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For a system consisting of a quantum emitter coupled near threshold (band edge) to a one-dimensional
continuum with a van Hove singularity in the density of states, we demonstrate general conditions such that
a characteristic triple-level convergence occurs directly on the threshold as the coupling g is shut off. For small g
values the eigenvalue and norm of each of these states can be expanded in a Puiseux expansion in terms of powers
of g2/3, which suggests the influence of a third-order exceptional point. However, in the actual g → 0 limit, only
two discrete states in fact coalesce as the system can be reduced to a 2 × 2 Jordan block; the third state instead
merges with the continuum. Moreover, the decay width of the resonance state involved in this convergence
is significantly enhanced compared to the usual Fermi golden rule, which is consistent with the Purcell effect.
However, non-Markovian dynamics due to the branch-point effect are also enhanced near the threshold. Applying
a perturbative analysis in terms of the Puiseux expansion that takes into account the threshold influence, we show
that the combination of these effects results in quantum emitter decay of the unusual form 1 − Ct3/2 on the key
timescale during which most of the decay occurs. We then present two conditions that must be satisfied at the
threshold for the anomalous exceptional point to occur: the density of states must contain an inverse square-root
divergence and the potential must be nonsingular. We further show that when the energy of the quantum emitter
is detuned from threshold, the anomalous exceptional point splits into three ordinary exceptional points, two of
which appear in the complex-extended parameter space. These results provide deeper insight into a well-known
problem in spontaneous decay at a photonic band edge.
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I. INTRODUCTION

The physics of coalescing eigenstates at exceptional points
[1–3] have received attention in recent years in a variety of
physical contexts [4–17]. In part, this results from the fact that
exceptional points can be associated with parity-time (PT )-
symmetry breaking in PT -symmetric systems [18–20] that
have been studied as a potential non-Hermitian formulation of
quantum mechanics [20–23], as well as in more applied con-
texts [6,10,11,13,14,19,24–35]. However, exceptional points
also appear in traditional open quantum systems described
by a Hermitian Hamiltonian that incorporates both discrete
and continuous spectra [36,37]. In this context, exceptional
points denote the appearance of resonances that are usually
associated with exponential decay [38–45], although at least
in the immediate vicinity of the exceptional point the dynam-
ics might still be nonexponential even when the resonance is
present [46].
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In general, the exceptional point (EP) represents a de-
fective point in the parameter space of a given Hamilto-
nian where diagonalization is no longer possible as two
or more eigenstates coalesce. This situation is different
than an ordinary degeneracy, at which the eigenvalues
coincide while the corresponding eigenstates remain or-
thogonal to one another, and hence never coalesce. In
the usual picture, we refer to an exceptional point with
N coalescing eigenvalues as an EPN. Then the simplest
representation of the Hamiltonian at an EPN would con-
tain an N × N Jordan block [1,47,48]. Meanwhile, in
the vicinity of the EPN the eigenvalues (and other ex-
perimentally measurable quantities) can be expanded in
terms of a Puiseux series of the form Ej (ε) = Ē + α j (ε −
ε̄)1/N + · · · where ε̄ is the exceptional point and Ē is
the coalesced eigenvalue [1–3,14,49]. While most studies
have focused on the simplest case involving the coales-
cence of two eigenstates [5,50,51], higher-order exceptional
points involving three [52–58] or more [59–61] eigen-
states have received more attention in the last few years
[62–65]. Proposed applications involving exceptional points
include enhanced sensing [57,58,66,67] as well as modi-
fied spontaneous emission [68–70] and dynamical control
[46,64,71–75].

In this paper, we analyze an exceptional point that gener-
ically occurs at the continuum threshold (band edge) when a
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quantum emitter is coupled to a one-dimensional (1D) system
under certain conditions. As a result of the van Hove singular-
ity in the 1D density of states with characteristic divergence
1/

√
E − Eth, in which Eth is the continuum threshold, there

occurs a nearby level triplet consisting of a resonance, an an-
tiresonance, and a bound state. In the vicinity of the threshold,
their eigenstates and eigenvalues can be expanded in a Puiseux
series in terms of g2/3, in which g is the coupling to the quan-
tum emitter. This seems to suggest an EP3 at which all three
levels will coalesce in the limit g → 0. In fact, we find that the
exceptional point is technically an EP2, despite behaving for
physical purposes essentially like an EP3. Further, the decay
width � of the resonance is enhanced near the threshold (� ∼
g4/3) in comparison to the usual case in which Fermi’s golden
rule could be applied (� ∼ g2) [76]. This enhancement can be
viewed as an implication of the Purcell effect, which predicts
that the decay width of a quantum emitter is enhanced when
it is tuned to the natural frequency of a cavity or waveguide
[77–79].

After establishing these properties of the exceptional point,
we analyze in detail its influence on the survival probabil-
ity of the excited quantum emitter state. During the critical
timescale in which most of the decay occurs, a power-law
evolution manifests itself in which the exponent is determined
by two factors: one coming from the anomalous exceptional
point and the other coming from the continuum threshold
(branch-point effect) [46,80]. The dynamics on this timescale
can be viewed as a non-Markovian correction to the previ-
ously mentioned Purcell effect. We emphasize that this effect
should be rather universal; in particular, the same dynamics
occurs in a well-known problem involving spontaneous emis-
sion near the edge of a photonic band gap [81–83], but neither
the power-law decay nor the exceptional point shaping those
dynamics were previously noticed.

The models considered in this paper are written in terms
of a microscopic Hamiltonian that includes a structured reser-
voir to describe the environmental influence on the quantum
emitter, which means that there is a background continuum
with a well-defined bandwidth and density of states [76,81–
96]. This is opposed to the coupled mode theory that has
often been used to describe exceptional-point phenomena, in
which one assumes that the essential physics can be described
in terms of a few interacting resonance modes, while the
microscopic details of the system are set aside (including
the continuum). Although the microscopic description applied
here generally requires more effort to analyze the influence of
the exceptional point, in some situations the properties of the
discrete spectrum and those of the continuum cannot so neatly
be disentangled [46,48].

In Sec. II below we introduce a simple system consisting of
a quantum dot and a tight-binding chain in order to explicitly
demonstrate the properties of the threshold EP. In Sec. II B
we rewrite the model in terms of the quadratic eigenvalue
problem, which enables us to describe the physical and math-
ematical properties of the exceptional point. Then in Sec. III
we study the spectrum when the quantum emitter frequency is
detuned from the threshold, observing several ordinary EP2s
that occur in this vicinity. As the detuning and the coupling
are both shut off, these ordinary EP2s merge on the thresh-
old as the previously discussed anomalous-order exceptional

point appears. We show the Jordan block structure and other
technical properties of the anomalous-order exceptional point
in Sec. IV (see also Appendix A).

Then in Sec. V we consider the influence of the EP on the
time evolution of the excited quantum emitter state near the
threshold. We demonstrate that a (1 − Ct3/2)-type power-law
decay occurs as a result of the influence of the anomalous ex-
ceptional point. We discuss our results in Sec. VI and present
our argument that two conditions should be satisfied for the
anomalous-order EP to appear in a generic 1D quantum sys-
tem. We also discuss a potential experiment in circuit quantum
electrodynamics (QED).

