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Emergence of chimera states in a neuronal model of delayed oscillators
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Neurons are traditionally grouped in two excitability classes, which correspond to two different responses to
external inputs, called phase response curves (PRCs). In this paper we have considered a network of two neural
populations with delayed couplings, bound in a negative feedback loop by a positive PRC (type I). Making use
of both analytical and numerical techniques, we derived the boundaries of stable incoherence in the continuum
limit, studying their dependance on the time delay and the strengths of both interpopulation and intrapopulation
couplings. This led us to discover, in a system with stronger delayed external compared to internal couplings,
the coexistence of areas of coherence and incoherence, called chimera states, that were robust to noise. On the
other hand, in the absence of time delays and with negligible internal couplings, the system portrays a family of
neutrally stable periodic orbits, known as “breathing chimeras.”
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I. INTRODUCTION

For the past few decades, models of coupled phase oscil-
lators have proved to be particularly successful to describe
the emergence of macroscopic rhythmic patterns in a huge
variety of natural and artificial contexts [1]. In this framework,
it is useful to consider the interplay between excitatory and
inhibitory (E-I) time-delayed connections, in order to model
spatially distributed self-organized systems, such as neuronal
networks, that are known to exhibit synchronous behavior.
This is associated with many cognitive processes such as
memory formation [2], directed attention [3], and the process-
ing of sensory stimuli [4], but it can also be the hallmark of
certain disease states such as Parkinson’s disease or epileptic
seizures [5–7]. In these cases, synchronization is generally
localized to certain cerebral regions only, and coherence and
incoherence coexist within the brain.

In the context of phase models, states in which syn-
chronous and asynchronous clusters of identical oscillators
coexist were discovered by Kuramoto and Battogtokh [8],
and they were later defined “chimera states” by Abrams
and Strogatz [9]. Since then, they were observed in a huge
variety of settings, for instance in more realistic neuronal
models [10–14], in time-discrete systems (maps) [15,16], in
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social agent-based models [17], or even in certain experimen-
tal setups [18–20] (see [21–23] for extensive reviews).

Synchronization patterns largely depend on the individ-
ual oscillators properties. It is known that neurons can be
grouped into two excitability classes, that differ in the bifur-
cation observed while transitioning from the silent mode to
the firing mode, in particular, a saddle node on an invariant
circle bifurcation or a Hopf bifurcation. Moreover, they are
directly linked to two types of phase response curves (PRCs):
either always positive (type I) or both positive and negative
(type II) [24]. The dynamics of networks of type II neurons
has been widely explored in the past, e.g., making use of
the Kuramoto model and its many generalizations [25–30].
In this context, chimera states appear commonly in networks
of two subpopulations with nonlocal couplings [31], typ-
ically with a large ensemble of oscillators (although they
have also been observed with as few as two oscillators per
group [32]). It has also been shown, in an adaptive Kuramoto
model, that asymmetric inter- or intrapopulation couplings
enhance the transition from the chimera state to the synchro-
nized state [33]. Moreover, the presence of delayed couplings,
which enriches the dynamics of the system by making it
infinite dimensional, has been also observed to lead to the
emergence of chimera states, for instance in Kuramoto-like
oscillators [34,35] or in multilayer networks of Fits-Hugh
Nagumo oscillators [36].

On the other hand, there have been fewer investigations on
the properties of type I neurons, which are generally consid-
ered to have low propensity for synchronization when coupled
by excitation [37,38]. Most of the studies [39] only focused
on either purely excitatory or inhibitory couplings, whereas
Keane et al. [40] studied a small-world network with a ring
of excitatory type I oscillators, with some random inhibitory
delayed long interactions. It was shown that, as opposed to the
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FIG. 1. (a) Schematic representation of the system with two
subpopulations [blue, excitatory (E); orange, inhibitory (I)] having
NE ,I number of oscillators with intrinsic frequency ωE ,I . They are
bound in a negative feedback loop with delayed connections (with
time delay τEI,IE ,EE ,II , interpopulation coupling strengths kEI,IE , and
intrapopulation coupling strengths kEE ,II ). (b) Type I PRC, with the
form (1 − cos θ )/2.

