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Amplitude-phase description of stochastic neural oscillators across the Hopf bifurcation
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We derive a unified amplitude-phase decomposition for both noisy limit cycles and quasicycles; in the
latter case, the oscillatory motion has no deterministic counterpart. We extend a previous amplitude-phase
decomposition approach using the stochastic averaging method (SAM) for quasicycles by taking into account
nonlinear terms up to order 3. We further take into account the case of coupled networks where each isolated
network can be in a quasi- or noisy limit-cycle regime. The method is illustrated on two models which exhibit
a deterministic supercritical Hopf bifurcation: the Stochastic Wilson-Cowan model of neural rhythms, and the
Stochastic Stuart-Landau model in physics. At the level of a single oscillatory module, the amplitude process of
each of these models decouples from the phase process to the lowest order, allowing a Fokker-Planck estimate of
the amplitude probability density. The peak of this density captures well the transition between the two regimes.
The model describes accurately the effect of Gaussian white noise as well as of correlated noise. Bursting
epochs in the limit-cycle regime are in fact favored by noise with shorter correlation time or stronger intensity.
Quasicycle and noisy limit-cycle dynamics are associated with, respectively, Rayleigh-type and Gaussian-like
amplitude densities. This provides an additional tool to distinguish quasicycle from limit-cycle origins of bursty
rhythms. The case of multiple oscillatory modules with excitatory all-to-all delayed coupling results in a system
of stochastic coupled amplitude-phase equations that keeps all the biophysical parameters of the initial networks
and again works across the Hopf bifurcation. The theory is illustrated for small heterogeneous networks of
oscillatory modules. Numerical simulations of the amplitude-phase dynamics obtained through the SAM are
in good agreement with those of the original oscillatory networks. In the deterministic and nearly identical
oscillators limits, the stochastic Stuart-Landau model leads to the stochastic Kuramoto model of interacting
phases. The approach can be tailored to networks with different frequency, topology, and stochastic inputs, thus
providing a general and flexible framework to analyze noisy oscillations continuously across the underlying
deterministic bifurcation.
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I. INTRODUCTION

Limit cycle oscillations have been studied in many ar-
eas ranging from biology [1–3], ecology [4,5], and laser
physics [6]. Biological limit cycles in particular have been
the subject of numerous papers over the past decades in the
context of biochemical oscillations [7–11], circadian rhythms
[12,13], genetic oscillations [14–18], cardiac rhythms [19,20],
calcium oscillations [21,22], epidemic and ecological oscilla-
tions [23–26], neural rhythms [27–31], and hair cell motion
[32,33]. These rhythms often display strong fluctuations, or
are seen during brief, randomly recurring epochs. In certain
systems such as circadian rhythms, the oscillations are known
to be an essential part of the function. In neural systems, slow
(delta,alpha) [34,35] and fast (beta, gamma) [28,36,37] neural
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rhythms are believed to support cognitive processes such as
perception [38], attention [39], cognition [40], working mem-
ory [41,42], or communication between brain areas [43,44].
Abnormal or dysfunctional rhythms have been linked to neu-
rological disorders like epilepsy, Alzheimer disease (AD), and
Parkingson’s disease (PD) [45–47] just to mention a few.

Amplitude-phase descriptions of limit-cycle oscillations
have been investigated using a variety of techniques [48–54]
following early studies of noise-induced and noise-perturbed
oscillations [55–57]. The focus has been mainly on the phase,
as studies often assume weak noise which leads to small
amplitude variations. Thus the amplitude-phase description
is often reduced to a simple phase description of the noisy
limit-cycle oscillations [58]. Recently, descriptions in terms
of the slow amplitude fluctuations and phase, referred hence-
forth as amplitude-phase, have been applied to the quasicycle
regime and their random bursts [59,60]. Bursts correspond to
epochs of higher amplitude values. In this regime, a simple
phase description of the oscillation is unable to capture the
bursting features, and thus taking the amplitude into account is
necessary. Our goal is to provide a framework for computing
amplitude-phase equations across the Hopf bifurcation for
single oscillatory modules, driven by white or colored noise
processes, and to generalize this approach to networks of
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delay-coupled modules. This will pave the way to understand
communication with bursts across brain areas.

There is increasing evidence that fast rhythms in cer-
tain neural systems are induced rather than perturbed by
noise [60–63]. Similar observations have been made for
predator-prey ecological systems, whose overall cyclical ac-
tivity has been suggested to require demographic noise [26].
The vicinity of the transition between noisy limit cycles and
noise-induced limit cycles known as “quasicycles” is thus
worthy of attention as systems may drift over this boundary.

The modeling of stochastic oscillations thus involves the
distinction between noisy limit cycles and quasicycles, de-
pending on whether one suspects the deterministic dynamics
to lie below or beyond a bifurcation from a fixed point to a
limit cycle. Noisy limit cycles are self-sustained oscillations
which exist independently of their noisy environment, i.e.
are a manifestation of operation beyond the bifurcation. They
are modelled as single or coupled oscillators. Quasicycles on
the other hand are induced and sustained by their stochastic
surroundings, in the absence of which trajectories decay to
a fixed point. Models for quasicycles assume stable complex
eigenvalues around this fixed point [59].

A unified framework which smoothly meshes together
these two classes of stochastic models at the level of single as
well as coupled networks is of interest, in particular when the
focus is a decomposition into their time-dependent amplitude
and phase. Previous studies have described the normal form
dynamics of the Hopf bifurcation with additive and multi-
plicative noise [57,64,65], including the multi-scale behavior
known to occur in the vicinity of the bifurcation [66]. The
seminal study in [64] does perform a transformation of a
system of arbitrary dimension near a Hopf bifurcation into a
set of dynamical equations for the complex mode amplitudes;
further work would then be required to convert such a system
into an amplitude-phase description as is our end goal here. It
also does not produce a slower amplitude dynamics which is
of interest to eventually characterize bursting. Our work below
starts instead with additive colored noise and different noise
on the components, and derives slow amplitude dynamics.
Further it goes beyond considering a single oscillatory system;
although each system is in 2D, we develop the theory for
several delay-coupled 2D systems. In contrast, in the context
of neural rhythms, current models that describe quasicycles
and their coupled counterparts are based simply on linear
equations driven by noise and are confined below the Hopf
bifurcation [59,60,67–69]. Thus, we are not aware of any
method that directly yields an amplitude-phase representation
of coupled neural networks that is accurate across the Hopf
bifurcation, let alone one that can handle colored noise and
delay coupling.

Our study derives such a decomposition that bridges the
gap across this boundary, i.e., across the Hopf bifurcation
for both single and coupled networks. The slow amplitude
that emerges from our analysis quantifies the temporal evo-
lution of the cycle to cycle amplitude of the rhythm, while
the phase contains information about its regularity. This is
done by extending a previous amplitude-phase decomposition
of quasicycles oscillation to noisy limit cycles by consider-
ing nonlinear terms up to order three in the fast dynamics.
This involves lengthier calculations using the stochastic av-

eraging method (SAM) [70–72]. While the Taylor expansion
of sigmoidal nonlinearities like those of the neural response
functions converge slowly, our immediate goal is only to
obtain the next order corrections to our previous nonlinear
amplitude-phase equations derived from linear dynamics. Our
method can accurately describe noisy oscillations over a range
of frequencies. It can also accommodate different types of
noise across a range of intensities. In fact the general theory in
our work also considers quasicycle and limit-cycle dynamics
driven by Ornstein-Uhlenbeck (OU) noise.

We develop our theory using two models of rhythm gen-
eration, namely, the stochastic Wilson-Cowan model (SWC)
of neural rhythms [31,73], and the stochastic Stuart-Landau
model (SSL) used to describe oscillations in various areas
including physics and neuroscience. Each two-dimensional
model system describes the interaction of a first variable (E or
x) with a second variable (I or y). Multiple such systems have
been used to study the emergence and coupling of rhythms
across brain areas [74]. The results of such analyses have even
been shown to account for features of real data [75–77]. Both
models exhibit a supercritical Hopf bifurcation; in fact the
Stuart-Landau model in polar coordinates is the normal form
for this bifurcation [78]. Thus our illustrative examples are
taken from the field of neural rhythms and physics, but are
more generally applicable.

We further generalize our results for a two-population E -I
network model to super-networks whose unit building blocks
are such E -I modules, each of which can oscillate on its own
in either the quasi or limit-cycle regime. Our amplitude-phase
model goes beyond purely phase-coupled oscillator models to
describe both the quasicycle and noisy limit-cycle dynamics
with a higher level of biophysical realism. It also allows mod-
erate noise and coupling strength. The model is adaptable to
different frequency bands, and can be simplified to obtain a
representation in terms of coupled Kuramoto oscillators.

We focus our work on the amplitude dynamics, showing
good agreement with the original nonlinear model in both the
quasi- and limit-cycle regimes. Coupled rhythm-generating
networks have been considered in the context of the activity
arising from the brain connectome [76], as well as genetic and
biochemical networks [7]. The modeling of such networks has
mostly been limit-cycle-based in the deterministic or weak
noise limit, and assumed weakly coupled and nearly identical
oscillators. In such limits, the influence of the amplitudes of
the oscillators is usually neglected and the only important
variables are the phases of the oscillatory units. Such interact-
ing phase models do not describe coupled quasicycles whose
behavior is strongly amplitude-dependent. We note however a
recent study of coupled quasicycles that involves amplitude-
phase coupling [68]. In contrast, our study of supernetworks
in the last part of our paper involves quasicycle dynamics and
noisy limit cycles.

We first present the nonlinear version of the stochastic
Wilson-Cowan model, with its third order approximation and
derive the amplitude-phase approximation that agrees well
with the numerics of the original model across the Hopf bifur-
cation. We then perform a similar calculation for the stochastic
Stuart-Landau model. Finally, supernetworks of such models
are considered. Our theory is developed assuming that these
systems are driven by OU noise. For simplicity, most of our
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simulations are compared with the theory for the white noise
case; the exceptions are Figures 10 and 11 where the effect
of the noise correlation time on amplitudes densities is high-
lighted.

II. STOCHASTIC WILSON-COWAN MODEL

We consider a stochastic version [31] of the seminal
Wilson-Cowan model [73] for oscillation generation. The
two-dimensional model with additive noise mimics a popu-
lation of excitatory (E ) and of inhibitory (I) cells. The mean
synaptic coupling from E cells to themselves, and from E
cells to I cells, are given respectively by WEE and WIE . Simi-
larly, the mean synaptic coupling from I cells to themselves
and from I cells to E cells are WII and WEI . The E cell
population receives a constant external stimulus hE , while the
I cell population is driven by the constant external current
hI . Additive noise is assumed to arise mainly from random
synaptic events. Defining the fraction of excitatory cells that
are firing at a given time by E (t ), and of inhibitory cells I (t ),
yields the stochastic WC model (SWC):

dE (t )

dt
= −αE E (t ) + (1 − E (t ))βE f (sE (t )) + ηE (t ), (1)

dI (t )

dt
= −αI I (t ) + (1 − I (t ))βI f (sI (t )) + ηI (t ). (2)

The sigmoid function is f (x) = (1 + e−x )−1 and the total ex-
citatory sE (t ) and inhibitory sI (t ) synaptic inputs to a neuron
are given respectively by

sE (t ) = WEE E (t ) − WEI I (t ) + hE , (3)

sI (t ) = WIE E (t ) − WIII (t ) + hI . (4)

We choose ηE ,I (t ) as two independent Ornstein-Uhlenbeck
(OU) [79] processes given by

dηE (t )

dt
= −ηE (t )

τE
+

√
2σ 2

E

τE
ξE (t ), (5)

dηI (t )

dt
= −ηI (t )

τI
+

√
2σ 2

I

τI
ξI (t ), (6)

where ξE ,I are two independent Gaussian white noises with
the following properties:

〈ξE ,I (t )〉 = 0, 〈ξE (t )ξI (t )〉 = 0,

〈ξE (t ′)ξE (t )〉 = 〈ξI (t ′)ξI (t )〉 = δ(t − t ′).

The variances of these OU processes are σ 2
E ,I , their autocorre-

lations are given by

〈ηE (t )ηE (s)〉 = σ 2
E exp(−|t − s|/τE ), (7)

〈ηI (t )ηI (s)〉 = σ 2
I exp(−|t − s|/τI ), (8)

and their intensities (integrals of the autocorrelation functions)
are QE ,I = τE ,Iσ

2
E ,I . Further in our work, we will investigate

the effect of the noise correlation time on the dynamics, while
maintaining the noise intensity fixed. In other words, we will
fix QE ,I , and vary τE ,I while changing σ 2

E ,I . However, for the
stochastic Wilson-Cowan model in the first part of our paper,
we will consider stochastic forcing by Gaussian white noises.