II. MODEL AND FORMALISM

The primary model that we consider in this paper is a
quantum wire superlattice with an attached quantum dot [97].
The quantum wire is modeled by an infinite tight-binding
array such that our Hamiltonian takes the form

H = εd d†d − J
∞∑

j=−∞
(c†

j c j+1 + c†
j+1c j ) − g (c†

0d + d†c0),

(1)
in which c†

j is the creation operator at site j of the array, while
J is the resonant coupling strength between array elements,
which we set to unity as the unit of the energy. Meanwhile,
d† is the creation operator for the quantum dot excited state
with excitation energy εd . The dot is coupled to the zero
element of the chain c†

0 through the small coupling parameter
g. Note that because there is no particle-particle interaction
in this Hamiltonian, we can study the dynamics within the
single-particle subspace without approximation; further, the
following analysis could equally well apply for an equivalent
bosonic realization of the model such as in waveguide QED
in Ref. [98].

A. Eigenvalues: Siegert boundary condition, effective
Hamiltonian, and dispersion equation

To analyze the spectrum of our model we next write our
physical solution with the outgoing (or Siegert [39]) boundary
conditions

ψ (x) ≡ 〈x|ψ〉 =

⎧⎪⎪⎨
⎪⎪⎩

Be−ikx for x � −1
ψ0 for x = 0
ψd for x = d
Ceikx for x � 1.

(2)

Writing the Schrödinger equation 〈x|H |ψ〉 = E〈x|ψ〉 far from
the dot |x| > 1 yields the expression

−〈x + 1|ψ〉 − 〈x − 1|ψ〉 = E〈x|ψ〉, (3)

where we have set J = 1. Plugging into this Eq. (2) we find
the continuous eigenvalue

Ek = −2 cos k, (4)

over the domain k ∈ [−π, π ]. This defines the continuum in
the range Ek ∈ [−2, 2] with the associated density of states
given by

ρ(E ) = ∂k

∂E
= 1√

4 − E2
. (5)
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FIG. 1. The four discrete eigenvalues in (a) the complex E plane, and (b) the complex k plane, for the case εd = −2 and g = 0.5. The
upper bound state EB+ eigenvalue is indicated with a larger marker for visualization purposes only. (Energy is measured in units of J = 1 and
the wave number is measured in units of a = 1 throughout the paper.)

The divergences occurring at the band edges (continuum
threshold) E = ±2 are the van Hove singularities character-
istic of 1D systems [99–101].

Next we aim to obtain the discrete spectrum associated
with the quantum dot by solving the Schrödinger equation in
its vicinity. To do so we first introduce the projection operator
P = |0〉〈0| + |d〉〈d| for the central region consisting of the
dot |d〉 and the chain site |0〉 to which it couples. We further
introduce the operator Q = 1 − P that represents the system
environment. We then project out the Q sector according to the
Feshbach method [102,103] to write the Schrödinger equation
in the P sector as

Heff(Ej )P|ψ j〉 = Ej (P|ψ j〉), (6)

where we have applied Eq. (2). Here, the effective Hamilto-
nian Heff(E ) is given by

Heff(E ) = PHP + PHQ
1

E − Ek
QHP

=
(−2eik −g

−g εd

)
(7)

(see the Appendices of Refs. [104,105]). We emphasize that
Heff depends on E through Eq. (4). Now, taking the discrim-
inant of Eq. (6), we obtain the dispersion equation for the
discrete eigenvalues in the form

E − εd = 	(E ) =

⎧⎪⎪⎨
⎪⎪⎩

− g2√
E2−4

for E < −2

− g2

i
√

4−E2 for |Re E | < −2, Im E = 0+

g2√
E2−4

for E > 2,

(8)
where 	(E ) has been written specifically in the first Riemann
sheet and can be analytically continued to the second sheet
by the usual methods. After squaring to remove the root,
we obtain an equivalent quartic polynomial condition for the
eigenvalues as p(Ej ) = 0, in which

p(E ) = (E − εd )2(E2 − 4) − g4. (9)

Let us point out an immediate consequence of Eq. (9).
Notice that if we take εd = −2, the polynomial becomes
p(E ) = (E + 2)3(E − 2) − g4 = 0. If g < 1 is small, this

results in three eigenvalues clustered near the lower band edge
at E = −2. We present these eigenvalues as they appear in
the complex energy plane for the case g = 0.5, εd = −2 in
Fig. 1(a). We further show the associated value of the complex
wave vector k j , obtained from the dispersion Ej = −2 cos k j ,
for each eigenvalue in Fig. 1(b). Notice that one of the three
clustered eigenvalues (EB−) has Im kB− > 0, for which the
wave function form Eq. (2) yields a normalizable solution,
implying that EB− represents a bound state appearing in the
first Riemann sheet of the complex energy plane. The other
two among the clustered eigenvalues are a resonance ER and
an antiresonance EA with complex conjugate eigenvalues and
non-normalizable wave functions (these reside in the second
sheet). Finally, the fourth eigenvalue EB+ is also a bound state
but instead appears near the upper band edge. However, this
fourth solution plays little role in the physics in this situation,
and hence we can mostly ignore it in what follows.

From the form of the polynomial p(E ) = (E + 2)3(E −
2) − g4 = 0 at εd = −2, we can also easily see that in the
limit g → 0, the three clustered eigenvalues must converge on
the lower band edge. This behavior is illustrated diagrammat-
ically in Fig. 2. Further, we can obtain an expansion for the
eigenvalues in the vicinity of the band edge (threshold) for
small, nonzero g values by substituting an ansatz of the form
EB− = −2 + χαgα + χβgβ + · · · into the dispersion equation
(9) and solving for the coefficients χs and the exponents.
Doing so, we find an expansion for the bound-state eigenvalue

EB− = −2 − g4/3

22/3
+ g8/3

24 × 21/3
+ O(g4), (10)

as well as the resonance and antiresonance eigenvalues

ER,A = −2 + e±π i/3g4/3

22/3
+ e∓π i/3g8/3

24 × 21/3
+ O(g4). (11)

The resonance width � = 2Im ER has the predicted form
� ∼ g4/3, which is the Markovian aspect of the Purcell effect
discussed in Sec. I.

B. Eigenstates: Mapping to the quadratic eigenvalue problem

While the preceding formalism has yielded the energy
eigenvalue spectrum for the model in Eq. (1), notice that it is
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FIG. 2. Diagram demonstrating the convergence of the three
eigenvalues on the band edge (continuum threshold) E = Eth as
g → 0 for a generic model. This corresponds to the case εd = −2
and Eth = −2 (with J = 1) for the model in the main text.

not quite adequate to fully describe the behavior of the three
apparently converging eigenstates in the g → 0 limit, because
in Eq. (7) the effective Hamiltonian is written as a function
of its own eigenvalue, which means that any two differing
eigenstates technically belong to the solution space of two
different copies of Heff. In other words, Eq. (6) represents a
nonlinear eigenvalue problem (see Sec. II C of Ref. [46] for
a similar discussion). To address this problem, notice that we
could equivalently write the effective Hamiltonian, Eq. (7),
in terms of the variable λ = eik . This is a convenient choice
because we can use E = −2 cos k to write the energy variable
appearing on the right-hand side of Eq. (6) as

E = −λ − 1

λ
. (12)

Taken together, this allows us to rewrite Eq. (6) as an equiv-
alent quadratic eigenvalue problem in λ in the form of the
coupled equations

(1 − λ2)〈0|ψ〉 − gλ〈d|ψ〉 = 0 (13)

and

−gλ〈0|ψ〉 + (λ2 + εdλ + 1)〈d|ψ〉 = 0. (14)

In general, the quadratic eigenvalue problem can be solved
after mapping to a generalized linear eigenvalue problem
[106,107]. In the present case, we do so by rewriting the paired
Eqs. (13) and (14) in the form

