deq〉 as a function of the disorder strength

h/J1. All the quantities clearly show a transition from ergodic
to MBL as h/J1 increase, although none of these quantities
can directly reveal the transition point from the ergodic to
the MBL phase as all of them vary smoothly throughout the
phase diagram. However, as we will see later, it is indeed the
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Dynamics of the quantities and equilibrium values. The nonequilibrium dynamics of the system, initialized in a Néel state
|0, 1, . . . , 1〉, averaged over five random instances, for the three quantities: (a) the autocorrelation C(t ); (b) the number entropy of half-chain
S(N/2)(t ); and (c) the Hamming distance D(t ). The solid lines are numerical simulations, and markers are the experimental data. The disorder
strength h is chosen to be h/J1 = 1 (ergodic), h/J1 = 3 (near the MBL transition), and h/J1 = 7 (MBL). All three quantities equilibrate
after a transient time. To see the long time behavior, we consider the equilibrium values averaged over all given initial states and 60 random

realizations as a function of disorder strength h/J1 for (d) the autocorrelation function 〈Ceq〉; (e) the number entropy of half-chain 〈S(N/2)
eq 〉; and

(f) the Hamming distance 〈Deq〉. Again, the solid lines are numerical simulations, and markers are the experimental data. All three quantities
smoothly change from the ergodic to the MBL phase without revealing the MBL transition point. The standard deviation, depicted as a shadow
for numerical simulation and error bars for experimental data, quantifies the uncertainty in our estimations. We note the good agreement
between simulation and experiment.

averaged standard deviation �Qeq that is the crucial quantity
to characterize the MBL transition point.

It is often more insightful to investigate a probability
distribution directly rather than its average value. In our ex-
periment, thanks to the fairly large number of random samples
(i.e., R = 60), one can estimate the probability distribution
of P(Q(s)

eq ) at each disorder strength h. To be initial state
independent, one can also average over initial states to obtain
P(Qeq) = 1

I

∑
s P(Q(s)

eq ). In Figs. 3(a)–3(c), the probability

distributions P(Ceq), P(S(N/2)
eq ), and P(Deq) are depicted for

three different disorder strengths. We notice that, in the er-
godic regime, the shape of the distribution is almost Gaussian
with a small variance. This is due to the scrambling dynamics
in the ergodic regime, which thermalizes the system locally
making it indistinguishable for different random instances
(i.e., an absence of memory). As the disorder strength in-
creases, the probability distribution deviates from Gaussianity
and gets wider due to the strong dependence on the random
ensembles. In fact, near the MBL transition point (h/J1 ∼
3) an interplay between thermalization of the ergodic phase
and localization of the MBL regime makes the system very
sensitive to the random instances resulting in a wide distribu-
tion. By further increasing the disorder, the system enters the
MBL regime where the dynamics is almost frozen (i.e., the

emergence of memory), and local subsystems remain close
to their initial value for all random instances. This makes the
role of each random instance irrelevant and thus the distri-
bution gets narrower again. In Fig. 1(d), this phenomenon is
explained schematically.

Inspired by the probability distribution in Figs. 3(a)–3(c),
one can exploit the width of the distribution for each initial
state |s〉, quantified through the standard deviation �Q(s)

eq , to
infer the elusive MBL transition point. In Figs. 4(a)–4(c),
we plot �C (s)

eq , �S(N/2),(s)
eq , and �D(s)

eq , each for two different
initial states |s〉, as a function of the disorder strength h/J1.
Strikingly, �Q(s)

eq shows a very clear peak for all three quanti-
ties, identifying the MBL transition point. Furthermore, each
initial state peaks at a slightly different disorder strength h/J1.
This is clear evidence of the mobility edge as each initial
state has a different overlap pattern with the eigenstates of the
Hamiltonian and thus localizes at a different h/J1.

