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Randomized benchmarking is a powerful technique to efficiently estimate the performance and reliability
of quantum gates, circuits, and devices. Here, we propose to perform randomized benchmarking in a coherent
way, where superpositions of different random sequences rather than independent samples are used. We show
that this leads to a uniform and simple protocol having significant advantages with respect to gates that can be
benchmarked, and in terms of efficiency and scalability. We show that, e.g., universal gate sets, the set of n-qudit
Pauli operators or more general sets including arbitrary unitaries, as well as a particular n-qudit Clifford gate
using only the Pauli set, can be efficiently benchmarked. The price to pay is an additional complexity to add
control to the involved quantum operations. However, we demonstrate that this can be done by using auxiliary
degrees of freedom that are naturally available in basically any physical realization, and are independent of the
gates to be tested.
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I. INTRODUCTION

With the development of quantum technologies and their
widespread applications for quantum networks, computation,
and metrology comes the need to characterize and verify the
performance of small- and larger-scale quantum devices [1,2].
This is a highly nontrivial task, as the direct classical simula-
tion of outputs of such devices is impossible. While an exact
characterization for elementary building blocks using process
tomography [3,4] is possible, and one can even guarantee the
functionality in a device independent way [5], the required
effort and complexity makes such approaches intractable
for larger systems or longer quantum circuits. Randomized
benchmarking (RB) [6–15] is a powerful technique that al-
lows one to estimate the average gate error of gate sets with
modest overhead, where random circuits of varying length are
used to extract the desired information. In this way one can
separate gate errors from state preparation and measurement
errors (SPAM), and access the former directly. Several exten-
sions and modifications of RB that allow one to use fewer
resources [16–24], or test single gates via interleaved ran-
domized benchmarking (IRB) [25–28] have been put forward,
and RB has been applied in practice [29–31]. Although RB is
a widely used and advantageous technique, its applicability
is strongly restricted to certain sets of quantum gates (typi-
cally Clifford operations). Several works [27,28,32–37] have
proposed different RB variants to overcome this problem.
However these approaches are still limited in terms of the kind
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of gates or gate sets that can be tested, the efficiency or the
scalability for systems with larger number of qubits.

Here we propose to do RB in a coherent way. Rather than
sequentially testing different random sequences of gates and
circuits of different length, we use a coherent superposition
of them. In this way, additional averaging between different
branches takes places, and the available coherence allows
one to access extra information as compared to individual
runs. This enables one to directly benchmark a very large
variety of gates or gate-sets in a simple and uniform way,
overcoming one of the main issues of RB. What is more,
the approach is efficiently scalable and one can benchmark
sets of multiqudit operations. We demonstrate our approach
by considering benchmarking of universal gate sets such
as Toffoli and Clifford gates, the n-qudit Pauli operators,
n-qudit controlled operations, and other sets, which includes
more general operations such as, e.g. the multiqubit Mølmer–
Sørensen gate. In fact, a set containing any multiqudit unitary
operation can be designed to be tested via coherent RB. We
also show that interleaved randomized benchmarking (IRB)
of Clifford operations can be done using only Pauli elements.
Additionally, for some of the aforementioned sets where RB is
possible, one can also perform IRB for any individual gate-set
element.

The coherent application of gates and circuits requires
additional control and overhead though, which can however
be provided by utilizing independent auxiliary operations.
One can make use of auxiliary degrees of freedom that are
present in basically any realization of quantum information
carriers. In particular, we show proof-of-principle examples
based on spatial modes for photons [38–40], and motional
degrees of freedom for trapped ions [40–42], to add con-
trol to the applied operations. Importantly, the gates are still
implemented in exactly the same way as in the standard
approach, i.e., independently of the control setting, and can
hence be benchmarked. This control setting can be thought
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FIG. 1. Coherent RB. A known initial state is evolved, controlled
by a k-level system, into an equally-weighted superposition of k
different sequences of m random unitary gates acting on it, i.e.,

1√
k

∑k
i=1 |i〉c(U (i)

1 · · ·U (i)
m )|0〉in, where control is added with exter-

nal devices. The number of experimental rounds to determine the
average gate sequence fidelity is reduced by a factor of k. Given
the extra information coming from the coherence, applicability is
remarkably enhanced.

as a “testing-device”, e.g., a precalibrated factory device that
allows one to test different kinds of gates and gate sets.

II. SETTING

Standard RB protocols consist in applying a sequence of
certain length of quantum gates randomly chosen from some
set (usually from the Clifford group) to some known initial
state, followed by their inverses. In the noiseless case, the
initial state is recovered. For noisy operations, the survival
fidelity—the fidelity of the final state with respect to the
initial one—is computed by averaging over several runs, and
the process is repeated for sequences of different lengths.
The different average survival fidelities are fitted to a decay
curve to obtain an estimation of the average gate fidelity (see
Appendix C).

The RB approach we propose here consists in performing
the different sequences in an equally-weight superposition
(see Fig. 1), in such a way that the coherence can be exploited
to largely improve the applicability of the protocol with-
out compromising its performance. Other approaches have
focused on applicability extensions [27,28,32–37], mainly
based on exploiting mathematical properties of certain sets or
groups, in order to be able to isolate the multiple fitting param-
eters arising in the description of non-Clifford-type groups. In
contrast, our coherent RB approach retains the simplicity of
the standard description with a single fitting parameter, and
provides a larger applicability freedom. It can also be scaled in
the number of qubits or dimension of the systems efficiently.
The superpositions are achieved following the spirit of [43]
(see also [44–46]), using external control devices such that
the unitary gates can be benchmarked independently of the
control. In addition, the number of experimental runs is sig-
nificantly reduced.

A. Coherent RB

In the following we discuss the main steps of the protocol.
Observe that, although the mathematical description is based
on controlled operations, they do not have to be explicitly

performed (see below) in a practical setting, since control can
be added with external devices that we denote as “testing-
device” (see Fig. 1), while gates to be tested are placed and
applied separately, as in standard RB.

1. Protocol for coherent RB

Consider a set G of unitary operations Ui ∈ G, which
should be benchmarked. The protocol proceeds as follows
(see Appendix C for details).

(i) A k-dimensional control register is initialized in the
state |+〉k

c = 1√
k

∑k−1
i=0 |i〉c for some k, whereas the main

register is initialized in some known state, e.g., |0〉 (up to
preparation errors), such that the initial state simply reads
ρ0 = |+〉k

c ⊗ |0〉.
(ii) For some length m, a sequence of m controlled

operations of the form CU (r) =∑k−1
i=0 |i〉c〈i| ⊗ U (r)

i is ap-
plied, where r = {1, ..., m} defines the sequence position.
Each operation ˆCU

(r)
, where ˆCU (σ ) = CUσCU † has some

noise associated that we assume to be independent of
the position and the superposition branch (zeroth order
approximation), i.e.,

SG(m) = ©m
r=1

[
ξ̂ ◦ ˆCU

(r)]
(ρ0), (1)

where we restrict for the moment to the case of noiseless
control register, i.e., ξ̂ (ρ) = Id ⊗∑i, j χi jPiρP†

j , where χ is
the channel matrix written in the n-qudit Pauli basis (see
Appendix A). Following the “testing-device” reasoning, the
ideal implementation of the control register part is well jus-
tified, since control can be added by external devices (see
below), which can be already well calibrated. Noise in the
control register can however be included in the protocol de-
scription, without altering its simplicity or performance (see
below).

