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Efficient assessment of process fidelity
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The accurate implementation of quantum gates is essential for the realization of quantum algorithms and
digital quantum simulations. This accuracy may be increased on noisy hardware through the variational op-
timization of gates, however the experimental realization of such a protocol is impeded by the large effort
required to estimate the fidelity of an implemented gate. With a hierarchy of approximations we find a faithful
approximation to the quantum process fidelity that can be estimated experimentally with reduced effort. Its
practical use is demonstrated with the optimization of a three-qubit quantum gate on a commercially available

quantum processor.
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I. INTRODUCTION

Experimental progress in developing quantum comput-
ers has led to the realization of noisy intermediate scale
quantum (NISQ) devices in a wide array of experimental
platforms [1-4]. While the number of qubits in these devices
is approaching that needed for quantum supremacy [5], their
noisiness remains a fundamental limiting factor in the de-
velopment of useful applications [6]. As such, a number of
techniques have been developed for error mitigation in quan-
tum computations, wherein additional measurement data and
classical postprocessing are used in order to extract relatively
noise-free results from the noisy devices [7-10].

Many of these techniques have focused on obtaining ac-
curate expectation values from noisy devices [11-16] and
are most commonly paired with variational quantum algo-
rithms (VQASs) [17-22], hybrid quantum-classical algorithms
in which a parametrized ansatz is updated using experimental
measurements in order to optimize for some relevant observ-
able. An additional, complementary error mitigation strategy
which could be immensely powerful would be to variationally
optimize quantum channels by adapting them from their text-
book implementation such that the optimized channel more
closely realizes the desired operation [23].

For optimal implementations of such optimizations it is
helpful to have the ability to efficiently assess the accuracy
of a quantum channel and to distinguish imperfections in
state preparation and in read-out from imperfections in the
actual quantum dynamics. The latter aspect can be addressed
in terms of randomized benchmarking [24-26] that can be
applied to standard protocols for channel evaluation [27,28].
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The goal of this paper is to address the former aspect, i.e., the
efficiency of fidelity assessment.

The process fidelity [29,30] is very expensive to evaluate
experimentally. Instead of evaluating it directly, it is typically
estimated. Since this can be done in terms of a relatively small
number of expectation values independent of the system size
[31,32], this is far more efficient than an exact evaluation. The
fact that the estimation is unbiased with a relatively low vari-
ance is sufficient for channel optimization: techniques from
quantum optimal control which have been shown to be highly
effective in similar settings [33—37] may be applied here.

Unfortunately, while estimates of the process fidelity are
theoretically efficient, their implementation on real hardware
necessitates changing the experimental setup at every shot
of the experiment. With the limited speed at which NISQ
hardware may be controlled and accessed, this translates to
a substantial decrease in efficiency, preventing the estimation
protocol from being usable in optimization.

An alternative figure of merit which may be implemented
using only a small number of unique experimental settings
is thus desirable. In this work we introduce a hierarchy of
approximations to the process fidelity which we refer to as
k fidelities. These are given in terms of a physically im-
plementable set of expectation values which, together with
the fact they are approximately monotonic functions of the
process fidelity, means they have the potential to provide
alternative figures of merit by which the quality of quantum
channels may be assessed.

In particular, the leading-order term, the O fidelity, is es-
pecially useful since it satisfies the requirement of being
efficiently estimable with few unique experimental settings. In
order to keep the optimization target the same, it is crucial that
an approximation to a target function is maximized if and only
if the target function is also maximized. Such approximations
are known as faithful [38]. The O fidelity is a faithful ap-
proximation to the process fidelity, making it a suitable figure
of merit for the optimization of quantum channels. We find
that the O fidelity not only approximates the process fidelity
well, particularly at high fidelities, but we also find that the
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approximation becomes better as the system size increases,
which we demonstrate numerically.

The key advantage of the O fidelity over the process fidelity
is that it can be efficiently estimated even under the constraints
imposed by NISQ platforms, allowing the estimation protocol
to be repeated multiple times as necessitated by an optimiza-
tion routine. We demonstrate the superior performance of the
0 fidelity estimations under these conditions both numerically
and through experiments performed on an IBM quantum de-
vice.

II. THE 0 FIDELITY
A. Evaluating the quality of quantum channels

Any attempt to realize a desired channel A that maps input
states oy to their designated output states pr = A(py) experi-
mentally will inevitably result in the realization of a channel
I' that does not perfectly coincide with A. The similarity
between I" and A is typically quantified by the process fidelity

1 & .
FA D) =— > Tr[A(e] )T (o). (1)

i=1

expressed in terms of a complete set of mutually orthonormal
operators o; on a d-dimensional Hilbert space.

In order to assess the process fidelity experimentally, it is
essential that these inputs be quantum states, i.e., Hermitian,
positive-semidefinite operators. However, while a complete
set of operators contains d” elements, there are only d mutu-
ally orthogonal quantum states and thus Eq. (1) cannot be used
directly and must be adapted such that the inputs are quantum
states.

A formulation of the process fidelity that is consistent with
the requirement that the channel inputs be quantum states is
given by

1 &
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ij=1

with the matrix B;; = Tr[,oj p;1 comprised of the mutual over-
laps of the states p;. The change in notation from o; to p;
emphasizes the experimentally motivated restriction to quan-
tum states.

The term Tr[A(p;)I"(p;)] in Eq. (2) can be understood as
the expectation value of the observable A(p;) with respect
to the state I'(p;), i.e., the state obtained with the evolution
described by the channel I' after initialization in the state p;.
For most channels A and most sets of states p;, however, the
observables A(p;) have entangled eigenstates, and thus this
expectation value is impractical to measure experimentally. It
is thus necessary to express the process fidelity in terms of a
complete set of mutually orthonormal, local observables W;
as

&
FAT)=— Zcij Tr[I"(pi)W;], 3)

ij=1

with

d2
Gij = Z[B_l]li Tr[A(p)W;]. )
=1

The full experimental protocol entailed by Eq. (3) implies the
preparation of d? initial states p; and the measurement of d>
observables W; per initial state for a total of d* experimental
settings. Since the dimension d grows exponentially in the
number of qubits, the experimental effort required to evaluate
the process fidelity is prohibitively high even for a moderate
number of qubits.

It is, however, possible to estimate the process fidelity
using far fewer experimental settings [31,32]. The procedure
involves sampling a small subset of input states and mea-
surement bases from a joint probability distribution which
guarantees the resulting estimates will have a low variance
regardless of the specific channels being evaluated.

Unfortunately, this protocol may only be applied to the
process fidelity as expressed in Eq. (1). The form of Eq. (3)
precludes the definition of an estimator with similarly fa-
vorable statistical properties. The estimation protocol thus
implicitly relies on the inputs being orthonormal, meaning
that not all of them can be quantum states. An experimental
protocol may still be obtained by sampling quantum input
states from the eigenbasis of each o; input on a shot-by-shot
basis; however, this relies on the ability to vary the experimen-
tal setup at every shot of the experiment.

Given the operation speed of current laboratory control
software, this can reduce the repetition rate of an experiment
substantially. Consistently with this, the interfaces to currently
available NISQ devices limit the number of initial states and
measurement settings that can be explored, whereas they do
not impose comparably severe limitations to the repetition
of the same experiment, i.e., with the same initial state and
measurement basis [39].