same network of type II neurons, where adding the inhibitory
couplings results in a sharp transition to incoherence [41],
in this case there were multiple transitions between syn-
chronization and desynchronization. The interplay between
E and I was also studied by Ladenbauer et al. [42] in a
two-population model of delayed integrate-and-fire neurons,
where they observed how adaptation controls synchronization
and the formation of cluster states. Moreover, Montbrió and
Pazó [43] recently analyzed a network of instantaneously cou-
pled E-I oscillators, showing that synchronization can emerge
only if the E population is intrinsically faster than the I one. Fi-
nally, clustered chimera states have been observed by Vüllings
et al. [44] in a ring of type I neurons, which depended on the
distance from the excitability threshold, the range of nonlocal
couplings, and the coupling strength.

We build on the basis of these results and apply this to a
network of two populations of E-I identical type I oscillators
with time delayed couplings [Figs. 1(a) and 1(b)]. The purpose
of this paper is to analyze the dynamics of the system, with a
particular focus on determining whether chimera states may
arise in this framework and how they depend on the delay
and the coupling strengths, both within and between the two
populations.

The paper is organized as follows: the stability of the fully
incoherent state is analyzed in Sec. II A with identical oscilla-
tors, no noise, and time delayed interpopulation connections;
in Sec. II B with the addition of delayed or instantaneous
internal couplings; and in Sec. II C with heterogeneous natural
frequencies, noise, and instantaneous interpopulation cou-
plings. Since it was observed that, starting from random initial
conditions, the system approaches a chimera state for periodic
values of the external time delay greater than zero, in Sec. II D
the basin of attraction of the chimera is discussed making use
of the Ott-Antonsen (OA) ansatz [45], in the absence of time
delay. Finally, in Sec. II E the optimal parameters to display
chimera states and the robustness of the system towards noise
are evaluated.

II. METHODS AND RESULTS

The governing equations for the phases θ of the ith os-
cillator in the E and the I populations, with positive PRC,

are [24,37,38]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙θE
i =ωE

i + kEI

NI

NI∑
j=1

1 − cos(θE
i − θ I

j (t − τEI ))

2

+ kEE

NE

NE∑
j=1

1 − cos(θE
i − θE

j (t − τEE ))

2
+ ξE

i ,

θ̇ I
i =ωI

i + kIE

NE

NE∑
j=1

1 − cos(θ I
i − θE

j (t − τIE ))

2

+ kII

NI

NI∑
j=1

1 − cos(θ I
i − θ I

j (t − τII ))

2
+ ξ I

i ,

(1)

where ωE ,I is the natural frequency, NE ,I is the number of
oscillators in each population, kEI < 0 and kIE > 0 are the in-
terpopulation coupling strengths, kEE > 0 and kII < 0 are the
intrapopulation coupling strengths, and τEI,IE ,EE ,II indicates
constant time delays in the couplings. Moreover, ξ repre-
sents Gaussian noise, such that 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 =
2Dδ(t − t ′), D being a constant value.

Moreover, Eq. (1) can be expressed in a more compact
form as

θ̇ σ
i = ω̃σ

i − kσσ ′

2Nσ ′

Nσ ′∑
j=1

cos(θσ
i − θσ ′

j (t − τσσ ′ ))

− kσσ

2Nσ

Nσ∑
j=1

cos(θσ
i − θσ

j (t − τσσ )) + ξσ
i , (2)

where σ = {E , I} and ω̃σ
i = ωσ

i + 1
2 (kσσ ′ + kσσ ), showing

that the excitatory and the inhibitory couplings have the effect
to slightly shift the natural frequency of the oscillators.

The order parameter that quantifies the level of synchro-
nization within each population is defined as

Zσ (t ) = Rσ (t )eiψσ (t ) = 1

Nσ

Nσ∑
j=1

eiθσ
j (t ).