The noise-free (σE = σI = 0) dynamics has a fixed point
(E0, I0) (for the parameter values chosen in our work) which
can be a stable or an unstable focus. If the fixed point is a
stable focus, deviations from the fixed point converge to zero.
The noise slowly erases the memory of the initial conditions,
and induces deviations from the fixed point that relax in a
noisy oscillatory manner [59,60]. Adding noise to this regime
leads to noise-induced oscillations or quasicycles. If the fixed
point is an unstable focus, the system undergoes a Hopf bifur-
cation to a stable limit cycle. The noise then yields a stochastic
limit cycle [80,81] by perturbing the amplitude, frequency and
phase of the deterministic oscillation.

A. Dynamics of the fluctuations

We wish to characterize the fast and slow features of
the deviations from the fixed point with a unique dynamical
description no matter if their corresponding dynamics is a
quasicycle or a noisy limit cycle. We look for solutions of
Eqs. (1) and (2) in the form

E (t ) = E0 + VE (t ), I (t ) = I0 + VI (t ), (9)

where the fixed points E0 and I0 solve the deterministic equa-
tions:

−αE E0 + (1 − E0)βE f (sE0 ) = 0,
(10)

−αI I0 + (1 − I0)βI f
(
sI0

) = 0,

with the definitions

sE0 = WEE E0 − WEI I0 + hE ,

sI0 = WIE E0 − WIII0 + hI .

Note that we have restricted our analysis to the parameter
regime most relevant to brain rhythms, namely, the one where
the system has only one deterministic fixed point. We inserted
Eqs. (9) into Eqs. (1) and (2) and used the following Taylor
expansion of the sigmoid function:

f (sE (t )) = f
(
sE0 + δsE (t )

)
= f

(
sE0

) + δsE (t ) f ′(sE0

) + 1
2 (δsE (t ))2 f ′′(sE0

)
,

f (sI (t )) = f
(
sI0 + δsI (t )

)
= f

(
sI0

) + δsI (t ) f ′(sI0

) + 1
2 (δsI (t ))2 f ′′(sI0

)
, (11)

where

δsE (t ) = WEEVE (t ) − WEIVI (t ),

δsI (t ) = WIEVE (t ) − WIIVI (t ). (12)

We note that the Taylor expansion made above in Eqs. (11)
is accurate for small deviations in Eqs. (12). If these quanti-
ties become too large, this approximation becomes inaccurate
which may lead to incorrect results.

The fluctuations VE (t ) and VI (t ) are considered as local
field potentials (LFP) in the context of brain dynamics [59,60].
These LFPs are dimensionless in the Wilson-Cowan modeling
framework since they are simply deviations from the steady
state fractions E0 and I0; they are nevertheless interpreted as
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potentials [61]. They are approximately governed by

dVE (t )

dt
= AEEVE (t ) + AEIVI (t ) + LEEV 2

E (t ) + LEIVE (t )VI (t )

+ MEIV
2

I (t ) + B1EV 3
E (t ) + B2EVEV 2

I (t )

+B3EVIV
2

E (t ) + B4EV 3
I (t ) + ηE (t ), (13)

dVI (t )

dt
= AIEVE (t ) + AIIVI (t ) + LIIV

2
I (t ) + LIEVE (t )VI (t )

+ MIEV 2
E (t ) + B1IV

3
I (t ) + B2IVEV 2

I (t )

+B3IVIV
2

E (t ) + B4IV
3

E (t ) + ηI (t ), (14)

with the following parameter definitions:

AEE = −[
αE + βE f

(
sE0

) − (1 − E0)βE f ′(sE0

)
WEE

]
,

AII = −[
αI + βI f

(
sI0

) + (1 − I0)βI f ′(sI0

)
WII

]
,

AEI = −(1 − E0)βE f ′(sE0

)
WEI ,

AIE = (1 − I0)βI f ′(sI0

)
WIE ,

LEE = −βE f ′(sE0

)
WEE , LEI = βE f ′(sE0

)
WEI ,

LIE = −βI f ′(sI0

)
WIE , LII = βI f ′(sI0

)
WII ,

MEI = 0, MIE = 0, B4E = 0, B4I = 0;

B1E = − 1
2βE f ′′(sE0

)
W 2

EE , B2E = − 1
2βE f ′′(sE0

)
W 2

EI

B3E = βE f ′′(sE0

)
WEEWEI , B1I = − 1

2βI f ′′(sI0

)
W 2

II

B2I = βI f ′′(sI0

)
WIEWII , B3I = − 1

2βI f ′′(sI0

)
W 2

IE .

Note that to obtain Eqs. (13) and (14), we have used the
fixed point condition Eq. (10). The Taylor expansion for this
stochastic WC model leads to the four terms MEI = MIE =
B4E = B4I = 0. The values of these parameters is a conse-
quence of a specific choice of some terms which leads to
a better convergence to the former Wilson-Cowan dynamics
as we show in Appendix, Fig. 14. They could be different
from zero in other models. For our analytic work, we will use
Eqs. (13) and (14) instead of Eqs. (1) and (2). Equations (13)
and (14) are the approximate fluctuation dynamics to order
O(3) of the stochastic Wilson-Cowan model, denoted hence-
forth as SWC3 (see further below in Fig. 3 for time series from
this model). We focus on this system and investigate its ability
to generate oscillations and amplitude-phase dynamics across
the Hopf boundary in the presence of noise.

1. Nonlinear fluctuation dynamics: Numerical analysis

We first simulate Eqs. (13) and (14) without stochastic
inputs (σE = 0 and σI = 0). Then we use Eqs. (9) to compute
the synchronization level of any existing long-life oscilla-
tions of the excitatory activity E (t ). The synchronization level
was defined as the mean of the amplitudes between each
trough and the successive peak, computed using a very long
simulation time. It can also be seen as the mean of the cycle-
to-cycle amplitudes of the oscillatory process after transients
have decayed. We plotted this synchronization level in the
(WEE,WII ) parameter space in Fig. 1(a), which reveals the
emergence of oscillations after a Hopf bifurcation. The level
of synchronization increases smoothly for parameters deeper
into the limit-cycle regime. Accordingly, the mean amplitude

of the limit cycle increases with the real part of the complex
conjugate eigenvalues at that fixed point.

We now take stochastic inputs into account. We first con-
sider only white noises ηE ,I (t ) = σE ,IξE ,I (t ) and define the
total noise strength as

σ =
√

σ 2
E + σ 2

I . (15)

For weak noise, quasicycle oscillations emerge [Fig. 1(b)].
In the limit-cycle regime, the oscillation amplitude is larger
at higher noise [Fig. 1(c)] compared to the lower noise
[Fig. 1(b)] and deterministic [Fig. 1(a)] cases. At the higher
noise strength in Fig 1(c), the oscillations are in fact more
prominent in both the quasicycle and limit-cycle regimes.

The oscillation frequency for weak noise strength is also
shown in Fig. 1(d), where it is apparent that it varies smoothly
across the Hopf boundary. The frequency content of the qua-
sicycle oscillations can be seen in the spectrogram [Fig. 1(e)].
Oscillations are quite irregular, with epochs of high and low
amplitude values. The epochs of high amplitude values are
“bursts”; the mean frequency of such bursts is also a random
variable. In contrast, in the limit-cycle regime [black dot in
Fig. 1(b)] oscillations are more regular, with small fluctuations
in amplitude and peak frequency as seen in the corresponding
spectrogram [Fig. 1(f)].

2. Linear analysis

Recent studies showed that noise-induced oscillations
could be described by linear equations sustained by noise
[59,60]. More interestingly, it was found that the amplitude ra-
tio and the phase difference between inhibitory and excitatory
fluctuations were constant in the deterministic limit [59,60].
In the most general case considered here, the dynamics of
excitatory and inhibitory fluctuations are described by non-
linear equations which are sustained by noise when the real
part of the eigenvalues is negative and self-sustained when it
is positive. We therefore checked whether these properties of
the E and I amplitudes and phases are conserved in the regime
of self-sustained oscillations. For that, we perform the linear
analysis of Eqs. (13) and (14). The associated noise-free linear
system of Eqs. (13) and (14) can be written in the following
matrix form:

dV 0(t )

dt
= AV 0(t ),

where

V 0(t ) =
[
V 0

E (t )
V 0

I (t )

]
and A =

[
AEE AEI

AIE AII

]
.

We look for a trial solution in the form:[
V 0

E (t )
V 0

I (t )

]
=

[
B̃E

B̃I

]
eλt ,

where B̃E = BE e jθE and B̃I = BI e jθI . The eigenvalue λ of the
associated matrix A is found by substituting the trial solution
into the linear system, yielding

B̃I

B̃E
= AEE − λ

−AEI
= − AIE

AII − λ
.
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FIG. 1. Oscillations in the Stochastic Wilson-Cowan truncated to O(3), i.e., in the SWC3 model. (Top) Synchronization level of the E cells
in the subspace of self-connectivity parameters. The synchronization is measured from numerical simulations of the activities Eqs. (13)–(14) as
the average difference between each trough and its successive peak. Specifically, we used a Gaussian filter and the Matlab function “findpeaks”
to filter and extract the peaks and troughs of the LFPs. The curve in magenta represents the Hopf bifurcation boundary computed by setting
the real part −ν of the complex conjugate eigenvalues to zero. The two black dots lie on either side of the Hopf boundary at WII = 1.3 and
WEE = 27.4 (quasicycle) or WEE = 30.4 (noisy limit cycle). (a) No noise: synchronization increases from zero beyond the Hopf bifurcation.
(b) Weak noise (σE = 0.0015, σI = 0.005, σ = 0.005) causes ”quasicycle” oscillations even below the Hopf bifurcation. (c) For stronger noise
(σE = 0.004, σI = 0.015, σ = 0.0155), noise-induced oscillations are more prominent. (d) Frequency of the oscillations generated in (b). (e)
Spectrogram corresponding to the black dot in the quasicycle regime in (b). Oscillations appear as discrete (short) epochs of synchrony called
“bursts”; the frequency content also fluctuates from burst to burst. (f) Spectrogram for the black dot in the noisy limit-cycle regime in panel (b).
Oscillations are now highly coherent with peak power around f = 88Hz. Parameters are WEI = 26.3,WIE = 32, hE = −3.8, hI = −8, αE =
0.1, αI = 0.2, βE = 1, βI = 2. (d)–(f) use the noise intensities in panel (b). The parameters here are also used in Figs. 2 to 7, unless otherwise
stated.

The second equality leads to

λ = 1

2
(AEE + AII ) ± j

2

√
−(AEE − AII )2 − 4AEI AIE .

We rewrite the eigenvalue in the compact form

λ = −ν ± jω0

with

ν = −AEE + AII

2

ω0 = 1

2

√
−(AEE − AII )2 − 4AEI AIE .

This leads to the exact expression of the amplitude ratio
between the I and E fluctuations for the linearized SWC3
system:

α =
∣∣∣∣ B̃I

B̃E

∣∣∣∣ = BI

BE
=

√
AIE

−AEI
. (16)

Similarly, the phase difference δ can be obtained from the
relation

δ = θI − θE = Arg

(
B̃I

B̃E

)
. (17)

For the parameters used here, we found

δ = θI − θE = arctan

( −2ω0

AEE − AII

)
. (18)

In Eqs. (16) and (17), || and Arg are respectively the modulus
and the argument of the complex number B̃I

B̃E
. In the presence

of noise, one can compute amplitudes and phases of the E and
I fluctuations from simulated time series using the analytic
signal technique. The amplitude ratio and the phase difference
are obtained by the following approximations:

α = BI

BE
≈

〈
Env[VI (t )]

Env[VE (t )]

〉

and

δ = θI − θE ≈ 〈Arg[VI (t )] − Arg[VE (t )]〉.
Here 〈.〉 can be considered a time average of the stochastic
process in Eqs. (13) and (14). Env is defined as the am-
plitude of the analytic signal associated with the LFP. For
example, the analytic signal corresponding to VE (t ) is VE (t ) +
jH[VE (t )], with the Hilbert transform H defined as

H[x] = 1

π
P

∫ ∞

−∞

x(τ )

t − τ
dτ,
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FIG. 2. I/E amplitude ratio, I-E phase difference and peak fre-
quencies in the noisy limit-cycle regime (a) Probability distribution
of the amplitude ratio between inhibitory and excitatory fluctuations
from Eq. (16). (b) Probability distribution of the phase difference
between inhibitory and excitatory fluctuations from Eq. (18). (c) Ex-
citatory frequency probability distribution. (d) Inhibitory frequency
probability distribution. For all the figures, (blue) curves corre-
spond to the probability distributions computed numerically; the
corresponding vertical lines are computed analytically from linear
stability analysis Eqs. (16)–(18). The red curves are Gaussian fits to
the blue curves, while the vertical red lines are the means of the red
Gaussian distributions. Parameters are as in Fig. 1 with WEE = 30.4.
Noise intensities are σE = 0.0002, σI = 0.0006, and σ = 0.0007.
Other parameters are as in Fig. 1.

where P signifies the Cauchy principal value. The amplitude

of the stochastic signal is then Env[VE ] =
√

V 2
E + H2[VE ].