Importantly, each n-qudit unitary U (r)
i acting at each branch

and position is taken randomly from a uniform probability
distribution of the set G. Observe that a coherent superposition
of k random sequences of gates is achieved.

(iii) For each branch i of the superposition, the in-
verse of the branch sequence is computed, i.e., U (m+1)

i =
(U (m)

i · · ·U (1)
i )† and applied at the (m + 1)th position. This is

achieved by a controlled operation CU (m+1) =∑k−1
i=0 |i〉c〈i| ⊗

U (m+1)
i . In the absence of noise, the final state would be

mapped back to the initial one |+〉k
c ⊗ |0〉. Assuming that

this (m + 1)th controlled gate introduces some noise ξ̂ ( j+1)

independent of the sequence, the final state reads

ρ f = (Î ⊗ ξ̂ (m+1)
) ◦ ˆCU

(m+1) ◦ (©m
j=1

[
ξ̂ ◦ ˆCU

( j)]
(ρ0)

)
. (2)

(iv) A binary-outcome POVM {Eψ, I − Eψ } is performed
to measure the final state taking into account measurement
errors, such that in the ideal-measurement case the POVM
equals a projective measurement {|ψ〉〈ψ |, I − |ψ〉〈ψ |}, where
|ψ〉 = |+〉k

c ⊗ |0〉in. The result of the measurement gives us an
estimation of the average sequence coherent fidelity, i.e.,

FG(m, k) = tr(Eψρ f ), (3)

so that FG(m, k) ≈ FG(m), where FG(m) is the exact average
sequence fidelity obtained when considering a superposition
of all the different k = |G|m sequences.
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(v) The process is repeated for different values of m such
that the average sequence coherent fidelities approach the
decay curve (see Appendix C)

FG(m) = Aχm
00, (4)

with A = tr(Eψ (Î ⊗ ξ ( j+1))(ρ0)) a constant independent of
m that absorbs SPAM errors. Ideally, A = 1. Note that the
parameter χ00 is directly related to the average gate fidelity
of the set G [47]. As shown in Appendix C, Eq. (4) fits for any
set of gates Ui ∈ G of size |G| which fulfills the condition

|G|∑
i=1

U †
i PjUi =

{|G|I⊗n
d j = o

0 j 
= o , (5)

for any Pauli element Pj ≡ X jr Z js = X s1 Zr1 ⊗ · · · ⊗ X sn Zrn

and with Po = I⊗n. Observe that the Pauli elements come
from the noisy channel representation, and therefore can be
replaced by any n-qudit basis operators.

2. Gate sets that can be benchmarked

Condition Eq.(5) is easy to check, and allows us to show
that the coherent approach offers remarkably broader freedom
to benchmark different sets of quantum gates as compared
to previous approaches, and keeping the simplicity of the
description. Some instances of sets that fit Eq. (5) and can
be benchmarked via coherent RB are (see Appendix B):

(i) The n-qudit Clifford group.
(ii) The set of n-qudit Pauli operators.
(iii) A set of n-qudit controlled operations.
(iv) Multiqubit Mølmer–Sørensen type gate sets.
(v) Any n-qudit unitary set constructed as PiU .
In contrast to standard approaches, where twirling can be

seen as a group averaging, coherent RB can be understood as a
“multiple” gate-set averaging, which is performed in a single
round due to the extra power of the generated coherence. The
price to pay for adding control to operations (see below) is an
overhead complexity, which scales linearly with the number
of qudits n, and with the number of sequences in superposition
k (or dimension of the control register). Note however that
this linear overhead with k also appears in standard RB as the
number of independent sequences over which the average is
performed [16,23].

3. Further advantages of coherent RB. Efficiency and scalability

Since generating a superposition comprising all |G|m se-
quences is clearly inefficient, one considers a certain number
k � |G|m of sequences that leads to an estimated average fi-
delity with some deviation confidence. This confidence region
of size ε arises, such that the probability that the estimated
fidelity lies within this confidence region is greater than some
set confidence level 1 − δ, i.e., P[|Fk − F̄ | < ε] � 1 − δ. Al-
though we leave a detailed statistical analysis for future work,
numerical analyses indicate that this confidence region, and
therefore the efficiency of the coherent approach, i.e., the
value of k for a fixed confidence, can be significantly better
in some regimes of interest, when compared with standard
approaches. Moreover, when applying coherent RB to gate-
sets outside the Clifford group, the magnitude orders of the
estimated fidelity show that the protocol efficiency is not

compromised for these sets, that cannot be benchmarked with
standard RB protocols. We refer to Appendix E for details.

All these results also apply for systems of increased di-
mension and number, i.e., for testing n-qudit quantum gates,
for which the efficiency of the protocol is not compromised.
This implies another important difference with other RB ap-
proaches outside the Clifford group, which are in general
inefficient when the tested gates involve higher dimensional
quantum systems or multisystems.

There is another remarkable advantage of coherent RB,
namely a reduction of the number of required rounds of
the experiment as compared to standard RB. By perform-
ing coherent RB in superposition of k different instances,
the reduction factor is given by k. Therefore, following the
protocol description, it is direct to see that the total number
of measurements that need to be performed is significantly
lower in our coherent approach, because of the reduction of
the number of runs or repetitions needed for each sequence
length m experiment. For settings where measurements are
slow or costly, this yields a significant advantage.

B. Interleaved coherent RB

A RB variant of particular interest is interleaved random-
ized benchmarking (IRB). It was developed [25–28] in order
to benchmark particular quantum gates. This is achieved by
interleaving random operations from a set and the particular
gate, and comparing the average sequence fidelity to the case
without the interleaved operation. An immediate application
of our coherent RB approach is that one can benchmark via
coherent IRB quantum gates from certain sets mentioned
above, such as, e.g., n-qudit Pauli gates. In addition, the
required set size can be reduced, which we demonstrate
by showing coherent IRB of a n-qudit Clifford gate using
the set of Pauli operations only, an interesting application
of our coherent approach that again is not possible with
standard IRB.

1. Interleaved coherent RB of Clifford gates using Pauli
operations

Consider an arbitrary Clifford gate C ⊆ Cn, and consider
the n-qudit Pauli gates Pi ∈ Pd,n. In order to benchmark the
Clifford gate C we perform the following steps:

(i) The average gate coherent fidelity of the Pauli set is
computed as the reference fidelity. This is accomplished fol-
lowing exactly the steps of coherent RB explained above, such
that the parameter χP

00 is found.
(ii) The same process is repeated, but with the quantum

gate C interleaved every second position in all the branches of
the superposition. This is achieved by the operation ˆCUC =
Î ⊗ Ĉ = ÛC . For some known initial state ρ0 = |+〉d

c 〈+| ⊗
|0〉in〈0| (up to preparation errors), the system is evolved to

ρ f = ˆCU
(m+1) ◦ (©m

j=1

[
ξ̂C ◦ ÛC ◦ ξ̂ ◦ ˆCU

( j)]
(ρ0)

)
, (6)

where now ˆCU
(m+1)

is the inverse including the interleaved
UC operation. We assume that this (m + 1)th gate is noiseless
for simplicity. Given the fact that C†PiC is mapped to another
element of Pd,n \ I⊗n, the noise matrix χC associated to the
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gate C is mapped to another matrix χC̄ , with the element χ00

invariant. Thus it can be shown (see Appendix D) that the
average sequence interleaved coherent fidelity reads

FP,C̄ (m) = (χP◦C̄
00

)m
. (7)

One can obtain an estimation of the desired parameter χC
00

noting that χC
00 = χC̄

00 and that [13] χP◦C̄
00 = χP

00χ
C̄
00 ± E , with

some estimation bound E (see Appendix D for details). This
bound is particularly tight in the regime of interest where
Pauli gates have much larger fidelity than the C operation, and
therefore we can efficiently benchmark a Clifford gate using
just Pauli operators, highlighting the applicability flexibility
of coherent RB.