In NMR quantum computing [40—43], the situation is even
more drastic since expectation values are obtained from the
simultaneous measurement of an ensemble of qubits rather
than through individual projective measurements [44]. Vary-
ing the initial states and observables thus necessarily increases
the overhead by a factor of the number of chosen experimental
settings, severely hindering the efficiency of the protocol.

The goal of this work is to develop an alternative for-
mulation for assessing the quality of implemented quantum
channels based on Eq. (3) that may be efficiently estimated
without resorting to frequent changes in initial state prepara-
tion and final measurement basis.

B. Hierarchy of k fidelities

In order to use the process fidelity as in Eq. (3), a set
of states which span the space of linear operators must be
specified. The natural choice is to take these states to be as
close to orthogonal as possible, which may be achieved by
minimizing ), 2 Trlpip;]. For a single qubit, the analytical
solution to this is any set of four states which form the vertices
of a regular tetrahedron centered at the origin of the Bloch
sphere. These states are known as symmetric informationally
complete (SIC) states [45].
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A set of SIC states can also be defined for the full multi-
qubit system, but it would typically contain entangled states.
In order to keep state preparation errors to a minimum, it
is desirable to have only separable initial states. As shown
in Appendix B, the set of states formed by taking the n-
fold tensor product of the single-qubit SIC states minimizes
Zi £ Tr[p;p0;] among all complete sets of product states, and
we therefore take this set as initial states in the following.
The inverse of the overlap matrix B;; is then readily obtained.
The inverse of the overlap matrix B! for a single qubit reads
as [BID]7! = 14 — A, in terms of the matrix A with elements
Ajj = i(l — 568;;). In the case of n qubits, the inverse of B is
the n-fold tensor product (14 — A)®". Collecting terms with a
given number of factors of A, this is expressed as

B™' =) (1), Q)
k=0
with
kaZ]l4®]l4®-~-®]l4®A®A®--~®A, (6)
T n—k k

where the sum is performed over all inequivalent permutations
of identity and operators A.

By truncating Eq. (5) at different values of k, one can define
a hierarchical series of k fidelities. Truncating the expansion at
the kth term means that only pairs of input states differing by
at most k single-qubit states will have nonzero contributions
to the k fidelity. The highest-order term, with k = n, retains
all orders within the sum [Eq. (5)] and is thus not an approxi-
mation, but it coincides exactly with the process fidelity.

The lower the overlap between p; and p;, the less that pair
of states contributes to the overall k fidelity. The coefficient

_ 5 _1\2j+m l J n—m _(_ msnfm
cm—j:2m< D <4)<._m)—( DTG

J

quantifying this contribution for a pair of states differing by
m single-qubit states decreases exponentially in m. Thus, the
higher the order k in Eq. (5), the lower the corresponding
coefficient in the k fidelity. The leading-order term, the 0
fidelity,
1 &
Fy(A,T) = 72 Z Tr[A(p)Wi1 Te[C (o)W1, (8)
ij=1
may then be used as an approximation to the process fidelity
with highly convenient properties which will be shown in the
following section. Moreover, the O fidelity may be efficiently
estimated using a small number of unique experiments, with-
out requiring expensive shot-by-shot changes to the input state
and measurement basis.

C. Properties of the 0 fidelity

There are a number of properties that the O fidelity satisfies
which make it an effective proxy for the process fidelity:

(1) Faithfulness. The 0 fidelity is maximized if and only if
the process fidelity is also maximized, i.e., if the two channels
being considered are identical. This means that the O fidelity
is faithful [38].

(i) Monotonicity. It is an approximately monotonic func-
tion of the process fidelity, meaning that high-fidelity channels
give rise to high 0 fidelities, with only small deviations from
monotonicity which decrease at high fidelities.

(iii) Scalability. Finally, as the system size increases, the
0 fidelity becomes an increasingly better approximation to the
process fidelity.

In the following section these properties will be shown
through analytical proof for (i) and through numerical evi-
dence for (ii) and (iii).

(1) Proof of faithfulness. Following Eq. (2) the 0 fidelity can
be expressed as

1 &
Fo=— > TAPOT(p)), ©

i=1

which can be understood as a sum over state fidelities between
the states A(p;) and I'(p;). For unitary target channels A and
pure input states p;, each state fidelity is maximized if and
only if the states are identical, thus, the O fidelity is maximized
if and only if

L'(pi) = Alpi) ¥ pi. (10)

Since the input states form an operator basis by con-
struction, any arbitrary operator O may be written as a
linear combination O =), ¢;p;. It therefore follows that
Y icih(pi) = Y_; ¢il'(p;) which implies (through the linearity
of quantum channels) that for any O, A(O) = I'(O). The 0
fidelity is therefore maximized if and only if A = I" and since
this is also the necessary condition for the process fidelity to
be maximized it therefore follows that the O fidelity is faithful.

(i) Monotonicity. Figure 1 shows how well each order of
the k fidelity approximates the process fidelity in the assess-
ment of three-qubit quantum channels, generated numerically
by comparing 10000 randomly generated unitary channels
with a fixed random unitary target channel. All the orders
converge to the process fidelity at high values, as can be seen
in the inset, with the 3 fidelity corresponding precisely to the
process fidelity evaluated using Eq. (1). The process by which
the random unitaries are generated is outlined in Appendix C.

For orders k < n, the k fidelities are not true monotonic
functions of the process fidelity; however, they are approxi-
mately monotonic (this may be seen in the thickness of the
evaluated points). The O fidelity, as the lowest order, devi-
ates most substantially from monotonicity. Nevertheless, it
is close to monotonic for fidelities above ~50% and even at
low fidelities the deviations from monotonicity are relatively
small, meaning that the O fidelity should still be useful as
an approximation to the process fidelity for quantum channel
optimization.

Unlike the process fidelity, for some orders k the corre-
sponding k fidelity may have negative values as seen in the
negative 1 fidelities at very low fidelities in Fig. 1. This nega-
tivity arises from the negative coefficient for m = 1 in Eq. (7);
for most fidelities this is counterbalanced by the fact that the
k fidelity is dominated by the zeroth-order terms (which are
non-negative by construction); however, at low fidelities these
can be exceeded by the negative terms at higher orders.

(iii) Scalability. As the number of qubits increases, the
process fidelity is increasingly well approximated by the 0

033031-3



GREENAWAY, SAUVAGE, KHOSLA, AND MINTERT

PHYSICAL REVIEW RESEARCH 3, 033031 (2021)

1.0 71 k=0
k=1 4
k=2

081 . k=3

& 061 S
>
g 041 P
[ # T= 1077
0.2 t ’// | 10—4
= -
/,/ 10—1 .L y . . .
0.0 ¥ 1072 1074 1076
|1 —F|
0.2 0.4 0.6 0.8

Process Fidelity (F)

FIG. 1. Plot of k fidelity against process fidelity [evaluated
numerically using Eq. (1)] for 10000 numerical evaluations of
randomly generated three-qubit unitary channels compared with a
random unitary target. As the order k increases, the k fidelity more
closely approximates the process fidelity, with the 3 fidelity being
equal to it. At high fidelities, all orders give rise to approximately
monotonic, close approximations to the process fidelity, with the
deviations becoming very small at very high fidelities as shown in
the inset.

fidelity (Fig. 2). The n =5 qubit case (green) consistently
gives rise to O fidelity values which are close to the process
fidelities, and additionally exhibits the desired monotonicity
above ~15% while the n = 2 qubit case (blue) only exhibits
this above ~90%. This strongly suggests that the O fidelity
may be relied upon as a process fidelity approximation even
for relatively large systems.