(A − λB)|〉 = 0, (15)

in which

A =

⎡
⎢⎣

0 0 1 0
0 0 0 1
1 0 0 −g
0 1 −g εd

⎤
⎥⎦, B =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎦,

(16)

and the eigenvector |〉 takes the form

|〉 =

⎡
⎢⎢⎢⎣

〈0|ψ〉
〈d|ψ〉
λ〈0|ψ〉
λ〈d|ψ〉

⎤
⎥⎥⎥⎦ (17)

(see Ref. [105]). The four discrete eigenvalues λ j are obtained
in the present context from the discriminant of Eq. (15), which
yields the quartic f (λ j ) = 0 with

f (λ) = −λ4 − εdλ
3 − g2λ2 + εdλ + 1. (18)

This is equivalent to the quartic for the energy eigenvalue
p(Ej ) = 0 in Eq. (9). The norm of the corresponding eigen-
states is fixed by the normalization condition 〈̃ j |B| j〉 = 1,
which gives(

1 + λ2
j

)〈0|ψ j〉2 + (
1 − λ2

j

)〈d|ψ j〉2 = 1. (19)

Combining this with Eq. (13) we obtain the conditions

〈0|ψ j〉 = gλ j√
g2λ2

j

(
1 + λ2

j

) + (
1 − λ2

j

)3
(20)

and

〈d|ψ j〉 = 1 − λ2
j√

g2λ2
j

(
1 + λ2

j

) + (
1 − λ2

j

)3
. (21)

With the present formalism in hand, the four eigenstate
solutions | j〉 from Eq. (15) are now in one-to-one correspon-
dence with the four discrete eigenvalues from f (λ j ) = 0. This
will enable us to study precisely the behavior of the eigen-
vectors as we approach the triple degeneracy at the threshold
in Sec. IV B and Appendix A as well as the influence of the
degeneracy on the survival probability of the occupied dot
state in Sec. V. Before turning to these issues, however, we
first examine the eigenvalue spectrum in the vicinity of the
threshold in greater detail in the next section.

III. EIGENVALUE SPECTRUM IN THE VICINITY
OF THE THRESHOLD

In the previous section, we saw a snapshot of the spec-
trum for the case that εd coincided with the lower band edge
(threshold) E = −2. In this section, we relax this condition
and allow εd to vary in the immediate vicinity of the band edge
in order to illustrate the nearby presence of three ordinary
exceptional points. We will locate these EPs by applying the
method from Ref. [108].

In Fig. 3(a) we plot the real part of the three eigenvalues
that appear near the lower band edge for the value g = 0.1
while εd varies over εd ∈ [−2.15,−1.85]. The solid curve
here indicates the bound state E−. For values of εd < −2,
this bound state appears shifted slightly below the unper-
turbed energy εd itself. However, for εd > −2 this eigenvalue
breaks off and gets “stuck,” always appearing below the
lower band edge. Meanwhile, the two other eigenvalues are
shown by a dashed curve. When εd appears well below the
continuum at εd < ε̄0 ≈ −2.05518 . . . these solutions appear
as two virtual bound states, which are non-normalizable
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FIG. 3. (a) Real part and (b) imaginary part of the three eigenvalues appearing near the lower band edge for g = 0.1 and εd in the vicinity
εd ∼ −2. The solid curve indicates the bound state EB− in the first Riemann sheet, while the dashed curves indicate the two solutions in the
second sheet.

states with real eigenvalue in the second Riemann sheet
[49,80,91,105,109,110]. However, as εd draws closer to the
continuum at εd = ε̄0 the virtual bound states coalesce before
forming a resonance-antiresonance pair with complex con-
jugate eigenvalues. This shows that εd = ε̄0 is an (ordinary)
EP2.

We note that the above picture for the real part of the
eigenvalues [see Fig. 3(a)] is reminiscent of the traditional
avoided crossing picture in quantum systems; however, the
resonance and antiresonance actually collide while the bound
state experiences an avoided crossing with the other two so-
lutions. We will momentarily obtain deeper insight into this
picture.

The corresponding imaginary parts of these eigenvalues
are then shown in Fig. 3(b), in which we immediately see
that the resonance decay width −ImER ∼ g4/3 for εd � ε̄0 is
enhanced near the threshold εd ≈ −2 compared to the case
as εd becomes embedded deeper inside the continuum where
the Fermi golden rule would apply. This indicates that the
relaxation process should be enhanced near the continuum
threshold, as we would expect from the Purcell effect. How-
ever, to get a full picture for the decay dynamics we will
also have to take into account the branch-point effect; this is
worked out later in Sec. V.

Now we aim to obtain precise information about the lo-
cation of the EP2 at which the resonance and antiresonance
solutions appear. In the vicinity of any exceptional point we

can expand the associated eigenvalues in the characteristic
Puiseux expansion [1,50,108], which in the present case we
expect takes the form Ej = Ē + α j (εd − ε̄0)1/2 + · · · with Ē
being the coalesced eigenvalue and ε̄0 the location of the
exceptional point itself. Notice from this expression that the
derivative of the eigenvalue with respect to the parameter εd

blows up at the exceptional point as

∂Ej

∂εd

∣∣∣∣
εd =ε̄0

→ ∞. (22)

We make use of this fact to extract information about the EP in
the following quick derivation. First we take a full derivative
of Eq. (8) and rearrange to obtain

1 − 1

∂E/∂εd
= − g2E

(E2 − 4)3/2 . (23)

Then letting εd → ε̄0 (so that E → Ē ) we obtain a condition
on the coalesced eigenvalue as

(Ē2 − 4)3 = g4Ē2. (24)

This double-cubic polynomial yields three positive solutions
(associated with the upper band edge) and three negative solu-
tions (associated with the lower band edge). Maintaining our
focus on the lower band edge, we obtain the exact form of the
three negative solutions as

Ēn = −

√√√√4 + e
2π in

3 g4/3

(
2 + 1

3

√
36 − g4

3

)1/3

+ e
4π in

3 g4/3

(
2 − 1

3

√
36 − g4

3

)1/3

, (25)

for n = −1, 0, 1. The solution Ē0 corresponds to the pre-
viously discussed exceptional point εd = ε̄0 at which the
resonance and antiresonance pair appear [see Fig. 3(a)].
Meanwhile, Ē1 and Ē−1 are two complex-valued solutions
of Eq. (24) that can only be seen by extending the problem

into the complex εd parameter space, as shown in Fig. 4.
Notice that whereas it was the resonance and antiresonance
that coalesced at the real-valued EP2 ε̄0 corresponding to
Ē0, it is instead the complex extension of the bound state
that coalesces with one of the other two eigenvalues at the
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FIG. 4. Extension of the (a) real parts and (b, c) imaginary parts
of the three eigenvalues appearing near the lower band edge in the
complex-extended εd plane. We emphasize that (b) and (c) show the
imaginary parts of the same eigenvalues from two different view-
points. (Energy is measured in units of J = 1 throughout the paper.)

complex-valued EP2s corresponding to Ē1 and Ē−1, while the
third eigenvalue experiences an avoided crossing. (We note
this configuration of three EP2s is also studied from a pure
mathematics perspective in a recent work, Ref. [111].)

Also notice from Eq. (25) that for g → 0 the three ordinary
EP2s converge to the band edge at E = −2. This suggests
that in the g → 0 limit the three ordinary EP2s collectively
give rise to the anomalous threshold EP that was previously
introduced at the end of Sec. II A, and which is the main topic
of this work. From this point forward, we focus our attention
on the anomalous EP itself.