2. Alternative method for arbitrary gates

Observe that an alternative approach for benchmarking a
particular arbitrary gate is possible. Via standard coherent
RB, we can benchmark the set of operations Mi = PiU (see
Appendix B), for any (set of) n-qudit unitary operation(s) U
and all the n-qudit Pauli elements Pi. Under the assumption
of perfect implementation of Pauli gates, one can, by standard
coherent RB, directly access the noise of the gate(s) U . This
assumption is valid in many physical set-ups, as such single-
qudit gates are often much easier to implement than more
general operations as, e.g., entangling gates.

C. Noise in the control register

Although, given the testing-device setting stressed above
one can assume high reliability on the part of the setting
responsible for adding control, in such a way that the as-
sumption of noiseless control register in coherent RB can be
justified, we show how the process can be also insensitive to
this noise. Consider that, after each CU ( j) operation, the con-
trol register is affected by a depolarizing noise with parameter
q, of the form ζ (ρ) = qρ + 1−q

k I, where k is the dimension of
the control register or, equivalently, the number of sequences
in the superposition. The average sequence coherent fidelity
for a fixed length m thus becomes

FG(m) ≈ (q · χ00)m + (1 − qm)

k
fG, (8)

where we ignore preparation and measurement errors for sim-
plicity, and where fG is the average state fidelity of a set,
defined as fG = 〈|〈ϕ|U |ϕ〉|2〉, with the average over all the
(noiseless) unitary operations of the set G with respect to some
state |ϕ〉. For instance, for the set of n-qudit Pauli operators it
is direct to see that fG = 1

dn , with d and n the dimension and
number of target qudits, respectively.

This can be understood as follows. The left part of Eq. (8)
corresponds to the “correct” branch of the process, i.e., with
probability qm the output equals the noiseless-control proto-
col. The right part of the expression represents the “error”
branch of the process, which occurs with probability 1 − qm.
After each CU ( j) operation, within this error branch, expo-
nentially (with m) many sub-branches of random sequences
are found, which ultimately do not correspond to the in-
verse operations applied in the (m + 1)th position. The final
states associated to each sub-branch correspond to random

uniformly distributed operations applied from the set G, to
the initial state, with an average fidelity fG, whose estimation
deviation influence can be assumed negligible with respect to
the protocol deviation. The factor 1

k comes from the fact that
only incoherent terms contribute to the right term of Eq. (8).

Observe that, although the system register is not di-
rectly affected by noise in our model, the noise actually
spreads and leads to correlated noise, since each of the “local”
errors affects the other register in the next sequence position
(and in all later operations that follow) within the same proto-
col.

Noise in the control register can be hence included in the
protocol description, and the process can still be realized
under the assumption that the control noise parameter q is
known with some known accuracy. This is justified from the
proof-of-concept physical implementations, where the con-
trol setting (testing-device) can be first tested by applying
controlled-identities, i.e., only the operations that add control.

III. ADDING CONTROL WITH EXTERNAL DEVICES

An important feature of coherent RB is that control can be
added with external devices from a practical point of view,
such that the quantum gates to be benchmarked are performed
in exactly the same way as in the standard RB approach. The
device setting responsible for adding control (also for state
preparation and measurements) can conform a previously
well calibrated testing device, that can be used to test many
different gates or gate-sets for example factory applications
where the quality of fabricated devices should be tested. We
show here proof-of-principle examples of how control can be
added with external devices. Despite the current technology
limitations, we believe that this approach can be very use-
ful in the mid and long timescale, possible using optimized
experimental settings based on, e.g., nonlinear optics [48] or
superconducting qubits [49].

A. Proof of principle implementation with linear optics

The first proof-of-principle argument follows from
[38–40,50] and is based on a linear optics implementation.
d control photons are initially prepared in the polarization
state (|H〉 + |V 〉)⊗d , playing the joint role of an effective k =
2d dimensional control register. The target photons are also
prepared in the polarization state. A controlled-path (CP) gate,
a generalization of [38], is applied from the control qubits.
Each CP gate makes the target photon pass through several
photon beam splitters (PBS), followed by CNOT gates which
are applied interspersed from the control, and final PBSs and
half-waveplates that adequately mix and separate the spatial
modes of the target depending on the joint control state. The
gate sequences of the operations to be tested are applied
independently on the different spatial modes of the target.
By undoing the CP gate, the superposition is achieved, and
crucially, with external-device control only. Figure 2 shows
an example where an equally-weight superposition of four
different sequences of unitary operations from a given set is
achieved. The target photon is prepared in some polarization
state |ψ〉t = α|H〉t + β|V 〉t . The initial state reads |ϕ〉c|ψ〉t .
A controlled-path (CP) gate is applied from the two control
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FIG. 2. Left figure shows the general optical setting for achieving the desired superposition of four sequences with external device control.
Right figure details the control-path (CP) gate of the left setting.

photonic qubits. The state after the CP gates reads

1

2
|H〉c1

|H〉c2
|ψ〉ta + 1

2
|H〉c1

|V 〉c2
|ψ〉tb+

1

2
|V 〉c1

|H〉c2
|ψ〉tc + 1

2
|V 〉c1

|V 〉c2
|ψ〉td , (9)

Subsequently, the four different sequences of length m of
randomly chosen unitary operations (U ( j)

i ) are applied inde-
pendently on the four beam branches, each sequence affecting
only one spatial mode. By finally undoing the CP operations,
one finds the desired superposition

1

2

3∑
i=0

|i〉c

(
U (1)

i · · ·U (m)
i

)|ψ〉t . (10)

Although the apparent restriction to power-of-two dimen-
sions, any effective value of k can be reached by just avoid
applying any unitary on some of the branches (or equivalently
applying identities) and taking it into account when studying
the sequence fidelity. Observe also that the dimension of the
Hilbert space associated to the spatial modes of the photons
can be made arbitrarily large. Note that the complexity, in
terms of the number of logic gates required, scales linearly
with the dimension of the control register k and linearly with
the number of target qubits.

B. Proof of principle implementation with trapped ions

A similar scheme works for trapped ions, where motional
degrees of freedom, or other auxiliary energy levels, can be
used to implement the superposition. The random gates to
be tested are implemented by separate laser pulses. We make
use of the fact that sideband pulses, as well as hiding pulses
that move the logical qubit space to some auxiliary space, are
available (see [40] for a similar setting). We consider n + m
ions, each with four internal energy levels, {|g〉, |e〉} that form
the logical qubit space, and two additional levels {|g′〉, |e′〉}
with different energy spacing, such that the ions share a
common vibrational mode. The first n ions A1, A2, . . . An en-
code the 2n superposition branches, and the remaining m ions
B1, B2, . . . Bm the system to be tested, which is initially in the
state |ψ〉. The superposition is transferred from the first to the

second ones via some hiding pulses S that do not change the
motional degree of freedom. Blue and red detuned pulses are
used to selectively increase the motional excitation depending
on the internal state of the ion as in the Cirac-Zoller gate [51],
acting as identity on remaining levels, so that the sequences of
controlled gates can be applied with external control setting.
By undoing the steps, the desired superposition is obtained.