Furthermore, recently a set of bounds on the quality of the
0 fidelity estimates of the process fidelity were derived [46]
using techniques for bounding the quality of process fidelity
estimations [47], strengthening the connection between the 0
fidelity and process fidelity.

III. ESTIMATION OF THE 0 AND PROCESS FIDELITIES

A. Estimating the 0 fidelity

As with the process fidelity, evaluating the 0 fidelity
involves a number of experimental settings scaling expo-
nentially with the system size and thus for a practical
experimental prescription it is necessary to estimate it using
random sampling [31,32]. The protocol works by choosing
input states and measurement bases from the joint probability
distribution

1
Pr(i, j) = d—zTr[A(,oi)Wj]z. (11)
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FIG. 2. Plot of O fidelity against process fidelity for 10000
numerical evaluations of randomly generated two-, three-, and five-
qubit unitary channels evaluated against random unitary targets.
The O fidelity approximates the process fidelity increasingly well
as the number of qubits increases. The inset shows that at high
fidelities the O fidelity converges to the process fidelity for all system
sizes.

These selected settings may then be used to construct an
estimator

Tr[T'(pi)W;]

HED = T om 1

(12)
in terms of experimentally measurable quantities Tr[T"(o;)W;1;
the expectation value of X over i and j is equal to the O fidelity.

The crucial factor which makes this procedure extremely
useful lies in the sample variance of the estimator

Var(X) = 1 — F}, (13)

which is bounded by 1 independently of the specific channels
being assessed. This means that by taking the mean of [ eval-
uations of X (i, j) sampled from Eq. (11) an unbiased estimate
of the 0 fidelity may be obtained with a sample variance of, at
worst, 1//. Manageable sample variances may be achieved by
evaluating a relatively small (! ~ 100) number of expectation
values, a number which does not scale with the system size.
For the variance specified in Eq. (13) it is implicitly as-
sumed that the terms X (i, j) given in Eq. (12), are obtained
exactly; however, the accuracy of these terms is limited by
experimental constraints. In platforms such as superconduct-
ing qubits, the accuracy of estimating X (i, j) is limited by
the number of experimental repetitions (shots) m required to
acquire expectation values from projective measurements, a
number which depends on the details of the channel A and
which scales in the worst case as O(d) (bounds on the vari-
ance of the O fidelity estimates are given in Appendix A). In
NMR platforms, where expectation values are obtained from
a single experiment, the primary limiting factor is the finite
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measurement acquisition time which limits the resolution at
which expectation values may be extracted.

The two distinct platforms entail slightly different im-
plementations. In both cases, / experimental settings (i, j)
corresponding to expectation values Tr[I"(p;)W;] are selected
according to the probability distribution (11). In projective
estimation, the expectation values are then obtained exper-
imentally by running each setting m times and taking the
average of the projective measurements, while in full trace
estimation, the expectation values are obtained exactly from a
single experimental measurement.

For estimations of the O fidelity the distinction between the
two implementations is merely a technical detail; however,
for estimating the process fidelity the choice of experimen-
tal platform can have a severe impact on the quality of the
estimations.

B. Estimating the process fidelity

In order to compare the quality of the estimation protocol
for the O fidelity to the equivalent protocol for estimating the
process fidelity, it is necessary to expand Eq. (1) in a local
orthonormal basis to obtain an expression which is analogous
to Eq. (8) as

1 & .
F(AT) = = Y TrAG W THI@W,]. (14

ij=1

Since the input operators in Eq. (14) are not quantum states,
an additional step is required in order to obtain experimentally
realizable settings. Once a measurement setting correspond-
ing to an expectation value Tr[I'(0;)W;] has been chosen, an
experimental prescription may be obtained by expanding o; in
its eigenbasis. This results in the relation

d

Tr[C (oWl = Y a7 Tr [T (jog o7 |)W;]. (15

k=1

where |¢;") are eigenstates of o; with corresponding eigenval-
ues A;'. An appropriate choice of operators o; (for example,
the set of tensor products of normalized Pauli operators)
means these states will be separable, and thus can be im-
plemented experimentally. This implies an increase in the
number of expectation values which need to be experimentally
evaluated by a factor of d.

In projective estimations it is possible to obtain estimates
of the process fidelity using the same total number of experi-
ments /m as that required for 0-fidelity estimation by sampling
experimental input states from the eigenbasis of o; on a shot-
by-shot basis [31,32]; as discussed in Sec. IT A, however, this
results in inefficiencies which render the strategy inapplicable
on NISQ devices.

Nevertheless, projective estimations of the process fidelity
may still be obtained using the same number of expectation
values / and the same total number of experiments /m as the 0
fidelity. For any expectation value Tr[I'(o;)W;], implementing
all d eigenstate expectation values Tr[I'(|¢}") (¢, )W;] with
each experiment repeated m/d times is equivalent to esti-
mating Tr[I"(o;)W;] using m shots. Thus, the total number
of experiments remains the same between the process and 0-

Process Fidelity
0—Fidelity

Frequency
W~ o

[\

—0.2 0.0 0.2 0.4
Estimation error

—0.4

FIG. 3. Statistical deviations from their true values for 10000
numerically evaluated full trace estimations of the process and O
fidelities, each using / = 160 expectation values per evaluation. The
estimations were made using the overlap between a random three-
qubit target unitary and a perturbed test unitary, with the same setup
for both the process and O fidelity estimations. The variance of the
0 fidelity estimations is significantly lower than those of the process
fidelity, making it far more suitable for an optimization cost function.

fidelity estimations, with the caveat that estimating the process
fidelity requires d! unique experiments as compared with only
[ for the O fidelity. The bounds on the variance of the process
fidelity estimates are given in Appendix A.

In the case of full trace estimation, each unique experiment
is only repeated once, thus, the total number of experiments
is /. In this case, implementing all d eigenstates of each
o; necessarily entails a factor of d increase in experimental
overhead over estimating the O fidelity.

C. Comparing the process and 0 fidelity estimates

In this section the quality of process and 0 fidelity es-
timations is compared in both the full trace and projective
experimental situations. In line with current implementations
of NISQ devices, in the following numerical simulations the
maximum number of unique experiments is limited to a max-
imum value of 900. Details on the generation of random
channels can be found in Appendix C.

Figure 3 shows deviations of the full trace estimates of the
process (blue histogram) and 0 fidelities (green histogram)
from their true values, based on a randomly generated three-
qubit unitary target channel and a perturbed test channel.
The estimate of the 0 fidelity is realized in terms of / = 160
settings Tr[I"(p;)W;], with each expectation value evaluated
exactly. The process fidelity is sampled with [ = 20 settings
Tr[[(0;)W;] for all d =8 eigenstates Tr[['(|¢]") (¢, HW;]
evaluated exactly per setting, for a total of d/ = 160 experi-
mental settings.

Figure 3 exemplifies the fact that the statistical fluctuations
in estimates of the O fidelity are much smaller than those
of the process fidelity, with the standard deviation of the 0
fidelity estimation errors being ~0.05 compared to ~0.16 for
the process fidelity.