IV. PROPERTIES OF THE ANOMALOUS THRESHOLD
EXCEPTIONAL POINT

For the remainder of the paper, we focus directly on the
properties of the anomalous exceptional point at the lower
band edge. Hence, we now assume the parameter condition
εd = −2 is always satisfied, which corresponds to the vertical
red line in Fig. 3.

A. Small-g behavior of the eigenstates near threshold

Previously, we obtained Puiseux expansions for the three
converging energy eigenvalues in Eqs. (10) and (11), which
describe their behavior for small values of g at εd = −2. Next
we obtain similar expansions for the λ eigenvalues introduced
in Sec. II B as well as the corresponding norm of the con-
verging eigenstates. These expressions will prove useful in
analyzing the time evolution near the threshold later in Sec. V,
while also providing insight into the mathematical properties
of the anomalous exceptional point.

First, similar to the process that we used to obtain Eqs. (10)
and (11), we can obtain Puiseux expansions for the λ eigen-
values for the bound state

λB− = 1 − g2/3

21/3
+ g4/3

25/3
− g2

24
− g8/3

48 × 21/3
+ O(g10/3)

(26)
and resonance and antiresonance solutions

λR,A = 1 + e±π i/3g2/3

21/3
− e∓π i/3g4/3

25/3

− g2

24
+ e±π i/3g8/3

48 × 21/3
+ O(g10/3) (27)

after applying a generic form of these expansions in the λ

polynomial, Eq. (18).
As our next step, we can apply the above expressions in

Eq. (21) to obtain expansions for the 〈d| component of the
norm in the vicinity of the anomalous EP. For the bound state
we obtain

〈d|ψB−〉2 = 21/3

3g2/3
+ 1

3
+ g2/3

9 × 21/3
+ O(g4/3) (28)

and for the resonance-antiresonance pair we find

〈d|ψR,A〉2 = −e∓π i/321/3

3g2/3
+ 1

3
− e±π i/3g2/3

9 × 21/3
+ O(g4/3).

(29)
Notice in Eqs. (28) and (29) that the component of the norm
〈d|ψB−,R,A〉 diverges for all three states in the limit g → 0,
which conforms with the expected behavior of an exceptional
point [46,48,49]. In particular, it again seems to suggest that
all three of these states are converging to the dot state |d〉
in this limit. However, as we will show next, connecting the
small-g behavior of the system with the actual limit g → 0 is
a more subtle issue than what this picture suggests.

B. Jordan block structure in the g → 0 limit

We now obtain the explicit form of the eigenvalue problem
(15) in the limit g → 0. To simplify our discussion somewhat,
we first rewrite the generic form of the eigenvalue equation
slightly as

(B−1A − λ)|〉 = 0, (30)

which takes the form of an ordinary linear eigenvalue problem
of the non-Hermitian matrix B−1A. In the limit of interest
g → 0 with εd = −2, the non-Hermitian matrix B−1A takes
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FIG. 5. (a) Integration contour C in the complex λ plane for the original survival amplitude expression appearing in Eq. (33). (b) Integration
contour CE in the complex E plane surrounding the branch cut for Abc(t ) in Eq. (35) in addition to the two bound state poles AB±

pole(t ).
(c) Deformed integration contour in the complex E plane. The four contributions extending from E = ±2 out to infinity in the lower half
E plane give rise to the inverse power-law term in Eq. (53). The dashed lines represent contour contributions residing in the second Riemann
sheet.

the form

B−1A =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 −1 0 2

⎞
⎟⎠. (31)

It is then straightforward to show that this matrix can be
transformed to the simplest form

R−1(B−1A)R =

⎛
⎜⎝

−1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, (32)

which contains a 2 × 2 Jordan block, plus an additional de-
generacy (the form of R is reported in Appendix A). This
unambiguously demonstrates that the exceptional point at the
threshold is in fact an EP2, despite essentially behaving like
an EP3 in the vicinity of the coalescence.

More precisely connecting the EP3-like behavior for small
g with the actual EP2 in the g → 0 limit can be accomplished
by realizing that the three states |B−〉, |R〉, and |A〉 no
longer really exist individually in this limit. Instead, certain
linear combinations can be taken to appropriately connect
the spectrum in the two cases. However, since the details are
somewhat tedious and not strictly necessary for the proceed-
ing analysis, we leave these details to Appendix A.

V. NON-MARKOVIAN PURCELL EFFECT AND
INFLUENCE OF THE EP

Having established the spectral and mathematical proper-
ties of the anomalous exceptional point, we now analyze its
influence on the relaxation process of the excited quantum
emitter state. A number of works have established that excep-
tional points can influence spontaneous emission in a variety
of circumstances [46,64,68–75]. Below, we demonstrate that
the combined influence of the anomalous exceptional point

and the threshold itself determine the decay dynamics of the
dot during the most consequential timescale.

We assume that the system is initially in the state in which
the dot |d〉 is fully occupied. The survival probability P(t ) =
|A(t )|2 is given as the square modulus of the survival ampli-
tude A(t ) = 〈d|e−iHt |d〉, which in the context of the present
formalism is written as a sum over the contributions from each
eigenstate in the form

A(t ) = 〈d|e−iHt |d〉

= 1

2π i

∑
j={B±,A,R}

∫
C

dλ

(
−λ + 1

λ

)

× exp

[
i

(
λ + 1

λ

)
t

]
〈d|ψ j〉 λ j

λ − λ j
〈ψ̃ j |d〉. (33)

The contour C is shown in Fig. 5(a). Note that this expression
is derived for a generic tight-binding model in Ref. [105] and
for the present model in Ref. [44].

In Fig. 6(a) we show the evolution for the case g = 0.02,
very near the threshold EP. We note that the dynamics can be
broken down into several regimes: the earliest (and very brief)
quantum-Zeno timescale t � 1/|εd | yields the usual short-
time parabolic decay of the form P(t ) ≈ 1 − g2t2 [112–115].
This is quickly followed by an intermediate timescale 1 <

t � 1/g4/3, during which most of the decay occurs; it is dur-
ing this period that the influence of the anomalous exceptional
point on the dynamics is most pronounced, as detailed below.
A dip then appears in the probability that transitions into a
decaying oscillatory phase, which in turn gradually settles
asymptotically to an incomplete or fractional decay. The frac-
tional decay is due to population trapping in the bound state
EB− near the lower threshold. Note that the influence of the
upper bound state EB+ is negligible in this situation.

