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Observation of interaction induced blockade and local spin freezing in a NMR quantum simulator
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We experimentally emulate interaction induced blockade and local spin freezing in two and three qubit NMR
architecture. These phenomena are identical to the Rydberg blockade and Rydberg biased freezing. In Rydberg
blockade, the simultaneous excitation of two or more atoms is blocked due to the level shift induced by the strong
van der Waal’s interaction. In such a strong interaction regime, one can also observe Rydberg biased freezing,
wherein the dynamics is confined to a subspace, with the help of multiple drives with unequal amplitudes.
Here we drive NMR qubits with specific transition-selective radio waves, while intermittently characterizing
the quantum states via quantum state tomography. This not only allows us to track the population dynamics,
but also helps to probe quantum correlations, by means of quantum discord, evolving under blockade and
freezing phenomena. Our work constitutes experimental simulations of these phenomena in the NMR platform.
Moreover, these studies open up interesting quantum control perspectives in exploiting the above phenomena for
entanglement generation as well as subspace manipulations.
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I. INTRODUCTION

The blockade phenomenon in which one particle prevents
the flow or the excitation of other particles due to inter-particle
interactions has been a subject of intense study using various
quantum systems. For instance, blockade has been observed
in electrons [1], photons [2–6], ions [7], and Rydberg atoms
[8–10]. The effect of blockade has been used for the controlled
preparation of quantum states [11,12], in particular the en-
tangled or nonclassical states [13–15], thus becoming highly
relevant for quantum information applications [16,17] and
quantum many-body physics [18]. In the Rydberg blockade
regime, a new feature has been predicted recently by Vineesha
et al. [19], called the Rydberg biased freezing in which the dy-
namics of atoms driven with small Rabi coupling freeze. The
phenomenon of biased freezing can provide local control on
selected qubits, which is of vital importance in many quantum
computing and information processing tasks [20].

In this paper, we experimentally demonstrate interaction
induced blockade and spin freezing, identical to the Rydberg
blockade and Rydberg biased freezing, respectively, but using
nuclear spins in NMR architecture. Due to the long coherence
times and the ease of controlling and manipulating qubits,
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NMR provides an ideal platform to probe such quantum phe-
nomena [21–25]. Here, we demonstrate blockade and freezing
phenomena using two- and three-qubit NMR registers. We
periodically monitor the full state of the quantum system using
quantum-state tomography (QST), which also allows us to es-
timate quantum discord, that quantifies quantum correlations
in a general quantum state, pure or mixed. [26–28].

The paper is organized as follows. In Sec. II, we briefly out-
line the phenomena of both Rydberg blockade and Rydberg
biased freezing. In Sec. III, we explain the NMR architecture,
the experimental setup, and introduce the theoretical back-
ground for studying evolution of quantum correlations in the
system. We then explain how blockade and freezing phenom-
ena can be realized using NMR spin systems in Sec. III and the
corresponding experimental results are discussed in Sec. IV.
Finally, we conclude in Sec. V.

II. RYDBERG BLOCKADE AND RYDBERG BIASED
FREEZING

In this section, we briefly review the phenomena of the
Rydberg blockade and Rydberg biased freezing for two atoms
(N = 2). Each atom comprises of two levels with the ground
state {|g〉} coupled to the Rydberg state {|e〉} by a laser field
of Rabi frequency �i and detuning �i. In the frozen-gas limit,
the system is described by the Hamiltonian (h̄ = 1)

Ĥ = −
2∑

i=1

�iσ̂
i
ee +

2∑

i=1

�iσ̂
i
x + V0σ̂

1
eeσ̂

2
ee, (1)

where σ̂ab = |a〉〈b| with a, b ∈ {g, e}, σ̂ i
x = σ̂ i

eg + σ̂ i
ge. The in-

teraction potential between two Rydberg excitations separated
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FIG. 1. The energy-level diagram and allowed transitions under
(a) blockade and (b) Rydberg biased freezing of two interacting
Rydberg atoms. The ground state of each atom is coupled to the
excited state by laser fields with Rabi frequencies �1 and �2, re-
spectively. Under strong interaction, the doubly excited state shifts
out of resonance. In the regime �1 = �2 (a), the system exhibits
dynamics between the ground state |gg〉 and the entangled state
|+〉 = (|eg〉 + |ge〉)/

√
2 with enhanced frequency

√
2�1. The entan-

gled state |−〉 = (|eg〉 − |ge〉)/
√

2 is also cut-off from the system’s
dynamics. In the regime where second atom is driven by a much
weaker drive than the first atom (b), the dynamics of the second atom
is suppressed and that of the first atom is unhindered, resulting in
freezing of the second atom.

by a distance R is given by V0 = C6/R6 where C6 is the van der
Waals coefficient [17]. Henceforth, we take �i = 0, and work
in the basis {|gg〉, |ge〉, |eg〉, |ee〉}.