We provide an example to illustrate our scheme for n = 2
and m = 1, i.e., a superposition of four branches and gates
acting on a single qubit. We make use only of standard control
techniques that are available in different ion-trap set-ups, and
have been demonstrated and utilized in other contexts [41,42].

We consider hiding pulses Sg = (|g〉〈g′| + |g′〉〈g|) ⊗ I and
Se = (|e〉〈e′| + |e′〉〈e|) ⊗ I , which do not change the motional
degree of freedom. We use blue detuned hiding pulses H j

b
that map |g〉 ⊗ |k〉 ↔ |g′〉 ⊗ |k − j〉 and |e〉 ⊗ |k〉 ↔ |e′〉 ⊗
|k − j〉 (note that if k − j < 0, no transition takes place since
there is no corresponding energy level; j denotes the jth
sideband), and red detuned pulses H j

r that map |g〉 ⊗ |k〉 ↔
|g′〉 ⊗ |k + j〉 and |e〉 ⊗ |k〉 ↔ |e′〉 ⊗ |k + j〉. In addition we
consider red detuned pulses that selectively increase the mo-
tional excitation depending on the internal state of the ion S j

g ,
which maps |g〉 ⊗ |k〉 ↔ |e〉 ⊗ |k + j〉 and acts as identity on
remaining levels.

We start by initializing the system in |0x〉A1 |0x〉A2 |ψ〉B1 ⊗
|0〉, where |0x〉 = (|e〉 + |g〉)/

√
2. By using S1

gA1
and S2

gA2
,

we transfer the superposition to the motional degree of free-
dom, resulting into |e〉A1 |e〉A2 |ψ〉 ⊗ (|0〉 + |1〉 + |2〉 + |3〉)/2.
To apply now a gate, or a circuit, in one particular branch k,
we proceed as follows. First we use Hk+1

b to hide all states
with a motional degree of freedom l > k, and then Hn−k−1

r
followed by Hn

b . This results into only the selected state with
initial motional degree |k〉 to be transferred to |ψ〉B1 ⊗ |0〉,
while for all other motional degrees j, the state is transferred
to the hiding subspace {|g′〉, |e′〉}B1 . One can now apply the
gate(s) corresponding to the kth branch on the system, and
then undo above steps. The different branches are then consid-
ered sequentially, using above method for k = 0, 1 . . . 2n − 1,
such that the desired superposition is achieved.

Observe also that, as pointed out in [40], devices or laser
beams that implement the unitary gates can be reused to apply
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the operations at different positions and branches. This can
be done in such a way that each operation, even if it appears
in multiple branches of the superposition, is performed only
once, leading to further reduction of complexity. We remark
that these are proof-of-concept arguments that justify the fea-
sibility of adding control with external devices in a practical
setting, where however further optimization is required for an
experimental implementation.

IV. CONCLUSIONS

We have introduced an alternative approach to random-
ized benchmarking (RB) of quantum gates, i.e., coherent RB,
which consists in realizing the protocol in superposition of
the different sequences. The superposition is achieved by
adding control to the operations. Coherent RB leads to several
remarkable advantages, both in the standard and interleaved
variants. Our coherent approach is largely more flexible, al-
lowing to benchmark gate sets that can otherwise not be
tested with standard RB without compromising the scalability
and efficiency of the protocol. Some relevant examples that
can be benchmarked are the set of n-qudit Pauli operators,
n-qudit controlled operations, or more general sets including
arbitrary unitaries. Coherent RB retains the simplicity of the
standard description and can be scaled in the number of qubits
or dimension of the systems without compromising the effi-
ciency. In addition, when compared with standard approaches,
coherent RB can significantly enhance the efficiency in certain
regimes, while also reducing the number of experimental runs
by a factor k, since all different sequences are processed in a
single run and not sequentially.

Finally, we provide proof-of-concept arguments, which
show that one can add control with external devices (testing-
device) that can either be much better controlled or inde-
pendently benchmarked, such that gates to be tested are
implemented as in the standard case. We believe that this
proposal to use coherent control in classical testing strategies
is widely applicable also beyond RB, and may open an avenue
to design more efficient and reliable methods to verify and
validate devices, measure state and gate fidelities or analyze
the performance of quantum channels and quantum networks.
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APPENDIX A: NOISE MODEL AND CHANNEL MATRIX

Each application of a controlled operation introduces some
noise. We consider uncorrelated noise for the control and
main registers, justified by the proposed physical realizations.
Assuming no noise in the control system for the moment,
the error can hence be described in a controlled way at each
sequence position j,

ξ ( j)(ρ) =
∑

s

M ( j)
s ρM ( j)†

s , (A1)

where Ms are the global Kraus operators defined in accordance
to [52], i.e.,

M ( j)
s =

k−1∑
i=0

|i〉c〈i| ⊗ K ( j)
i,s , (A2)

where K ( j)
i,s are the Kraus operators of each gate i of each

branch, and at each sequence position j. It is straightforward
to see that, given

∑
s K ( j)†

i,s K ( j)
i,s = I for every i, it implies that∑

s M ( j)†

s M ( j)
s = I . For simplicity, in this paper we restrict

ourselves to the case where the noise is independent of the
sequence branch and position, i.e., K ( j)

i,s = Ks, also known as
zeroth-order approximation (see e.g., [12]). The uncorrelated
error on the control state is well justified from the proposed
experimental implementations, where control is added by ex-
ternal devices. Kraus operators are hence reduced to

Ms = Id ⊗ Ks. (A3)

We can equivalently express the noise affecting the main
register by using the Pauli basis decomposition of the Kraus
operators, as a function of the channel matrix χ :

ξ (ρ) = Id ⊗
∑
i, j

χi jPiρP†
j , (A4)

where χi j are the elements of the channel matrix χ and Pi are
the n-qudit Pauli elements Pi ∈ {X i1 Z j1 ⊗ · · · ⊗ X in Z jn} (see
next Appendix B).

APPENDIX B: DIFFERENT GATE-SET INSTANCES THAT
COHERENT RB CAN BENCHMARK

In this section, we provide simple proofs of particular in-
stances of sets of quantum gates Ui ∈ G that fulfill

|G|∑
i=1

U †
i PjUi =

{|G|I⊗n
d j = o

0 j 
= o , (B1)

for any Pauli element Pj ≡ X jr Z js = X s1 Zr1 ⊗ · · · ⊗ X sn Zrn ,
and therefore can be benchmarked using our coherent ap-
proach. Observe that condition Eq. (B1) is a much less
demanding restriction for a set of gates than the 2-design
condition [9].