For the case of projective estimations, the number of shots
m may be adjusted such that the total number of experiments
required for estimating the process fidelity is the same as
that required to estimate the O fidelity. Even in this favorable
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FIG. 4. Plot of the standard deviation of process and 0 fidelity
projective estimations as the number of experiments increases. The
data are generated numerically through 10000 estimations per data
point of the comparison between a pair of three random unitary chan-
nels, with the same pair used to generate all data points and where
the number of expectation values / was approximately equal to the
number of shots m. The 0 fidelity standard deviations are consistently
below those of the process fidelity estimates regardless of the total
number of experiments used. Moreover, the process fidelity standard
deviations seem to saturate to a minimum value, whereas no such
saturation can be observed for the O fidelity. The shaded regions
correspond to the upper and lower bounds on the estimations using
the analytical bounds in Appendix A.

setting for the process fidelity, it is still substantially outper-
formed by the O fidelity estimates.

Figure 4 shows the standard deviations of the estimation
error for 10000 estimations of the process and 0 fidelities
of a randomly generated pair of three-qubit unitary chan-
nels (with the same pair being used for all data points) as
the total number of experiments /m increases. The details
for the specific generation of the random channels, along with
the experimental parameters / and m used, are outlined in the
Appendix. The 0 fidelity estimates have much lower standard
deviations than those of the process fidelity at every allocation
of (numerically generated) experiments investigated.

A choice of I & m expectation values and measurement
settings gives rise to estimates with the lowest variance for
a given total number of experiments /m. Since for the pro-
cess fidelity the measurement of / expectation values implies
the implementation of d/ unique experiments, the maximum
number of expectation values which can be measured is lim-
ited to [ < |900/d], meaning that if one wants to use a
relatively high number of experiments in order to obtain an
estimate, it is necessary to use a suboptimal allocation of ex-
periments ! < m. This is reflected in Fig. 4, which shows that
the standard deviations for the process fidelity seem to saturate
to a minimum value once the maximum number of unique
experiments is reached. An equivalent limit will eventually be
reached for the O fidelity; however, this limit is higher than
that constraining the process fidelity by a factor of d and,
moreover, is independent on the size of the channel being
evaluated.

Although the limitation to 900 unique experiments is in
some sense arbitrary (being imposed by the provider of the
quantum hardware) it reflects the fact that implementing many

X
A
0.75 + —%— grO;?;sl.i‘ldellty
x —Fidelity
2 %
= 070 ¢ x by -
> b 4 x %
=} —
0.65 1 -~
3 % X Ay Aax "X
£ 0607 x 0 Tk K X R
3 b ¢ g 3 x
M 055 1 x X x X% x
x % 2
0.50 1, % : , : >
0 10 20 30 40
Evaluation

FIG. 5. Plot showing 50 estimations of the process and O fideli-
ties for a single random three-qubit target unitary implemented on
the ibmg_toronto quantum device. The mean for the O fidelity
(orange line) is slightly higher than that of the process fidelity (blue
line), since the O fidelity overestimates the process fidelity as shown
in Fig. 2, however, the standard deviation of the O fidelity (orange
shaded region) is substantially lower than that of the process fidelity
(blue shaded region).

different experiments is more expensive than repeating a sin-
gle experiment many times; were this restriction to be lifted,
one would expect the standard deviation to no longer saturate.
Even in this case, for any given number of experiments the
0 fidelity estimates will have a lower standard deviation than
the process fidelity estimates as shown by the bounds given in
Appendix A.

The superior performance of the 0 fidelity estimates is also
reflected in real experimental data. Figure 5 shows 50 esti-
mations of the process (blue crosses) and O fidelities (orange
triangles) for a random three-qubit quantum circuit imple-
mented on the ibmg_toronto quantum computer (where
the circuit would perfectly implement the target channel in
the absence of noise). The random circuit used is given in
Appendix C.

The 0 fidelity estimations were performed using [ = 336
circuits (that is, 336 unique experimental settings) each using
m = 336 shots, which may be evaluated efficiently enough
to permit an optimization involving ~150 iterations to be
performed while still resulting in relatively low variances.
The settings for the process fidelity estimations were then
found by taking the maximum possible number of unique
settings (dl = 896 circuits, corresponding to [ = 112 expec-
tation value evaluations Tr[I"(o;)W;]) and setting the number
of shots to m = 144 such that the total number of experiments
was equal to that used for the 0 fidelity estimations.

The 0 fidelity data are clustered much closer together than
the process fidelity, indicating that estimates of the O fidelity
are more suitable as an efficient protocol for evaluating the
quality of quantum channels. Although it is not feasible to
experimentally perform enough estimates to fully capture the
statistics for the distributions as in the numerical analysis
above, the data clearly indicate that the O fidelity estimations
have a much lower standard deviation than the process fidelity
estimates, with the standard deviation of the O fidelity estima-
tions being ~0.033 as compared with ~0.07 for the process
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FIG. 6. Circuit diagram for the implementation of a parametrized
CNOT gate between the first and third qubits, which are assumed to
not be physically connected in the device. Each of the U; gates has
three parameters over which the optimization may be performed: the
ideal gate may be implemented on a noise-free device by setting all
the parameters to 0.

fidelity. These are in line with what one would expect from
the analytical bounds derived in Appendix A, which yield
upper bounds of 0.09 and 0.05 for the process and 0 fidelity,
respectively.

IV. GATE OPTIMIZATION

Estimates of the 0 fidelity are a highly efficient way of eval-
uating the quality of noisy quantum channels. One application
for this is in the variational optimization of such channels,
in which the parameters of a parametrized channel are varied
according to some classical optimization algorithm until the O
fidelity is maximized.

In the following section, the results of optimizations per-
formed using Bayesian optimization (BO) [48] are presented.
BO is highly efficient and resilient to noise, as demonstrated
in its successful application in related problems in quantum
optimal control [33-35,49-51]. For the interested reader, a
thorough review of BO may be found in Refs. [52-54].

The target channel in these optimizations was a controlled-
NOT (cNOT) gate between nonconnected qubits, a three-qubit
channel necessitated by the limited connectivity of NISQ
devices [55]. The ideal channel may be implemented using
only CNOT gates; however, a parametrized version may be
generated by appending and prepending single-qubit gates on
all qubits as seen in Fig. 6.

It should be noted that in the following the effects of
state preparation and measurement error are not taken into
account. These effects may be addressed using, for example,
self-consistent tomography [56] or techniques developed in
randomized benchmarking [24-26,57]; however, such tech-
niques are not considered in this work.

A. Optimization results

The results of the optimized circuits based on Fig. 6 are
shown in Fig. 7 in terms of the process fidelity evaluated
using all d* measurement settings in Eq. (3). The actual
optimizations were performed using estimates of the 0 fi-
delity; however, evaluating the final channels through the fully
evaluated process fidelity allows for direct comparisons with
previous work. This also provides further evidence that the 0
fidelity is an excellent proxy for the process fidelity in this
setting.

S e
o N N ®
St o w oS
- :
|

Process Fidelity
©
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|
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[ |
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Optimised
0.50 4 + + + t + + + + +
1 2 3 4 5 6 7 8 9 10
Optimisation Run

FIG. 7. Plot showing the improvement obtained by the Bayesian
optimization of the circuit in Fig. 6 for 10 optimization runs given
in terms of the process fidelity evaluated using all d* measurement
settings, implemented on the ibmq_singapore quantum device.
Each optimization run was performed using 140 iterations using O
fidelity estimations obtained using 160 unique circuits, each repeated
for 2048 shots, with the final results evaluated using 4096 circuits,
each using 8192 shots, with the error bars corresponding to the
95% confidence interval arising from the finite number of shots. The
optimized results consistently outperform the unoptimized results,
demonstrating the effectiveness of using the 0 fidelity as the figure of
merit for quantum channel optimization.