Likewise, the phase angle of the analytic signal is defined as
Arg[VE ] = arctan [H[VE ]/VE ].

The transition between noise-induced and self-sustained
oscillations happens when the real part of the eigenvalue is
zero. This condition is expressed as

− αE

1 − E0
+ αE E0

[
1 − αE E0

(1 − E0)βE

]
WEE

− αI

1 − I0
− αI I0

[
1 − αI I0

(1 − I0)βI

]
WII = 0. (19)

This analytical expression is in good agreement with numeri-
cal simulations [Fig. 1(a)]. The stability boundary is shown as
dots in magenta, and is reproduced in Figs. 1(b)–1(d). We also
computed the amplitude ratio, phase difference and excita-
tory and inhibitory frequency distributions from the simulated
nonlinear Eqs. (13) and (14). The results show approximate
Gaussian distributions around the mean values provided by
the linear stability analysis in Eqs. (16)–(18) (see Fig. 2), in
spite of the nonlinearities in Eqs. (13) and (14). The noise ba-
sically spreads the delta distributions of the deterministic case
to yield approximately Gaussian distributions. The standard
deviations of the distributions increase with noise. Similar
results have been previously obtained in the quasicycle regime
[60]. Numerically computed means of the frequency content
are close to the imaginary part of the complex conjugate
eigenvalues since the system is close to the Hopf bifurcation
(black dot in Fig. 1). Moving away from this boundary slowly
diminishes the agreement as the frequency depends on the
amplitude.

B. Amplitude-phase decomposition of the SWC3

Our goal now is to derive an amplitude-phase dynamics
that carries over from the quasicycle to the limit-cycle regime,
rather than having two separate dynamics. Our hope is that
it will account for phase-amplitude coupling over a range of
noise strengths including the high noise-induced bursts in the
limit-cycle regime. We first seek analytical expressions of the
E and I fluctuations in the following forms [60]:

VE = ZE cos(ω0t + φE ); VI = αZE cos(ω0t + φE + δ),
(20)

where ZE and φE represent the stochastic amplitude and phase
of the E fluctuations. The idea is to compute the dynamics of
the slow amplitude fluctuations of the cycle to cycle amplitude
ZE and the phase φE of the E fluctuations. The parame-
ters α, δ, and ω0 are the amplitude ratio, phase difference,
and frequency computed from the linear stability analysis
Eqs. (16)–(18) (see Fig. 2). We then insert these expressions
into Eqs. (13) and (14) and obtain

dZE

dt
= F1(ZE , φE ) + G1(ZE , φE , ηE , ηI ), (21)

dφE

dt
= F2(ZE , φE ) + G2(ZE , φE , ηE , ηI ), (22)

with the following functions:

F1(ZE , φE ) = 1

α sin(δ)
[α f1(ZE , φE ) sin(ω0t + φE + δ) − f2(ZE , φE ) sin(ω0t + φE )],

F2(ZE , φE ) = 1

αZE sin(δ)
[α f1(ZE , φE ) cos(ω0t + φE + δ) − f2(ZE , φE ) cos(ω0t + φE )],

G1(ZE , φE , ηE , ηI ) = 1

α sin(δ)
[αg1(ZE , φE , ηE , ηI ) sin(ω0t + φE + δ) − g2(ZE , φE , ηE , ηI ) sin(ω0t + φE )],

G2(ZE , φE , ηE , ηI ) = 1

αZE sin(δ)
[αg1(ZE , φE , ηE , ηI ) cos(ω0t + φE + δ) − g2(ZE , φE , ηE , ηI ) cos(ω0t + φE )],

f1(ZE , φE ) = ω0ZE sin(ω0t + φE ) + AEE ZE cos(ω0t + φE ) + AEIαZE cos(ω0t + φE + δ)

+ LEE Z2
E cos2(ω0t + φE ) + LEIαZ2

E cos(ω0t + φE ) cos(ω0t + φE + δ) + B1E Z3
E cos3(ω0t + φE )

+ B2Eα2Z3
E cos(ω0t + φE ) cos2(ω0t + φE + δ) + B3EαZ3

E cos2(ω0t + φE ) cos(ω0t + φE + δ),
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f2(ZE , φE ) = αω0ZE sin(ω0t + φE + δ) + AIE ZE cos(ω0t + φE ) + AIIαZE cos(ω0t + φE + δ) + LIIα
2Z2

E

× cos2(ω0t + φE + δ) + LIEαZ2
E cos(ω0t + φE ) cos(ω0t + φE + δ) + B1Iα

3Z3
E cos3(ω0t + φE + δ)

+ B2Iα
2Z3

E cos(ω0t + φE ) cos2(ω0t + φE + δ) + B3IαZ3
E cos2(ω0t + φE ) cos(ω0t + φE + δ),

g1(ZE , φE , ηE , ηI ) = ηE (t ), g2(ZE , φE , ηE , ηI ) = ηI (t ).

However, such equations are cumbersome and difficult to
analyze since the amplitude and phase are coupled in a com-
plicated manner. We need simpler equations for a suitable
analysis of amplitude dynamics, which we now determine.

1. Stochastic averaging method (SAM)

To simplify the amplitude-phase dynamics in Eqs. (21) and
(22), we make use of the stochastic averaging method (SAM)
[72,82], which stipulates that the system can be approximated
by a two-dimensional Markov process given by

d

(
ZE (t )
φE (t )

)
=

(
m1(t )
m2(t )

)
dt +

(
h11(t ) h12(t )
h21(t ) h22(t )

)(
dW1(t )
dW2(t )

)
with

mi(X ) =T av

(
E{Fi} +

∑
j

∫ 0

−∞
E

{(
∂Gi

∂Xj

)
t

(Gj )t+τ

}
dτ

)
,

[hh′]i j =T av

( ∫ ∞

−∞
E{(Gi )t (Gj )t+τ }dτ

)
, i, j = 1, 2.

Here m = (m1(t )
m2(t )), F = (F1(t )

F2(t )), G = (G1(t )
G2(t )), X = (ZE (t )

φE (t )), h is the
matrix made up of the elements hi j , (h h′) is the product of h
and its transpose.

Moreover, E . denotes the expectation operator (i.e. average
over realizations), and T av is the time averaging operator
defined by

T av (.) = 1

T0

∫ t0+T0

t0

(.)dt .

The subscript t and t + τ mean that the elements of the cor-
responding vectors and matrix are evaluated at these times.
The SAM further assumes that the two-dimensional functions
F (ZE , φE ) and G(ZE , φE , ξE , ξI ) are respectively of order
O(ε) and O(ε2), where ε is a small parameter. The averaging
in the SAM procedure assumes that the functions ZE (t ) and
φE (t ) are constant during the period T0 = 2π/ω0 of the un-
derlying deterministic oscillation (ω0 also varies with system
parameters). After some calculations, we end up with the
following amplitude-phase dynamics:

dZE =
[
−νZE + B1Z3

E + D

2ZE

]
dt +

√
DdW1, (23)

dφE = B2Z2
E dt +

√
D

ZE
dW2. (24)

If we further make the change of variable θE (t ) = ω0t +
φE (t ), the dynamics of the fast phase θE (t ) is obtained from
Eq. (24) as

dθE = [
ω0 + B2Z2

E

]
dt +

√
D

ZE
dW2 (25)

with the following expressions:

B1 = 1

8
[3B1E + B3I + α2(B2E + 3B1I )

+ 2α cos(δ)(B3E + B2I )],

B2 = 1

8 sin(δ)
[2α(B3E − B2I ) + 3(B1E − B3I ) cos(δ)

+ 3α2(B2E − B1I ) cos(δ) + α(B3E − B2I ) cos(2δ)],

D = 1

2α2 sin2(δ)

[
2τE (ασE )2

1 + (ω0τE )2
+ 2τI (σI )2

1 + (ω0τI )2

]
. (26)

Here W1(t ) and W2(t ) are two independent Wiener processes.
The coefficient B1 is negative for the parameters used here,
which implies that the amplitude ZE remains finite, i.e., de-
viations from the fixed point remain bounded. Taking into
account the power spectra at ω0,

SηE ,I (ω0) = 2τE ,I (σE ,I )2

2π [1 + (ω0τE ,I )2]
,

of the OU processes ηE (t ) and ηI (t ) applied respectively on
the E and I dynamics, we find that the effective noise strength
D of the amplitude-phase dynamics is a weighted sum of these
power spectra:

D = π

α2 sin2(δ)

[
α2SηE (ω0) + SηI (ω0)

]
. (27)

Different noise processes can be handled by substituting
the proper power spectra in this expression for D.

Most of our simulations in this work consider additive
Gaussian white noise on the SWC3 model Eqs. (13) and (14)
and further below on the SSL model, although we do later
explore the effect of the noise correlation time in the SSL
model in Figs. 10 and 11. For the white noise case ηE ,I (t ) =
σE ,IξE ,I (t ), the above amplitude-phase dynamics apply with
the definition of D based on the white noise power spectra

S(ω0) = σ 2
E ,I

2π
, that is,

D = (σI )2 + (ασE )2

2α2 sin2(δ)
. (28)

Further, since the noise is only additive, there is no need to
distinguish between Itô and Stratonovich calculus; the SAM
method itself was developed using Itô calculus [72,82].

As for the case of the quasicycle oscillations [60], the
amplitude dynamics is uncoupled from the phase dynamics. In
contrast however, a new term B1Z3

E appears in the amplitude
dynamics. This term is at the origin of the stabilization of the
growth of the amplitude when the real part of the complex
conjugate eigenvalues becomes positive beyond the Hopf bi-
furcation. The phase dynamics also has a new deterministic
term B2Z2

E . This causes the deterministic frequency to depend
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FIG. 3. Quasicycle and noisy limit-cycle properties using the SAM approximation. From top to bottom: Spectrogram, activity timeseries,
amplitudes and phases of the excitatory (blue) and inhibitory (blue) populations simulated using the dynamics Eqs. (23) and (24) computed
using the SAM analysis. Left: quasicycle regime with its characteristic bursting structure. Fluctuations, amplitudes and phases resemble
dynamics obtained with linear equations driven by noise [59,60]. (Right) Self-sustained oscillations perturbed by noise, with almost constant
envelope, phase and frequency characteristic of noisy limit cycles. Quasicycle parameters are as for the left black dot in Fig. 1(b), i.e., WEE =
27.4. Limit cycle parameters are as for the right black dot in Fig. 1(b), i.e., WEE = 30.4. The noise strengths are σE = 0.0015, σI = 0.005, σ =
0.005. Other parameters are as in Figs. 1(e) and 1(f).

on the amplitude magnitude. This contrasts with the quasi-
cycle regime obtained with the linear WC system, where the
term B2 was absent.

Next, we compute spectrograms and time-series of the
fluctuations VE ,I (t ), their amplitudes ZE ,I (t ) and their phases
φE ,I (t ) both for the quasicycle and noisy limit-cycle regimes
(Fig. 3). We observe that our amplitude-phase representation
describes well the dynamics of E and I fluctuations for both
quasicycles (left panels) and noisy limit cycles (right panels).
Our model can thus account for both noise-induced oscilla-
tions and noise-perturbed oscillations. It produces bursting
epochs for quasicycles and self-sustained oscillations of long
duration for the noisy limit cycles.