1. n−qudit Pauli operators

Consider the set of n-qudit Pauli operators

Pd,n = {X i1 Z j1 ⊗ · · · ⊗ X in Z jn
}
, (B2)

with is, js ∈ Zd and where X, Z are the generalized Pauli
operators, i.e.,

X r : |s〉 �−→ |s ⊕ r〉 , Zr : |s〉 �−→ wrs|s〉, (B3)

where w = e
2π i
d and ⊕ denotes addition modulo d . We

can simplify the notation by defining each element of the
Pauli set as

Px ≡ X xi Zx j = X i1 Z j1 ⊗ · · · ⊗ X in Z jn , (B4)
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where x = (xi, x j ) ∈ Z2n
d . The commutation relation between

two elements of the form of Eq. (B4) is given by

PxPy = w(x,y)SP PyPx, (B5)

where (x, y)SP is the symplectic inner product defined as
(x, y)SP = xi · y j − x j · yi. Finally, define χq as the character
of P for any q, such that χq(Px) = w(q,x)SP . It follows that, for
all q ∈ Z2n

d , q 
= o [53,54]:∑
x

χq(Px) = w(q,x)SP = 0. (B6)

Consider now Eq. (B1), fulfilled in case the coherent RB
protocol can be applied, i.e.,

1

|G|
∑

i

P†
i PjPi =

{
I⊗n
d j = o

0 j 
= o,
(B7)

where |G| = d2n is the size (number of elements i) of the Pauli
set. For j = o, we have Pj = I ⊗ · · · ⊗ I and the condition is
trivially fulfilled. In case j 
= o, we can apply the commutation
relation of Eq. (B5), such that

1

|G|
∑

i

P†
i PjPi = 1

|G|
∑

i

w(i,j)SP Pj = 0 ∀ j 
= o, (B8)

which follows from property Eq. (B6). Therefore, we con-
clude that the set of n-qudit Pauli operators fulfills Eq. (B1)
and can be benchmarked with coherent RB.

2. n−qudit Clifford group

The n-qudit Clifford group is defined as the normalizer of
the n-qudit Pauli operators under conjugation, i.e.,

Cd,n = {C ∈ U (dn) | CPd,nC
† ⊆ Pd,n

}
/I⊗n

d . (B9)

It follows from the definition that, for a fixed Pauli element
Px [Eq. (B4)], the application of different Clifford operations
under conjugation leads to equally distributed operators of the
form wrP , with r ∈ {1, . . . , d}. Given the sum of Eq. (B1) and
the fact that

∑d
r=1 wr =∑d

r=1 e
2π ir

d = 0, it is straightforward
to see that the Clifford group also fulfills Eq. (B1).

3. Toffoli gate and multi-controlled qudit operations

Different sets of controlled operations that can be bench-
marked with coherent RB exist, as we now demonstrate. In
particular, we show an example for one control qubit and
one target qudit, but the scheme can be extended to an ar-
bitrary number of control and target qudits. Consider the set
of quantum controlled-operations Ti,r,s ∈ T , where {i, r, s} ∈
Z2

d , such that

Ti,r,s = (Pi ⊗ I )(|0〉c〈0| ⊗ Pr + |1〉c〈1| ⊗ Ps), (B10)

where Pj is given by Eq. (B4) with n = 1. Consider Eq. (B1)
for some fixed {k, k′} ∈ Z2

d , i.e.,

1

|G|
∑
i,r,s

T †
i,r,s(Pk ⊗ Pk′ )Ti,r,s. (B11)

For k, k′ = 0, Eq. (B1) is trivially fulfilled. For the case
k, k′ 
= 0, one can expand this expression such that

1

|G|
∑
i,r,s

[(
P†

i P00
k |0〉〈0|Pi ⊗ P†

r Pk′Pr
)

+ (P†
i P10

k |1〉〈0|Pi ⊗ P†
s Pk′Pr

)
+ (P†

i P01
k |0〉〈1|Pi ⊗ P†

r Pk′Ps
)

+ (P†
i P11

k |1〉〈1|Pi ⊗ P†
s Pk′Ps

)]
, (B12)

where Pi j
k represents the (i, j) matrix element of Pk. From

Eq. (B8) it directly follows that the first and fourth elements
(corresponding to diagonal terms of the control) vanish. More-
over, observe that any Pauli operator Pk (see previous section)
is represented by a matrix, which is either diagonal, or zero-
diagonal (i.e., all diagonal elements are 0). In the former case,
the second and third elements directly vanish. In the latter one,
and noting that

∑
r,s P†

s Pk′Pr =∑r,s P†
r Pk′Ps, the Pauli oper-

ator Pk is recovered from all its non-diagonal components,
such that ∑

i,r,s

[(
P†

i P10
k |1〉〈0|Pi ⊗ P†

s Pk′Pr
)

+(P†
i P01

k |0〉〈1|Pi ⊗ P†
r Pk′Ps

)]
=
∑

i

P†
i PkPi ⊗

∑
p,q

P†
p Pk′Pq. (B13)

In this case, the left part of the tensor product (from the control
subspace) vanishes due to Eq. (B8), and condition Eq. (B1) is
proven to be fulfilled for any {k, k′} ∈ Z2

d . Observe that the
reasoning of this proof can be generalized for a qudit control
register, as well as for a multi control scenario, for an arbitrary
dimension and number of control systems. In particular, for
two control qubits, the Toffoli gate is included among the set
of gates of the form:

Ti,j,s,r,p,q = (Pi ⊗ Pj ⊗ I )(|0〉c1
〈0| ⊗ |0〉c2

〈0| ⊗ Ps + |0〉c1

×〈0| ⊗ |1〉c2
〈1| ⊗ Pr + |1〉c1

〈1| ⊗ |0〉c2
〈0| ⊗ Pp

+ |1〉c1
〈1| ⊗ |1〉c2

〈1| ⊗ Pq). (B14)

4. Multipartite Mølmer–Sørensen type gates

Another instance of particular importance that can be bench-
marked with the coherent approach are multipartite Mølmer–
Sørensen type operations, which are a kind of multipartite
entangling gates. Concretely, given the set of operations

Mi = PiUn(θ ), (B15)

for all the Pi Pauli elements of the form Eq. (B4) with i ∈ Z2n
2 ,

it fulfills Eq. (B1), where Un(θ ) is the multipartite Mølmer–
Sørensen gate [55], i.e.,

MS = Un(θ ) =
n−1∏
s=1

n∏
r=s+1

eiθX (s)⊗X (r)
, (B16)

where X (s) defines the single-qubit Pauli X gate acting on
qubit s. This fits for an arbitrary angle θ , which defines
the entangling power of the operation. We can prove that
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Eq. (B1), i.e., ∑
i

M†
i PjMi =

{
I⊗n
d j = o

0 j 
= o , (B17)

is fulfilled observing that∑
i

M†
i PjMi =

∑
i

(PiUn(θ ))†Pj(PiUn(θ )). (B18)

By expansion, we find

Un(θ )PjUn(θ )†=
n−1∏
s=1

n∏
r=s+1

e−iθX (s)⊗X (r)
Pj

n−1∏
s′=1

n∏
r′=s′+1

eiθX (s′ )⊗X (r′ )
.

(B19)
Taking into account that

eiθP(1)
1 ⊗···⊗P(n)

n = cos (θ )I⊗n + i sin (θ )P(1)
1 ⊗ · · · ⊗ P(n)

n ,

(B20)

and the fact that eiθPi eiθPj = eiθ (Pi+Pj ) only if [Pi, Pj] = 0, it is
therefore easy to see that Eq. (B19) maps any Pauli element
Pj 
= Po into another (or a linear combination of) Pauli element
Pj′ 
= Po, and Po is always mapped to Po. Hence Eq. (B18) is
transformed into

∑
i P†

i Pj′Pi, and given the property Eq. (B8),
it is direct that Eq. (B17) is fulfilled. Note that same argu-
ments are valid for variations of the MS gate, substituting XX
interactions by, e.g., ZZ or YY interactions.