The optimized circuits (orange triangles) consistently
achieved substantially higher fidelities than their unoptimized
counterparts (blue circles) over every experimental run. The
average process fidelity for the unoptimized runs was 0.65,
while the optimization yielded circuits with average fidelities
of 0.76, a significant (~17%) relative improvement. The error
bars correspond to the 95% confidence interval arising from
the statistical variation due to shot noise. The variation in
process fidelity between optimization runs is a consequence
of the fact that each run was performed on a different day,
over which time the properties of the device change due to
drifts and recalibration, giving rise to slightly higher or lower
fidelities; these fluctuations are significantly larger than the
uncertainties in the process fidelity measurements and so it is
unlikely that these effects arise from finite sampling effects.

The ultimate goal of optimizing quantum channels is to use
them as part of a larger algorithm. As such, it is critical that
this increase in fidelity is retained when such a composition
is performed. The results shown in Fig. 8 confirm that this is
the case: here the experimental channel was the CNOT applied
three times, which should be equivalent to a single CNOT
in the absence of noise. Once again, the optimized circuits
attain higher fidelities in every experimental run, substantially
outperforming the textbook implementations with average fi-
delities increasing from 0.11 to 0.44 (the error bars reported
in the figure again correspond to the 95% confidence interval
associated with shot noise).

We attribute these gains to the ability of the BO to find
parameters which counteract gate errors in the implemented
circuit, which it is able to do without any formal charac-
terization of the form of those errors. If the optimization
were merely counteracting state preparation and measurement
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FIG. 8. Plot showing the process fidelity (evaluated using all d*
measurement settings) when the optimized and unoptimized chan-
nels are applied three times (equivalent in the absence of noise to
a single application) for six runs of the Bayesian optimization of
the circuit in Fig. 6 implemented on the ibmq_singapore quantum
device. Each optimization run was performed using 140 iterations
using 0 fidelity estimations obtained using 160 unique circuits, each
repeated for 2048 shots, with the final results evaluated using 4096
circuits, each using 8192 shots, with the error bars corresponding to
the 95% confidence interval arising from the finite number of shots.
The optimized results are substantially better across all experimental
runs, with the optimization increasing the average process fidelity
from 0.11 to 0.44.

errors, one would not expect the gains in fidelity to be main-
tained when the circuit is applied multiple times.

Moreover, the gains observed for the repeated application
of the optimized gate are greater than for a single application.
If the gate errors were entirely stochastic, applying the gate
three times would result in an overall error which is approxi-
mately the cube of the individual gate error. This is observed
in the optimized results (0.76% ~ 0.44); however, for the un-
optimized results the error from applying the gate three times
is substantially higher than expected. This may be attributed to
systematic errors which combine constructively with multiple
applications, resulting in overall errors which are larger than if
the errors were independent and stochastic. The fact that this
effect disappears in the optimized case suggests that the BO
was able to eliminate the bulk of the systematic gate error. The
advantageous properties of stochastic errors are well known,
forming the basis for the technique of randomized compiling
[58] in which additional gates are applied in order to convert
coherent noise sources into stochastic ones. The fact that such
a strategy has practical advantages demonstrates the utility of
the optimization algorithm since here the systematic errors are
not only converted but are directly reduced.

V. CONCLUSIONS

NISQ devices, while having much potential, are limited
by their inherent noisiness. Quantum channels may be di-
rectly optimized such that the resulting channel produces a
much more faithful implementation of the desired dynamics.
In order to perform such an optimization, a figure of merit

is required which can efficiently characterize the quality of
an implemented channel. Direct process fidelity estimation
would be a natural choice for this; however, its implementa-
tion on NISQ hardware is rendered impractical through the
requirement that the input state and measurement basis be
changed at every shot of an experiment.

In this work we present an alternative figure of merit which
overcomes this issue. The leading-order term in a hierarchical
series of k fidelities, the O fidelity, is a faithful approximation
to the process fidelity which can be estimated on any quantum
platform using only a small number of unique experiments
that does not scale with system size. Estimates of the O fidelity
substantially outperform estimates of the process fidelity un-
der the constraints imposed by current implementations of
NISQ devices, with this advantage being demonstrated both
numerically and experimentally.

The 0 fidelity is an excellent figure of merit for the
direct optimization of quantum channels. This is demon-
strated through the successful optimization of a CNOT
channel on an IBM Quantum device, for which we re-
port significant (~17%) improvements over the textbook
implementation.

VI. OUTLOOK

We envisage our O fidelity-based optimization routine
could be applied to concrete problems in quantum simulation.
One potential route could involve splitting an algorithm up
into small blocks, optimizing each one and then compos-
ing the optimized channels such that the overall simulation
is less noisy. This is particularly relevant to simulations of
Trotterized quantum dynamics and algorithms such as the
quantum approximate optimization algorithm (QAOA), where
layers of short-depth quantum circuits are repeated many
times.

Additionally, it would be instructive to implement the
protocol on other NISQ platforms. While the framework pre-
sented here has been given in terms of digital quantum gates,
it is equally applicable to low-level pulse-based quantum con-
trol and should be implementable on any quantum platform.
Implementations on an NMR quantum computer would be of
particular interest as the advantages offered by the O fidelity
over the process fidelity are more substantial.

On a more theoretical basis, it would be interesting to
investigate whether similar hierarchical structures can be de-
rived when the restriction to product states is relaxed. This
would likely have a significant impact on the practical im-
plementation of the protocol, but may yield some interesting
insight as to the structure of SIC states. An additional route
for further work would be to combine the O fidelity with
techniques for alleviating SPAM errors such as cycle bench-
marking [28] and randomized benchmarking [24-26]. Finally,
it is known that for Pauli channels the process fidelity can be
efficiently evaluated by measuring the eigenvalues of the su-
peroperator matrix [59] associated with the quantum channel
[57]. A potentially valuable route for further work would be
to investigate any potential relationship between the hierarchy
of k fidelities and this previous work, particularly since the k
fidelities are not restricted to Pauli channels.

033031-8



EFFICIENT ASSESSMENT OF PROCESS FIDELITY

PHYSICAL REVIEW RESEARCH 3, 033031 (2021)

All of the data presented in this paper, along with the
python code used to generate these data and the figures, can
be found in a public GITHUB repository [60].
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APPENDIX A: BOUNDS ON THE VARIANCE OF THE
FIDELITY ESTIMATIONS

1. 0 fidelity estimates

Here we derive bounds on the variance of an estimate of
the O fidelity obtained using / unique experimental settings
corresponding to the terms Tr[I'(p;)W;] which are estimated
as the mean of m projective measurements in the eigenbasis
of W;. To proceed, we take {W;} to be the set of normalized

; . . W,
Pauli operators, meaning that each W; has eigenvalues A’ €

{(£1//d).