One can get 10 different transition points corresponding
to I = 10 initial states for each of the three quantities (see
Appendix C for the exact values). It is well known that
for any given length, due to the finite-size effect and the
different convergence rates, distinct quantities may result in
slightly different values of the MBL transition point [10].
To extract this point reliably, we adopt a data analysis pro-
cedure, based on Bayesian inference (see Appendix D for
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(a) (b) (c)

FIG. 3. Probability distributions of the equilibrium quantities. By repeating the experiment for R = 60 random realizations, a set of
equilibrium outcomes are obtained, for which we fit a probability distribution P(Q(s)

eq ). Averaging over all given initial states leads to an

initial state independent probability distribution P(Qeq). By considering different disorder strengths h/J1 = 1 (ergodic), h/J1 = 2 and 3 (near
the MBL transition), and h/J1 = 7 (MBL), we estimate the probability distribution of (a) the autocorrelation function P(Ceq); (b) the number

entropy of half-chain P(S(N/2)
eq ); and (c) the Hamming distance P(Deq). In all the figures, the small rugs are the experimental data, the bars are

the histograms, and the solid lines are the fitting distributions. In the ergodic regime, the distribution is narrow as the system thermalizes, and
the final outcomes are determined solely by the thermal state. By increasing the disorder strength h/J1, the outcomes can take a larger range of
values as the final results depend heavily on the random potential pattern. Consequently, the probability distribution gets wider. As we go into
the MBL regime, the dynamics tends to get frozen, so the final outcomes are mainly determined by the initial state and depend weakly on the
random potential pattern. Therefore, the distribution gets narrower again.

details). The transition point is thus identified to be hc/J1 =
2.7 from the experimental data and hc/J1 = 3.3 from the
numerical simulations, with standard deviations determined
as 1.1 and 1.2, respectively. The uncertainty comes from
the limited number of random samples. The two values of

transition points are not only in excellent agreement but also
fully consistent with a pure theoretical investigation, based on
the von Neumann entropy [38,39], which is also discussed
through numerical simulations in the SM. The average be-
haviors, which are independent of the initial state, are shown

(a) (b) (c)

(d) (e) (f)

FIG. 4. Standard deviations of the quantities as a function of disorder strength. The standard deviation �Q(s)
eq with respect to random

samples for two representative initial states |sk〉 (see Appendix C for other initial states) as a function of disorder strength h/J1 for (a) the
autocorrelation function �C (s)

eq ; (b) the number entropy of half chain �S(N/2),(s)
eq ; and (c) the Hamming distance �D(s)

eq . Remarkably, the �Q(s)
eq

shows an evident peak around h/J1 ≈ 3, revealing the elusive MBL transition point. Moreover, the location of the peak slightly changes for
each initial state, which is a clear indication of the mobility edge. To present the average behavior with respect to the initial states, we plot the

average standard deviation �Qeq as a function of h1/J for (d) the autocorrelation function �Ceq; (e) the number entropy of half-chain �S(N/2)
eq ;

and (f) the Hamming distance �Deq. The shadow around the theory simulations represents the behavior for various initial states.
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in Figs. 4(d)–4(f) as a function of h/J1. All three quanti-
ties peak at the transition point, matching with the theory
prediction.

In Refs. [38,39], the MBL transition point is obtained from
a true scaling analysis and crossing of the entanglement en-
tropy (quantified by the von Neumann entropy) of different
total system sizes. It is found that using this method results
in a larger value of the MBL transition point than the values
obtained from the peak of the standard deviation of the von
Neumann entropy. In the SM, we have provided a detailed
analysis of the von Neumann entropy using the two methods.
In fact, to observe the crossing between different curves one
has to use many (∼1000) random realizations so that the
curves converge properly and a high-resolution crossing can
be observed (see Appendix F). This is very challenging for
experiments. In addition, it is not clear whether the small
difference between the two methods for extracting the transi-
tion point also happens for the three quantities that we have
considered in this experiment. Nonetheless, even if this is
a general behavior, the transition point extracted from our
method provides a lower bound for the true MBL transition
point. As shown in Refs. [38,39], as well as in our analysis
in Appendix F, the two transition points are expected to be
close.

IV. CONCLUSION

We have proposed and experimentally realized a protocol
for detecting the elusive MBL transition point in a supercon-
ducting quantum simulator. The proposed protocol relies on
the time evolution of a many-body system under the action of
a disordered Hamiltonian. We have focused on the long time
evolution where the system is expected to reach an equilib-
rium. Three quantities—autocorrelation, number entropy, and
Hamming distance—each with different spatial resolution,
have been measured to estimate the MBL transition point.
The protocol relies on the standard deviation of these quan-
tities with respect to the random samples of the disordered
potential. As our results show, across the phase diagram,
the sensitivity to random samples is maximum at the MBL
transition point, resulting in a peak in the standard deviation.
The MBL transition points, computed from the three different
quantities, are fully consistent with each other and match
well with numerical simulations. In addition, evidence of the
mobility edge, represented by a slightly different transition
point for each initial state, can be observed.