5. Arbitrary n−qudit unitary sets

The previous setting with the MS gate can be generalized
for any arbitrary (set of) n-qudit unitary operation(s). Consider
the set of operations given by the elements

Mi = PiU, (B21)

for any n-qudit unitary U and the set of all n-qudit Pauli
operators Pi ∈ Pd,n. Given the fact that the trace of an op-
erator is invariant under conjugation by another unitary and
given Eq. (B8), it can be easily seen that this set fulfills
Eq. (B1), i.e.,

∑
i

M†
i PjMi =

{
I⊗n
d j = o

0 j 
= o . (B22)

We can therefore benchmark any unitary (set of) operation(s)
followed by some Pauli rotation. In particular, observe that,
under the assumption that Pauli operations are implemented
perfectly, one can directly access to the (average) error of
the arbitrary unitary gate(s). This assumption can be justified
from the perspective that multiqudit Pauli rotations are exper-
imentally much easier and more reliable to implement than
arbitrary unitaries as, e.g., an entangling gate like the MS gate
or a multiqudit Clifford gate.

APPENDIX C: AVERAGED COHERENT GATE FIDELITY DERIVATION

The gate fidelity between two quantum operations U , E is defined as [12]

FU ,E = tr(U (|ϕ〉〈ϕ|)E (|ϕ〉〈ϕ|)), (C1)

for some state |ϕ〉〈ϕ|. By setting � = U† ◦ E , one can define the average gate fidelity of the noisy channel Λ, which characterize
the fidelity of the ideal quantum gate with respect to its imperfect implementation, i.e.,

F̄�,I =
∫

dϕtr(|ϕ〉〈ϕ|�(|ϕ〉〈ϕ|)), (C2)

with the average over the invariant Haar measure on pure states. In particular, given the Pauli decomposition of a general noisy
channel of Eq. (A4), it can be shown [12] that

F̄�,I = dχ00 + 1

d + 1
, (C3)

where χ00 is the (00) element of the Pauli χ -matrix that we use to describe the noise.
We show here how the expression for the average sequence coherent fidelity, which directly relates to χ00 in the zeroth order

approximation, is found given a set of operations that fulfills Eq. (B1). Consider a set of operations G of size |G|. Consider now
the general definition for the average sequence coherent fidelity of a sequence of length m given by

FG(m, |G|m) = tr(Eψρ f ), (C4)

where the number of elements in the superposition (also the size of the control register) is |G|m, comprising all the possible
different sequences of length m. Let us assume for the moment that the control register has no error associated, i.e., ideal control
implementation. Therefore

FG(m, |G|m) = tr
(
Eψ

(
Î ⊗ ξ (m+1)

) ◦ ˆCU
(m+1) ◦ ( ©m

r=1

[
ξ ◦ ˆCU

(r)]
(ρ0))

)
, (C5)

where ξ is a general error map, and the POVM corresponds to {Eψ, I − Eψ } ≈ {|ψ〉〈ψ |, I − |ψ〉〈ψ |} taking into account
measurement imperfections, with |ψ〉 = |+〉|G|m

c ⊗ |ϕ〉in and where the initial state reads

ρ0 = 1

k

k−1∑
i, j=0

|i〉c〈 j| ⊗ |ϕ〉in〈ϕ|, (C6)
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where the control register is initialized in the state |+〉k
c = 1√

k

∑k−1
i=0 |i〉c for some k, and where |ϕ〉in〈ϕ| ≈ |0〉〈0| taking into

account state preparation errors. We recall that we restrict to the case of position-independent gate noise, i.e., zeroth-order
approximation. The contribution of the diagonal elements with respect to the register state are the equivalent to the standard
classical average over all the possible sequences, while the contribution of coherent terms leads to an extra information gain. We
can rewrite Eq. (C5) as

FG(m, |G|m) = 1

|G|m
|G|m∑
i, j=1

tr
(
Eψ

(
Î ⊗ ξ (m+1)) ◦ ˆCU

(m+1) ◦ (©m
r=1

[
ξ ◦ ˆCU

(r)]
(|i〉c〈 j| ⊗ |ϕ〉in〈ϕ|))). (C7)

Observe that we equivalently define here the sum over i, j from 1 to |G|m for simplicity. The fidelity reads

FG(m, |G|m) = 1

|G|m
|G|m∑
i, j=1

tr

(
Eψ

(
Î ⊗ ξ (m+1)

)(
U (m)

i · · ·U (1)
i

)†{ m∏
r=1

ξ ◦ [U (r)
i (|i〉c〈 j| ⊗ |ϕ〉in〈ϕ|)U (r)†

j

]}(
U (m)

j · · ·U (1)
j

))
, (C8)

where all unitaries U (r)
s ∈ G and the error act onto the main register. Each unitary U (r)

s with s = {0, . . . , |G|m − 1} and r =
{1, . . . , m} is appropriately chosen in such a way that each sequence U (1)

s · · ·U (m)
s corresponds to each one of all the |G|m

different possible sequences of length m. We can expand the r = mth position as

FG(m, |G|m) = 1

|G|2m

|G|m−1∑
i, j=1

tr

(
Eψξ (m+1)

(
U (m−1)

i · · ·U (1)
i

)†{ |G|∑
s,q=1

d2n∑
l,l ′=1

χl,l ′U
(m)†

s σlU
(m)
s

[
ρ

(m−1)
i j

]
U (m)†

q σ
†
l ′U

(m)
q

}(
U (m−1)

j · · ·U (1)
j

))
,

(C9)

with ρ
(m−1)
i j =∏m−1

r=1 ξ ◦ [U (r)
i (|ϕ〉in〈ϕ|)U (r)†

j ], and the factor 1
|G|m coming from the projective measurement corresponding of

the control register subspace. This expression can be understood as follows. For a sequence length m, one can find |G|2m

different components of the density matrix ρ
(m)
f , with |G|m diagonal elements, corresponding to all the possible classical-mixture

sequences, and (|G|2m − |G|m) coherent elements. Note now that for sequence length m − 1, the density matrix ρ
(m−1)
i j has

|G|2m−2 different elements, corresponding to the sum over i, j from 1 to |G|m−1. Therefore, the sum expansion of Eq. (C9) is
appropriately justified (see example below).

The Pauli operators of the noise map are given by σx ≡ Px ≡ X xi Zx j (see Appendix A) for n number of qudits. Consider now

|G|∑
i=1

U †
i σjUi =

{|G|I⊗n
d j = o

0 j 
= o , (C10)

where σo = I⊗n. If a gate set can be benchmarked via coherent RB, then this condition is fulfilled. We can apply the
decomposition of Eq. (C9) recursively for each r = m, . . . , 1. For each r only survives the term associated to χ00 with a factor
|G|2. Hence it is direct to see that the resulting fidelity reads

FG(m, |G|m) = Aχm
00, (C11)

with A = tr(Eψξ (m+1)(|ϕ〉in〈ϕ|)).