It follows from the orthonormality of {W;} and from the
fact that Tr(p?) < 1 for any arbitrary state p (with equality
holding if p is pure) that

D TEEW < 1,

J

(AD)

for an arbitrary quantum channel £. It thus follows that the
variance Afi’ ;) of a single measurement corresponding to a
single setting Tr[I"(p;)W;] is bounded by

(A2)

In order to estimate the O fidelity, it is necessary to sample
[ settings according to the probability distribution (11) and
for each to estimate the corresponding X (i, j) [Eq. (12)].
This estimate X (i, J) is obtained using m measurements with
expected value E[X (i, j)] = X (i, j) and variance

. A%,
ARG, j) = v

mTr[A(p)W,]? (A3)

We denote by Y the random variable associated with such
a sampling protocol. It follows a mixture distribution with
expected value E[Y] = Fy and variance

AYY = ZPr(i, DIEXX G, )]+ AKX, j)] — E?[Y]

iJ

(Ad)
TrC(eW; | Aby | 2
= 2}:[ e +— | (A5)
2A2< )
=1+ —2 R, (A6)
which can be bounded using Eq. (A2) as
1 —F} < A%Y < 1+d/m—Ff. (A7)

Estimates of the O fidelity £, may then be obtained by taking
the mean of / estimates Y, yielding a final variance of

LR _ o

2
: \A2F0<1+d/m Fy _ 1+d/m

0< <
l l

., (A8)
where the outer bounds are obtained using 0 < Fy < 1. From
these bounds one can see that for a maximum number of
settings L (taken to be 900 in the main text) the variance is
always greater than (1 — F?)/L and saturates to this value in
the limit m — oo. In the case where no restriction is placed
on the number of unique settings, m may be set to 1 and
[ becomes the total number of measurements taken N, (that
is, settings are sampled on a shot-by-shot basis). In the limit
N, — oo both the upper and lower limits converge to 0 and
thus no saturation to a nonzero value will be observed.

2. Process fidelity estimates

In order to estimate the process fidelity, the strategy
presented in this work follows Refs. [31,32]: (i) Select a
setting (i, j), corresponding to a (non-directly) observable
Tr[A(o;)W;], according to the probability distribution

iAW,

Pr'(i, j) = 7 (A9)

(where the {o;} and {W;} are both taken to be normalized Pauli
operators) and (ii) for this setting, estimate the term

S Tr[T'(0:)W;]
XU ))= (A10)

Tr[A(o)W;]
In this case ., the estimate of the numerator
Tr[C (oW1 =) 1y AZ" Tr[F(|¢,‘:")( ,‘:’|)Wj] is  obtained

based on m’ repeated measurements for each of the d
eigenvalues of o;. As with the O fidelity, this gives rise
to an estimate X'(i, j) of X'(i, j) with expected value
E[X'(i, j)] = X'(i, j) and variance

2
A(i,j,k)

AZXA/ .’ j = 9
D= Tr[A (o)W, 2

(Al1)
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TABLE 1. Table of coefficients in the random Hermitian matrix [Eq. (C1)] used to generate the random target unitary U, for the numerical
evaluation of the k fidelities presented in Fig. 1.

Hr term Qi inis H, term Qi iyiy Ht term Qjinis H, term Qi iyiy
Vg Og©® 0.45631 cMgOg® —0.70712 cPgOg® —0.24903 P Og©® —0.55919
O Og® 0.52325 cMgOg® 0.90678 cPeOg® 0.41831 P Og® 0.48434
0 VgOg® 0.45163 ocWg®g@ 0.33876 AR AR 10 0.33918 P 0g® —0.10824
cOVgOg® 0.07383 ocNgOg® 0.80992 cPgOg® —0.96490 P 0g® 0.27820
o OgMg©® 0.97577 ocWgMg©® —0.89936 c@gMg©® —0.51887 c®gWg©® 0.855704
o WgMg® 0.11418 ocWgMag® —0.97843 oc@gWg 0.81950 o®gWg® 0.37004
cOgWe® —0.20607 cMegWag® 0.23762 cPeWg® —0.16243 cPeWe® —0.66006
cOgMg® 0.45888 ocWgMg® 0.36063 oc@gMg® 0.56431 o®gWg® 0.50428
cVg@g©® —0.24559 ocWg@g©® 0.31255 oc@g@g©® —0.13876 oc®g®@g® —0.90715
cOg@a® —0.00605 oM@ 0.42754 PP 0.32513 cPe@a® —0.66542
cVg®a® 0.05597 ocWg@g@ —0.29469 0®g®g@ 0.70243 c®g®a® 0.05031
cVg@g® 0.37379 ocWg@g® —0.32656 c@e@g® 0.14077 cPg@Dg® 0.01150
cOg®g® 0.74952 cMg®a® —0.49094 cPe®g® —0.11147 PP ® 0.47216
o Wg®g® —0.98569 ocWg®gh —0.01268 oc@g®g —0.13383 o®g®g® 0.43830
cVgBPg® 0.46017 ocWgB®g@ —0.70425 c@eB®g@ 0.99265 cPgBPg® 0.57625
cOg®a® —0.58409 cNg®a® —0.86759 cPe®ag® 0.07557 cPe®e® 0.51732

where A%i’ .k 1s the variance of a single measurement of a
term Tr[[(|¢7") (¢, )W;], which is bounded (for the same

reasoning as above) as

1
7
We denote by Y’ the random variable associated with such a
protocol, with expected value IE[Y'] = F and variance

0< Ay < (A12)

A’Y' = " Pr(i, DIEPX' G, ]+ APXG, )]
iJ

— E*[Y"]
_y[Treow) AT
— d? m'd?
ij
d>A?
=1+ —0 2 (A13)
m
which can be bounded wusing Eq. (Al2) as
1 —F>< AY <1+d/m' —F? 1t follows that the

estimate £ of F obtained over [’ sampled values of Y’ is

TABLE II. Table of coefficients in the random Hermitian matrix
[Eq. (C1)] used to generate the random target unitary U, for the
numerical evaluation of the two-qubit O fidelities presented in Fig. 2.

H, term Qi iy H, term Qi iy

o ©g©® 0.62192 PO 0.98298
oc@g® —0.28442 @M 0.15037
cOg® —0.36456 cPe® —0.12910
c©g® —0.11006 ocPe® 0.78695
ocMg® 0.13214 o © —0.47983
oWg® —0.70606 @M 0.30265
ocWa® —0.66813 oc®e® —0.59174
ocWa® —0.60901 oc®e® 0.33788

unbiased with variance AZF' bounded as
1 —F? . l4d/m —F? 1+d/m
T SAF S I <——

(A14)

0<

where the outer bounds arise from the fact that 0 < F < 1.
Although these bounds seem superficially similar to those
obtained for the process fidelity, this neglects the fact that
each of the I’ expectation values necessitates the measurement
of d unique circuits for a total number of experiments dl'n’.
In Figs. 4 and 5 this is accounted for by setting I’ =/ and
m’' = m/d (where here [ and m refer to the number of expec-
tation values and measurement shots used in estimating the 0
fidelity). This ensures that the total number of experiments /m
remains the same for process and 0 fidelity estimations. This
results in a modification of the bounds, yielding

1—F?
]

14+d*/m— F?
< +d°/m <

B I X

1+d?*/m

~»

0< < A?