For later use, taking the long time average 〈·〉t of the absolute
value of the order parameter, it is possible to obtain a single
measure for the phase ordering, Z2

σ , given by

Z2
σ = 〈|Rσ (t )eiψσ (t )|2〉t =

〈
1

N2
σ

Nσ∑
i, j=1

cos(θσ
i − θσ

j )

〉
t

. (3)

Finally, the average order parameter between the two popula-
tions is defined as

〈Z2〉 = (
Z2

E + Z2
I

)
/2.

Equation (2) can be expressed in terms of the order parameter,
such that

θ̇ σ
i =ω̃σ

i − kσσ ′

4
(eiθσ

i Z∗
σ ′ (t − τσσ ′ ) + e−iθσ

i Zσ ′ (t − τσσ ′ ))

− kσσ

4
(eiθσ

i Z∗
σ (t − τσσ ) + e−iθσ

i Zσ (t − τσσ )) + ξσ
i ,

(4)

where * indicates the complex conjugate.
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The analysis of this system can be efficiently carried on in
the case Nσ → ∞, so that the discrete sets of phases and fre-
quencies turns into the continuum limit {θσ

i , ωσ
i } → {θσ , ωσ }.

In other words, for each ω there is a continuum of oscil-
lators distributed along the unit circle; the probability density
function is characterized by f σ (θ |t, ω) such that f σ (θ |t, ω)dθ

gives the fraction of oscillators with frequency ω which lie
between θ and θ + dθ at time t [29].

In general, in this limit the order parameter can be ex-
pressed as

Zσ (t ) =
∫ 2π

0

∫ +∞

−∞
eiθ f σ (θ, ω|t )gσ (ω)dωdθ,

where gσ (ω) is the frequency distribution. Hence, f σ (θ, ω, t )
satisfies the Fokker-Planck equation

∂t f σ = −∂θσ ( f σv) + D∂2
θσ f σ , (5)

with

v =ω̃σ − kσσ ′

4
(eiθσ

Z∗
σ ′ (t − τσσ ′ ) + e−iθσ

Zσ ′ (t − τσσ ′ ))

− kσσ

4
(eiθσ

Z∗
σ (t − τσσ ) + e−iθσ

Zσ (t − τσσ )).

It is convenient, for the following analysis, to introduce the
Fourier expansion of f σ :

f σ (θ |ω, t ) = 1

2π

∑
l

f σ
l (ω, t )eilθσ

. (6)

Substituting Eq. (6) into Eq. (5) and setting the correspondent
modes equal yields

˙f σ
l = −(ilω̃σ + l2D) f σ

l

+ il
kσσ ′

4

(
f σ
l−1Z∗

σ ′ (t − τσσ ′ ) + f σ
l+1Zσ ′ (t − τσσ ′ )

)
+ il

kσσ

4

(
f σ
l−1Z∗

σ (t − τσσ ) + f σ
l+1Zσ (t − τσσ )

)
. (7)

To simplify the future notation, we define

〈 f (ω)〉σ =
∫ +∞

−∞
f (ω)gσ (ω)dω,

so that the order parameter becomes Zσ (t ) = 〈 f σ
−1(ω, t )〉σ .

A linear stability analysis was performed around the fully
incoherent state (Zσ = 0), where all the oscillators are ran-
domly distributed along the unit circle ( f σ = 1/2π ). This is
always a trivial solution. To do so, a small perturbation was
added to the probability density function:

f σ → f σ + η δ f σ = 1

2π

∑
l

(
f σ
l + η δ f σ

l

)
eilθ , (8)

with η � 1. The analysis, reported in the Supplemental Ma-
terial [46], reveals that the only possible unstable modes are
l = ±1 and considering the case l = 1 results in

δ ˙f σ
1 = − (iω̃σ + D)δ f σ

1

+ i

[
kσσ ′

4
〈δ f σ ′

1 〉t−τσσ ′ + kσσ

4
〈δ f σ

1 〉t−τσσ

]
, (9)

where 〈·〉t−τσσ ′ means that the quantity within the brackets is
evaluated at time t − τσσ ′ .