Rydberg blockade. First we assume �1 = �2 and for V0 �
{�1,�2}, the doubly excited state experiences a large energy
shift [see Fig. 1]. In this case, if the two atoms are initialised in
|gg〉, they exhibit coherent Rabi oscillations between |gg〉 and
|+〉 = (|ge〉 + |eg〉)/

√
2 with an enhanced Rabi frequency of√

2�1, cutting off |ee〉 entirely from the population dynamics.
Effectively, strong interactions hinder the presence of two ex-
citations simultaneously, over a separation of Rb, the blockade
radius. This phenomenon is called Rydberg blockade [8–10].

Rydberg biased freezing. Keeping V0 � {�1,�2} (block-
ade regime), and increasing �2 eventually freezes the
dynamics of the first atom. This phenomenon was first shown
by Vineesha et al. [19] and is termed as Rydberg biased
freezing. Note that, the Rydberg biased freezing emerges as
a combined effect of both strong interactions and the strong
driving on one atom [19]. For the strong bias on the second
atom, the system exhibits coherent Rabi oscillations between
|gg〉 and |ge〉, freezing the first atom. It is straightforward to
extend both blockade and freezing phenomena for more than
two atoms.

For N atoms and �i = 0, the Hamiltonian in Eq. (1) can be
extended as

Ĥ =
N∑

i=1

�iσ̂
i
x +

N∑

i< j

Vi j σ̂
i
eeσ̂

j
ee, (2)

where Vi j = C6/r6
i j and ri j is the separation between ith and

jth atoms. A fully blockaded sample of N two-level atoms
exhibit coherent Rabi oscillations between the many-body
ground state |G〉 = ⊗N

i=1|g(i)〉 and a collective single excited
state, |+N 〉 = ∑

i |gg...e(i)...gg〉/√N [29]. Freezing one or
more atoms in an N-atom system can also be realized by
appropriately tuning the Rabi frequencies on selected atoms.
In this case, the system exhibits coherent Rabi oscillations
between |G〉 and the corresponding product states.

To identify both the blockade and freezing regions using
an NMR setup, it is more desirable to work with the corre-
sponding spin-model for Eq. (2). For that, we introduce the
spin-1/2 operators, Î i

α (α ∈ {x, y, z}) by mapping |g〉 and |e〉
with up (| ↑〉) and down (| ↓〉) spin states along the z axis,
respectively. Then, we have σ̂ i

x = 2Î i
x, and σ̂ i

ee = (1 − 2Î i
z )/2,

where 1 is the identity operator, and the Hamiltonian in Eq. (2)
reads as (apart from an identity term)

Ĥ = 2
N∑

i=1

�i Î
i
x + 1

4

N∑

i< j

Vi j
(
1 − 2Î i

z

)(
1 − 2Î j

z

)

= 2
N∑

i=1

�i Î
i
x − 1

2

N∑

i< j

Vi j
(
Î i
z + Î j

z

) +
N∑

i< j

Vi j Î
i
z Î j

z . (3)

Since Vii = 0 and Vi j = Vji, the second term in the above
equation can be further simplified as

−1

2

N∑

i< j

Vi j
(
Î i
z + Î j

z

) = −1

2

N∑

i=1

N∑

j=1

Vi j

2
Î i
z + Vji

2
Î j
z

= −1

2

N∑

i=1

V̄iÎ
i
z − 1

2

N∑

j=1

V̄j Î
j

z = −
N∑

i=1

V̄iÎ
i
z, (4)

where V̄i = ∑N
j=1 Vi j/2. Thus, the overall Hamiltonian can be

cast as

H = 2
N∑

i=1

�i Î
i
x −

N∑

i=1

V̄iÎ
i
z +

N∑

i< j

Vi j Î
i
z Î j

z . (5)

In spin models, the first term in Eq. (5) plays the role of
a transverse field, second term acts as a longitudinal field,
and the third term provides the Ising interactions. Below, we
describe how to realize the above Hamiltonian using nuclear
spins. For our convenience, we continue to use the states |g〉
and |e〉 as the two spin states of the NMR qubit.