A remarkable point about our results is that none of the
three quantities demands the costly quantum state tomogra-
phy needed for measuring the von Neumann entropy [17]
or the Schmidt gap [10], thus they can be easily extended
to larger systems and those platforms that cannot perform
tomography measurements. In addition, our protocol is plat-
form independent, which provides a clear application for the
Noisy Intermediate Scale Quantum (NISQ) simulators to shed
light on a difficult problem in many-body physics. In future
experiments, by changing the filling factors and developing
adjustable couplers [40], we can investigate a larger area of the
phase diagram and complete the observation of the mobility
edge for all energy scales.
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APPENDIX A: EXPERIMENTAL REALIZATION

The experiment is performed on a 12-qubit supercon-
ducting quantum processor [29], arranged in a 1D array,
as illustrated in Fig. 1(b) of the main text. The qubits are
Xmon variant [41] of transmon qubits [42]. Each nearest-
neighboring qubit pairs are coupled via the capacitance
between them, yielding an average nearest-neighbor coupling
strength of J1/2π � 11.5 MHz and an average next-nearest-
neighbor coupling of J2/2π � 0.3 MHz. For each qubit, there
is an inductively coupled flux (Z) and a capacitively coupled
microwave (XY ) control line to realize state manipulation.
Twelve individual resonators are dispersively coupled to the
qubits to realize state readout. The resonators are divided into
two groups, and each group couples to a transmission line. We
use frequency multiplexing technology to simultaneously read
out all the qubits’ states. At the outside of each transmission
line, an impedance-matched parametric amplifier (IMPA) is
used to enhance the readout signal strength. The parameters
of the device are listed in Table I. The averaged energy re-
laxation time T1 and dephasing time T ∗

2 are 51.9 and 8.1 μs,
respectively.

As shown in Fig. 1(c) of the main text, the realization of
this experiment consists of three steps: (i) state preparation,
(ii) system evolution, and (iii) measurement. In state prepara-
tion, we apply X gates to corresponding qubits to prepare the
initial product state. After that, we detune all qubits to their
working points, whose frequencies are randomly distributed
in [−h, h] in comparing with the central frequency 4.35 GHz.
After the system evolves for a period t , we detune all qubits
back to their idle frequencies and perform the simultaneous
readout. In our experiment, we only perform the σz projection
measurements. We repeat each cycle at least 3000 times to
obtain the statistical measurement results. The measurement
outcomes that do not have the right filling factors are ex-
cluded. In Appendix B we discuss this in more detail. Between
the cycles, all qubits are biased at their idle points for 300 μs
to initialize all the qubits to their |0〉 states.
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TABLE I. Performance of the qubits. f01 and fah are the idle frequencies and anharmonicities, respectively. T1 and T ∗
2 are the energy

relaxation time and dephasing time, respectively. fr is the frequency of the corresponding readout resonator. f00 and f11 are the probabilities
of correctly reading out the qubits’ state for |0〉 and |1〉, respectively. IMPA gain is measured as the ratio of the readout signal strengths when
IMPAs are turned on and off.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

f01/2π (GHz) 3.981 4.523 4.063 4.621 4.211 4.654 4.02 4.467 3.99 4.432 3.96 4.575
fah/2π (MHz) −248 −256 −264 −216 −256 −248 −240 −256 −256 −248 −248 −240
T1 (μs) 47.6 44.8 68.8 51.8 40.7 33.3 62.5 63.3 70.5 56.5 43.4 39.8
T ∗

2 (μs) 2.6 9.9 2.3 5.4 3.4 16.2 4.3 26.9 2.3 5.3 2.5 15.6
fr/2π (GHz) 6.450 6.477 6.506 6.537 6.570 6.601 6.633 6.654 6.684 6.716 6.742 6.769
f00 (%) 94.4 96.6 96.1 94.7 97.6 93.7 97.2 95.3 92.0 98.0 95.6 98.0
f11 (%) 88.6 89.2 89.1 89.8 90.8 88.5 89.6 90.4 82.7 93.4 87.5 92.2
IMPA gain (dB) 16.1 13.3 12.9 13.5 13.0 14.2 14.2 14.4 14.5 14.8 14.1 15.1