A. Intermediate-timescale dynamics

To evaluate the exceptional point influence on the dynam-
ics on the key timescale, we focus on the contributions to the
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FIG. 6. Survival probability near the anomalous EP for the case g = 0.02. (a) The full evolution including the long-time decay behavior.
(b) Close-up view including the intermediate time zone 1 < t � 1/g4/3 during which the influence of the EP is most strongly pronounced, as
shown by the red dashed curve representing the approximation from Eq. (52). The transition to the late-time approximation Eq. (53) [light blue
dotted curve] can also be seen. (c) Fuller view on the late-time evolution.

integral in Eq. (33) coming from the three coalescing states
j = B−, A, R. Changing the integration variable from λ to
E = −λ − 1/λ, we can rewrite the outer contour in Fig. 5(a)
as an integration over the branch cut in the energy plane, as
in Fig. 5(b). Then after neglecting the contribution from the
upper bound state B+ the total survival amplitude can be
written

A(t ) ≈ Abc(t ) + AB−
pole(t ) (34)

in which the branch cut contribution now takes the form

Abc(t ) = − 1

2π

∑
j={B−,A,R}

λ j〈d|ψ j〉2
∫
CE

dEe−iEt

√
1 − E2/4

E − Ej

(35)

= − 1

π

∑
j={B−,A,R}

λ j〈d|ψ j〉2
∫ 2

−2
dEe−iEt

√
1 − E2/4

E − Ej
,

(36)

and the pole from the lower bound state is evaluated as

AB−
pole(t ) = 〈d|ψB−〉2

(
1 − λ2

B−
)
e−iEB−t . (37)

In Eq. (35) the contour CE surrounds the branch cut in the
complex E plane as shown in Fig. 5(b). At this stage, we might
consider applying the expansions for the eigenvalues near the
EP from Sec. IV to evaluate the branch cut contribution Abc(t )
(which would be similar to the approach from Ref. [46]).
However, doing so, we find evaluating the pole at the band
edge to be a challenge. Instead, we rewrite the pole appearing
in Abc(t ) as a second integration in the form

Abc(t ) = − i

π

∑
j={B−,A,R}

λ j〈d|ψ j〉2

×
∫ ∞

0
dτ

∫ 2

−2
dEe−iEt ei(E−Ej )τ

√
1 − E2/4. (38)

Again transforming the integration variable from the E plane
to the k plane according to E = −2 cos k allows us to rewrite

the inner integration in terms of a Bessel function J1(x) as

Abc(t ) = −i
∑

j={B−,A,R}
λ j〈d|ψ j〉2

∫ ∞

0
dτe−iE jτ

J1[2(t − τ )]

t − τ
.

(39)
We note that the information about the branch cut is now
encoded in the Bessel function J1(2t ). Making a final integral
transformation to the variable t ′ = t − τ one can show that
the resonance and antiresonance contributions to Abc(t ) take
the form [44,46]

Abc, j (t ) = 〈d|ψ j〉2e−iE jt

(
1 − iλ j

∫ t

0
dt ′eiEjt ′ J1(2t ′)

t ′

)
(40)

for j = {R, A}, while the bound state contribution instead
evaluates as

Abc, B−(t ) = 〈d|ψB−〉2e−iEB−t

×
(

λ2
B− − iλB−

∫ t

0
dt ′eiEB−t ′ J1(2t ′)

t ′

)
. (41)

Finally, combining Eqs. (40) and (41) with the pole con-
tribution in Eq. (37) we obtain the total survival amplitude
[Eq. (34)] in the form

A(t ) ≈
∑

j={B−,A,R}
〈d|ψ j〉2e−iE jt

(
1 − iλ j

∫ t

0
dt ′eiEjt ′ J1(2t ′)

t ′

)
,

(42)
in which the contributions from the three states involved with
the EP all appear on an equal footing. This enables the follow-
ing analysis.

We are now in a position to apply our near-threshold ex-
pansions to study the influence of the EP on the evolution
during the key timescale. Introducing the small parameter
β ≡ (g2/2)1/3 we can treat β2t as the smallest non-negligible
quantity during the timescale 1 < t � 1/β2 (in which 1/β2 ∼
g−4/3). For the first term in Eq. (42) we can then expand
the exponential and apply the expansions near the EP from
Eqs. (10), (11), (28), and (29) to find∑

j={B−,A,R}
〈d|ψ j〉2e−iE jt ≈ e2it

(
1 − β3t2

2

)
. (43)

The eigenvalue expansion has yielded in the second term the
factor t2e2it , which one would expect in the vicinity of an
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effective third-order exceptional point. However, this term
will ultimately cancel in the final expression for the survival
amplitude.

Next, we perform a similar expansion for the second term
in Eq. (42), and then find it useful to rewrite the resulting
integrals over the Bessel function according to

Kn(t ) =
∫ t

0
dt ′e−2it ′

(t ′)n−1J1(2t ′). (44)

We then use the formulas

K0(t ) = i[−1 + e−2it (J0(2t ) + iJ1(2t ))], (45)

K1(t ) = 1

2
[1 − e−2it [(1 + 2it )J0(2t ) − 2tJ1(2t )]], (46)

K2(t ) = t

3
e−2it [−itJ0(2t ) + (i + t )J1(2t )], (47)

and finally expand the Bessel functions for t > 1 according to

J0(2t ) ≈
√

1

πt
cos (2t − π/4), (48)

J1(2t ) ≈
√

1

πt
sin (2t − π/4), (49)

to find the approximation for the second term of Eq. (42) as

−i
∑

j={B−,A,R}
λ j〈d|ψ j〉2e−iE jt

∫ t

0
dt ′eiEjt ′ J1(2t ′)

t ′

≈ e2it

(
β3t2

2
− 4β3t3/2

3
√

π
e−iπ/4

)
. (50)

Notice that the first term of this expression will cancel with
the second term of Eq. (43), as predicted. Further, note that the
second term here in Eq. (50) contains the factor t3/2e2it , which
can be understood as itself consisting of two factors, one
from the exceptional point and the other from the threshold.
The former is the factor t2e2it coming from the eigenvalue
expansion near the effective third-order EP that we have al-
ready encountered. The second factor t−1/2 appeared from
expanding the integral over the Bessel function in Eqs. (48)
and (49), which is the contribution from the band edge, similar
to Refs. [46,80].

Putting the two terms in Eqs. (43) and (50) together,
we obtain our approximation for the time evolution integral,
Eq. (42), as

A(t ) ≈ e2it

(
1 − 2g2t3/2

3
√

π
e−iπ/4

)
(51)

after again replacing β = (g2/2)1/3 with the physical param-
eter g. Finally, the resulting approximation for the survival
probability itself is given by

P(t ) ≈ 1 − g2t3/2

3
√

2π
. (52)

This approximation is shown by the dashed curve in Fig. 6(b),
which we see captures the dynamics quite well during the
period in which the majority of the decay occurs.

B. Long-timescale dynamics

Next, we evaluate the dynamics in the latter stages of
the evolution. As a general rule of thumb, we expect that
the branch-point effect will come to dominate the dynamics
as time progresses [46,80,98,116–120], which often leads to
inverse power-law decay as t → ∞. To evaluate this, we
return to the expression for the survival amplitude near the
threshold A(t ) ≈ Abc(t ) + AB−(t ) from Eq. (34). We evaluate
the branch-cut term Abc(t ) by deforming the integral contour
CE in Eq. (35) by dragging it into the lower half of the complex
energy plane as shown in Fig. 5(c). In doing so we pick up a
pole at the resonance eigenvalue, which is evaluated1 near the
threshold as AR

pole(t ) = 〈d|ψR〉2(1 − λ2
R)e−iERt ≈ 2e−iERt/3 +

O(g2/3) after applying the expansions in Eqs. (29) and (11).
Similarly, we can expand for the bound-state pole from
Eq. (37) to find AB−

pole(t ) ≈ 2e−iEB−t/3 + O(g2/3). The remain-
ing integration contour in Fig. 5(c) extends from the branch
points at E = ±2 out to infinity in the lower half plane; this
contribution yields the typical inverse power-law decay with
t−3/2 dependence in the amplitude (see also Refs. [80,98]).
Putting these three pieces together the survival probability in
this case follows

P(t ) ≈
∣∣∣∣23e−iEB−t + 2

3
e−iERt − eiπ/4e2it

√
πg2t3/2

∣∣∣∣
2

. (53)

This is shown as the light blue dotted curve in Fig. 6(c), which
focuses on the late-time evolution of the decay. We note that
this approximation picks up around the first minimum, just
as the oscillatory dynamics kick in. The three cross terms
in Eq. (53) each give a decaying oscillation with frequency
∼g4/3. However, the resonance contribution with lifetime
�−1 ∼ g−4/3 [about ∼184.2 for g = 0.02 as in Fig. 6(c)] has
mostly died out after the first oscillation, so that the dom-
inant contribution comes from the cross term between the
bound-state and power-law components, with oscillation fre-
quency EB− + 2 = g4/3/22/3. Finally, in the long-time limit,
the dot survival probability settles down to the asymptotic
occupation probability for the bound state, given simply by
P∞ = limt→∞ |AB−

pole(t )|2 = 4/9. This is shown by the hori-
zontal black line in Fig. 6(a).