A. Identical oscillators with no internal couplings
and positive external delay

First we considered the simplest case with identical oscilla-
tors (ωE = ωI ≡ ω0), no noise (D = 0), no internal couplings
(kEE = kII = 0), and the same external coupling strength
(|kEI | = |kIE | ≡ K). After substituting the ansatz δ f σ

1 (ω, t ) =
bσ (ω)eλt , and considering that the frequency distribution is
a delta function for both populations (g(ω) = δ(ω − ω0)), a
brief analysis, reported in the Supplemental Material [46],
leads to the characteristic equation for λ:

16((λ + iω0)2 + K2/4)e(τEI +τIE )λ = K2. (10)

Since the dependence is only on the sum of the two delays, we
define τEI + τIE ≡ τ for simplicity of notation.

At the bifurcation point between stable and unstable in-
coherence λ crosses the imaginary axis, λ = iR with R ∈ R,
therefore

16(−(R + ω0)2 + K2/4)[cos(Rτ ) + i sin(Rτ )] = K2. (11)

Given that the right-hand side is real, the left-hand side must
also be real, so sin(Rτ ) = 0, which leads to the condition

Rτ = mπ with m ∈ Z. (12)

Finally, substituting Eq. (12) into Eq. (11) and considering
that the natural period is T = 2π/ω0, Eq. (11) can be solved
for K/ω0, which yields

K

ω0
=

{± 2√
3

m+2τ/T
τ/T if m is even

± 2√
5

m+2τ/T
τ/T if m is odd.

(13)

Therefore, the boundaries of stable incoherence (BSI) are
periodic in the delay and only depend on the sum of the delays
in the two pathways.

This aspect was fully confirmed by the numerical anal-
ysis, with the correspondent parameters used listed in the
Supplemental Material [46]. The simulations were performed
in MATLAB2020B, making use of the built-in function dde23
(Fig. 2) and also confirmed via the Euler method (not
shown). They were performed first with time delay in the
inhibitory connection only [Fig. 2(a)], excitatory connection
only (shown in the Supplemental Material [46]), and then in
both [Fig. 2(b)]. Moreover, they were repeated over a range
of values for K and τ . As initial condition, the phases of
both populations followed a normal distribution centered at
zero and with standard deviation 2π . Once the system had
equilibrated, Z2 was computed for each population. From
the simulations, four possible scenarios emerged, that repeat
periodically (denoted I–IV). In particular, the black areas (for
instance, area III) were confirmed to be the areas in which
both populations are internally not synchronized (Z2

E ≈ Z2
I ≈

0), at the intersection between the curves. In white areas, for
instance in area II, both populations were internally synchro-
nized (Z2

E ≈ Z2
I ≈ 1). However, the remarkable phenomenon

is the emergence of the blue and orange areas such as I and
IV, where only one population is coherent while the other is
incoherent. These corresponded to chimera states. In Fig. 2(c),
a snapshot of the oscillator phases is reported at a fixed time,
which confirms the four scenarios depicted above.

Considering only intercouplings between the two popu-
lations is a very particular case, that enabled us to highly
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FIG. 2. Phase diagram obtained by simulating Eq. (1) with only
external couplings and computing Z2

E , Z2
I with (a) τEI > 0, τIE = 0

and (b) τEI = τIE > 0. The x axis represents the sum of the delays
τ in units of the natural period T , while the y axis corresponds to
the coupling strength K in terms of the natural frequency ω0. The
value of the order parameters is indicated by the two-dimensional
color gradient on the right. The parameters used are reported in the
Supplemental Material [46]. The BSI are obtained from Eq. (13).
(c) Snapshots of the oscillator phases with parameters in regions I–
IV which confirm the presence of chimera states in region I and IV.
Color scheme as in Fig. 1.

simplify the analytical calculations; however, it is not very
realistic, therefore we analyzed whether the system phase
diagram depicted in Fig. 2 would be robust to the inclusion
of small intracouplings.