In our experiments, we initially prepare the system in 10
different product states |s〉 = |sk〉 (k = 1, . . . , 10), which are
chosen to be

|s1〉 = |0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0〉,
|s2〉 = |0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0〉,
|s3〉 = |0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0〉,
|s4〉 = |0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0〉,
|s5〉 = |0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0〉,
|s6〉 = |1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1〉,
|s7〉 = |1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0〉,
|s8〉 = |1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1〉,
|s9〉 = |1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0〉,

|s10〉 = |1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1〉.
For each initial state, we consider R = 60 distinct random

realizations of disorders uniformly distributed in [−h, h]. We
consider 13 disorder strengths ranging from h = J1 to h =
7J1. To obtain the equilibrium value, we take M = 5 different
evolution times ranging from 110 to 150 ns. At each time, we
measure the population configuration of the 12-qubit states
and compute different quantities correspondingly.

1. Calibration of frequency alignment

The error of frequency alignment mostly comes from the
residual nonlinear Z cross talk [43]. In our experiment, the
central frequency is set at 4.35 GHz. Based on that, the
working frequencies are randomized in the range [−h, h] in
comparing with the central frequency. The calibration of the
frequency alignment is thus important. The single round of
the calibration consists of two steps. In the first step, we
prepare the working frequencies in two different cases. For
the positive case, the frequency difference between neigh-
boring qubits is +5 MHz, and the working frequencies for
Q1–Q12 range from 4.3225 to 4.3775 GHz. For the negative
case, the frequency difference is −5 MHz. For these two
cases, we first excite one qubit and then detune all qubits to
their working frequencies for system evolution. After that, we
detune them back to their idle frequencies for measurement.
The population propagation is then measured as a function

of time. For each case, we excite the 12 qubits sequentially,
and then obtain the corresponding time-dependent population
distributions. In the second step, we run a Nelder-Mead op-
timization to find out the best estimation of the frequency
differences. We assume that due to the residual Z cross-talk,
the frequency differences of each qubit site for the positive
and negative cases are the same. Based on that, by numeri-
cally simulating the time evolution of the 12-qubit system, we
obtain the population distributions as a function of time. We
use the square sum of the differences between simulations and
experiments as a cost function for optimization. An example
of the comparison between the experimental and simulation
results is shown in Fig. 5, in which the different behav-
ior for positive and negative cases, caused by the frequency
differences, is presented. In the end of this round of cali-
bration, we correct the frequency alignment by adding the
differences to the central frequencies. After several rounds
of calibration, the maximum frequency difference is reduced
from 15.4 MHz to below 4.9 MHz, smaller than 0.43J1/2π .

APPENDIX B: DATA PROCESSING AND
POST-SELECTION OF MEASUREMENT RESULTS

The Bose-Hubbard Hamiltonian H conserves the total
number of excitations in the system. All the initial states
that we have considered have the filling factor f = 1/2.
Nonetheless, due to experimental imperfections some of the
measurement outcomes show a different filling factor, which
can be attributed to either the decay in transmonic qubits or
imperfect readout. In addition, due to dephasing the dynamics
may not be fully unitary, which can also induce errors in
the results. To include these effects and possibly compensate
for them in our numerical simulations, we take two different
approaches: (i) post-selecting the experimental data, which
means excluding the experimental measurement outcomes
with wrong filling factors, and using unitary evolution for the
numerical simulation; and (ii) keeping the raw experimental
data and instead using an open quantum system formula-
tion for the numerical simulations. As mentioned before, the
data shown in the main text are based on the first approach.
Here, we provide a comparison between the two methods. For
open quantum system evolution, we use a Lindbladian master
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FIG. 5. Comparison of the experimental and simulated results in
calibration of frequency alignment. For the positive case, the working
frequencies of the 12 qubits range from 4.3225 to 4.3775 GHz. For
the negative case, they are opposite. In both the positive and negative
cases, the Q7 is excited to |1〉 and then starts the evolution. The time
evolutions for other qubits excited are not shown. The differences
of the time evolution between the positive and negative cases come
from the frequency differences on each sites. After optimizing the
frequency differences, the maximum frequency difference is deter-
mined as 15.4 MHz on Q11.

equation,

d ρ̂

dt
= −i[Ĥ, ρ̂] +

N∑
�=1

(
	(�)

2
D[̂a�]ρ̂ + γ (�)

2
D[̂n�]ρ̂

)
, (B1)

where ρ̂ is the density matrix of the system, and 	(�) and γ (�)

are the decay and dephasing rates of the qubit �, respectively.
Moreover, the Lindblad term is denoted by

D[Ô] = 2Ôρ̂Ô† − ρ̂Ô†Ô − Ô†Ôρ̂.