2. Deterministic analysis of the amplitude dynamics

We focus on the deterministic case D = 0, for which the
amplitude dynamics are

dZ0
E

dt
= −νZ0

E + B1
(
Z0

E

)3
. (29)

Let us define F0(ZE ) ≡ −νZE + B1(ZE )3 and its derivative
F ′

0 (ZE ) = −ν + 3B1(ZE )2. The solutions of F (Z0
E ) = 0 are

the fixed points of the deterministic amplitude dynamics
Eq. (29). Their stability is given by the sign of the corre-
sponding value of F ′(Z0

E ). The existence and the number of
the solutions of F (Z0

E ) = 0 depend on whether the system lies
below or above the Hopf bifurcation.

(1) Stable focus (ν > 0). The only fixed point is Z0
E = 0.

This fixed point is stable since F ′(0) = −ν < 0. This is in
agreement with previous results, since in the deterministic

limit and below the Hopf bifurcation, the amplitude of a
perturbation from the fixed point converges to zero.

(2) Limit-cycle (ν < 0): We have two fixed points Z0
E = 0

and Z0
E =

√
ν

B1
. But the only stable fixed point is Z0

E =
√

ν
B1

since F ′(0) = −ν > 0 and F ′(
√

ν
B1

) = 2ν < 0. The value of
this fixed point represents the amplitude of the oscillation. The
size of the limit cycle thus varies as

√
ν as expected from the

normal form of the supercritical Hopf bifurcation [78].
Now, we turn to the effect of the noise on this deterministic

picture.

3. Stochastic analysis of the amplitude dynamics (D > 0)

To perform the stochastic analysis of the amplitude pro-
cess, we consider the corresponding stationary Fokker-Planck
equation of (23) [79]:

− d

dZE

[(
− νZE + D

2ZE
+ B1Z3

E

)
PE

]
+ D

2

d2PE

dZ2
E

= 0,

(30)
where PE (ZE ) represents the stationary probability density
function of the amplitude process ZE (t ). We define the fol-
lowing parameters:

a =
√−B1

2D
and b = −ν

B1
.

The normalized solution (
∫ ∞

0 PE (ZE ) = 1) of this second or-
der differential equation is given by

PE (ZE ) = 4a√
π erfc(ba)

ZE exp
[ − a2

(
Z2

E + b
)2]

. (31)

033040-8



AMPLITUDE-PHASE DESCRIPTION OF STOCHASTIC … PHYSICAL REVIEW RESEARCH 3, 033040 (2021)

By using the relation between the amplitude of excitatory
and inhibitory LFPs (ZI = αZE ), we obtain the stationary
probability density function for the inhibitory amplitude
process:

PI (ZI ) = 4a

α2
√

π erfc(ba)
ZI exp

[
−

(
a

α2

)2(
Z2

I + α2b
)2

]
,

(32)

where erfc(.) denotes the complementary error function de-
fined as erfc(x) = 2√

π

∫ ∞
x e−t2

dt . The peak of the stationary
density, which represents the most probable value taken by
the stochastic amplitude process, is given by dPE (ZE )

dZE
= 0.

This relation leads to the following equation:

1 − 4a2bZ2
E − 4a2Z4

E = 0. (33)

The solution of this equation can be obtained for the two
distinct regimes.

(1) Quasicycle regime (ν > 0, b > 0). The solution is
given by

Z2
E = −b

2
+ b

2

(
1 + 1

(ab)2

)1/2

. (34)

The approximate expressions for the location of the peaks of
the E and I amplitude probability densities are then

Z∗
E ≈

√
D

2ν
and Z∗

I ≈ α

√
D

2ν
. (35)

We observe that the peak values of the stationary probability
densities are in agreement with the previous results reported
for the linearized Wilson-Cowan equations driven by additive
noise [60]. Moreover, in the limit B1 = 0 using b → ∞, a →
0, ab → ∞, the E stationary probability density can be writ-
ten as (we drop the subscript E for the sake of readability):

PE (Z ) = 4a

erfc(ba)
√

π
Z exp[−a2(Z2 + b)2]

= 4a√
π

(1 − erf (ba))−1Ze−(ab)2
e−a2Z4

e−2ba2Z2

≈ 4a√
π

(1 − erf (ba))−1Ze−(ab)2
e−2ba2Z2

.

Expanding the error function as

erf (ab) ≈ 1 − e−(ab)2 1√
π

(
1

ab
− 1

2(ab)3
+ . . .

)
, (36)

we then obtain

PE (Z ) ≈ 4a√
π

(
e−(ab)2 1√

π

1

ab

)−1

Ze−(ab)2
e−2ba2Z2

≈ 4a2bZ exp

(
− ν

D
Z2

)
.

We thus recover the expressions of the probability densities
obtained in the case of linear equations driven by additive
noise [60], namely,

PE (ZE ) = 2ν

D
ZE exp

(
− ν

D
Z2

E

)

for the excitatory amplitude process and

PI (ZI ) = 2ν

α2D
ZI exp

(
− ν

α2D
Z2

I

)
for the inhibitory amplitude process.

(2) Noisy limit-cycle regime (ν < 0, b < 0). The solution
is given by

Z2
E = −b

2
− b

2

(
1 + 1

(ab)2

)1/2

. (37)

This leads to the following approximate expressions obtained
in weak noise limit:

Z∗
E ≈

√
ν

B1
+ D

2(−ν)
and Z∗

I ≈ α

√
ν

B1
+ D

2(−ν)
. (38)

We should mention that the approximations in Eqs. (35)
and (38) are valid for weak noise and away from the Hopf
bifurcation. They were derived to get an idea of the role of
noise on the limit-cycle dynamics. The accurate expression for
the peak of the amplitude probability density is determined by
Eq. (33).

We see that for D = 0, we recover the result previously
obtained in the deterministic analysis. Importantly, for D > 0
the most probable amplitude value for the noisy limit cycle
is greater than that for the deterministic case. There is an
additional term which is proportional to the strength of the
noise D and inversely proportional to the real part of the
eigenvalues. This is a noise-induced term which shows how
noise shapes the amplitude of the limit cycle by increasing its
magnitude.

We plot the densities of the E and I amplitude processes for
the quasicycles and noisy limit cycles in Figs. 4(a), 4(c) and
4(b), 4(d) respectively. We find an excellent match between
analytical expressions from Eqs. (31) and (32) (black curves)
and numerical simulations of Eqs. (13) and (14) (magenta
curves). Also we found excellent agreement with the values
of the peaks of the pdf (vertical blue lines) computed from the
stochastic analysis Eqs. (38) in both regimes.

In the following, we mostly focus on the dynamics of the
noisy limit cycle since the case of the quasicycle has already
been investigated in a previous study [60], and the results
here with the extra nonlinearity are qualitatively the same.
Can strong noise induce bursting structures in the limit-cycle
regime like those seen for quasicycles? If so, how can we dis-
criminate between these two dynamical origins for the burst
epochs?

4. Dynamics of the noisy limit cycle

We investigate the effect that different noise strengths can
have on the amplitudes of limit-cycle oscillations. We con-
sider the limit-cycle regime close to the supercritical Hopf
bifurcation (black dot, Fig. 1), where the system is weakly
nonlinear and the amplitude of the deterministic limit cycle
is small. The amplitude density shows little variation with
noise strength in the weak noise limit. The corresponding
probability densities in Figs. 5(a) and 5(b), red curves, are
close to Gaussian (by visual inspection) with small variance;
their peaks can be predicted from the theoretical expressions
in Eqs. (33) and (38).
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FIG. 4. Probability densities of excitatory and inhibitory ampli-
tude processes. (Left) Probability densities of excitatory (top) and
inhibitory (bottom) amplitude processes in the quasicycle regime.
(Right) Probability densities of excitatory (top) and inhibitory (bot-
tom) amplitude processes in the noisy limit-cycle regime. The black
curves correspond to analytical results [Eqs. (31) and (32)] and the
magenta curves are from numerical simulations of Eqs. (13) and (14).
The vertical blue lines are analytical values of the probability density
peak locations computed from Eq. (35) for the quasicycle (left) and
from Eq. (38) for the limit-cycle regimes (right). Theory matches up
very well with numerical simulations. We also note a transition of the
density shape from Rayleigh in the quasicycle case to approximately
Gaussian in the noisy limit-cycle case. Quasicycles [(a) and (c)]:
WEE = 27.4. Noisy limit cycles [(b) and (d)]: WEE = 30.4. Noise
strengths are σE = 0.0015, σI = 0.005, σ = 0.005, and other param-
eters are as in Fig. 1.

The small variance causes long segments of uninterrupted
strong oscillations, i.e., minimal bursting, in contrast to what
is observed for the quasicycles. As we further increase the
noise strength, the peak and variance of the amplitude values
increase. For strong noise [Figs. 5(a) and 5(b), blues curves],
the peak amplitude values are high with corresponding large
variance. The fact that amplitude values near zero are now
more probable compared to the weak noise limit suggests
that bursts are favored under these conditions. To unveil the
interplay between the noise and the size of the limit cycle, we
now increase the size of the limit cycle using larger recurrent
excitation strengths WEE as suggested by Fig. 1, as well as
vary the noise strength.

For weak noise in Figs. 6(a) and 6(b), increasing WEE

increases the peak value of the oscillation amplitude and
decreases its variance. This suggests that bursting decreases
moving further beyond the bifurcation. Intermediate noise in
Figs. 6(c) and 6(d) increases the variance, thus causing bursts,
as is seen for all limit-cycle sizes over this range of WEE . The
effect of noise on the peak amplitude is more significant close
to the Hopf bifurcation. Strong noise in Figs. 6(e) and 6(f)
increases variance for all limit-cycle sizes, but increases the
peak mostly near the Hopf bifurcation. This can be understood
from Eqs. (38). Close to the Hopf bifurcation, |ν| is small and
the effect of the term D

2(−ν) dominates. Far from the bifurcation

however, |ν| is larger and D
2(−ν) is now less important. The

FIG. 5. Effect of noise on the limit-cycle oscillations. We con-
sider the limit-cycle regime just beyond the Hopf bifurcation (see
Fig. 1) and look at the effect of the noise strength on the dy-
namics of the E (a) and I (b) amplitudes. High noise increases
the overall amplitude values but also increases their variability, en-
abling oscillatory bursts. Black curves correspond to theory while
other colors correspond to numerical simulations at different noise
strengths as specified in the legend to panel (b). In detail, blue: σE =
0.004, σI = 0.015, and σ = 0.0154; cyan: σE = 0.0015, σI =
0.005, and σ = 0.005; green: σE = 0.0006, σI = 0.002, and σ =
0.0022; magenta: σE = 0.00045, σI = 0.0015, and σ = 0.0015;
red: σE = 0.0002, σI = 0.0006, and σ = 0.0007. In all cases, there
is good agreement between theory and numerics.

FIG. 6. Interplay between noise and limit-cycle amplitude den-
sity. For weak noise [(a) and (b)], moving beyond the Hopf
bifurcation by increasing WEE leads to an increase in the peak
amplitude and a reduction of its variability. For intermediate noise
[(c) and (d)], an increase in variability is visible for all values of
WEE . The effect of noise strength on increasing the peak amplitude of
the oscillations is prominent near the Hopf bifurcation (weak values
of WEE ), but very weak far from it. For strong noise [(e) and (f)],
the amplitude peak and variability increase again for all WEE . Other
parameters are as in Fig. 1.
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FIG. 7. Bifurcation diagram of the SWC3 model. Peaks of the
probability densities of the E (a) and I (b) amplitude fluctuations
as a function of the recurrent excitatory coupling. Noise smoothes
the sharp Hopf bifurcation and increases the peak amplitude, i.e. it
induces the quasicycles. However, these densities does not reveal the
regularity or coherence of the oscillation. For all the curves, the solid
lines correspond to the theoretical expression of the peak amplitude,
while the dots are the result of numerical simulation which are in
good agreement with the SAM theory. Other parameters are as in
Fig. 1.

peak amplitude thus depends less on D and instead varies
mostly as ν

B1
.

We next directly characterize the effect of noise on the peak
of the probability density given by the solution of Eq. (33).
This can now be done for both the quasi- and limit-cycle
regimes. Figure 7 shows that increasing noise strength pro-
duces more smoothing of the bifurcation and higher most
probable values. The results computed by the SAM are in
good agreement with numerical simulations obtained through
the Hilbert transform performed on the SWC3 dynamics.
This speaks to the predictive power of the SAM technique in
this system, as it provides a theoretical handle on amplitude
strength as a function of the intrinsic network parameters and
the external noise. The most probable amplitude value is also
an indirect measure of level of network synchronization, and
can be seen as an order parameter for the stochastic bifurca-
tion as Fig. 7 reveals.