1. Example

For a better understanding, we provide a simple example. Consider the set G consisting of two unitary gates U1,U2, and a
sequence length m = 2. Ignoring preparation errors, the initial state reads

ρ0 = 1

4

22−1∑
i, j=0

|i〉c〈 j| ⊗ |0〉〈0|, (C12)

where the single-qubit target is simply prepared in the pure state ρin = |0〉〈0|, and the control in the 22-dimensional |+〉 state,
since |G| = 2 is the size of the set, and we consider all the possible sequences of length m, i.e., |G|m = 22. The next step consists
in applying controlled operations of the form CU ( j) =∑22−1

i=0 |i〉c〈i| ⊗ U ( j)
i , where j = {1, 2} defines the position, noting that

for different values of j, the controlled operations changes, such that all possible combinations are invoked. The resulting state
assuming no noise for the moment reads

ρ = CU (2)CU (1)ρ0CU †(1)CU †(2) = 1

4

22−1∑
i, j=0

[|i〉c〈 j| ⊗ U (2)
i U (1)

i |0〉〈0|U †(1)
j U †(2)

j

]
. (C13)

033038-9



J. MIGUEL-RAMIRO, A. PIRKER, AND W. DÜR PHYSICAL REVIEW RESEARCH 3, 033038 (2021)

Observe again that U (s)
r = {U1,U2} is not necessarily equal to U (s′ )

r if s 
= s′. We can also equivalently relabel the last expression
in a more clear notation, i.e.,

ρ = 1

4

2∑
q1,q′

1,q2,q′
2=1

[
|q1, q2〉c〈q′

1, q′
2| ⊗ Uq2Uq1 |0〉〈0|U †

q′
1
U †

q′
2

]
. (C14)

Note also that, although |G|m = 22 = 4 different sequences are considered, we actually find |G|2m = 16 terms in Eq. (C14),
including the coherent terms. As a function of gates U1,U2 we can rewrite Eqs. (C13) and (C14) as

ρ = 1

4

⎛
⎜⎜⎜⎜⎝

|0〉c〈0| ⊗ U1U1ρinU
†
1 U †

1 |0〉c〈1| ⊗ U1U1ρinU
†
1 U †

2 |0〉c〈2| ⊗ U1U1ρinU
†
2 U †

1 |0〉c〈3| ⊗ U1U1ρinU
†
2 U †

2

|1〉c〈0| ⊗ U2U1ρinU
†
1 U †

1 |1〉c〈1| ⊗ U2U1ρinU
†
1 U †

2 |1〉c〈2| ⊗ U2U1ρinU
†
2 U †

1 |1〉c〈3| ⊗ U2U1ρinU
†
2 U †

2

|2〉c〈0| ⊗ U1U2ρinU
†
1 U †

1 |2〉c〈1| ⊗ U1U2ρinU
†
1 U †

2 |2〉c〈2| ⊗ U1U2ρinU
†
2 U †

1 |2〉c〈3| ⊗ U1U2ρinU
†
2 U †

2

|3〉c〈0| ⊗ U2U2ρinU
†
1 U †

1 |3〉c〈1| ⊗ U2U2ρinU
†
1 U †

2 |3〉c〈2| ⊗ U2U2ρinU
†
2 U †

1 |3〉c〈3| ⊗ U2U2ρinU
†
2 U †

2

⎞
⎟⎟⎟⎟⎠. (C15)

Observe that the diagonal terms correspond to the four possible combinations of Ûi ◦ Ûj with i, j = {1, 2}. These incoherent
elements correspond to the classical mixture of sequences considered in the standard approach. The additional (nondiagonal)
coherent terms do not appear in the standard approach, and we make use of them in the following. Finally, a controlled operation
is applied invoking the inverses of each sequence, i.e., in our case

CU (m+1) = |0〉c〈0| ⊗ (U1U1)† + |1〉c〈1| ⊗ (U1U2)† + |2〉c〈2| ⊗ (U2U1)† + |3〉c〈3| ⊗ (U2U2)†, (C16)

such that every term (i, j) in Eq. (C15) is mapped again to |i〉c〈 j| ⊗ |0〉〈0| and the final state reads ρ f = ρ0.
Consider now the noisy case, i.e., after each CU operation, a single-qubit noise map affects the target register. We assume

this noise map to be independent of the position and the gate applied. We can write the map in the Pauli basis as

ξ (ρ) =
3∑

l,l ′=0

χl,l ′σlρσl ′ , (C17)

which represents a completely general CPTP single-qubit channel. Therefore Eq. (C13) becomes

ρ = 1

4

3∑
i, j=0

3∑
l1,l ′1,l2,l

′
2=0

χl1,l ′1χl2,l ′2

[|i〉c〈 j| ⊗ σl2U
(2)
i σl1U

(1)
i |0〉〈0|U †(1)

j σl ′1U
†(2)
j σl ′2

]
. (C18)

After the CU (m+1) operation, that we assume here to be noiseless for simplicity

ρ f = 1

4

3∑
i, j=0

3∑
l1,l ′1,l2,l

′
2=0

χl1,l ′1χl2,l ′2

[
|i〉c〈 j| ⊗ (U (2)

i U (1)
i

)†
σl2U

(2)
i σl1U

(1)
i |0〉〈0|U †(1)

j σl ′1U
†(2)
j σl ′2

(
U (2)

j U (1)
j

)]
. (C19)

A final projective measurement {Eψ, I − Eψ } = {|ψ〉〈ψ |, I − |ψ〉〈ψ |}, with |ψ〉 = |+〉d=4
c ⊗ |0〉 is performed. Therefore

F (ρ f ) = 1

16

22−1∑
i, j=0

3∑
l1,l ′1,l2,l

′
2=0

χl1,l ′1χl2,l ′2 tr
(

E0

[(
U (2)

i U (1)
i

)†
σl2U

(2)
i σl1U

(1)
i |0〉〈0|U †(1)

j σl ′1U
†(2)
j σl ′2

(
U (2)

j U (1)
j

)])
, (C20)

where a factor 1
|G|m = 1

4 comes from the measurement of the control register. As before, given the fact that the control register
has been measured out, we can simply relabel the expression in a more clear notation as

F (ρ f ) = 1

16

2∑
q1,q′

1,q2,q′
2=1

3∑
l1,l ′1,l2,l

′
2=0

χl1,l ′1χl2,l ′2 tr
(

E0

[
(Uq2Uq1 )†σl2Uq2σl1Uq1 |0〉〈0|U †

q′
1
σl ′1U

†
q′

2
σl ′2

(
Uq′

2
Uq′

1

)])
. (C21)

All the elements corresponding to the first sequence position can be compacted for notation simplicity such that

F (ρ f ) = 1

16

2∑
q1,q′

1,q2,q′
2=1

3∑
l2,l ′2=0

χl2,l ′2 tr
(

E0

[
(Uq2Uq1 )†σl2Uq2ρq1,q′

1
U †

q′
2
σl ′2

(
Uq′

2
Uq′

1

)])
. (C22)

Observe now that, if condition

2∑
i=1

U †
i σ jUi =

{|G|I j = 0
0 j 
= 0 , (C23)
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where σ0 = I is fulfilled, only the χl2,l ′2 = χ00 term survives, with an overall factor |G|2 = 4. By repeating the same arguments
for the remaining position j = 1, we end up with

F (ρ f ) = 1

16
|G|4χ2

00 = χ2
00. (C24)

APPENDIX D: COHERENT IRB. BENCHMARK A n−QUDIT CLIFFORD GATE WITH PAULIS

Interleaved randomized benchmarking (IRB) consists in interleaving a particular gate every second position of the sequence,
and comparing with respect to a reference sequence such that the noise parameter of the particular gate can be extracted. We
show here a detailed description of the process of benchmarking a n-qudit Clifford gate using the set of Pauli operators. The
reference process of the IRB protocol proceeds as the RB process of Appendix C with the n-qudit Pauli set. The interleaved
process proceeds as follows. Every second position, the C gate is applied in all the branches of the superposition. We denote this
operation as CUC = I ⊗ C = UC . The remaining controlled operations are again of the form CU ( j) =∑k−1

i=0 |i〉c〈i| ⊗ U ( j)
i , with

U ( j)
i ⊆ Pd,n. For a known initial state ρ0 = |+〉d

c 〈+| ⊗ |ϕ〉in〈ϕ|, the final state reads

ρ f = ˆCU
(m+1) ◦ (©m

j=1

[
ξC ◦ ÛC ◦ ξ ◦ ˆCU

( j)]
(ρ0)