III. NMR METHODOLOGY

A. Spin system and the Hamiltonian

The emulations of Rydberg atom dynamics are performed
on two different systems: (i) a two-qubit system involving 19F
and 31P nuclear spins of sodium fluorophosphate dissolved
in D2O [Fig. 2(a)], and (ii) a three-qubit system involving
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FIG. 2. Sodium fluorophosphate molecule (a), the parameters
of the rotating-frame Hamiltonian H0 [Eq. (6)] (b) forming the
two-qubit register, and the corresponding energy eigenstates and
eigenvalues (c). Dibromofluoromethane molecule (d), the parameters
of rotating-frame Hamiltonian (e) forming the three-qubit register,
and the corresponding energy eigenstates and eigenvalues (f). In
tables [(b), (e)] the diagonal elements represent tunable off-set fre-
quencies νi set according to Eq. (7), and off-diagonal elements show
scalar coupling constants Ji j between the respective qubits.

1H, 13C, and 19F nuclear spins of dibromofluoromethane
[Fig. 2(d)], dissolved in deuterated acetone. All experiments
were performed on a 500 MHz high-resolution Bruker NMR
spectrometer at ambient temperatures. Each NMR sample
contains about 1015 molecules (nuclear spin systems) placed
in an external magnetic field B = B0ẑ, where B0 = 11.75 T.
The Zeeman interaction lifts the degeneracy between the spin
states m = ±1/2 with an energy gap h̄γiB0, where γi is the
gyromagnetic ratio of the nuclear isotope and γiB0 constitutes
its Larmor frequency. The time-averaged local field at the site
of nuclear spins in a rapidly reorienting liquid molecule differs
from the external magnetic field. The resulting individual Lar-
mor frequencies γiB0(1 + δi ) are strongly dependent on the
chemical environment.

Each of the nuclear isotopes forming our spin systems are
irradiated with a linearly polarized radio frequency (RF) wave,
whose resonant component is of the form BRF

i exp(i2πηit )
characterized by controllable amplitudes 2πνRF

i = γiBRF
i and

controllable carrier frequencies ηi. The resonance offsets
with respect to the carrier frequencies are given by 2πνi =
γiB0(1 + δi ) − 2πηi. The spins also interact with one another
via a constant scalar coupling Ji j mediated through covalent
bonds. While Ji j itself is not a controllable parameter, the
effective evolution time of the scalar interaction can however
be manipulated, if required. For both the spin systems de-
scribed above, the resonance offsets and coupling strengths
are tabulated in Figs. 2(b) and 2(e).

Thus the NMR Hamiltonian in a frame corotating with in-
dividual RF carriers for a heteronuclear system under secular

approximation is

HNMR = 2π

N∑

i=1

νRF
i Î i

x + H0, where,

H0 = −2π

N∑

i=1

νi Î
i
z + 2π

N∑

i, j>i

Ji j Î
i
z Î j

z . (6)

We can now map the NMR parameters in Eq. (6) with the
Rydberg system in Eq. (5) by setting

2πνRF
i = 2�i, 2πνi = V̄i, and 2πJi j = Vi j . (7)

The energy eigenstates and corresponding eigenvalues of the
two- and three-qubit systems for the rotating-frame Hamilto-
nian H0 in Eq. (6) are shown in Figs. 2(c) and 2(f) respectively.
Thus, NMR systems along with RF pulses provide a natural
testbed for emulating similar physics that can be studied using
a Rydberg quantum simulator.

B. Quantum correlation: Discord

In addition to observing blockade and freezing dynamics
in nuclear spins, we also study how quantum correlations
between the qubits evolve as the system is driven under the
same phenomena. We quantify these correlations using the
measure of quantum discord, which is defined in terms of
the mutual information in a bipartite system [26]. For a given
density matrix ρ, the information content is quantified by the
von Neumann entropy H (ρ) = −Tr(ρ log ρ). For a bipartite
system AB, the mutual information between A and B is defined
as

I (A : B) = H (A) + H (B) − H (AB), (8)

where H (A), H (B), and H (AB) are von Neumann entropies of
subsystems A, B, and the entire system AB, respectively. The
mutual information can alternatively be defined as

J(A : B) = H (B) − H (B|A), (9)

where H (B|A) = ∑
i pA

i H (B|A = i) is the entropy of subsys-
tem B conditional to a measurement on subsystem A giving a
result i from the possible outcomes of A, with probability pA

i
[26].