VI. DISCUSSION

In this work, we have shown the existence of an
anomalous-order exceptional point at threshold (band edge)
in a simple 1D continuum model with an attached quantum
emitter and examined its influence on the decay dynamics
when the emitter is tuned to the threshold energy. Although
we have shown this in the specific model in Eq. (1), we claim
that it is a much more ubiquitous effect. Let us consider a
generic model for a simple open quantum system of the form

H = εqq†q +
∫

dk Ek c†
kck + g

∫
dk (vk c†

kq + v∗
k q†ck ),

(54)

1Note that this is different from our previous strategy to determine
the EP dynamics, in which we instead simplified the integral by
effectively removing the pole.
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consisting of the quantum emitter q† coupled to the continuum
mode c†

k . Note that our original Hamiltonian, Eq. (1), can be
placed in this form after applying a simple Fourier transform.
Here the continuum Ek ranges from a lower threshold Eth− to
an upper threshold Eth+ (the latter of which might appear at
infinity). We claim that there are two conditions to be placed
on this model in order for the anomalous threshold EP to be
realized. These conditions are most naturally expressed after
writing the self-energy function 	(z) as

	(z) = g2
∫

dEρ(E )
|v(E )|2
z − E

, (55)

in which ρ(E ) = ∂k/∂E is the density of states (DOS) func-
tion and we have rewritten v(E ) = vk(E ) by inverting Ek . (We
note the appearance of the so-called reservoir structure func-
tion ρ(E )|v(E )|2 in this expression, as previously defined in
the literature [87,88].) The first of the two conditions is that
the density of states must contain the square-root divergence

ρ(E ) ∼ 1√
Eth − E

(56)

at either threshold Eth, as occurred for our specific model in
Eq. (5). This is indeed the standard form for the van Hove
singularity in 1D systems [99–101]. Then the second condi-
tion appears on v(E ), which simply requires that this quantity
should be nonsingular at the threshold E = Eth. Assuming
these two conditions hold, then as shown in Appendix B
the self-energy function will reproduce the square-root di-
vergence, as occurred for our specific model in Eq. (8), and
hence the spectrum will contain the triple-level convergence
illustrated in Fig. 2 with energy eigenvalues that yield the
characteristic g4/3 Puiseux expansion, similar to Eqs. (10) and
(11) in the main text [in the case of the general model, the
Puiseux expansion follows directly from Eq. (B8)]. Physi-
cally, the quantity g4/3 appears in the inverse period of the
oscillations in Fig. 6. We mention that some quantities, such as
the norm in Eqs. (28) and (29), exhibit a slightly more general
expansion in terms of g2/3.

Illustrating this universality, we note that a similar picture
for the dynamics shown in Fig. 6 has previously appeared in
the literature [81–83] in the context of spontaneous emission
from atoms near a band edge within photonic band gap (PBG)
materials. In Ref. [83] the authors note “the peculiar power
of 2

3 being one of the signatures of the unconventional nature
of the PBG environment (p. 470).” In the present work, we
have revealed that the exceptional point is the underlying
mechanism that shapes the dynamics near such a band edge,
and that its Puiseux expansion is the origin of the “peculiar
power of 2

3 .” (See Refs. [76,92,93,97,121] for other models in
which a similar expansion appears.) Indeed, in Refs. [82,85]
the authors highlight the existence of a “doublet” consisting
of an atom-photon bound state and a resonance when an
atom is located near the photonic band edge; however, the
presence of an antiresonance is not noted. We have shown
that it is the eigenvalue convergence and (partial) coalescence
involving all three eigenstates that underlies the physics in this
situation.

While the anomalous-order exceptional point should be a
fairly universal feature, it should be considered that in this

work we have analyzed the problem only at the level of the
Hamiltonian dynamics, which cannot account for processes
like quantum jumps. Several quite recent works have revealed
that the parametric location and dynamical characteristics of
the exceptional points can become modified when treating the
problem at the level of the Liouvillian formalism with Lind-
blad terms that can account for such processes [16,65,122–
124]. However, recent experiments in circuit quantum elec-
trodynamics have to some extent circumvented this issue
through the process of data postselection, in which trials
that result in quantum jumps are eliminated from the final
analysis [125,126]. We propose that experimental observation
of the features of the anomalous exceptional point might be
achieved by a modified version of these experiments in which
a superconducting qubit is embedded in a waveguide (instead
of a cavity as in the original experiments [125,126]) with
the qubit transition frequency tuned to the lowest waveguide
cutoff mode.

We close the paper with the following two comments
aimed at placing our results in the context of the wider lit-
erature.

A. Comment on the anomalous order of the EP

We emphasize that one peculiar mathematical aspect of the
present results is the sharp distinction in the near-threshold
spectral properties of the system in the case of small cou-
pling as opposed to the case in which the coupling actually
vanishes. In the former case, the system behaves precisely as
if there were an EP3 at the threshold, whereas in the latter
case there instead appears an exact EP2. To connect these
seemingly incongruent pictures, we showed in Appendix A
that a reorganization of the eigenstates occurs in the limit in
which the coupling vanishes such that two linear combinations
of the three relevant eigenstates converge on the state of the
decoupled quantum emitter, while a third linear combination
instead merges with the continuum at the threshold. We men-
tion that this resolution of the problem was partly inspired by
Ref. [51], in which Hashimoto et al. introduced a novel basis
near an exceptional point such that the system eigenvectors
can connect continuously with the Jordan block representa-
tion directly at the EP, which we referred to in our internal
discussions as Hashimoto’s representation.

It is interesting to note that the mismatch between the
Puiseux expansion and the exact order of the EP in the present
case is rather different than what has appeared previously in
the literature. First, in the most typical case, in the vicinity
of an order-N exceptional point the relevant eigenvalues can
be expanded in a Puiseux series written in terms of an N th-
order root. However, in Ref. [54] the authors point out the
existence of a special case in which the eigenvalues are instead
organized into distinct subgroups (called cycles), which have
their own separate Puiseux expansions that are lower order
than N . For example, they demonstrate that an EP3 can occur
for which two coalescing eigenvalues can be expanded in a
square root near the EP3 (order-2 Puiseux expansion), while
the other coalescing eigenstate instead takes the form of a
Taylor series (which can be viewed as an order-1 Puiseux
expansion). Notice then that the order of the two cycles adds
up to the order of the EP itself: 3 = 2 + 1. We emphasize that
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here the order of the individual Puiseux expansions is always
lower than the order of the EP.