Our analysis also shows that noise shapes the amplitude
and burstiness of the limit-cycle amplitude. In particular,
strong noise can create bursts even in the limit-cycle regime.
Quasicycle bursts are a signature of an induced oscillation,
but in the limit-cycle regime, they are a sign of strong noise.
It is difficult to differentiate between these two cases just
by looking at the spectrograms. However, this can be helped
by also considering the envelope probability densities. If the
density is closer to Rayleigh than Gaussian, the spectrogram
is likely the result of quasicycle dynamics; a better fit to a
Gaussian points instead to a noisy limit cycle.

III. STOCHASTIC STUART-LANDAU MODEL

To assess the generality of our amplitude-phase decompo-
sition across the bifurcation, we now turn to the stochastic
Stuart-Landau (SSL) model [94]. Its deterministic dynamics
is the canonical form of the supercritical Hopf bifurcation. We

perform an amplitude-phase decomposition and pay particular
attention to the noisy limit-cycle regime and the effect of
correlated noise. The dynamics is given as

ẋ(t ) = a0x(t ) − ω0y(t ) − x(t )[x2(t ) + y2(t )] + ηx(t ), (39)

ẏ(t ) = ω0x(t ) + a0y(t ) − y(t )[x2(t ) + y2(t )] + ηy(t ). (40)

The eigenvalues around the origin are given by λ = a0 ± jω0,
and the supercritical Hopf bifurcation happens at a0 = 0. Qua-
sicycles exist in the region (a0 < 0; ω0 > 0) and noisy limit
cycles are defined in the region (a0 > 0; ω0 > 0). We proceed
as in the case of SWC3 equations. We first separate the dy-
namics of the model into its fixed point and the corresponding
fluctuations as x(t ) = x0 + Vx(t ) and y(t ) = y0 + Vy(t ). Note
that for the Stuart-Landau model, the fixed point is the origin
(x0 = y0 = 0). However, we will keep the notations x0 and y0

to easily make the connection with the analysis done in the
SWC3 model. By identification with the analysis done in the
case of the SWC3 system in Eqs. (13) and (14), we obtain
the following coefficients for the dynamics of the fluctuations
(with subscripts E and I replaced by x and y, respectively):

Axx = a0 − (
3x2

0 + y2
0

)
,

Ayy = a0 − (
x2

0 + 3y2
0

)
,

Axy = −(ω0 + 2x0y0),

Ayx = ω0 − 2x0y0,

Lxx = −3x0, Lxy = −2y0,

Lyx = −2x0, Lyy = −3y0,

Mxy = −x0, Myx = −y0,

B1x = −1, B2x = −1,

B3x = 0, B1y = −1,

B2y = 0, B3y = −1,

B4x = 0; B4y = 0.

The fixed amplitude ratio and phase difference between x
and y components are also obtained similarly, with ωo again
considered as the oscillation frequency. However, in the case
of the SSL model, the amplitude computed through linear
stability analysis is α = 1 [Fig. 8(a)] and the phase difference
is δ = −π

2 [Fig. 8(b)]. Therefore the solution can be sought in
the form

Vx = Z (t ) cos(ω0t + φ(t )), Vy = Z (t ) sin(ω0t + φ(t )).
(41)

We have assumed Zx = Z for readability. We then applied the
SAM using the above expressions and obtained

dZ (t ) =
[

a0Z (t ) − Z3(t ) + D

2Z (t )

]
dt +

√
DdW1(t ), (42)

dφ(t ) = B2Z2(t )dt +
√

D

Z (t )
dW2(t ). (43)

For the case of the SSL model, the coefficient B1 = −1
and B2 = 0. We choose to replace B1 by its value to show
the specificity of the SSL model, and to keep B2 to show the
general dependence of the phase on the envelope amplitude
for noisy limit cycles; the fact that B2 = 0 is just a specific
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FIG. 8. Amplitude ratio, phase difference between y and x fluc-
tuations, along with their frequency, in the noisy limit-cycle regime.
As for the SWC3 case, the amplitude ratio is plotted [red curve (a)]
along with the corresponding Gaussian distribution [blue curve (a)].
The vertical red line is the result of the linear stability, while the ver-
tical blue line corresponds to the mean of the Gaussian distribution.
Similar results hold for (b)–(d). The probability distributions of the
fixed ratio and phase difference are Gaussian distributed. The x and y
frequencies are also Gaussian distributed with their mean value at ω0.
The values of ω0 were converted to be in the beta range. Parameters
are as in Fig. 9.

property of the SSL model. We focus on the noisy limit-cycle
regime, comparing our amplitude-phase dynamics with the
SAM to those extracted using the Hilbert transform. Figure 9
shows good agreement between the two. Note that we have
chosen parameters such that the peak frequency is lower than
for the SWC3 model, placing it more in the beta range in the
context of brain rhythms. Similar analyses can be performed

at higher (gamma) or lower frequencies such as in the delta
and theta ranges.

Unlike the SWC3 case, here we have independent cor-
related OU noise inputs to the x and y components. We
computed the density P(Z ) for different correlation times
τ = τx = τy (varied while keeping the noise intensity fixed for
both inputs), and this was repeated for four noise intensities.
Figure 10 shows that shorter noise correlation time and larger
intensity, and especially their combination, cause significant
probability at small amplitudes, which is a sign of bursting.
For small τ , the inputs approach white noise, and the behavior
of the amplitude can be understood from the analysis of the
SWC3 above. We also observed a good match between the
SAM theory and numerical simulations for all correlation
times.

As for the SWC3 model, we computed the peak of the
probability density of the amplitude process for different τ

values at a low and a high noise strength (Fig. 11). Like previ-
ously observed, the noise and correlation strength increase the
overall amplitude mean as they smoothe out (i.e., linearize)
the supercritical Hopf bifurcation. The SAM approximation
continues to work well even for the stronger correlation case.

Next we compare our amplitude-phase decomposition with
previous decomposition of the SSL model using the change of
variable θ (t ) = ω0t + φ(t ), leading to

dθ (t ) = ω0 dt +
√

D

Z (t )
dW2(t ). (44)

In the deterministic limit D = 0, Eqs. (42) and (44) corre-
spond to the polar normal form of the supercritical Hopf
bifurcation [78]. In the stochastic case however, the noise
appears in a nontrivial manner in both the Z and φ (or θ )
equations and is a general amplitude-phase description of
noisy oscillators around a supercritical Hopf bifurcation. By
taking into account the amplitude ratio and phase difference
between the two components, it provides a good description of
the quasiellipsoidal form of the quasicycle or of the stochastic

FIG. 9. Spectrogram, x and y fluctuations, amplitudes and phases computed from the SAM and from the SSL using the Hilbert transform.
From top to bottom: spectrogram, x and y fluctuations, amplitudes and phases of the x (blue) and y (red) populations computed from the SAM
analysis (left) and from the Hilbert transform (right) performed on numerical solutions of the SSL model. The SAM results match well with
the numerical results obtained through the Hilbert transform. Parameters are a0 = 0.01, ω0 = 0.150, and σx = σy = σ = 0.002. We have
consider a Gaussian white noises applied on x and y variables.
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FIG. 10. Effect of noise correlation time and intensity on the
SSL amplitude-phase dynamics. The probability densities of the
amplitudes of the SSL for correlation times τ = τx = τy of the OU
processes were computed for (a) weak noise, [(b) and (c)] inter-
mediate noise, and (d) strong noise intensity. We observe that for
all intensities and correlation times, the density for the amplitude
processes computed numerically through the Hilbert transform (col-
ored curves) match with those calculated theoretically (black curves)
using Eqs. (31) and (26), with σE = σx = σ ; σI = σy = σ and Q =
τσ 2. For weak values of τ and large intensities, the corresponding
densities are broader. For large intensities, the densities have higher
peak amplitude; weak values of τ also increase the peak amplitude.
Parameters are as in Fig. 8 unless otherwise specified here.

FIG. 11. Bifurcation diagram of the SSL model. The peak of
the amplitude probability density is plotted as a function of the
bifurcation parameter a0. The noise is the OU process with different
τ = τx = τy. The noise strength is (a) Q = τσ 2 = 10−6 and (b) 10−4.
Increasing Q and τ increases the peak amplitude value. Solid curves
correspond to SAM theory while dots are from numerical simula-
tions. For all cases, a good match between theory and numerical
results is seen. Parameters are as in Fig. 8 unless otherwise specified.

limit cycle (the deterministic limit cycle is a quasiellipsoid
for the WC model); it complements other averaging ap-
proaches that consider the component amplitudes to be the
same [80,83].

IV. AMPLITUDE-PHASE DECOMPOSITION
FOR NETWORKS

Finally we extend our theory to interconnected networks of
E -I units described by the SWC3 or SSL nonlinear rate mod-
els. One application of such amplitude-phase decomposition
may be the study of the functional connectivity between brain
areas [75,76,80]. We only consider the case where the network
frequencies belong to the same band and therefore avoid the
case of cross-frequency coupling where faster rhythms are
coupled with slower ones [84].

A. Network of stochastic Wilson-Cowan units

We consider a network of excitatorily delay-coupled
SWC3 units:

dEk (t )

dt
= −αE Ek + (1 − Ek )βE f (sEk ) + ηEk , (45)

dIk (t )

dt
= −αI Ik + (1 − Ik )βI f (sIk ) + ηIk . (46)

The total excitatory sEk (t ) and inhibitory sIk (t ) synaptic inputs
to a neuron population are given by

sEk (t ) = W k
EE Ek − W k

EI Ik + hk
E +

N∑
l=1,l �=k

Skl
EE El (t − τkl ),

(47)

sIk (t ) = W k
IE Ek − W k

II Ik + hk
I +

N∑
l=1,l �=k

Skl
IE El (t − τkl ). (48)

The coefficient Skl
EE denotes the long-range excitatory weight

from excitatory population l to excitatory population k, while
Skl

IE accounts for the weight from excitatory population l to
inhibitory population k. As for the case of the single E -I units,
we look at the fluctuations of each unit as follows:

Ek (t ) = Ek
0 + VEk (t ) and Ik (t ) = Ik

0 + VIk (t ). (49)

Each basic E -I units behaves as above, but for simplicity,
we keep only the linear coupling terms because we consider
weak coupling coefficients Skl

EE and Skl
IE . In this limit, keeping

only linear terms is a reasonable approximation since non-
linear terms will be small and contribute little compared to
the linear terms. Also, this simplifies the analytical treatment.
Therefore, the only difference is the fact that the coefficients
of the single unit analysis now have the index k which char-
acterizes the heterogeneity of each network. However, the
form of the coefficients of the deviations dynamics are sim-
ilar. Specifically, the fixed points (Ek

0 , Ik
0 ) now depend on the

coupling terms. The fluctuation dynamics are given by the
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2N-dimensional system:

dVEk

dt
= Ak

EEVEk + Ak
EIVIk + Lk

EEV 2
Ek

+ Lk
EIVEkVIk + Mk

EIV
2

Ik
+ Bk

1EV 3
Ek

+ Bk
2EVEkV

2
Ik

+ Bk
3EVIkV

2
Ek

+ Bk
4EV 3

Ik

+
N∑

l=1,l �=k

Ckl
EEVEl (t − τkl ) + ηEk , (50)

dVIk

dt
= Ak

IEVEk + Ak
IIVIk + Lk

IIV
2

Ik

+ Lk
IEVEkVIk + Mk

IEV 2
Ek

+ Bk
1IV

3
Ik

+ Bk
2IVEkV

2
Ik

+ Bk
3IVIkV

2
Ek

+ Bk
4IV

3
Ek

+
N∑

l=1,l �=k

Ckl
IEVEl (t − τkl ) + ηIk . (51)

As for the case of a single network we have the follow-
ing Bk

4E = Bk
4I = 0 and Mk

IE = Mk
EI = 0 (see Appendix A

Fig. 14). The effective coupling coefficients Ckl
EE and Ckl

EE are

Ckl
EE = (

1 − Ek
0

)
βE f ′(sEk

0
)Skl

EE ,

Ckl
IE = (

1 − Ik
0

)
βI f ′(sIk

0
)Skl

IE (52)

with the following expressions for the inputs to each popula-
tion of the kth unit:

sEk
0

= W k
EE Ek

0 − W k
EI I

k
0 + hk

E +
N∑

l=1,l �=k

Skl
EE El

0,

sIk
0

= W k
IE Ek

0 − W k
II I

k
0 + hk

I +
N∑

l=1,l �=k

Skl
IE E l

0.