The above two definitions of mutual information are
classically equivalent. However, quantum mechanically this
equivalence does not hold since the second definition involves
measurement, which is basis dependent and changes the state
of the system following a measurement [30]. The minimum
difference between these two ways of evaluating mutual infor-
mation quantifies a quantum correlation and is called quantum
discord. Since I (A : B) is independent of measurement basis,
the discord can be estimated by maximizing J(A : B) over all
possible orthonormal measurement bases {�a

i } on subsystem
A. Thus we define the residual correlation

D(B|A) = I (A : B) − max
{�a

i }
J(A : B) (10)

as quantum discord between A and B [26]. Note that discord
is not necessarily symmetric under system partitions and it
varies from 0 for states without quantum correlations to 1 for
maximally entangled states.
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FIG. 3. Population dynamics (left column) and discord (right column) vs driving time for the two-qubit register under Rabi drive (a),
interaction induced blockade [(c),(d)], freezing of the second qubit [(e),(f)] and of the first qubit [(g),(h)]. Plot (b) shows the population
dynamics of a pair of noninteracting spins with the same driving parameters as in freezing on second qubit case (g), illustrating the importance
of spin-spin interaction to realize freezing. Experimental data points are shown by dots with error bars (indicating random errors), theoretically
expected dynamics are shown by dashed lines, and realistic numerical models are shown by solid lines. In each case, the corresponding
energy-level diagram is also shown (central column) with the same color coding as the legend shown at the top of the figure. The energy-level
diagram of (a) corresponds to uncoupled spins, while those of (c)–(g) show eigenstates of the rotating frame Hamiltonian (H0) in a relevant
basis (up to the freedom in degenerate subspace) along with prominent transitions. The discord values D(A|B) are expressed in units of ln 2/ε2

[30], where ε is the purity factor as described in Sec. III C.

C. Initialization, Readout, and Modeling Experimental
Imperfections

Initialization. At ambient temperatures, the thermal energy
is much larger than the Zeeman energy gaps and accordingly
an n-qubit NMR system is found in a highly mixed state of
the form ρth = 1/2n + ∑

i εi Î i
z , where 1 accounts for the uni-

form background population and εi = h̄γiB0/(2nkBT ) ∼ 10−5

is the purity factor capturing the deviation population distribu-
tion. Therefore, one prepares a pseudopure state (PPS) [31] of
the form ρpps = (1 − ε)1/2n + ε|ψ〉〈ψ |, which captures the
essential dynamics of a pure state |ψ〉. Further details of PPS
preparation for two- and three-qubit systems are provided in
Appendix A.

Readout. The instantaneous states during evolution are
read-out using full quantum state tomography (QST), which
allows us not only to monitor populations in various energy
levels, but also to quantify coherences and thereby extract
quantum correlations. Since NMR signals arise from single-
transition transverse-magnetization operators of the form I i

x ±
iI i

y, not all elements of the density matrix are directly mea-
surable. Therefore, one performs a set of experiments to
systematically convert unobservable elements to observable
elements of the density matrix, followed by their measure-
ments [32]. In our case, we perform six and twelve such
detection experiments for two- and three-qubit registers re-
spectively, to obtain pure phase absorptive signals [33], using
which we reconstruct the full density matrix.

Modeling experimental imperfections. The two main im-
perfections in the NMR experiments are (i) spatial RF
inhomogeneity (RFI) causing different Rabi amplitudes at
different points in the sample and (ii) z-repolarization process
T1 (relaxation to thermal equilibrium) and dephasing process
T2 (loss of quantum coherence) [34]. The rate constants T1

and T2 are measured by standard NMR methods. We model
RFI by considering a probability distribution of RF values
spread over ±10 % about the nominal value. This distribution
is then optimized by minimizing the rms deviation of the
experimental data points from the corresponding theoretical
values. Decoherence effects are also incorporated into the
same model. The theoretical points are obtained by solving
the von Neumann equation in the rotating frame using Eq. (6)
for the corresponding initial state density matrix in each case.