B. Identical oscillators with both internal and
external couplings

First, we considered the case of equal external coupling
strengths kEI = kIE ≡ kext, as well as equal internal ones
kEE = kII ≡ kint. Then we analyzed the robustness of the
phase diagram depicted in Fig. 2, computing the number of
overall synchronous, asynchronous, and chimera states while
increasing the values of the internal couplings. As shown in
Fig. 3(a), the number of asynchronous and chimera states
are robust to the inclusion of internal couplings until kint ≈
10−1kext, when the system starts to transition to an overall
synchronous state.

Secondly, we considered the case of internal and external
couplings of equal strength (|kEI,IE ,EE ,II | ≡ K) while assum-
ing instantaneous intracouplings (τEE ,II = 0) and the same
delayed cross-couplings (τEI,IE > 0), which could represent
the case of two neuronal populations that are spatially sepa-
rated by some distance. In this case, Eq. (10) becomes (shown

FIG. 3. (a) Percentage of “synchronized” (squares), “asynchro-
nized” (crosses), and “chimera” states (circles) among all the
measured states at increasing values of the internal couplings (kint)
compared to the external ones (kext). (b) Phase diagram obtained by
simulating Eq. (1) with external delayed and internal instantaneous
couplings and computing Z2

E , Z2
I . The x axis represents the sum of the

delays τ in units of the natural period T , while the y axis corresponds
to the coupling strength K in terms of the natural frequency ω0. The
value of the order parameters is indicated by the two-dimensional
color gradient on the right. The parameters used are reported in the
Supplemental Material [46]. The BSI are obtained from Eq. (15).
Color scheme as in Fig. 1.

in the Supplemental Material [46])

(16(λ + iω0)2 + K2)eλτ = K2, (14)

where again τ = τEI + τIE . Following the same reasoning as
before, we found the BSI as{

τ/T = −m/2 if m is even
K
ω0

= ±√
2 m+2τ/T

τ/T if m is odd.
(15)

Therefore, the equations representing the BSI are hyperbolas
and vertical lines in the (τ/T, K/ω0) space. This is in accor-
dance with the simulations, as depicted in Fig. 3(b). In this
case, compared to Fig. 2, the regions of incoherence shrink
around integer values of τ/T , while the area corresponding
to the chimera states decreases for increasing values of the
external delay. Because the inclusion of small delayed inter-
nal couplings did not alter significantly the plot depicted in
Fig. 2, while it highly complicated the analytical calculations,
we decided, for the rest of the paper, to consider negligible
internal couplings.

From the simulations it seemed that the system would
never display chimeras without external time delay, hence we
analyzed whether the delay was the only necessary condition
or whether other parameters could play a role in it as well.
In order to do so, we relaxed some of the constraints, in
particular that of identical oscillators and identical couplings,
and included also some external noise in the system.

C. Heterogeneous oscillators without time delay

We considered the case with no time delay in the con-
nections (τEI,IE = 0), some external Gaussian noise (D >

0), and heterogeneity in the frequencies of the oscillators.
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The calculations are particularly accessible when consider-
ing Lorentzian distributions for the frequencies, gσ (ω) =
L(ω̄σ , γσ ) ≡ γσ /π

(ω−ω̄σ )2+γ 2
σ

. For simplicity we set γE = γI = γ

and ω̄E = −ω̄I = ω̄, so that �ω ≡ ωE − ωI = 2ω̄.
Considering symmetric frequencies over the origin is

equivalent to considering a system of reference that is rotating
with frequency � = (ωE + ωI )/2 and does not modify the
analysis of the stability. Moreover, we define |kEI | = ε|kIE | =
εk both for simplicity of notation and because we will be
interested in observing the ratio of the two coupling strengths,
ε.