The values for decay and dephasing rates are taken from
Table I, such that 	(�) = 1/T (�)

1 and γ (�) = 1/T ∗(�)
2 . Since

the open quantum system simulation of N = 12 qubits is
computationally very costly, we consider the average over
I = 5 initial states, in contrast to I = 10 for experiments and
unitary evolution. In Figs. 6(a)–6(c) (upper panel), we plot
the equilibrium autocorrelation 〈Ceq〉, the half-chain number

entropy 〈S(N/2)
eq 〉, and the Hamming distance 〈Deq〉 as a func-

tion of disorder strength h/J1 for the closed and open system
simulations as well as the raw and post-selected experimental
data. Interestingly, the post-selected data match very well with
the unitary simulations of the system. On the other hand, the
raw experimental data match with the open quantum system
simulation, showing that indeed the decay and dephasing of
the device during the time evolution are responsible for the
deviation from the unitary dynamics. Similarly, in Figs. 6(a)–
6(c) (lower panel), we plot the standard deviation for the
equilibrium autocorrelation �Ceq, the half-chain number en-

tropy �S(N/2
eq , and the Hamming distance �Deq as a function

of disorder strength h/J1 for the closed and open system
simulations as well as the raw and post-selected experimental
data. Once again, we see that the post-selected experimental
data qualitatively follow the results from the unitary evolution,
while the raw data pursue the open quantum system evolution.
Note that the scale on the y-axis is small and thus the devia-
tions between the curves are mainly visual.

It is worth emphasizing that neither the post-selection of
experimental data nor the open quantum simulation can fully
compensate for the imperfections of the experiments. There
are several reasons that contribute to this issue. First, the
post-selection of experimental data only takes into account the
loss in the qubits and the first-order readout errors (i.e., when
only one qubit is flipped) while it cannot compromise the
dephasing effects. Second, the Markovian model used for the
open quantum system simulation in Eq. (B1) is very simplis-
tic and ignores cross-talks and correlations between different
qubits. Third, the experimental measurements of the device
parameters, e.g., couplings, dephasing, and decay rates, etc.,
are inevitably prone to errors producing uncertainly in the
parameter values used in the numerical simulations.

1. Numerical simulations

All the numerical simulations were performed using the
QUTIP Python toolbox [44]. In particular, for the time evo-
lution we used the QUTIP mesolve master equation solver,
and the Hamiltonian parameters were taken from Table I.
The local bosonic Hilbert space is truncated at nmax = 3.
To see the accuracy of this truncation, the commutators
〈�s(t )|[̂a�, â†

�]|�s(t )〉 = 1 ± ε were computed for all evolved
states, which showed ε � 10−5. In fact, the good agreement
between the theory and experiments in our data shows that the
assumption of unitary evolution is valid.

2. Convergence with respect to the number of random ensemble

As mentioned before, in our experiment we employ 10
different initial states and R = 60 random samples. The role
of different initial states has already been discussed, and
in this section we focus on the choice of the number of
random realizations R. We compare the behavior of our
quantities for the initial state |s1〉 when the number of ran-
dom ensembles is taken to be R = 60 (as performed in our
experiment), 500, and 1000 for which all quantities are ex-
pected to converge. We find that all the quantities are indeed
converged even for R = 60 random realizations. In Figs. 7(a)–
7(c) upper panel (lower panel) we plot (a) the autocorrelation
〈C (s1 )

eq 〉 (�C (s1 )
eq ); (b) the half-chain number entropy 〈S(N/2),(s1 )

eq 〉
(�S(N/2),(s1 )

eq ); and (c) the Hamming distance 〈D(s1 )
eq 〉 (�D(s1 )

eq )
versus disorder strength h/J1. Both the mean value and the
standard deviation show convergence with R = 60 random
realizations.