IV. EXPERIMENTAL RESULTS

A. Non-interacting spins (Ji j = 0)

To appreciate the interaction induced blockade and freez-
ing effects, we first demonstrate Rabi oscillations of noninter-
acting (Ji j = 0) spins under a uniform drive, i.e., νRF

i = νRF

for all i. The Zeeman energy splitting provides the neces-
sary levels for Rabi oscillations, as illustrated in the central
columns of Figs. 3 and 4. The Rabi oscillation of a nonin-
teracting spin-1/2 nucleus can be realized in different ways.
For instance, one can use heteronuclear spin-decoupling to
average-out all the spin-spin interactions [34]. However, here
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FIG. 4. Population dynamics (left column) and discord (right column) versus driving time for the three-qubit register under Rabi drive (a),
interaction induced blockade [(c),(d)], freezing of the second and third qubits [(e),(f)] and of the first and third qubits [(g),(h)] and of only
the last qubit [(i),(j)]. Plot (b) shows the population dynamics for three noninteracting spins with the same driving parameters as freezing on
second and third qubits [(e),(f)], illustrating the importance of spin-spin interactions to realize freezing. Experimental data points are shown by
dots with error bars (indicating random errors), theoretically expected dynamics are shown by dashed lines, and realistic numerical models are
shown by solid lines. In each case, the corresponding energy-level diagram is also shown (central column) with the same color coding as the
legend shown at the top of the figure. The energy-level diagram of (a) corresponds to uncoupled spins, while those of (c)–(g) show eigenstates
of the rotating frame Hamiltonian (H0) in a relevant basis (up to the freedom in degenerate subspace) along with prominent transitions. The
discord values D(X|YZ) are expressed in units of ln 2/2ε2 [30], where ε is the purity factor as described in Sec. III C.

we use a simpler method that uses low-bandwidth transition-
selective RF fields whose carrier frequencies are set on one of
the transitions of each spin and ignore all other off-resonant
transitions. In the weak-coupling approximation, the Rabi dy-
namics on individual on-resonant transitions is equivalent to
a noninteracting two-level system. Hence, in our experiments,
after initializing each spin to its ground state, as explained
before, we drive the on-resonant transitions with RF fields of
amplitudes νRF = 217 Hz and νRF = 10 Hz respectively for
the two- and three-qubit registers. The relative populations
of ground and excited states are then measured by a suitable
detection pulse after dephasing (and hence destroying) the
coherences with the help of a pulsed field gradient (PFG).

In Figs. 3(a) and 4(a), we show the dynamics for the
noninteracting spins in the two-qubit and three-qubit systems,
respectively. We drive all the spins simultaneously, and it leads
to coherent Rabi oscillations between the ground states |gg〉
or |ggg〉 with the excited states |ee〉 or |eee〉, respectively.
The decay profiles indicated by the experimental data points
relative to the theoretical expectations (dashed-lines) are due
to environmental relaxations in NMR systems as well as RFI.
These effects are captured fairly well by the model indicated
by the solid lines. In two-qubit register, the population transfer
from |gg〉 to |ee〉 takes place via single excited states |eg〉 and
|ge〉 and for N = 3 we have both singly and doubly excited
states as intermediate ones as shown in Fig. 4(a).

B. Strongly interacting case: Interaction induced excitation
blockade

Now, we consider the case of strongly interacting spins
with Ji j � νRF and νi � νRF. For the two-qubit register, we
have Ji j = 868 Hz, and νRF = 217 Hz.

We first prepare |G〉 = |gg〉 pseudopure state using the
standard spatial averaging technique [31] described in the
Appendix. Following the basis-freedom in the degenerate
subspace, singly-excited states |ge〉 and |eg〉 can be linearly
combined to form |±〉 = (|ge〉 ± |eg〉)/

√
2. Under these con-

ditions, we observe Rabi oscillations between |gg〉 and |+〉 =
(|ge〉 + |eg〉)/

√
2, with no population being found in |ee〉,

indicating the excitation blockade. This effect is shown in
Fig. 3(c). Note that, the antisymmetric state |−〉 = (|ge〉 −
|eg〉)/

√
2 is completely decoupled from the excitation dy-

namics. Comparing this to the results for the noninteracting
qubits [Fig. 3(a)], the oscillation frequency of the population
in |gg〉 is amplified by a factor of

√
2 due to the block-

ade. Experimentally, we observe an oscillation frequency of
(
√

2 ± 0.002)νRF, showing an excellent agreement with the
expected theoretical prediction.

In the three-qubit case [see Fig. 4(c)], we have νRF =
10 Hz, and the interaction strengths are given in Fig. 2(d).