Here (Ek
0 , Ik

0 ), k = 1, . . . , N are the fixed points of the sta-
tionary noise-free Eqs. (45) and (46). The coefficients of
Eqs. (50-51) have the same form as in the single unit
case; however the expressions for (sE0 , sI0 ) are now replaced
by (sEk

0
, sIk

0
, k = 1, . . . , N ). Similarly, (E0, I0) is replaced by

(Ek
0 , Ik

0 , k = 1, . . . , N ).
As in the case of the single unit, linear stability analysis

suggests a fixed amplitude ratio and phase difference between
the E and I components of each unit. However, the determina-
tion of these quantities is different from the single unit case.
To find the frequency, amplitude ratio and phase difference,
these steps are followed.

(1) From the linear stability analysis, compute the eigen-
values of the corresponding 2N-dimensional linear system
associated with Eqs. (50) and (51). The number of eigenvalues
is infinite when the propagation delay is considered, and is
equal to 2N otherwise. The imaginary part ω0 of the eigen-
value with the largest real part is considered as the principal
frequency of the system.

(2) Consider the eigenvalue with the largest real part (λ =
νmax + jω0) and solve the following N × N system of equa-
tions for the amplitude ratios derived from the linear stability
analysis:

Ak
EI α̃kk +

N∑
l=1,l �=k

Ckl
EE exp(−λτkl )α̃kl = λ − Ak

EE

N∑
l=1,l �=k

Ckl
IE exp(−λτkl )α̃kl + (Ak

II − λ)α̃kk = −Ak
IE

α̃kl = (α̃lk )−1, k, �= l = 1, . . . , N,

where

α̃kk = B̃Ik

B̃Ek

, α̃kl = B̃El

B̃Ek

, k, �= l = 1, . . . , N. (53)

(3) The amplitude ratio and phase difference between in-
hibitory and excitatory fluctuations are therefore given by

αk = |α̃kk|; δk = Arg(α̃kk ), k = 1, . . . , N,

where || and Arg are respectively the modulus and the argu-
ment of a complex number.

As in the case of single unit, we can look for solutions
of excitatory and inhibitory fluctuation dynamics for each
population in each unit in the form:

VEk (t ) = Zk (t ) cos(ω0t + φk (t )),

VIk (t ) = αkZk (t ) cos(ω0t + φk (t ) + δk ). (54)

We have dropped the subscript E for the variables Z and φ

for the sake of readability. We then plugged these expressions
in the system of 2N-dimensional Eqs. (50) and (51) and ob-
tained the final system of 2N-dimensional equations for the
amplitudes Zk and phases φk:

dZk

dt
= F k

1 (Zk, φk ) + Gk
1(Zk, φk, ηEk , ηIk ), (55)

dφk

dt
= F k

2 (Zk, φk ) + Gk
2(Zk, φk, ηEk , ηIk ) (56)

with the following functions:

F k
1 (Zk, φk ) = 1

αk sin(δk )

[
αk f k

1 (Zk, φk ) sin(ω0t + φk + δk ) − f k
2 (Zk, φk ) sin(ω0t + φk )

]
,

F k
2 (Zk, φk ) = 1

αkZk sin(δk )

[
αk f k

1 (Zk, φk ) cos(ω0t + φk + δk ) − f k
2 (Zk, φk ) cos(ω0t + φk )

]
,

Gk
1(Zk, φk, ηEk , ηIk ) = 1

αk sin(δk )

[
αkgk

1(Zk, φk, ηEk , ηIk ) sin(ω0t + φk + δk ) − gk
2(Zk, φk, ηEk , ηIk ) sin(ω0t + φk )

]
,

Gk
2(Zk, φk, ηEk , ηIk ) = 1

αkZk sin(δk )

[
αkgk

1(Zk, φk, ηEk , ηIk ) cos(ω0t + φk + δk ) − gk
2(Zk, φk, ηEk , ηIk ) cos(ω0t + φk )

]
,
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f k
1 (Zk, φk ) = ω0Zk sin(ω0t + φk ) + Ak

EE Zk cos(ω0t + φk ) + Ak
EIαkZk cos(ω0t + φk + δk )

+ Lk
EE Z2

k cos2(ω0t + φk ) + Lk
EIαkZ2

k cos(ω0t + φk ) cos(ω0t + φk + δk )

+ Bk
1E Z3

k cos3(ω0t + φk ) + Bk
2Eα2

k Z3
k cos(ω0t + φk ) cos2(ω0t + φk + δk )

+ Bk
3EαkZ3

k cos2(ω0t + φk ) cos(ω0t + φk + δk ) +
N∑

l=1,l �=k

Ckl
EE Zl (t − τkl ) cos[ω0t − ω0τkl + φl (t − τkl )],

f k
2 (Zk, φk ) = αkω0Zk sin(ω0t + φk + δk ) + Ak

IE Zk cos(ω0t + φk ) + Ak
IIαkZk cos(ω0t + φk + δk )

+ Lk
IIα

2
k Z2

k cos2(ω0t + φk + δk ) + Lk
IEαkZ2

k cos(ω0t + φk ) cos(ω0t + φk + δk )

+ Bk
1Iα

3
k Z3

k cos3(ω0t + φk + δk ) + Bk
2Iα

2
k Z3

k cos(ω0t + φk ) cos2(ω0t + φk + δk )

+ Bk
3IαkZ3

k cos2(ω0t + φk ) cos(ω0t + φk + δk ) +
N∑

l=1,l �=k

Ckl
IE Zl (t − τkl ) cos[ω0t − ω0τkl + φl (t − τkl )],

gk
1(Zk, φk, ξEk , ξIk ) = ηEk (t ); gk

2(Zk, φk, ξEk , ξIk ) = ηIk (t ).

Applying the SAM method to the 2N-dimensional system [Eqs. (55) and (56)] leads to the following amplitude-phase equations
for the networks of SWC3 units:

dZk (t ) =
{
−λkZk (t ) + Bk

1Z3
k (t ) + Dk

2Zk (t )
+ 1

2αk sin(δk )

N∑
l=1,l �=k

[
αkC

kl
EE sin

(
φk (t ) − φl (t − τkl ) + ω0τkl + δk

)

−Ckl
IE sin(φk (t ) − φl (t − τkl ) + ω0τkl )

]
Zl (t − τkl )

}
dt + √

Dk dW k
1 (t ), (57)

dφk (t ) =
{
�k + Bk

2Z2
k (t ) + 1

2αk sin(δk )

N∑
l=1,l �=k

[
αkC

kl
EE cos

(
φk (t ) − φl (t − τkl ) + ω0τkl + δk

)

−Ckl
IE cos(φk (t ) − φl (t − τkl ) + ω0τkl )

]Zl (t − τkl )

Zk (t )

}
dt +

√
Dk

Zk (t )
dW k

2 (t ). (58)

The coefficients in these expressions are defined by

Bk
1 = 1

8

[
3Bk

1E + Bk
3I + α2

k

(
Bk

2E + 3Bk
1I

) + 2αk cos
(
δk

)(
Bk

3E + Bk
2I

)]
(59)

as well as

Bk
2 = 1

8 sin(δk )

[
2αk

(
Bk

3E − Bk
2I

) + 3
(
Bk

1E − Bk
3I

)
cos(δk ) + 3α2

k

(
Bk

2E − Bk
1I

)
cos(δk ) + αk

(
Bk

3E − Bk
2I

)
cos(2δk )

]
(60)

with the definitions

λk = −Ak
EE + Ak

II

2
, �k = −ω0 + αk cos(δk )

(
Ak

EE − Ak
II

) + α2
k Ak

EI − Ak
IE

2αk sin(δk )
,

Dk = 1

2α2
k sin2(δk )

[
2τEk (αkσEk )2

1 + (ω0τEk )2
+ 2τIk (σIk )2

1 + (ω0τIk )2

]
= π

α2
k sin2(δk )

[
α2

k SξEk
(ω0) + SξIk

(ω0)
]
.

We have thus derived an amplitude-phase decomposition of connected SWC3 E -I units through the SAM by extending the
technique used for an isolated E -I network. The result is a set of 2 × N stochastic differential equations for the amplitudes
and phases of each unit. The connectivity between the amplitude and phase are made through sinusoidal coupling functions.
Unfortunately, the amplitude equation is not uncoupled from that for the phase as was the case for a single unit. A Fokker-Planck
analysis is therefore difficult to conduct.

However, we performed numerical simulations of this network of amplitude-phase dynamics [Eqs. (57) and (58)] and their
original fluctuations variables [Eqs. (50) and (51)] and found good agreement between the two. This was done for the quasicycle
regimes as well as for the noisy limit-cycle regime in Figs. 12(a) and 12(b). For each regime, we made sure that a single isolated
E -I unit was in the regime of interest (quasi- or limit cycle), and that the connectivity between units kept the network in the same
regime of each isolated unit. In other words, the connectivity does not induce a change of regime.

We represented the probability densities of the amplitude Zk, k = 1, 2, 3 for three selected units in a minimal heterogeneous
network of 5 units and the corresponding excitatory amplitudes extracted using the Hilbert transform for Eqs. (50) and (51)
and found good agreement between the two methods. In Figs. 12(a) and 12(b), the black curves are the result of the SAM
approximation, while the colored curves correspond to the Hilbert transform computation. Our amplitude-phase approach across
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the Hopf bifurcation is therefore generally applicable to both single units and heterogeneous networks of units in both the quasi-
and limit-cycle regimes.

To recover the common fast phase variable usually used and associated to the Hilbert transform, it suffices to consider the
change of variable θk (t ) = ω0t + φk (t ). This leads to the following amplitude-phase dynamics

dZk (t ) =
{
−λkZk (t ) + Bk

1Z3
k (t ) + Dk

2Zk (t )
+ 1

2αk sin(δk )

N∑
l=1,l �=k

[
αkC

kl
EE sin(θk (t ) − θl (t − τkl ) + δk )

−Ckl
IE sin(θk (t ) − θl (t − τkl ))

]
Zl (t − τkl )

}
dt + √

Dk dW k
1 (t ), (61)

dθk (t ) =
{
ωk + Bk

2Z2
k (t ) + 1

2αk sin(δk )

N∑
l=1,l �=k

[
αkC

kl
EE cos(θk (t ) − θl (t − τkl ) + δk )

−Ckl
IE cos(θk (t ) − θl (t − τkl ))

]Zl (t − τkl )

Zk (t )

}
dt +

√
Dk

Zk (t )
dW k

2 (t ). (62)

The new parameter ωk is related to �k and depends on the
intrinsic parameter of each network, as following:

ωk = �k + ω0

= αk cos(δk )
(
Ak

EE − Ak
II

) + α2
k Ak

EI − Ak
IE

2αk sin(δk )
.