APPENDIX C: INITIAL STATES

In this Appendix, we show that the behavior of the quan-
tities that we consider in the main text is general for various
initial states. However, each initial state has a different over-
lap pattern with the eigenstates of the Hamiltonian. Each
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(a) (b) (c)

FIG. 6. Data-processing and post-selection of measurement results. In (a)–(c) (upper panel), we plot the equilibrium autocorrelation 〈Ceq〉,
the half-chain number entropy 〈S(N/2)

eq 〉, and the Hamming distance 〈Deq〉 as a function of disorder strength h/J1 for the closed (Sim Closed) and
open system simulations (Sim Open) as well as the raw (Exp) and post-selected experimental (Exp PS) data. The error bars in the experimental
data and shadows around the solid lines in the numerical simulations represent the standard deviation with respect to random realizations.

In (a)–(c) (lower panel), we plot the standard deviation for the equilibrium autocorrelation �Ceq, the half-chain number entropy �S(N/2)
eq ,

and the Hamming distance �Deq as a function of disorder strength h/J1 for the closed and open system simulations as well as the raw and
post-selected experimental data. We note that, for both the averaged values and the standard deviation, the post-selected experimental data
follow the simulations from the unitary evolution, while the raw data pursue the open quantum system evolution.

(a) (b) (c)

FIG. 7. Convergence with respect to the number of random realizations. The three quantities are investigated for three different number of
random realizations, namely R = 60, 500, and 1000, computed for the initial state |s1〉. The upper panel represents the mean values of (a) the
autocorrelation 〈C (s1 )

eq 〉; (b) the half-chain number entropy 〈S(N/2),(s1 )
eq 〉; and (c) the Hamming distance 〈D(s1 )

eq 〉 as a function of h/J1. In the lower
panel, the standard deviations are plotted as a function of h/J1 for (a) the autocorrelation �C (s1 )

eq ; (b) the half-chain number entropy �S(N/2),(s1 )
eq ;

and (c) the Hamming distance �D(s1 )
eq . The good agreement between the curves, especially the location at which the standard deviation peaks,

shows that the choice of R = 60 random realizations can faithfully capture the statistical behavior with respect to disorder in the system.
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(a) (b) (c)

FIG. 8. Initial states dependence. The equilibrium values of the three quantities averaged over random realizations as a function of disorder
strength h/J1 for various initial states |s〉 = |sk〉 (upper panel). The panels, respectively, represent the mean value of (a) the autocorrelation
〈C (s)

eq 〉; (b) the number entropy 〈S(N/2),(s)
eq 〉; and (c) the Hamming distance 〈D(s)

eq 〉. We note that the three quantities smoothly change from their
expected value in the ergodic phase to the MBL regime with similar qualitative behavior for all the initial states. The standard deviation of
equilibrium values of the three quantities with respect to the R = 60 random realizations as a function of disorder strength h/J1 for various
initial states |s〉 = |sk〉 is plotted in the lower panels. The lower panels, respectively, represent the standard deviation of (a) the autocorrelation
�C (s)

eq ; (b) the number entropy �S(N/2),(s)
eq ; and (c) the Hamming distance �D(s)

eq . We note that for all three quantities, the peak of the standard
deviation varies slightly for different initial states, evidencing the existence of the mobility edge.

eigenstate localizes at a different disorder strength depending
on its energy eigenvalue. Therefore, each initial state may
show a different localization point. This is indeed evidence
of the presence of the mobility edge.

Here, we investigate the role of each initial state on 〈Q(s)
eq 〉

and �Q(s)
eq for the three quantities, namely the autocorrelation,

the number entropy, and the Hamming distance. To ease the
visualization, in the following we only present the data from
numerical simulation, since the experimental data follow the
same behavior. In Figs. 8(a)–8(c) (upper panel), we plot the
equilibrium autocorrelation 〈C (s)

eq 〉, the number entropy for a
subsystem of half-chain 〈S(N/2),(s)

eq 〉, and the Hamming distance
〈D(s)

eq 〉 as a function of disorder strength for all the given initial
states. As expected, all quantities smoothly change from the
ergodic to the MBL phase. While all the initial states quali-
tatively follow the same behavior, there is a small difference
between them. To further evidence this, we plot the standard
deviation �Q(s)

eq as a function of disorder strength for all the
given initial states |s〉 = |sk〉 in Figs. 8(a)–8(c) (lower panel).
As is clear from the figure, the peak of �Q(s)

eq takes place at
different disorder values for each initial state. This is strong
evidence of the observation of the mobility edge in our system.