In contrast, in our case not only is there a mismatch be-
tween the order of the EP and that of the root appearing in
the Puiseux expansion, but the Puiseux expansion is instead
higher order than the EP itself. Further, this mismatch is re-
solved in a fundamentally different way: instead of subgroups
of eigenvalues with their own Puiseux expansions, the eigen-
states in our case form subgroups with different coalescing
behaviors (two linear combinations of eigenstates coalesce on
the discrete quantum emitter while a third instead merges with
the continuum).

The resolution to the mismatch in the present case points
to the reason that a more general type of exceptional point is
allowed in our model in the first place. The key point is that
in Ref. [54] the authors only consider finite, non-Hermitian
matrices, in contrast to our model, which incorporates an
eigenvalue continuum. Hence we conclude that the presence
of continuous eigenvalue spectra in a given Hamiltonian per-
mits a wider diversity of exceptional point types.

B. Wider context of near-threshold non-Markovian
dynamics in 1D systems

While here we have analyzed a situation in which the
eigenvalues of three states converge directly on the continuum
threshold, we note that the dynamical influence of individ-
ual states appearing near the threshold has previously been
studied in the literature in 1D systems. In Refs. [127,128]
it has been shown that a resonance with a near-threshold
eigenvalue can lead to full-time nonexponential decay. Mean-
while, in Refs. [80,88,89,110] it is shown that a virtual bound
state (or antibound state) merging directly with the contin-
uum threshold can also result in full-time inverse power-law
decay. More generally, the virtual state appearing in the vicin-
ity of the threshold introduces a timescale that characterizes
the power-law decay [80,110]. This timescale is inversely
proportional to the energy gap between the virtual state eigen-
value and the threshold, and it divides the dynamics into an
intermediate-time zone during which the survival amplitude
(survival probability) follows 1/t1/2 (1/t) decay, and a long-
time zone in which the amplitude (probability) instead falls
off as 1/t3/2 (1/t3) [80,110]. (We emphasize that a localized
bound state near the threshold introduces the same timescale
as the virtual bound state, but in this case the decay dynamics
are to some extent obscured by the incomplete decay resulting
from the bound state itself [80].)

Meanwhile, the dynamics associated with multiple (N)
eigenstates that coalesce at a real eigenvalue that itself appears
near the threshold is fundamentally different from, yet also
related to, the above cases. In Ref. [46] the case of two virtual
states coalescing before forming a resonance-antiresonance
pair is considered. In that paper, when the eigenvalue at
which the two states coalesce is near the threshold the pic-
ture is somewhat similar to that of the lone near-threshold
virtual state, except that the intermediate-timescale dynamics
is replaced with a decay of the form 1 − Ct1/2 [46]. Mean-
while, in the present work, we have shown that a triplet of
resonance, antiresonance, and bound eigenstates converging
directly at the threshold results in decay on the intermediate

timescale of the form 1 − Ct3/2. In either case, the inter-
mediate dynamics are replaced by the typical 1/t3 decay
on the asymptotic timescale, which matches with the single
virtual state case. Attempting to generalize from this picture,
we propose that the intermediate-timescale dynamics for N
converging eigenstates with real eigenvalue near the threshold
might be expected to contain a term with the time dependence
∼ tN−3/2. This can be understood as appearing after taking
the square modulus of the amplitude containing the terms
(1 − const 1

t1/2 × tN−1)e−iĒEPt , in which the factor tN−1e−iĒEPt

in the second term arises from an N th-order pole appearing
due to the N converging states, and the factor 1/t1/2 results
from the influence of the continuum threshold, just as in the
case of the single near-threshold virtual state discussed in
the previous paragraph. However, for the anomalous-order
EP in the present case, the number N seems to be equal
to the number of converging levels (N = 3) rather than the
technical order of the EP, which suggests that one might have
to consider the situation in which the EP occurs directly at the
threshold on a case-by-case basis.

The results for the near-threshold dynamics in two-
dimensional (2D) and three-dimensional (3D) systems re-
ported in Refs. [94–96] suggest that one probably must
consider these cases separately, as well. Another interesting
case that one could consider would be that of multiple eigen-
states converging on a complex eigenvalue near a threshold,
which would also likely be modified somehow from the above
scenario.
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APPENDIX A: EIGENSTATES IN THE g → 0 LIMIT AND
CONNECTION TO THE g �= 0 CASE

In this Appendix, we continue our development from
Sec. IV B, illustrating explicitly how to connect the 2 × 2
Jordan block appearing in the g → 0 limit with the EP3-like
behavior for g �= 0.

First we report the explicit form of the so-called
rotation matrix R appearing in Eq. (32) as R =
{|+〉, |d〉, |�d〉, |−〉}, in which

|+〉 =

⎛
⎜⎝

−1
0
1
0

⎞
⎟⎠, (A1)

and

|d〉 =

⎛
⎜⎝

0
1
0
1

⎞
⎟⎠, |�d〉 =

⎛
⎜⎝

0
−1
0
0

⎞
⎟⎠, |−〉 =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠, (A2)
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are the generalized eigenstates at the threshold EP. Here |+〉
in the first line represents the g → 0 limit for the lone bound
state that previously appeared above the upper band edge
in the case g �= 0. For g → 0, this state takes the eigen-
value λ+ = −1. Comparing the explicit eigenstate |+〉 =
{−1, 0, 1, 0}T with the generic form Eq. (17), we see that this
state is completely decoupled from the dot as 〈d|ψ+〉 = 0.
This indicates that |+〉 has merged with the continuous spec-
trum in the g → 0 limit.

The three remaining states |d〉, |�d〉, and |−〉 are those
that each share the eigenvalue λ j = 1. This includes |d〉 =
{0, 1, 0, 1}T, which is the uncoupled dot state, and |�d〉 =
{0,−1, 0, 0}T, which is the associated pseudoeigenstate. To-
gether, these two states satisfy the Jordan-chain relations

(A−1B)|d〉 = |d〉, (A3)

(A−1B)|�d〉 = |�d〉 + |d〉. (A4)

Finally, |−〉 = {1, 0, 1, 0}T again represents a state that is
completely decoupled from the dot and has joined the contin-
uous spectrum. While |+〉 merged with the continuum at the
upper band edge with eigenvalue λ+ = −1 (E = 2), |−〉 is
instead merged at the lower band edge with eigenvalue λ− = 1
(E = −2).

However, the observant reader may take some discomfort
at this point, noting that it is not immediately clear how the
three states |R〉, |A〉, and |B−〉 involved in the conver-
gence on λ = 1 for small g from Sec. IV connect with the
three (generalized) states |d〉, |�d〉, and |−〉 appearing in
the actual g → 0 limit. In particular, the state |−〉 cannot
be directly connected with the limiting behavior of the lower
bound state |B−〉 in the same way that |+〉 simply emerged
as the limit of the upper bound state. Indeed, Eq. (28) seems
to suggest that |B−〉 should just participate in the eigenvalue
coalescence with the other two states.

The resolution to this issue comes in the realization that
the states |d〉, |�d〉, and |−〉 can only be obtained as the
limit of specific linear combinations of the bound state, res-
onance state, and antiresonance state. This approach borrows
conceptually from Hashimoto’s representation (introduced in
Ref. [51]), in which an extended Jordan block representation
is written such that the eigenvectors away from an exceptional
point can connect continuously with those appearing directly
at the EP (see also Sec. V of Ref. [48]).