It is related to the deterministic frequency of the oscillator k
and coincides with the imaginary part of the complex con-

FIG. 12. Envelope probability densities of 3 selected units in a
heterogeneous network of 5 SWC3 units. Numerical simulations of
the SWC3 network of units [Eqs. (50) and (51)] followed by Hilbert
transforms to obtain the amplitude density, along with numerical
simulations of the corresponding amplitude-phase decomposition
obtained through the SAM [Eqs. (57) and (58)]. (a) quasicycle
regime. Each unit is in this regime when isolated or coupled. Pa-
rameters are W k

EE = 27.8, 28, 28.2, 27.6, 28.4, k = 1, . . . , 5. The
network is all-to-all connected with Ckl

IE = CIE = 0, τkl = 0, and
Ckl

EE = CEE = 2/5. (b) Noisy limit-cycle regime. Each isolated net-
work is in the limit-cycle regime and remains so when connected.
Parameters are W k

EE = 30.4, 30, 30.8, 30.6, 30.4, k = 1, . . . , 5.
The connectivity is all-to-all with Ckl

IE = CIE = 0, τkl = 0 and Ckl
EE =

CEE = 1/5. Black curves correspond to the SAM approximation
Eqs. (57) and (58); colored curves correspond to the approximate
SWC3. An excellent match is seen between the amplitude den-
sities computed from the SAM and the original model for both
regimes. Noise parameters for each unit are: σE = 0.0014, σI =
0.0048, and σ = 0.005. Other parameters are specified in Fig. 1.

jugate eigenvalues ω0 for a single oscillator. However, we
found that the complete deterministic frequency is generally
amplitude-dependent as shown by the two first terms in right
side of the equality of Eq. (62). The news dynamics Eqs. (61)
and (62) represent a general model for the interaction of

FIG. 13. Amplitude probability densities of 3 selected units in
a network of 5 SSL units. Numerical simulations of the amplitude
equations obtained from the SAM Eqs. (66) and (67) and of the
Hilbert transform extracted from simulations of the SSL model.
(a) Quasicycle regime. Each unit is in this regime when isolated
or coupled. Parameters are ak = −0.01, −0.025, −0.02, −0.01,

−0.01, and k = 1, . . . , 5. The network is all-to-all connected with
Ckl = K/N = 0.01/5 and τkl = 0. (b) Noisy limit-cycle regime. Each
isolated or coupled network is in the limit-cycle regime. Param-
eters are ak = 0.015, 0.017, 0.01, 0.01, 0.01, and k = 1, . . . , 5.
The connectivity is all-to-all with Ckl = K/N = 0.01/5 and τkl = 0.
Black curves correspond to the SAM Eqs. (66) and (67) and colored
curves to the original SSL dynamics. An excellent match is again
seen between the two envelope dynamics in both regimes. Noise pa-
rameters for each unit are: σx = σy = σ = 0.001 and the parameter
b0 is set to 0.15. For the two regimes, the coupling coefficient Ckl is
applied only on the x variable for simplicity. Other parameters are
specified in Fig. 9.
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oscillators in the slow Zk (t ) and fast θk (t ) variables frame-
work. The major difference with the previous amplitude-phase
dynamics Eqs. (57) and (58) is the timescale of the new
phase variable θk (t ) which now evolves on a faster time

scale compared to the amplitude Zk (t ) which remain in a
slow timescale. This new framework is usually adopted when
defining the interaction of oscillators in the amplitude-phase
representation.

B. Networks of stochastic Stuart-Landau units

1. General case

We now consider a network of coupled SSL units [85,86]. The coupling is a linear coupling, the model is described as

ẋk (t ) = akxk (t ) − ωk
0yk (t ) − xk (t )

[
x2

k (t ) + y2
k (t )

] +
N∑

l=1,l �=k

Ckl [xl (t − τkl ) − xk (t )] + ηk
x (t ), (63)

ẏk (t ) = ωk
0xk (t ) + akyk (t ) − yk (t )

[
x2

k (t ) + y2
k (t )

] +
N∑

l=1,l �=k

Ckl [yl (t − τkl ) − yk (t )] + ηk
y (t ). (64)

We perform the same analysis as for the case of the network of SWC3 units. The fluctuations from the fixed points are therefore
sought in the form

V k
x (t ) = Zk (t ) cos[ω0t + φk (t )], V k

y (t ) = αkZk (t ) cos[ω0t + φk (t ) + δk]. (65)

The same steps as for the SWC3 units lead to amplitude-phase equations for the network of coupled SSL units:

dZk (t ) =
{
−λkZk (t ) + Bk

1Z3
k (t ) + Dk

2Zk (t )
+ 1

2αk sin(δk )

N∑
l=1,l �=k

Ckl [αk (Zl (t − τkl ) sin(φk (t ) − φl (t − τkl ) + ω0τkl + δk )

− Zk (t ) sin(δk )) + (αlZl (t − τkl ) sin(φl (t − τkl ) − ω0τkl − φk (t ) + δl ) − αkZk (t ) sin(δk ))]

}
dt + √

DkdW k
1 (t ), (66)

dφk (t ) =
{
�k + Bk

2Z2
k (t ) + 1

2αk sin(δk )

N∑
l=1,l �=k

Ckl [αk cos(φk (t ) − φl (t − τkl ) + ω0τkl + δk )

−αl cos(φl (t − τkl ) − ω0τkl − φk (t ) + δl )]
Zl (t − τkl )

Zk (t )

}
dt +

√
Dk

Zk (t )
dW k

2 (t ). (67)

The amplitude equations are now coupled with the phase equations, making it now difficult to perform a Fokker-Planck
analysis in contrast to the case of the isolated unit. Figure 13 shows results from numerical simulations of the amplitude-phase
equations for a small all-to-all connected heterogeneous network of five units. Only the parameters ak differ amongst the units.
The parameters ak are such that each isolated unit is in the quasicycle regime. The connectivity coefficient is then chosen to
ensure that the connected network remains in the quasicycle regime. The same approach is used for the limit-cycle regime. The
results of numerical simulations in Fig. 13 show good agreement between the envelopes computed on the original SSL model
using the Hilbert transform (colored curves) and those simulated from the SAM dynamics (black curves). Our analysis thus
works well for a single unit for a different model than SWC3, for different types of stochastic input, for low and high frequency
bands, and for networks of several units. As for the case of the SWC3, we can rewritte the dynamics Eqs. (66) and (67) in the
framework of the slow amplitude and fast phase by using the change of variable θk (t ) = ω0t + φk (t ),

dZk (t ) =
{
−λkZk (t ) + Bk

1Z3
k (t ) + Dk

2Zk (t )
+ 1

2αk sin(δk )

N∑
l=1,l �=k

Ckl [αk (Zl (t − τkl ) sin
(
θk (t ) − θl (t − τkl ) + δk )

− Zk (t ) sin(δk )) + (αlZl (t − τkl ) sin(θl (t − τkl ) − θk (t ) + δl ) − αkZk (t ) sin(δk ))]

}
dt + √

DkdW k
1 (t ), (68)

dθk (t ) =
{
ωk + Bk

2Z2
k (t ) + 1

2αk sin(δk )

N∑
l=1,l �=k

Ckl [αk cos(θk (t ) − θl (t − τkl ) + δk )

−αl cos(θl (t − τkl ) − θk (t ) + δl )]
Zl (t − τkl )

Zk (t )

}
dt +

√
Dk

Zk (t )
dW k

2 (t ). (69)

2. Near identical, weakly coupled limit cycles with low noise

Let us consider the fast phase dynamics of the network of SSL units extracted used the SAM and the change of variable
θk (t ) = ω0t + φk (t ) in Eq. (69). If the units are nearly identical, weakly coupled and subject to small noise (Dk � 1), we
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can make the following approximations: (1) αk ∼ αl ; δk ∼ δl and (2) Zk (t ) ∼ Zl (t ) ∼ Zl (t − τkl ) ∼ 〈Zk (t )〉 = c0, where c0 is a
constant. The first approximation comes from the fact that the networks are nearly identical. It reduces the coupling function of
the fast phase dynamics Eq. (69) to Ckl

Zl (t−τkl )
Zk (t ) sin[θl (t − τkl ) − θk (t )]. The second approximation can be made because the units

are nearly identical, weakly coupled and the noise is small. The amplitudes then vary slightly over time and we can replace them
by a constant. We choose this constant here to be the mean amplitude over the period of a unit and is thus the same for every unit.
Such an approximation further reduces the coupling to Ckl sin[θl (t − τkl ) − θk (t )], and the stochastic terms to

√
D0

k = √
Dk/c0.

We recall that for the case of the SL model the coefficients of the squared amplitude in the phase dynamics are always zero
(Bk

2 = 0). This leads to the following equation for the phase dynamics:

dθk

dt
= ωk +

N∑
l=1,l �=k

Ckl sin(θl (t − τkl ) − θk (t )) +
√

D0
kξ

k
2 , (70)

where

ωk = ω0 + �k = αk cos(δk )
(
Ak

xx − Ak
yy

) + α2
k Ak

xy − Ak
yx

2αk sin(δk )
.

For the SSL model, it is found that the value of the frequency ωk coincides with the frequency ω0
k of each isolated unit. Equation

(70) is the delayed [87,88] and stochastic [89–92] version of the Kuramoto phase model.

3. No propagation delay: The Kuramoto model

If we further neglect the propagation delays (τkl = 0) and the noise Dk = 0, we recover the Kuramoto phase model of coupled
phase oscillators [93–98]:

dθk (t )

dt
= ωk +

N∑
l=1

Ckl sin(θl (t ) − θk (t )). (71)

Note that our amplitude-phase model derived above also displays interesting phase synchronization properties that will be studied
elsewhere, since our focus here has been on illustrating the amplitude dynamics. The generality of our model is highlighted by
this relation to the well-known deterministic Kuramoto model in specific limits.

V. DISCUSSION

In this work, we have addressed the problem of amplitude-
phase decomposition of noisy oscillations. The quantities of
interest are the fluctuations from the fixed points. Our ap-
proach consists in first performing a linear stability analysis
to extract the amplitude ratio, phase difference and mean fre-
quency. Second, solutions in a sinusoidal form are sought that
take into account these properties. And finally the stochastic
averaging method (SAM) is applied to obtain the dynamics of
the amplitude and phase processes. The method was shown to
work well on two different models that span the Hopf bifur-
cation from the quasicycle to the limit-cycle regimes, as well
as for colored noise or Gaussian white noise. It complements
previous approaches that treat these two regimes with separate
models by providing a unified approach across regimes, and
further extends the method to several delay-coupled oscilla-
tory networks.

We first considered a single E -I network in the SWC model
case, or a single Hopf oscillator in the SSL case. The ampli-
tude dynamics is then uncoupled from the phase dynamics.
We then applied a Fokker-Planck analysis to compute the sta-
tionary probability densities of the amplitude variables. The
peak of the probability densities can be extracted and used
as bifurcation parameter. The bifurcation diagram computed
with the peak probability density captures the transition from
quasi- to limit-cycle oscillations. It shows how noise prop-
erties (strength, correlation time) shape the behavior of the
oscillations.

Larger noise intensities and shorter noise correlation times
increase the peak of the amplitude of the fast oscillation.
In the limit-cycle case, the variance of the envelope process
also increases, making bursting epochs, i.e., segments where
the amplitude process is large - more prominent. This novel
result highlights a benefit of considering the amplitude pro-
cess rather than just the phase when modeling limit-cycle
oscillations. The phase dynamics is coupled to the ampli-
tude dynamics. The strength of the noise perturbation on
the phase process depends on the amplitude process. Hence
during such bursts, the effect of noise weakens [due to the
1/Z (t ) dependence]. However, during epochs of low am-
plitude between bursts, the phase fluctuates more strongly.
The amplitude process therefore plays an important role
in the phase dynamics, especially for moderate to strong
noise.

We extended our method to several coupled units of the
stochastic Wilson-Cowan (SWC) and the stochastic Stuart-
Landau (SSL) models. Such super-networks of units have
been invoked to model brain connectivity [76,80,99]. Our
analysis allowed us to also derive an amplitude-phase model
for coupled units. Unlike the single unit network, the am-
plitude processes are now reciprocally connected with the
phase processes of the units. A Fokker-Planck analysis of the
system of coupled units is beyond the scope of our study and
poses serious challenges; we therefore presented only numer-
ical simulations. However, nevertheless the amplitude-phase
dynamics provide a new tool to understand amplitude-phase
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coupling of rhythms that are either autonomous or owe their
existence to noise.

As for the case of a single oscillating unit, the SAM method
applied to these networks of units of nonlinear oscillators is
accurate across the Hopf bifurcation. Future work could inves-
tigate the case of a mixture of quasicycle and limit-cycle units
and the one where the coupling actually alters the dynamical
regime seen in the isolated units. Also, we mostly focused
on the dynamics of the amplitude process of an isolated unit
since we were mostly interested in the ability of noise in cre-
ating bursts. But for the coupled network of oscillators, phase
synchronization [100,101] is also of interest. This behavior is
present in our coupled models. It is likely that other exciting
phenomena such as chimera [102,103] will be revealed in
these networks, even in the quasicycle regime.

Note that in the WC framework, the amplitude of the
oscillation is a reasonable proxy for the synchronization of
an actual network consisting of many noisy excitatory and
inhibitory neurons, as established in Ref. [31]. This cor-
respondence will nevertheless miss out on effects such as
synchrony without oscillation or strongly synchronous oscil-
lations at low firing rate in deterministic networks [104], a
direction we leave for future study.