To have a better understanding, one may consider the time
evolution of a given initial state |s〉, which in general can be
written as

|�(t )〉 =
∑

α

e−iεαt |εα〉〈εα|s〉, (C1)

where εα and |εα〉 are the eigenenergies and the eigenstates
of the Hamiltonian H for a particular random instance. The
overlap of the quantum state of the system with each of
the eigenstates |εα〉 is time-independent and is given by
|〈εα|�(t )〉|2 = |〈εα|s〉|2. Due to the mobility edge, for any
given random instance r each of the eigenstates |εα〉 localizes
at a different disorder strength h(α,r)

c . Therefore, the transition
point for the initial state |s〉 and a random disorder instance r
is given by

h(s,r)
c =

∑
α

|〈εα|s〉|2h(α,r)
c . (C2)

One can average over all random realizations as h(s)
c =

1/R
∑

r h(s,r)
c to obtain the transition point h(s)

c for the initial
state |s〉. In Table II, we present the MBL transition point
h(s)

c , determined as the location of the peak of �Q(s)
eq , for

each initial state extracted from experimental and numerical
simulation.

APPENDIX D: DATA ANALYSIS BASED
ON BAYESIAN INFERENCE

For each quantity measured in our experiment, we start
with 10 different initial states. The 10 data points obtained
from the peaks are within one groups. The three quantities
are independent, and the groups for the three quantities are
hierarchical. Therefore, to estimate the total mean, which cor-
responds to the transition point, we use a multilevel modeling
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TABLE II. The MBL transition point for given initial states. The
MBL transition point, extracted from the peak of the �Q(s)

eq , for
the given initial states from both experimental data and numerical
simulations.

Experiment Simulation

Ceq S(N/2)
eq Deq Ceq S(N/2)

eq Deq

|s1〉 3.00 1.50 3.00 3.50 2.00 4.00
|s2〉 3.00 2.00 6.00 3.50 2.00 2.00
|s3〉 3.00 1.50 2.50 2.50 2.50 3.00
|s4〉 3.00 2.00 4.50 4.00 4.50 5.00
|s5〉 3.00 2.00 3.50 4.50 2.50 5.00
|s6〉 2.50 1.50 3.00 2.00 2.00 2.00
|s7〉 2.50 1.50 3.50 3.50 3.00 3.00
|s8〉 3.00 1.50 3.50 3.00 2.00 6.5
|s9〉 3.00 1.50 5.00 4.00 2.50 4.00
|s10〉 3.00 1.50 2.00 4.00 5.00 2.5
Mean 2.9 1.65 3.65 3.45 2.68 3.7
Standard deviation 0.20 0.23 1.14 0.72 0.25 1.40

approach [45], which allows us to consider the group level
variance and individual level variance.

The data points Yi, j , where i = C,S,D and j = 1, . . . , 10,
are assumed to be independently normally distributed within
each group i, Yi, j |θi ∼ N (θi, δ

2), where θi is the group mean
and δ2 is the individual level variance. The group means θi

are assumed to follow a normal distribution with mean μ and
group level variance τ 2, θi ∼ N (μ, τ 2).

Based on this model, we use Bayesian modeling with
MCMC algorithms [45] to estimate group mean μ. Gibbs
sampling is used as the MCMC sampler [45]. For the model
used in this study, the form of posterior distribution is already
known, and based on that, the conditional posterior distribu-

tions for the three parameters are then generated. The start
values are sampled from noninformative prior distributions.
After assigning starting points, Gibbs’ sampler randomly
draws samples from conditional posterior distributions. Only
one component of the parameters is updated at a time. In
this study, we have a total of three individual chains. The
converge is determined by all three chains when between-
chain differences are small enough. For each chain, the total
number of iterations is 1 × 106, and we discard the first
8 × 105 points. Among the last 2 × 105 iterations, we retain
the samples every 10 iterations to reduce autocorrelation. The
final posterior probability distributions for each parameter are
then determined with the retained samples. From the mode of
the distributions, we obtain μ and τ , which corresponds to the
estimation value of the transition point and its 95% confidence
interval, respectively.