The following analysis builds on the work done by Mont-
brió and Pazó [43]. A brief linear stability analysis (see the
Supplemental Material [46] for more details), again close to
the incoherent state, leads to the condition

16�2 − 8i(ε − 1)k� + 4�ω2 − 4k(ε + 1)�ω + 3εk2 = 0,

(16)

where � ≡ λ + D + γ for simplicity of notation. Solving for
λ results in

λ+,− = − γ − D ± 1

4
[4k(ε + 1)�ω − 4�ω2

− (3ε + (ε − 1)2)k2]1/2 + i

(
(ε − 1)k

4
− �

)
. (17)

Finally, imposing the condition that Re(λ+) = 0 gives the
BSI:

�ω

γ + D
= 1

2
(ε + 1)

k

γ + D
± 1

2

√
ε

(
k

γ + D

)2

− 16. (18)

This result confirms, as already shown by Montbrió and
Pazó [43], that without time delay, coherence is only possible
for positive values of �ω, namely, when the E population is
faster than the I population. Moreover, increasing the disparity
between the E-I couplings causes the area of coherence to
shrink.

The simulations were performed with D = 0, spanning
the parameter space given by (k/γ ,�ω/γ ), and they were
repeated first with ε = 1 [Fig. 4(a)], namely, with the same
coupling strength in the two pathways, and then with ε = 10
[Fig. 4(b)]; again, the precise parameters used are reported in
the Supplemental Material [46]. In both cases the simulations
were in good agreement with the analytical curves, reported
as continuous lines. In this case, though, no chimera states
were observed. Indeed, the two populations either both syn-
chronized (in the dark green areas where 〈Z2〉 ≈ 1) or both
did not (in light areas where 〈Z2〉 ≈ 0).

D. Existence of chimera states without time delay

In the end, we investigated the possibility that chimera
states theoretically exist without time delay in the couplings,
even if they have not been observed in the previous simu-
lations. In this context, inspired by Abrams et al. [47], we
considered a special class of density functions f σ , that have
the form of a Poisson kernel, such that they satisfy the so-

FIG. 4. Phase diagram obtained by simulating Eq. (1) and com-
puting 〈Z2〉 with τEI = τIE = 0, Lorentzian distributed frequencies
D = 0, and (a) same coupling strengths (ε = 1) and (b) inhibitory
coupling strengths greater than the excitatory one (ε = 10). On the x
and y axis there are the coupling strength k and the difference in the
natural frequencies �ω, respectively, both in units of γ , the spread
of the frequency distribution. The value of the order parameter is
indicated by the color gradient. The parameters used are reported in
the Supplemental Material [46]. The BSI are obtained from Eq. (18).

called OA ansatz [45]:

f σ (θ |ω, t ) = 1

2π

{
1 +

+∞∑
l=1

[ f σ
1 eiθ ]l

}
+ c.c. (19)

These functions are characterized by having the same coeffi-
cients in all the Fourier harmonics, except that they are raised
to the lth power for the lth harmonic, f σ

l>1(ω, t ) = [ f σ
1 (ω, t )]l .

Substituting Eq. (19) in Eq. (7) with D = 0, and given that
Zσ = f σ∗

1 , yields

˙f σ
1 + i

(
ω̃σ f σ

1 − kσσ ′

4
(Z∗

σ ′ + f σ2
1 Zσ ′ )

)
= 0. (20)

Therefore, if this condition is fulfilled, such kernels satisfy the
governing equations exactly. The OA ansatz is useful because
it reduces the dynamics from infinite to finite dimensional.

It is convenient to introduce polar coordinates such
as (ρ, φ), defined by f σ

1 = ρσ e−iφσ . When ρσ → 1,
f σ (θ |ω, t ) → δ(θ − φσ (t )) centered at the phase φσ (t ).
Therefore, φσ can be considered the “center” of the density
fσ and ρσ measures how sharply peaked it is [47]. Hence, in
terms of its real and imaginary part, Eq. (20) can be written as{

ρ̇σ − kσσ ′
4 (ρ2

σ − 1)ρσ ′ sin(φσ − φσ ′ ) = 0

φ̇σ − ω̃σ + kσσ ′
4

ρσ ′
ρσ

(ρ2
σ + 1) cos(φσ − φσ ′ ) = 0.