Although we developed our theory of networks of coupled
units with delays using the SAM approach, we have illustrated
our results only for zero delays due to space limitations. Re-
cent work shows that interesting phenomena in two coupled
quasicycles relate to these delays, such as states of phase
locking with phase difference between −π and π and random
changes in the identity of the quasicycle that leads the other
[69]. Thus an extension to explore the effects of propagation
delays is warranted, which will provide a closer match to the
biophysical situation. Our formalism also enables the inclu-
sion of external periodic inputs, which will also be the focus
of future work.

Our results point to a possible discrimination between
bursting behaviors from two dynamical origins: in quasicycles
at low to moderate noise, and in limit cycles at stronger noise.
While the spectrograms may be similar, the different shapes
of the amplitude density—Rayleigh in the former case and
almost Gaussian in the latter—can help distinguish between
these two cases. It is possible that further differentiation can
be made upon substituting colored noise in the place of Gaus-
sian white noise. The SAM requires the noise to be broadband

in order for it to work accurately; Ornstein-Uhlenbeck noise
for example would have to be sufficiently broadband. We have
also investigated this question over a limited volume of the
whole parameter space. It may be easier to discriminate the
two kinds of burst dynamics in the neural context of ampli-
tudes of lower frequency rhythms such as in the beta band
(13–30 Hz), in contrast to our focus on the gamma band. Other
model topologies than the generic E -I one considered here
may also be better suited to such rhythms. The investigation
of the amplitude-phase dynamics of such models across the
Hopf bifurcation with different types of noises, following the
methods described here, is certainly an interesting direction to
pursue.
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APPENDIX

1. Derivation of the SWC3 model

We consider the Wilson-Cowan equations (1) and (2) in the
deterministic limit:

dE (t )

dt
= −αE E (t ) + (1 − E (t ))βE f (sE (t )), (A1)

dI (t )

dt
= −αI I (t ) + (1 − I (t ))βI f (sI (t )). (A2)

The synaptic inputs sE (t ) and sI (t ) are given by Eqs. (3) and (4),
respectively. We are interested in the dynamics of the devia-
tions VE (t ) and VI (t ). For that, we insert Eqs. (9) in Eqs. (A1)
and (A2), which leads to

d (E0 + VE )

dt
= −αE (E0 + VE ) + (1 − (E0 + VE ))βE f (sE )

= −αE E0 − αEVE + (1 − E0)βE f (sE )

−VEβE f (sE ),

d (I0 + VI )

dt
= −αI (I0 + VI ) + (1 − (I0 + VI ))βI f (sI )

= −αI I0 − αIVI + (1 − I0)βI f (sI ) − VIβI f (sI ).

We now replace f (sE ) and f (sI ) by their Taylor expansion at
the second order given in Eqs. (11):

d (E0 + VE )

dt
= −αE (E0 + VE ) + (1 − (E0 + VE ))βE f (sE )

= −αE E0 − αEVE + (1 − E0)βE

(
f
(
sE0

) + δsE f ′(sE0

) + 1

2
(δsE )2 f ′′(sE0

))

−VEβE

(
f
(
sE0

) + δsE f ′(sE0

) + 1

2
(δsE )2 f ′′(sE0

))
,

d (I0 + VI )

dt
= −αI (I0 + VI ) + (1 − (I0 + VI ))βI f (sI )

= −αI I0 − αIVI + (1 − I0)βI

(
f
(
sI0

) + δsI f ′(sI0

) + 1

2
(δsI )2 f ′′(sI0

))

−VIβI

(
f
(
sI0

) + δsI f ′(sI0

) + 1

2
(δsI )2 f ′′(sI0

))
.
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Taking into account the fixed point solutions Eq. (10), the equations above reduce to

dVE

dt
= −αEVE + (1 − E0)βE

(
δsE f ′(sE0

) + 1

2
(δsE )2 f ′′(sE0

)) − VEβE

(
f
(
sE0

) + δsE f ′(sE0

) + 1

2
(δsE )2 f ′′(sE0

))
,

dVI

dt
= −αIVI + (1 − I0)βI

(
δsI f ′(sI0

) + 1

2
(δsI )2 f ′′(sI0

)) − VIβI

(
f
(
sI0

) + δsI f ′(sI0

) + 1

2
(δsI )2 f ′′(sI0

))
.

We now group the terms of the equations according to different orders:

dVE

dt
= −αEVE + (1 − E0)βE f ′(sE0

)
δsE − βE f

(
sE0

)
VE + (1 − E0)βE

(
1

2
(δsE )2 f ′′(sE0

)) − βEVE

(
δsE f ′(sE0

))

−βEVE

(
1

2
(δsE )2 f ′′(sE0

))
,

dVI

dt
= −αIVI + (1 − I0)βI f ′(sI0

)
δsI − βI f

(
sI0

)
VI + (1 − I0)βI

(
1

2
(δsI )2 f ′′(sI0

)) − βIVI

(
δsI f ′(sI0

))

−βIVI

(
1

2
(δsI )2 f ′′(sI0

))
.

We replace δsE and δsI by their expressions:

dVE

dt
= −αEVE + (1 − E0)βE f ′(sE0

)(
WEEVE − WEIVI

) − βE f
(
sE0

)
VE − βE f ′(sE0

)
VE (WEEVE − WEIVI )

+ 1

2
(1 − E0)βE f ′′(sE0

)(
W 2

EEV 2
E + W 2

EIV
2

I − 2WEEWEIVEVI
)

︸ ︷︷ ︸−1

2
βE f ′′(sE0

)
VE

(
W 2

EEV 2
E + W 2

EIV
2

I − 2WEEWEIVEVI
)
,

(A3)

dVI

dt
= −αIVI + (1 − I0)βI f ′(sI0

)(
WIEVE − WIIVI

) − βI f
(
sI0

)
VI − βI f ′(sI0

)
VI (WIEVE − WIIVI )

+ 1

2
(1 − I0)βI f ′′(sI0

)(
W 2

IEV 2
E + W 2

IIV
2

I − 2WIEWIIVEVI
)

︸ ︷︷ ︸−1

2
βI f ′′(sI0

)
VI

(
W 2

IEV 2
E + W 2

IIV
2

I − 2WIEWIIVEVI
)
. (A4)

The dynamics of the deviation from the fixed point (E0, I0) is composed of terms of three different orders. We have terms of
order 1 (linear), those of order 2 (quadratic) and finally terms of order 3 (cubic). We are particularly interested in quadratic and
cubic terms, since the effect of linear terms has been studied previously. Note that quadratic terms have two origins: some come
from the product of two linear terms [Eqs. (A3) and (A4), terms underline] and others from the square of the linear terms δsE

and δsI [Eqs. (A3) and (A4), terms underbrace].
We are looking for a dynamics which approximates the full Wilson-Cowan model (with the sigmoid function) in the vicinity

of the Hopf bifurcation. We compare the bifurcation diagrams of the approximate model Eqs. (A3) and (A4) (called the full
WC3) derived above and the full Wilson-Cowan model Eqs. (A1) and (A2) (full WC). We find that the approximate model
[Eqs. (A3) and (A4)] above (green curve, Fig. 14) does not describe well the full Wilson Cowan (red curve, Fig. 14) even
close to the Hopf bifurcation. We discard quadratic terms coming from the square of the terms δsE and δsI . The new dynamics
[Eqs. (A5) and (A6), called the WC3] without these terms (blue curve, Fig. 14) now approximates well the full Wilson Cowan
(red curve, Fig. 14) in the vicinity of the Hopf bifurcation. In this work, we therefore use these new dynamics Eqs. (A5) and
(A6) since they are a better approximation of the Wilson-Cowan for the parameter regimes of interest. To obtain its stochastic
version named the SWC3 to which we eventually apply the SAM, we add the noise terms ηE and ηI . The resulting dynamics are
given by Eqs. (13) and (14). We note that the discarded quadratic terms would not have contributed to the SAM approximation
that we compute.

dVE

dt
= −αEVE + (1 − E0)βE f ′(sE0

)
(WEEVE − WEIVI ) − βE f

(
sE0

)
VE − βE f ′(sE0

)
VE (WEEVE − WEIVI )

− 1

2
βE f ′′(sE0

)
VE

(
W 2

EEV 2
E + W 2

EIV
2

I − 2WEEWEIVEVI
)
, (A5)

dVI

dt
= −αIVI + (1 − I0)βI f ′(sI0

)
(WIEVE − WIIVI ) − βI f

(
sI0

)
VI − βI f ′(sI0

)
VI (WIEVE − WIIVI )

− 1

2
βI f ′′(sI0

)
VI

(
W 2

IEV 2
E + W 2

IIV
2

I − 2WIEWIIVEVI
)
. (A6)
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FIG. 14. Bifurcation diagram of the full Wilson-Cowan model
and its approximate versions obtained after a Taylor expansion of the
sigmoid function. The red curve represents the full (with the sigmoid
function) deterministic Wilson Cowan (WC) dynamics [Eqs. (A1)
and (A2)]. The green curve is the bifurcation diagram of the ap-
proximate Wilson Cowan with the Taylor expansion of the sigmoid
function at order 2 (full WC3), Eqs. (A3) and (A4). Finally, the blue
curve is obtained from the full WC3 after discarding the quadratic
terms coming from the square of the quantities δsE and δsI [see
Eqs. (A5) and (A6)]. All the curves were obtained using a fourth
order Runge-Kutta iterative scheme with time step dt = 0.025 ms.

2. Expansion of the stochastic averaging method (SAM)

The drift two-dimensional function m = (m1(t )
m2(t )) obtained

from the stochastic averaging method (SAM) can be expanded
as follows:

m1(t ) = T av

(
E{F1(t )} +

∫ 0

−∞
E

{
∂G1(t )

∂ZE
G1(t + τ )

}
dτ

+
∫ 0

−∞
E

{
∂G1(t )

∂φE
G2(t + τ )

}
dτ

)
,

m2(t ) = T av

(
E{F2(t )} +

∫ 0

−∞
E

{
∂G2(t )

∂ZE
G1(t + τ )

}
dτ

+
∫ 0

−∞
E

{
∂G2(t )

∂φE
G2(t + τ )

}
dτ

)
.

The coefficients hi j of the diffusion matrix h can also be
obtained as

h2
11 + h2

12 = T av

( ∫ ∞

−∞
E

{
G1(t )G1(t + τ )

}
dτ

)
,

h11h21 + h12h22 = T av

( ∫ ∞

−∞
E

{
G1(t )G2(t + τ )

}
dτ

)
,

h11h21 + h12h22 = T av

( ∫ ∞

−∞
E

{
G2(t )G1(t + τ )

}
dτ

)
,

h2
21 + h2

22 = T av

( ∫ ∞

−∞
E

{
G2(t )G2(t + τ )

}
dτ

)
.

When the noises acting on the two variables are uncorrelated
and only additive, an easy choice of the non diagonal compo-
nents of the matrix h can be made (h12 = h21 = 0). This leads
to

h2
11 = T av

( ∫ ∞

−∞
E

{
G1(t )G1(t + τ )

}
dτ

)
,

h12 = 0,

h21 = 0,

h2
22 = T av

( ∫ ∞

−∞
E

{
G2(t )G2(t + τ )

}
dτ

)
.

If instead the noises are correlated or multiplicative, such an
easy choice could not be made. This will lead to the following
system:

dZE (t ) = m1(t )dt + h11dW1(t ) + h12dW2(t ),

dφE (t ) = m2(t )dt + h12dW1(t ) + h22dW2(t ).

This system of coupled equations can be approximated as
follows:

dZE (t ) = m1(t )dt +
√

h2
11 + h2

12dW3(t ),

dφE (t ) = m2(t )dt +
√

h2
12 + h2

22dW4(t ).

The noises terms h11dW1(t ) + h12dW2(t ) and h12dW1(t ) +
h22dW2(t ) are replaced by

√
h2

11 + h2
12dW3(t ) and√

h2
12 + h2

22dW4(t ) respectively, where dW3(t ) and dW4(t ) are
two independent Wiener processes. The new noise coefficients
depend only on the diagonal elements of the matrix Gt G′

t+τ .
This avoids solving the nonlinear four-dimensional equations
in hi j and allows an easy derivation of the envelope and phase
dynamics.

The functions F = (F1(t )
F2(t )) and G = (G1(t )

G2(t )) are defined from

Eqs. (21) and (22). They are replaced by F k and Gk defined
from Eqs. (55) and (56) for the case of networks of oscillators.
We recall that T av is the time averaging operator defined as

T av (.) = 1

T0

∫ t0+T0

t0

(.)dt,

and E . denotes the expectation operator (i.e., average over
realizations).
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