(A15)

For a maximum of unique settings L (corresponding to L =
ld to account for the need to input each of the d eigenstates per
setting /) the variance saturates to d /(1 — F?)/L in the limit
m — 00. In the case where there is no restriction on the num-
ber of unique settings, m may be set to 1 and [’ [Eq. (A14)]

(i e{T T
7] S S

FIG. 9. Circuit for the generation of random channels in Figs. 4
and 5. Each of the U; gates has three parameters 6, ¢, A which are
randomly sampled from the interval [0, 27 ].
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TABLE III. Table of coefficients in the random Hermitian matrix [Eq. (C1)] used to generate the random target unitary U, for the numerical

evaluation of the three-qubit O fidelities presented in Fig. 2.

Hr term Qjinis Ht term Qi iyiy I'I, term Qi inis H, term Qjinis

Vg Og©® 0.17006 cMgOg©® —0.38200 g Og® —0.84396 P Og©® 0.96076
O Og® 0.84389 oV —0.87782 cPeOg® 0.32516 P Og® 0.69225
cVg0g® 0.77592 oWg®g@ —0.91405 ARL AR e 0.28972 P Og® 0.78857
cOVgOg® —0.12891 cMgOg® 0.85939 cPe 0@ 0.20802 P 0g® —0.97166
c@OgWg® —0.66331 cWgWag©® 0.98379 cPeWOag® —0.78235 cPeWag® 0.58005
c@OgWg® 0.19222 ocWgWg® —0.70895 cPeWOg® —0.63625 oc®egWg® —0.93680
cOgWe® —0.00363 cMgWg® —0.73675 cPeWag® —0.86178 cPeWe® —-0.97715
c@OgWg® —0.68100 cWegWag® —0.96935 cPeWOg® 0.98716 cPeWg® 0.34951
0 Vg®@g® —0.32367 oWg@g©® 0.28944 c®Pg@g® —0.78411 oc®g@g® 0.53184
cOg@a® —0.25096 cVg@ag® —0.98511 @@ 0.03250 cPe@a® —0.02550
cOe@a® 0.00806 cVe@a? —0.11461 cPe@a® 0.07083 cPe@a® 0.94426
0 Vg®@g® 0.76286 ocVg@ag® —0.22837 cPe@a® 0.54588 ocPe@a® —0.02733
cOg®e® 0.71980 cMg®g® 0.44338 cPe®g® 0.16987 PP ® 0.32453
cO®a® 0.93134 cVg®agd 0.18465 cPe®a® —0.09857 cPe®a® 0.92737
cVe®a® 0.33931 ocVeg®ag® 0.56110 cPe®a? 0.09768 oc®e®a® 0.99687
cOg®e® 0.44647 cMg®a® 0.35569 cPe®a® —0.14916 cPe®e® 0.74270
effectively becomes the total number of measurements taken An n- qublt product state may be denoted as
divided by the number of eigenstates I’ = N,/d. In the limit 0; = plll R & /01 , where i = [i1,...,i,] is the vector

N, — oo the variance goes to 0 and thus the saturation to a
nonzero value would not be observed in this case.

APPENDIX B: OPTIMALITY OF THE INPUT STATES

The properties of the O fidelity are dependent on the choice
of input states {p;}. As motivated in the main text, it is
desirable to choose these states such that ) £ Trlpip;] is
minimized while restricting to product states. In this Ap-
pendix we show that the optimal choice of n-qubit product
states is the tensor product of optimal single-qubit states used
in the main text.

of index i; € {1, 2, 3, 4} labeling each of the single-qubit
states ,ol.(l” . Recalling that Tr[A ® B] = Tr[A] Tr[B], the sum
of overlaps between product states may be cast as

2 _Trlpips =D e o o 1T [0 0] T [0 0}
i# i#j

B
For each pair of single-qubit states ,ol(l) , P 11) this sum may be

split into two separate sums, one where ,ol.(ll) #* ,0511) and one

TABLE IV. Table of coefficients in the random Hermitian matrix [Eq. (C1)] used to generate the random target unitary U, for the numerical
evaluation of the full trace process and 0 fidelity estimations presented in Fig. 3.

H, term Qi iyiy H, term Qi iy H, term i inis H, term Qi iyiy

o Dg @GO —0.12226 ocWg®g©® 0.82557 c®@gOg©® 0.07241 P Og©® —0.34315
Vg Og® —0.54535 cMgOg® —0.24266 c@g O 0.71791 P Og® —0.60957
cOgO® 0.07770 cVgOg? 0.83829 cPeOa® 0.12453 P O® 0.07668
0 VgOg® —0.83056 ocWg®g®) —0.92854 ARL AR 1Y 0.35785 cPgOg® —0.09843
cOgWg® —0.44200 cMgWg©® —0.22618 @ WOg® 0.43885 c®gWg® —0.99722
c@OgWa® —0.65783 oMW 0.36146 cPeWOg® —0.93251 c®eWa® —0.61818
o WgWg® —0.72367 ocWgMg® 0.17789 0®@gMg@ 0.45259 P Wg® —0.91497
cOgWg® —0.06722 cMgWg® 0.13096 @ Wg® —0.26926 c®gWg® 0.75595
cOe@a©® —0.75042 cVg@a® —0.78464 cPe@a® —0.30934 cPe@Pe® 0.71169
cVg®@g® —0.75602 ocWg@gh 0.76222 c®@g®g® 0.79482 c®g®@g® 0.04450
cOVg@e® 0.67848 cMNg@a® 0.50086 cPe@e® 0.56477 cPePe® —0.22242
cOg@a® —0.99924 cVg@a® —0.80395 P @@ 0.20221 cPe@a® 0.88407
cVg®g® 0.03075 ocWg®g©® 0.30451 c@g®g® 0.88503 c®g®g® —0.23753
cOg®g® —0.95405 cMg®ag® —0.90343 c@e®aM —0.93316 c®g®g® 0.32873
cOg®e® —0.42508 cVg®a? —0.66899 cPe®a?® —0.77155 cPePe® 0.77092
cWg®g® —0.31457 oWg®g® —0.19482 0@g®g® —0.92350 c®g®g® —0.54485
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TABLE V. Table of coefficients in the random Hermitian matrix [Eq. (C1)] used to generate the random comparison unitary e~ for the
numerical evaluation of the full trace process and 0 fidelity estimations presented in Fig. 3.

H, term Qi ipiy H, term Qi iy H, term i inis H, term Qi ipiy
0 Vg®g©® 0.50016 ocWg®g©® 0.23656 c@gOg©® —0.16832 P Og©® —0.94659
Vg™ 0.81491 oM™ 0.02643 g O 0.81125 P Og® 0.59747
AR AR C) —0.17869 cVgOg? 0.49818 cPeOg? —0.01940 P Og® 0.93269
0 VgOg® —0.30403 ocWg®g®) 0.74331 ARLe AR 1Y —0.07383 L ASe AT ASY —0.55021
cOgWg® —0.79330 cMgWg® —0.27526 @ WOag® 0.69006 cPgWe® 0.92612
c@©gWg® —0.85750 cDgWg® —0.30359 cPeWOg® —0.02089 P Wg® 0.76278
o VgWg® 0.32984 oWgWg® —0.47171 ARTe AN e 0.95378 P Wg® —0.42033
cOgWg® 0.50314 cMgWg® —0.99054 P Wg® 0.30379 c®gWe® —0.00098
cOe@a® —0.85538 cVe@a® 0.11111 c®g®g©® 0.24740 c®g®@g® 0.89360
0 Vg®@g® —0.94635 ocWg@g 0.78359 c@g®g® 0.54317 o®g®@g® 0.32564
cOe@e® 0.37845 cVg@a? —0.46577 cPe@a® —0.44707 cPePe® —0.73448
cOe@a® —0.77559 cVe@a® —0.36554 cPe@a® —0.67578 cPe@a® 0.28747
cVg®g® —0.59413 oWg®g©® —0.42969 c@g®g©® 0.44714 LeaSe AR A —0.98854
cOg®a® 0.86622 oM@ 0.27964 cPe®a® —0.95976 c®e®a® 0.08694
cOe®a® 0.11537 cVeg®ag? 0.97530 cPe®a?® 0.69712 cPe®a? —0.38816
0 Wg®g® 0.66967 ocWg®g® 0.34516 c®@g®g® —0.35423 JaSie AR ASY —0.18427
with p;ll ) — pj(ll ). text. Since this is true for all single-qubit terms / it necessarily