We now prepare |G〉 = |ggg〉 pseudopure state as de-
scribed in the Appendix. Again following the basis freedom
in the degenerate subspace, singly-excited states |egg〉, |geg〉,
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and |gge〉, are linearly combined to form |W1〉 ≡ |+3〉 =
(|001〉 + |010〉 + |100〉)/

√
3 and its orthogonal counterparts

|W2〉 and |W3〉, which can be determined by Gram-Schmidt
orthogonalization. The basis is not uniquely fixed, but a possi-
ble combination is |W2〉 = (2|001〉 − |010〉 − |100〉)/

√
6 and

|W3〉 = (|010〉 − |100〉)/
√

2. The spin-spin interactions are
such that the states with more than one excitation are energet-
ically well separated from |G〉 and singly excited states. The
experimental and theoretical results of the population dynam-
ics shown in Fig. 4(c) for the initial state |G〉 indicate that the
population exchange occurs only between |G〉 and |W1〉, while
all other states are blocked. Here again the collective Rabi
oscillation has a frequency of (

√
3 ± 0.03)νRF , which also

shows excellent agreement with the expected value
√

3νRF .
Figures 3(d) and 4(d) show the quantum discord between

A:B and X:YZ at different steps of evolution under block-
ade conditions for two- and three-qubit cases respectively.
Initially, the system is prepared in a product state |G〉, and
hence the quantum discord is zero. However, during the course
of time evolution, correlations develop between the qubits,
resulting in nonzero values of discord. We can see that the
discord is maximized each time when the system attains
the entangled state |+〉 in the case of two-qubits and |W1〉
in the case of three-qubits. After incorporating the imper-
fections, the numerical model (solid lines) and experimental
(circles) results are in excellent agreement.

C. Strongly interacting case: Local spin freezing

In the blockade regime, by locally amplifying the Rabi
coupling [or equivalently the local transverse field in the spin
model in Eq. (6)] of selected spins, we can freeze the dynam-
ics of other spins, which in a Rydberg lattice is called the
Rydberg biased freezing [19]. In the two-qubit NMR register,
we drive the first qubit (19F ) with νRF

1 = 217 Hz and the
second qubit (31P) with a weaker field, i.e., νRF

2 = νRF
1 /4.

The corresponding dynamics is shown in Fig. 3(e). For these
values of field and interaction strengths, we expect freezing of
the second qubit and it remains in its ground state |g〉, and the
two-qubit system exhibits Rabi oscillations between |G〉 and
|eg〉 as shown by dashed lines in Fig. 3(e). Due to the imper-
fections discussed in Sec. III C, we experimentally observe a
small fraction of population in |ge〉 [circles in Fig. 3(e)]. Af-
ter incorporating the imperfections, numerical model results
(solid lines) show excellent agreement with the experimental
values. To appreciate the biased spin freezing due to the strong
spin-spin interactions and the inhomogeneous Rabi coupling,
we show the same dynamics as that of the noninteracting
qubits, but with νRF

2 = νRF
1 /4. In the latter case, we can see

that both qubits are involved in the excitation dynamics [see
Fig. 3(b)]. If we switch the weaker drive to the first qubit and
the stronger one to the second qubit, we observe prominent
dynamics of the second qubit while the first qubit freezes
in the presence of strong spin-spin interactions, as shown in
Fig. 3(g). This effect is persistent for 12 ms, which is about
0.65 times the time period of the weaker drive. These results
also show that this behavior is not transient, but holds over
extended times of evolution.

In addition to this, we also studied the regime in between
Rydberg blockade and Rydberg biased freezing by gradually

FIG. 5. (a) Population in |ge〉 and |eg〉 as the driving amplitude
of the second qubit (νRF

2 ) is gradually reduced from Rydberg block-
ade condition (νRF

1 = 217 Hz) to Rydberg biased freezing condition
(54.2 Hz) (b) the corresponding discord values D(A|B) in units of
ln 2/ε2. Experimental data are recorded at half the effective Rabi
period (for each value of νRF

2 ) and shown by filled circles, which
are overlaid on theoretical simulations shown by dashed lines.

reducing the driving amplitude of the second qubit with re-
spect to the first qubit and observed the populations in each of
the singly excited states |ge〉 and |eg〉. In Fig. 5(a), we show the
value of population in states |eg〉 and |ge〉 at half the effective
Rabi period, i.e., at the first crest that appeared in the Rabi
dynamics. We can see that the populations start out equally
in |ge〉 and |eg〉 states in blockade regime, with driving ampli-
tude 217 Hz on both qubits and gradually deviate from each
other as the driving fields on both qubits become different.
Here, the driving amplitude of the second qubit is reduced,
and hence the population in |ge〉 gradually decreases while
the population in |eg〉 increases. The corresponding quantum
discord values for each of these points is shown in Fig. 5(b).
We can see that as the driving amplitude of the second qubit
is increased, the discord also increases, signaling the shift
from freezing to blockade regime. This is expected, since
with increasing drive amplitude, the system dynamics is no
longer restricted to the subspace of the first qubit. The second
qubit dynamics also become prominent, finally resulting in the
maximally entangled |+〉 state under blockade condition.