APPENDIX E: NUMBER ENTROPY
FOR DIFFERENT BLOCK SIZES

The Bose-Hubbard model conserves the total number of
excitations, which leads to a link between the particle num-
bers of the two complimentary subsystems. In the main text,
we focused on the half-chain number entropy as a tool to
characterize the MBL transition. To see the generality of the
behavior of this quantity, in this Appendix we present the
number entropy with different subsystem sizes. In Fig. 9(a),
we plot the equilibrium number entropy 〈S(m),(s)

eq 〉 as a function
of disorder strength h/J1 for different subsystem size m and
the initial state |s〉 = |s1〉. As the block size m gets larger, the
number of possible outcomes for the excitation in the block
increases and thus the achievable entropy becomes larger. This
can be observed in Fig. 9(a) when the system is in the ergodic
regime, namely small h/J1. In the MBL regime, since the

(a) (b)

FIG. 9. Number entropy of different subsystems. (a) The equilibrium number entropy 〈S(m),(s)
eq 〉 as a function of disorder strength h/J1, for

different subsystem size m and the initial state |s〉 = |s1〉. As m gets larger, the maximum obtainable number entropy increases, which can be
seen in the ergodic phase, where larger subsystems achive higher entropies. (b) The standard deviation of the number entropy with respect to
R = 60 disorder samples �S(m),(s)

eq as a function of disorder strength h/J1 for different subsystem size m and the initial state |s〉 = |s1〉. As the
subsystem size m increases, the location of the peak mostly remains around h/J1 ∼ 2 − 3, indicating that the number entropy can characterize
the MBL transition better when the subsystem is larger, namely m ∼ N/2.
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(a) (b)

FIG. 10. Entanglement entropy. (a) Disorder-averaged half-chain entanglement entropy divided by the Page value ST as a function of
disorder strength h/J1 for different system size N . The curves collapse at the transition point around h/J1 ≈ 3. (b) Standard deviation of
the half-chain entanglement entropy �S divided by ST as a function of disorder strength h/J1 for different system size N . �S/ST shows a
pronounced peak with increase N located at hc/J1 ≈ 2.7.

dynamics is almost frozen, the number entropy is always small
for all subsystem sizes. In Fig. 9(b), we display the standard
deviation of the equilibrium number entropy �S(m),(s)

eq as a
function of disorder strength h/J1 for different subsystem size
m and the initial state |s〉 = |s1〉. By increasing the system size
m, the location of the peak of the standard deviation mostly
takes place at around h/J1 ∼ 2 − 3, showing that using larger
subsystem sizes to detect the MBL transition is more reliable.

APPENDIX F: ENTANGLEMENT ENTROPY

To further support our results, we also perform finite-size
scaling by numerically studying the half-chain entanglement
entropy (EE) for different system sizes N and the variance of
the EE, which peaks at the MBL-to-thermal transition as the
nature of the eigenstates changes from area-law to volume-
law entangled. To this end, we consider the hard-core limit
(U 	 J), where the Bose-Hubbard model can be mapped to
the XX model with nearest- and next-nearest-neighbor inter-
actions, and through exact diagonalization we compute the
half-chain entanglement entropy of the eigenstates, defined
as S = −Tr(ρN/2 ln ρN/2), where ρN/2 is the partial trace of
the half-chain of each eigenstate, divided by the Page entropy
(entropy of the pure random state) ST = 0.5(N − log2 e) bits.

In the simulations, we consider homogeneous hopping terms
J (�)

1 = J1, J (�)
2 = J2 = J1/10. Within each sample, the data are

averaged over 100 eigenstates in the middle of the energy
spectrum in the zero (1/2) magnetization sector for N even
(odd) and further averaged over up to 1000 disorder realiza-
tions. In Fig. 10(a) we plot S/ST as a function of disorder
strength h/J1 for various system sizes. All the curves cross
as the transition point hc/J1 ≈ 3. In addition, the standard
deviation of the half-chain entanglement entropy �S is also
computed to see the consistency of the results for locating
the MBL transition point [10,17]. This quantity shows a peak
at the crossover as the eigenstate entanglement changes from
thermal to localized, while it tends to zero deep in the MBL
and ergodic phases where the EE follows an area law or
a thermal volume law, respectively. In Fig. 10(b) we plot
�S/ST as a function of h/J1. The plots show a peak around
hc/J1 ≈ 2.7 which becomes more pronounced as the system
size increases. The peak of the �S/ST happens a bit earlier
than the crossing point of S/ST , which is in agreement with the
previous works [38,39]. The transition point obtained by our
protocol, using the three experimentally friendly quantities, is
hc/J1 = 2.7 from the experimental data and hc/J1 = 3.3 from
the numerical simulations, which are in good agreement with
the EE analysis.
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