(21)

For simplicity, we considered the case with |kEI | = |kIE | ≡
K and we defined ψ ≡ φE − φI . Therefore, Eq. (21), written
explicitly in terms of E and I, reduces to⎧⎪⎨⎪⎩

ρ̇E + K
4

(
ρ2

E − 1
)
ρI sin ψ = 0

ρ̇I + K
4

(
ρ2

I − 1
)
ρE sin ψ = 0

ψ̇+�ω − K − K
4

(
ρI

ρE

(
ρ2

E + 1
) + ρE

ρI

(
ρ2

I + 1
))

cos ψ = 0,

(22)

where �ω ≡ ωE − ωI . We then considered the case in which
the E population is perfectly synchronized (ρE = 1) and the
other is not (ρI ≡ r), as shown in Fig. 5(a). This further
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FIG. 5. (a) Distributions of E-I: I follows a Poisson kernel
[Eq. (24)] centered at φI , with the spread dependent on ρI = r;
E is a δ function centered at φE , with ρE = 1, as E is perfectly
synchronized. The distance between the centers of the two distri-
butions is ψ = φE − φI . (b) Trajectories in the (r, ψ ) plane, in polar
coordinates, obtained by simulating Eq. (23) with � = chimera state
and • = perfectly synchronized case. (�,�,�) correspond to the
parameters used in (c). (c) Order parameter plotted as a function
of time for the E, I populations with NE ,I = 250. (d) Raster plot of
the E-I neurons at the breathing chimera state for t ∈ [100–150 s].
(e) Simulation of the system in the space (ρE , ρI , ψ ) following
Eq. (22) represented here in cylindrical coordinates. Color scheme
as in Fig. 1.

reduces the dynamics to a two-dimensional system:{
ṙ = K

4 (1 − r2) sin ψ

ψ̇ = �ω − K + K
4

(
2r + r2+1

r

)
cos ψ.

(23)

In this way, the chimera states correspond to the fixed
points, namely, r(t ) = const and r = 1 (since r = 1 corre-
sponds to the perfectly synchronized case, that is always a
trivial solution) and ψ (t ) = const. Calculating the values of
the fixed points yields{

ψ∗ = mπ, m ∈ Z

r∗
1,2 = −2(�ω−K )±

√
4(�ω−K )2−3K2

3(−1)mK .

As expected, considering the opposite case with ρI = 1 led to
the same results [46], given that the system is symmetric.

When �ω = 0, that is, with identical oscillators,
(r∗, ψ∗) = (1/3, 2mπ ), independently of K , which means
that chimera states could in principle exist even without
time delay, because fixed points different from the perfectly
synchronized case exist. To find out the stability of these
fixed points, we linearized around them, by computing the
Jacobian J . Given the system of differential equations of the

form {ṙ = f (r, ψ )
ψ̇ = g(r, ψ )

, the Jacobian J is defined as

J =
[ df

dr
df
dψ

dg
dr

dg
dψ

]
|r∗,ψ∗

=
[

0 2/9K

−3/2K 0

]
.

As the trace is null and the determinant is � = K2/3 > 0, the
linearization predicts a linear center. Moreover, since the sys-
tem is invariant under the change of variables t → −t, ψ →
−ψ , the fixed point is also a nonlinear center [48]. Hence, a
family of periodic orbits surrounds the chimera, which can be
defined as neutrally stable “breathing chimeras” [47].

Both the presence and the nature of the chimeras were fully
confirmed by the numerical simulation, which was performed
in the case of �ω = 0, K = 0.5 [Fig. 5(b)]. At the same
time, the numerical analysis also showed the presence of the
perfectly synchronized state, in which both populations syn-
chronize to the same phase, that corresponds to r = 1, ψ = 0,
which is a saddle on an invariant circle.