In the three-qubit register, we can selectively freeze either a
single qubit or two qubits. To demonstrate two-qubit freezing
we drive the first qubit with νRF

1 = 50 Hz and the last two
quibits by νRF

3 = νRF
2 = 10 Hz. As seen in Fig. 4(e), the first

qubit only takes part in the excitation dynamics, resulting
in Rabi oscillations between |G〉 and |egg〉. Instead of the
first qubit, if we drive the second qubit strongly, and weakly
drive the first and the third ones, we observe Rabi oscilla-
tions between |G〉 and |geg〉 [see Fig. 4(g)]. To demonstrate
single qubit freezing in the three qubit register, we drive the
third qubit weakly in comparison to the first two qubits, i.e.,
νRF

1 = νRF
2 = 50 Hz, νRF

3 = 10 Hz. As shown in Fig. 4(i),
the population dynamics in this case is between |G〉 and the
single excitation states of the first two qubits, |egg〉 and |geg〉
respectively, while the third qubit dynamics is suppressed.
Similar to the two-qubit case, in the absence of spin-spin

033035-6



OBSERVATION OF INTERACTION INDUCED BLOCKADE … PHYSICAL REVIEW RESEARCH 3, 033035 (2021)

couplings between the qubits and under non-uniform drive
νRF

2 = νRF
3 = νRF

1 /5, all qubits get excited simultaneously,
as shown in Fig. 4(b). This reinforces the fact that strong
spin-spin interactions cause local spin freezing and that this
phenomenon sustains over extended periods of evolution un-
der such conditions.

Figures 3(f), 3(h), 4(f), 4(h), and 4(j) show discord between
A:B and X:YZ for Rydberg biased freezing scenarios in two-
and three-qubit cases respectively. In the three-qubit case,
discord is calculated for different partitions as indicated in
Figs. 4(f), 4(h), and 4(j). We can see that less entanglement
is generated under conditions of Rydberg biased freezing
as compared to Rydberg blockade. This is due to consider-
able suppression of the dynamics of frozen qubits during the
evolution. Accordingly, the dynamics is largely confined to
exchanges between separable states, with less quantum cor-
relation being created as revealed by discord values. We can
also see in Fig. 4(j) that discord of the frozen qubit with the
rest of the system is steadily increasing. Further weakening of
the drive amplitude on the frozen qubit will lead to its stronger
isolation and further suppression of quantum correlations.

V. SUMMARY AND OUTLOOK

In this paper, we experimentally demonstrated interaction
induced blockade and local spin freezing using two- and three-
qubit NMR registers. Both the phenomena are identified and
studied in the context of Rydberg atoms, and are known as Ry-
dberg blockade and Rydberg biased freezing. While Rydberg
blockade has previously been demonstrated experimentally,
this work is an experimental demonstration of Rydberg block-
ade and Rydberg biased freezing in NMR architecture. In
addition, we have also characterized the dynamics of quantum
discord in these systems during the course of evolution under
blockade and spin freezing conditions.

Though, the concepts of NMR spin systems are altogether
different from that of Rydberg atoms, it does not hinder access
to quantum phenomena featured by the latter, thus justifying
the role of NMR registers as versatile quantum simulators.

The ability of interaction induced blockade, realized by a
simple off-resonant drive, to create multiqubit entanglement
may have interesting applications in experimental quantum
information studies. The robustness of such approaches com-
pared to the traditional methods involving a combination of
local and nonlocal gates is hitherto unexplored. Moreover,
the biased local spin freezing can be utilized to selectively
control and drive qubits in a multiqubit system. This may find
applications for local quantum control, such as exchanging in-
formation among a subset of qubits and controlled generation
of quantum dynamics in a system of interacting qubits.