As our initial step, we note that in the case εd = −2 we can
use Eq. (14) to write gλ j〈0|ψ j〉 = (1 − λ j )2〈d|ψ j〉. Combin-
ing this with Eqs. (28) and (29), we can rewrite Eq. (17) as

|j〉 = 〈d|ψ j〉

⎛
⎜⎜⎜⎜⎜⎝

e
−2π iα j

3
( g

4

)1/3 + O(g)

1

e
−2π iα j

3
( g

4

)1/3 + O(g)

1 − e
2π iα j

3
( g2

2

)1/3 + O(g4/3)

⎞
⎟⎟⎟⎟⎟⎠, (A5)

in which α j = 0 for the bound state (with j = B−), α j = −1
for the resonance ( j = R), and α j = 1 for the antiresonance
( j = A). Using this expression, we first obtain the dot state

from the most straightforward linear combination,

|d〉 = lim
g→0

∑
j=B-,R,A

1

3〈d|ψ j〉 | j〉

= lim
g→0

⎛
⎜⎜⎜⎝

O(g)

1

O(g)

1 + O(g)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

1

0

1

⎞
⎟⎟⎟⎠. (A6)

To obtain the partner pseudodot state, however, we need to be
a little more clever. From the following linear combination, we
can engineer the cancellation of all the leading-order entries in
Eq. (A5), so that we get

|�′
d〉 = lim

g→0

∑
j=B-,R,A

e
−2π iα j

3

3(g2/2)1/3〈d|ψ j〉 | j〉

= lim
g→0

⎛
⎜⎜⎜⎜⎝

O(g1/3)

0

O(g1/3)

−1 + O(g2/3)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

0

0

−1

⎞
⎟⎟⎟⎠. (A7)

Note that this pseudostate is actually different from |�d〉
appearing in Eq. (A2). In fact, this pseudostate satisfies the
Jordan-chain relation

(A−1B)|�′
d〉 = |�′

d〉 − |d〉, (A8)

which is different from Eq. (A4). However, a new, equally
valid pseudostate can always be obtained from a previously
known one by combining it with the corresponding eigenvec-
tor. Hence, we can easily obtain the original pseudostate |�d〉
by writing |�d〉 = −|�′

d〉 − |d〉.
Finally, we can obtain the state appearing at the lower band

edge from the combination

|−〉 = lim
g→0

∑
j=B-,R,A

e
2π iα j

3

3(g/4)1/3〈d|ψ j〉
| j〉

= lim
g→0

⎛
⎜⎜⎜⎜⎝

1 + O(g2/3)

0

1 + O(g2/3)

O(g)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1

0

1

0

⎞
⎟⎟⎟⎠. (A9)

APPENDIX B: TRIPLE-LEVEL CONVERGENCE
APPEARING IN THE GENERIC MODEL

In Sec. VI we claimed for the generic model given in
Eq. (54) that two conditions are required for the triple-level
convergence in Fig. 2 and anomalous exceptional point from
the main text to occur. One of these conditions was that the
continuum must be 1D, which yields the characteristic van
Hove singularity (Eth − E )−1/2. The second condition was
that the potential v(E ) must be nonsingular at the threshold
v(Eth). We motivate these claims in what follows.

We briefly note that we have applied the rotating-wave
approximation in writing our generic model in Eq. (54). How-
ever, Ref. [76] provides an example of a slightly more general
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model in which counter-rotating terms are retained and yet the
threshold EP still occurs.

1. Form of self-energy for the generic model

Here we quickly outline the conditions such that the
self-energy function from Eq. (55) for the generic model re-
produces the square-root divergence in the denominator from
the DOS, which in turn yields the anomalous EP. We start by
rewriting the self-energy function in terms of an integration in
the complex wave vector plane as

	(E ) = g2
∫ ∞

−∞
dk

|vk|2
E − Ek

. (B1)

We assume that 	(E ) is defined first for real E appearing
below the continuum threshold E < Eth (i.e., a bound state).
Afterwards the result can be analytically continued into the
complex domain. Next we assume a generic dispersion re-
lation of the form Ek ∼ k2 + Eth, which might be exact or
merely an approximation near the threshold Eth. Then we
rewrite 	(E ) in the form

	(E ) = −g2
∫ ∞

−∞
dk

|vk|2
(k − k+)(k − k−)

(B2)

in which k± = ±i
√

Eth − E . Since the integrand of this ex-
pression vanishes like 1/k2 as k → +i∞, we can close the
integration contour in the upper half of the k plane, so that
taking the residue at k+ gives

	(E ) = −πg2|vk+(E )|2√
Eth − E

. (B3)

Thus the self-energy function obtained by integration over the
1D continuum has recreated the square-root divergence from
the DOS, which verifies our first condition.

For the second condition, notice that if vk+ contained some
singularity at k+ = 0 (E = Eth), this would have the effect
of disturbing the square root in the denominator and thus
the anomalous exceptional point would no longer appear (as
occurs for the models in Refs. [89,91,110], for example).

Note that a further term that is analytic at Eth might arise
depending on the precise form of vk or integration over a
second continuum with a different threshold, for example.
Hence, we can write the self-energy in Eq. (B3) in a slightly

more general form as

	(E ) = g2�(E ) + g2 λ(E )√
Eth − E

(B4)

in which �(E ) and λ(E ) are both analytic in E . (Notice that
this is now more general than the model from the main text.)
One could reasonably suppose that the presence of the �(E )
term here might disrupt the occurrence of the triple-level
convergence associated with the exceptional point for this
more general case. We show in Appendix B 2 that indeed the
triple-level convergence still occurs.

2. Generality of the triple degeneracy at threshold

Here we demonstrate that the form of the self-energy re-
ported in Eq. (B4) indeed yields the triple degeneracy at
threshold in the limit of vanishing coupling, as described in
the main text and in Fig. 2.

The point spectrum for the generic model is obtained from
the dispersion equation E − εq = 	(E ), which corresponds
to Eq. (8) for the model in the main text. To study the point
spectrum in the vicinity of the threshold we specify εq = Eth

in this equation and use the explicit form of Eq. (B4) to write

E − Eth = g2�(E ) + g2 λ(E )√
Eth − E

. (B5)

Multiplying through by x ≡ √
Eth − E we obtain a cubic

equation in x of the form x3 + g2�(E )x + g2λ(E ) = 0, which
is solved by √

Eth − E = ξ
1/3
+ + ξ

1/3
− (B6)

with

ξ± =
−g2λ ± g2λ

√
1 + 4g2�3

27λ2

2
. (B7)

For small g � 1, we find that ξ− ≈ −g2λ is of lower order
than ξ+ ≈ g4�3/27λ, which results in√

Eth − E ≈ −(g2λ)1/3. (B8)

Squaring, then cubing, we immediately see the familiar form
(E − Eth )3 = −g4λ2 from the main text in Sec. II A, which
yields the expected triple-level convergence as g → 0 as
well as the Puiseux expansion in terms of g4/3. (See also
Refs. [76,81,83,90,92,93,97,121] for specific models in which
a similar expansion has appeared.)
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[13] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda,
G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang,
Parity-time-symmetric whispering-gallery microcavities, Nat.
Phys. 10, 394 (2014).

[14] S. Garmon, M. Gianfreda, and N. Hatano, Bound states,
scattering states, and resonant states in PT -symmetric open
quantum systems, Phys. Rev. A 92, 022125 (2015).

[15] M.-A. Miri and A. Alù, Exceptional points in optics and pho-
tonics, Science 363, eaar7709 (2019).

[16] F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori,
Quantum exceptional points of non-Hermitian Hamiltonians
and Liouvillians: The effects of quantum jumps, Phys. Rev. A
100, 062131 (2019).

[17] A. Ben-Asher, D. Šimsa, T. Uhlířová, M. Šindelka, and N.
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