follows that the tensor product of these states is the minimum

Z Tr[p;pjv] _ Z Tr [:Oi(,l) '01(11 )] Z Trlps: Pj‘*] over all possible tensor product states.
i£] i#ji *
APPENDIX C: GENERATION OF RANDOM CHANNELS
+4)  Trlpzpzl, (B2)

P

where i* represents the remaining vectors in 7 with the /th term
removed. Each overlap between vector states Tr[ ;. ,07*] >0
since it cannot be the case that all such overlaps are O (since
this would imply the states are orthogonal) the sum over all
such states must be strictly positive, } .z Tr[p; 071 > 0. It
therefore follows that Eq. (B2) is minimized if and only if the
sum of overlaps Zi, £ Tr[,oi(,l)p;f)] is minimized, i.e., if the

states {,oi(ll)} are the single-qubit SIC states given in the main

The numerical analyses of the process and 0 fidelities in
Secs. II C and III C require the generation of random unitary
channels. In this Appendix the procedure for obtaining such
channels is outlined.

1. Random unitary channels

In the numerical evaluations of the process and 0 fidelities
in Figs. 1 and 2 and in the full trace estimations presented in
Fig. 3, the channels A and I" were implemented by target (U;)
and comparison (U,) unitary matrices as A(p) = U; pU,T and

TABLE VI. Table of U; parameters used in the circuit in Fig. 9 for the generation of a random benchmarking channel. The channel was
implemented on the ibmqg_toronto quantum device, with all deviations from ideality arising from noise in the machine.

Us gate 0 ¢ A

u" 4.64699 5.16852 4.38670
u? 5.04437 0.62442 4.59349
Uy 5.89901 3.90661 6.21039
vl 1.52430 1.40088 6.07413
ud 0.12721 0.36008 6.12182
U 1.37419 3.14458 5.41173
v’ 5.18368 0.12673 1.91885
u® 4.74807 2.12120 5.92042
u? 3.86544 5.88484 0.75772
Uy 5.64946 0.37099 2.58326
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TABLE VII. Table of U; parameters used in the circuit in Fig. 9
for the generation of a target unitary U,.

U; gate 6 ¢ A

v 4.84482 4.76108 5.94502
u? 0.39148 3.84468 5.47668
U 5.75781 1.08062 5.21778
Ul 0.75037 4.38013 0.00859
ud 1.23687 6.01724 1.93567
U 1.20877 0.87278 1.85682
v’ 2.64055 3.00598 1.23498
u® 1.00054 5.32563 0.46313
u? 3.63063 2.04242 5.88751
U 4.86354 2.56637 3.34799

I'(p) = U.pU;. Random target unitaries may be obtained by
the exponentiation of random Hermitian matrices, which may
themselves be generated as

3 n

> i, Qo (1)

i1,02,..., i,=0 k=1

H =

where o) are Pauli matrices acting on the kth qubit (with
0@ =1) and where the coefficients «;,;,..; are sampled
uniformly at random from the interval [—1, 1]. With a random
Hermitian matrix H, defined, the target unitary is then given
by U, = e .

The coefficients for the target unitary used in the nu-
merical simulations of the k fidelities presented in Fig. 1

TABLE VIII. Table of Us parameters used in the circuit in Fig. 9
for the generation of the comparison unitary.

U; gate 0 1] A

u" 4.81392 4.45876 5.75332
u® 0.49220 3.48554 5.51691
ud 5.79802 0.81921 5.60671
v 0.43546 4.76768 —0.15634
ud 0.98126 6.13769 1.65627
U 143111 0.82898 1.90723
v 2.39113 3.02910 1.32447
u® 0.62534 5.26572 0.35299
u? 3.61569 2.20167 5.89594
U 4.86430 2.60815 3.67214

are given in Table I. For the simulations of the O fidelities
shown in Fig. 2, the coefficients for the two- and three- qubit
target unitaries are given in Tables II and III while those
for the five-qubit target unitary can be found in the GITHUB
repository [60]. The coefficients for the target unitary used
in the full trace estimations presented in Fig. 3 are given
in Table IV.

For the comparison channels U,, one could generate
random unitary matrices in the same way, however, for bench-
marking purposes it is convenient to be able to control the
fidelities of the evaluated pairs of channels. For this reason,
the comparison unitaries U, were obtained as unitary rotations
of the target unitary U, generated by a random Hermitian
matrix H, as U, = e *“MrJ,e“!r| where € gives some control
over the realized fidelities. For Figs. 1 and 2, ¢ was varied
from O to 1 to obtain evaluations over a full range of fidelities,
while for Fig. 3 a single value of € = 0.1 was used. The
coefficients for the random Hermitian matrix H, used in the
full trace estimations presented in Fig. 2 are given in Table V.

2. Random quantum circuits

The projective estimations of the process and 0 fidelities
in Figs. 4 and 5 were performed using the circuit in Fig. 9
with all 30 parameters sampled uniformly at random from the
interval [0, 27r]. The parameters correspond to 10 U; gates,
each of which has three parameters 6, ¢, A which define the
gate as

cosf/2

—esinf/2
U3(9» ¢, )‘«): (eid’sin@/Z /

e'**9) cos 9/2) : (€2)

The specific parameters used are shown in Table VI. For the
experimental estimations presented in Fig. 5 the target channel
was obtained as the unitary representation of the circuit, and
so any departure from the ideal fidelity arises from noise in
the device.

For the numerical simulations presented in Fig. 4 the target
channel was obtained as the unitary representation of the
circuit and the comparison channel was generated by adding
random coefficients sampled from the interval [—0.4, 0.4]
to all of the Us parameters, with the same pair of channels
being used for all numbers of total experiments. The specific
parameters used in this work are given in Tables VII and VIII.
In these simulations various numbers of expectation values /
and shots m were used; these experimental setups are given in
Table IX.
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TABLE IX. Table showing the number of experiments / and the number of shots m for each set of total experiments /m assessed in the
numerical evaluation of the projective process and 0 fidelity estimations presented in Fig. 4.

0 fidelity Process fidelity
Total experiments [m Expectation values / Shots m Expectation values [ Unique experiments d! Shots m
896 28 32 28 224 4
3584 56 64 56 448 8
14336 112 128 112 896 16
57344 224 256 112 896 64
129024 336 384 112 896 144
229376 448 512 112 896 256
358400 560 640 112 896 400
516096 672 768 112 896 576
702464 784 896 112 896 784
917504 896 1024 112 896 1024
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