Finally, the operational maps between atoms and spins
used in these studies might open up new possibilities in exper-
imental quantum simulations using NMR architecture. Such
maps not only provide clues towards new phenomena not
foreseen by either of the quantum architectures, but also help
conceive hybrid architectures.
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APPENDIX A: PREPARATION OF TWO AND
THREE-QUBIT PPS

As explained in the main text, at ambient temperatures,
in NMR spin systems, the Zeeman energy gaps are much
smaller than the thermal energy. Hence, there is very little
population difference between the energy levels, resulting in
highly mixed states. To obtain pure states, very low tempera-
tures or unrealistically high magnetic fields are required. This
shortcoming can be overcome by preparing the systems in a
pseudopure state (PPS), in which state, the populations are
equal in all energy levels except one level of interest. The
dynamics of a PPS can be mapped isomorphically to that of
pure states [31].

There are different ways to create PPS states namely by
spatial averaging [31], temporal averaging [35], and logical
labeling [36]. Here, we use the spatial averaging technique
to prepare PPS, and the central idea is explained briefly as
follows. Starting from the thermal equilibrium state, which
is a diagonal density matrix with population following Boltz-
mann distribution, we apply unitary rotations. These rotations
rearrange the populations along the diagonal and also create
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FIG. 7. Energy levels of a coupled two-qubit system AB. The
dashed ellipses show the B↑ and B↓ subspaces. The two transitions
of qubit A are displayed at the center with the corresponding spin
orientation of qubit B labeled under each peak.

off-diagonal coherence elements. The coherence elements are
dephased along the sample volume using a pulsed field gra-
dient (nonunitary process) such that they average to zero. A
sequence of such unitary rotations and gradients are applied
until we get the final diagonal density matrix (for an N-qubit
system) of the form

ρth = ⊗N
i=1

12 + εiσ
i
z

2
↓

ρpps = (1 − εeff )
12N

2N
+ εeff ⊗N

i=1

12 + σ i
z

2
,

= (1 − εeff )
12N

2N
+ εeff |G〉〈G|

≡ |G〉〈G|,
where 12N is an identity matrix of dimension 2N . The se-
quence to generate a PPS state is not unique, and varies with
the spin system and its size. The pulse sequence to prepare
|00〉 PPS (|gg〉) in two-qubit system sodium fluorophosphate

molecule is shown in Fig. 6(a), and |000〉 PPS (|ggg〉) in
three-qubit system dibromofluoromethane system is shown in
Fig. 6(b).

APPENDIX B: CAPTURING SINGLE SPIN-1/2 DYNAMICS
IN A MULTI-QUBIT SYSTEM

In this section, we explain how we realized the dynamics
of noninteracting spins in the two and three-qubit cases. To
realize a single spin dynamics of spin A in a coupled spin
pair AB, we first let spin B remain in the thermal state ρB =
1
2 |↑〉〈↑| − 1

2 |↓〉〈↓|, so that the spins are in a separable initial
state

ρAB = ρA ⊗ ρB

= 1
2ρA ⊗ |↑〉〈↑| − 1

2ρA ⊗ |↓〉〈↓|. (B1)

As illustrated in Fig. 7, the four-dimensional space can now
be decomposed into two single-spin subspaces labeled B↑
and B↓ based on the state of spin B. The subspaces remain
independent as long as spin B is undisturbed. Now consider a
propagator UA = U↑ ⊗ |↑〉〈↑| + U↓ ⊗ |↓〉〈↓|, which is essen-
tially acting on spin-A subspaces

ρAB
UA−→ ρ ′

AB = (U↑ρAU †
↑ ) ⊗ |↑〉〈↑| + (U↓ρAU †

↓ ) ⊗ |↓〉〈↓|.
(B2)

The two resolved spectral lines of spin A allow individ-
ual measurements of the two subspaces, i.e., the expectation
values in the two subspaces are identical to that of a pair of
uncoupled single spins:

s↑ = Tr[(σx ⊗ |↑〉〈↑|)ρ ′
AB] = Tr[σx(U↑ρAU †

↑ )] and,

s↓ = Tr[(σx ⊗ |↓〉〈↓|)ρ ′
AB] = Tr[σx(U↓ρAU †

↓ )]. (B3)

Note that the above expectations are as if U↑ or U↓ is
applied on a single uncoupled spin. The above method can be
easily generalized to multi-spin systems. In our experiment,
we choose ↑-subspace in 2-spin case and ↑↑-subspace in
3-spin case to study the single-spin Rabi dynamics of each
nuclear spin. We take the data only from the transition of
interest and ignore all other peaks in the spectrum, thereby
capturing the uncoupled dynamics. We repeat this procedure
for the individual spins in the system and then combine the
results to get the overall dynamics of the noninteracting spins.
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