)
. (D1)

Following a similar reasoning than in the RB process, we write the average sequence fidelity decomposing the mth sequence
position considering all possible sequences in superposition:

FP,C (m, |P|m) = 1

|P|2m

|P|m−1∑
i, j=1

tr

(
Eψ

(
U (m−1)

i C · · ·U (1)
i C

)†

×
⎧⎨
⎩

|P|∑
s,q=1

d2n∑
l1,l ′1,l2,l

′
2=1

χC
l1,l ′1

χP
l2,l ′2

U (m)†

s C†Pl1CPl2U
(m)
s

[
ρ

(m−1)
i j

]
U (m)†

q Pl ′2C
†Pl ′1CU (m)

q

⎫⎬
⎭(U (m−1)

i C · · ·U (1)
i C

)⎞⎠, (D2)

where we have measured the control register, and note that in our case |P| = d2n too. Note also that, due to the controlled
nature of the setting, one cannot analyze the evolution of the main register as a function of concatenated quantum maps. χP

and χC are the corresponding noisy channel matrices of the Pauli set and the C gate, respectively. From step one, we already
know χP

00 = χ
re f
00 and χC

00 is the objective parameter that the protocol aims to find. From Eq. (D2), observe that, by definition of
Clifford operation, C†PiC is mapped to an element of P \ I⊗n for i 
= 0 and to I⊗n for P0 = I⊗n. Therefore, the corresponding
noise matrix is mapped to χC → χC̄ , noting that χC

00 = χC̄
00. The resulting state reads

FP,C (m, |P|m) = 1

|P|2m

|P|m−1∑
i, j=1

tr

(
Eψ

(
U (m−1)

i C · · ·U (1)
i C

)†

×
⎧⎨
⎩

|P|∑
s,q=1

d2n∑
l1,l ′1,l2,l

′
2=1

χC̄
l1,l ′1

χP
l2,l ′2

U (m)†

s Pl1 Pl2U
(m)
s

[
ρ

(m−1)
i j

]
U (m)†

q Pl ′2 Pl ′1U
(m)
q

⎫⎬
⎭(U (m−1)

i C · · ·U (1)
i C

)⎞⎠. (D3)

Finally, following exactly the same reasoning that for the coherent RB, we find that the fidelity follows a decay curve of the form

FP,C (m) = (χP◦C̄
00

)m
, (D4)

where χP◦C̄
00 =∑i, j χ

P
i jχ

C̄
i j .

One can obtain an estimation of the desired parameter χC
00 noting that χC

00 = χC̄
00 and that (see [13]):

χP◦C̄
00 = χP

00χ
C̄
00 ±

[
2
√

(1 − χP
00)χP

00

(
1 − χC̄

00

)
χC̄

00 + (1 − χP
00

)(
1 − χC̄

00

)]
. (D5)

with some estimation bound which is tight in the regime of interest, i.e., where Pauli gates fidelity is much larger than the C one.
Note also that this bound is analogous in size to standard IRB approaches.

APPENDIX E: STATISTICAL ANALYSIS AND EFFICIENCY

In a realistic setting considering a superposition of all |G|m possible sequences is certainly inefficient. Therefore, the protocol
is restricted to k � |G|m sequences, leading to an estimation of the average sequence fidelity with some deviation with respect
to the exact value. Many works have studied the statistical properties of the standard RB in detail (see e.g., [16,17,22]). In
particular, several bounds for the variance of the process are found in different regimes, showing that a number of around
k ≈ 100 sequences suffices in general for good fidelity estimations of the Clifford group. In our case, this overhead arises in
the dimension of the control register. Instead of performing different sequential rounds and averaging over their fidelities, we
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FIG. 3. Numerical results of the estimation deviation |Fk − F̄ | as a function of the sequence length under dephasing noise for different gate
sets and values of k. For each sequence length, the protocol is performed 75 independent times. (a) Single-qubit Clifford group with k = 80
and gate infidelity 10−4. Each point for coherent RB represents the single-run fidelity of a superposition of 80 random sequences, whereas each
point for standard RB represents the average over 80 different random sequences. (b) Same parameters than the previous case but the group
benchmarked is the single-qubit Pauli group. Note that fidelity deviation is comparable in magnitude to the Clifford case. (c) Clifford group
with same parameter except k = 25. The upper limit on the deviation for the standard case remains significantly larger than for the coherent
case. (d) Clifford case with gate infidelity of 10−5 and with k = 15. Although coherent RB outperforms standard RB, results are improved
considering a combination of both fitting curves.

perform a single round step with the sequences in a coherent superposition. Notice that this corresponds to a reduction of the
number of required experiments –and hence the required measurements to be performed—by a factor that is given by the number
k of considered sequences in superposition. Despite this reduction, we show indications that the estimation confidence in the
superposed case can be even better in certain regimes of interest. Note however that one of the main advantages of the coherent
RB is its much larger applicability, and therefore we can only restrict to the Clifford group for comparisons.

When considering a certain number k of sequences in superposition which corresponds to the size of the control register, a
confidence region of size ε arises, such that the probability that the estimated fidelity lies within this confidence region is greater
than some set confidence level 1 − δ, i.e.,

P[|Fk − F̄ | < ε] � 1 − δ, (E1)

where Fk is the estimated average fidelity given k sequences and F̄ the exact averaged fidelity given by Eq. (C11). We denote the
difference |Fk − F̄ | as the estimation deviation. Note that expression Eq. (E1) also applies for the standard case. In particular, in
the standard approach, parameters ε, δ can be directly related to the number of sequences k and the variance σk via concentration
inequalities (e.g., Hoeffding inequality). Such direct relations seem more complicated to be found in the coherent case. Therefore,
and also due to the heteroscedastic behavior of the data in different regimes, we leave a detailed statistical analysis for
further work.

We provide a numerical analysis of the fidelity deviation (difference between the estimated numerical fidelity for few
sequences and the analytical fidelity when considering all possible sequences) for different settings (see Fig. 3). We observe
that, in regimes of practical importance [16], the upper bound of the fidelity deviation is always lower in the coherent approach.
Moreover, we show that this fidelity deviation is comparable in magnitude if one goes out of the Clifford group to, e.g. the Pauli
group (where standard RB cannot be used to benchmark gates).

Although coherent RB outperforms standard RB in any regime, we find that a heuristic combination of standard and coherent
RB analytical decay curves can even improve the results. For a given sequence length m, the number of possible sequences scales
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as |G|m, where |G| is the size of the gate set. Therefore, in regimes where k � |G|m, the coherence of the estimated fidelity is
always much lower than in the analytical case. If the analytical decay curve is corrected taking into account the proximity to the
incoherent case, i.e., F̄ = (1 − 1

k )F̄coherent + 1
k F̄standard , the performance can be enhanced [see Fig. 3(d)]. Note however that this

is only applicable to the Clifford case, since standard RB is not applicable for other groups or sets of gates.
Similar results are found for other noisy channels and different infidelity regimes.
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[45] M. Araújo, F. Costa, and Č. Brukner, Computational Advantage
from Quantum-Controlled Ordering of Gates, Phys. Rev. Lett.
113, 250402 (2014).

[46] L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I. A.
Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, Č. Brukner,
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