Consequently, we aimed to test whether this description—
in the continuum limit—would agree with the simulations
performed with finite N . For this purpose, it could be exploited
that the distribution function f , in the OA ansatz, has the shape
of a Poisson kernel, such as

Pr (θ ) =
∞∑

n=−∞
r|n|einθ = 1 − r2

1 − 2r cos θ + r2
,

which, in this case, becomes

f σ (θ ) = 1 − ρ2
σ

1 − 2ρσ cos(θ − φσ ) + ρ2
σ

. (24)

Hence, the simulations were performed with the I population
initially distributed according to f I for some chosen (ρI , φI ),
whereas the E population was perfectly synchronized (ρE =
1), as shown in Fig. 5(a). We obtained, as expected, that while
ZE (t ) = const = 1, ZI (t ) oscillates over time, corresponding
to the periodic orbit in the (r, ψ ) plane [Fig. 5(c)]. To explain
this concept further, in Fig. 5(d) we report the raster plot of
the two populations, with the corresponding order parameter
Z2(t ) superimposed. Every dot represents the moment each
neuron is firing, i.e., when the phase of each neuron completes
one full rotation: therefore, the blue dots are perfectly aligned,
since the E neurons fire in synchrony, whereas the I neurons
oscillate between moments of higher and lower synchrony,
corresponding to peaks and troughs of Z2

I (t ). As expected,
the situation was totally symmetric when starting from
ρI = 1 [46].

Moreover, the whole system was simulated in the coor-
dinates (ρE , ρI , ψ) following Eq. (22), shown in the figure
as cylindrical coordinates [Fig. 5(e)]. This revealed that the
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FIG. 6. (a) Fraction of chimera states registered in Fig. 2(b) cal-
culated per coupling strength, which corresponds to the light-blue
curve, and per time delay, shown by the red curve. (b) Noise ro-
bustness comparison of the chimera states between delayed (dashed
and dotted lines) and instantaneous couplings (solid line), obtained
computing the order parameter of the synchronized population (Z2

E )
for increasing values of D.

manifold ρE = 1, in which the system was restricted in
Fig. 5(b), is not attracting. In other words, the system should
be “prepared” in this initial condition in order to observe it,
which is coherent with our previous simulations.

E. Robustness of chimera states

First, we considered what are the most likely configura-
tions in the parameter space to display the coexistence of
coherence and incoherence, by calculating the fraction of
chimera states per time delay and per coupling strength ob-
served in Fig. 2(b). This showed that a small (nonzero) time
delay, for any value of K , would result in a chimera state;

moreover, increasing either τ or K progressively leads to the
loss of these states [Fig. 6(a)].

Secondly, the robustness of the chimeras towards external
perturbations was also evaluated, simulating the system with
and without time delay in the cross-couplings with increasing
values of D, which quantifies the level of stochastic noise
[Fig. 6(b)]. As expected, it appears that the system without
time delay is not very robust, as the manifold that corresponds
to the chimera is not attracting, whereas time delays help to
stabilize the system until higher values of noise.

III. CONCLUSIONS

In this paper we have sought to shed light on the prop-
erties of type I oscillators, that are traditionally believed to
have low propensity to synchronize. To do so, we modeled a
feedback loop between an excitatory and an inhibitory pop-
ulation, which is a known neural mechanism that produces
oscillations. The analysis revealed that including time delayed
couplings highly enriches the dynamics of the network. In
case of stronger external than internal couplings, we observed
the emergence of stable periodic chimera states, that are robust
to noise. On the other hand, with negligible internal connec-
tions and instantaneous external ones, a family of “breathing
chimeras” was observed, that is neutrally stable and less ro-
bust to external perturbations.

Future work may investigate whether the chimera states
are preserved also in more realistic scenarios, such as when
considering local couplings in a spatially distributed system.
Moreover, this paper offers a theoretical framework to investi-
gate more biologically inspired neuronal models and testable
predictions that can be potentially verified experimentally.
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