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High-fidelity state transfer between leaky quantum memories
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Employing the scattering-Lindblad-Hamiltonian formalism description of quantum network theory, we model
the general problem of quantum state transfer between two disparate quantum memory blocks in an open
quantum system. We derive an analytical expression for the fidelity of quantum state transfer between the
memory blocks under the action of a specific phase space trajectory for each of the relevant classical control
fields. We find a set of trajectories that maximize the state transfer fidelity between asymmetric systems. We
show that, for the example where the mechanical modes of two optomechanical oscillators act as the quantum
memory blocks, their optical modes and a waveguide channel connecting them can be used to achieve a quantum
state transfer fidelity of 96% with realistic parameters using our optimal control solution. The effects of the
intrinsic losses and the asymmetries in the physical memory parameters are discussed quantitatively.
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I. INTRODUCTION

Many hybrid quantum systems are being explored to en-
hance the functionality, scalability, and resource-constrained
processing power of near-term quantum information process-
ing systems and networks [1–4]. High-fidelity quantum state
transfer will enable key network functions such as entangle-
ment distribution [5] and quantum repeaters [6]. It also allows
for various distributed quantum information processing ar-
chitectures [7,8]. Quantum memories with long decoherence
time serve an important role in these systems by reducing
the error correction burden associated with decoherence and
loss [9,10], as well as by providing coherent quantum storage
for processes that require asynchronous qubit operations in
algorithms [11]. Thus an ideal quantum memory is a physical
system with a long decoherence time and read and write
functions enabled via a controllable coupling to intermedi-
ary qubits that can propagate between processing blocks and
memory blocks or between memory blocks. Regardless of the
physical instantiation of quantum memory architecture, the
crucial problem to solve is how to configure the time-varying
coupling between the storage and intermediary qubits to ac-
complish optimal quantum state transfer between memory
blocks and other elements.

In recent years, there has been significant progress in un-
derstanding how to transfer quantum information to different
nodes of a quantum network. For example, Cirac et al. con-
sidered quantum state transfer between two atomic quantum
memories coupled by a photonic channel and optical control
fields. They showed that this transfer could be made highly
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efficient by using a complex but realizable pulse modulation
scheme [5]. Since then, various experiments have demon-
strated parts or all of this scheme on optical, microwave, and
atomic systems, such as the experimental demonstration over
a photonic channel [12] and reversible state transfer between
light and an atom [13]. Some studies have considered the
quantum state transfer between flying photons and cavity stor-
age quanta [14]. More recently, microwave photon quantum
state transfer was experimentally demonstrated [15,16], along
with teleportation between optical beams and mechanical
modes [17]. However, the analysis so far does not have the
capacity to describe the transfer in the presence of losses and
nonidealities, such as leakage into undesired channels. Partic-
ularly, an optimal strategy for quantum state transfer between
two asymmetric quantum systems with differing energies be-
tween the two qubit basis states is completely missing. In a
realistic and scalable quantum network, it is highly expected
that quantum information will be transferred between nodes
that are asymmetric due to the conflicting requirements for
performing various quantum operations in each node.

Here, we present the generalized optimal quantum state
transfer scheme for two asymmetric quantum systems. Our
theory covers quantum memory blocks composed of both
identical physical systems and distinct physical systems (with
different energy gaps between the corresponding two qubit
basis states). Our theory is applicable to both the fermionic
memory states (such as spin states) and bosonic memory states
(such as phonons). We develop a general model of quantum
state transfer for open quantum systems with controllable
coupling rates and derive a completely general analytical so-
lution to the optimal control trajectories that accomplishes
the highest quantum fidelity obtainable. Knowing the optimal
quantum state transfer scheme is crucial to realizing a prac-
tical and truly scalable quantum network or hybrid quantum
computer. For this, we adopt the emerging scattering-
Lindblad-Hamiltonian (SLH) formalism description of quan-
tum network theory [18,19] to model the entire system and
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derive the relevant system evolution. Based on the full-
quantum treatment, we demonstrate that one can determine
the optimal quantum state transfer strategy for given system
parameters. Our treatment includes realistic nonidealities—
i.e., the intrinsic losses—and shows that the optimal solution
and the final quantum state transfer fidelity are functions of
the intrinsic losses. As a concrete example, we will consider
two disparate optomechanical quantum memory blocks for
optimal quantum state transfer. It will be shown that employ-
ing the mechanical mode of an optomechanical oscillator as a
quantum memory is tremendously advantageous when imple-
menting such a scheme, since it provides a versatile and con-
trollable coupling mechanism via photon field, along with the
desired long decoherence time via the phonon field [20,21].

We emphasize that the previous result obtained by Cirac
et al. [5] considered only fully symmetric systems where the
derivations are significantly simpler than our current results. A
legitimate question then is why there has not been a follow-up
result for the asymmetric systems given the long time gap
between the result of Cirac et al. and our result. It is because
solving the quantum state transfer between asymmetric sys-
tems is not a straightforward expansion of the result given
by Cirac et al.. Any attempt at such a rudimentary expansion
based on the approach of Cirac et al. would fail. We overcame
this enormous challenge by way of using the new Hilbert
spaces and corresponding operators for dark and bright modes
that capture the asymmetric nature completely in the defined
operators. This method led to affine quantum master equations
and produced an exact solution to the problem of asymmetric
systems. We further show that applying the result given by
Cirac et al. directly to an asymmetric system case produces
a significantly poorer fidelity compared with the one from
our derived formula. This proves that our derived formula for
general asymmetric systems is a substantial advancement.

The main goal of this paper is to obtain the optimal
time-varying control trajectories that accomplish the highest
quantum transfer fidelity. For this, we start with a quantum
state transfer model in Sec. II, where the SLH formalism will
be used to derive the time evolution of qubit states. Based on
this full-quantum model, Sec. III solves for the optimal control
trajectories for given system parameters, and Sec. IV provides
useful numerical examples with realistic optomechanical
cavity parameters.

II. MODEL

In general, it is useful to build quantum memory from
long-decoherence quanta (e.g., phonons), while employing
quanta with high propagation velocities (e.g., photons) to
transfer information between memory blocks. As such, our
goal is to determine how the coupling coefficient between
each memory state and the traveling intermediate quantum
states connecting the two blocks can be modulated over time
such that the transduction fidelity is maximized from the
first block to the second block via the intermediate states.
Figure 1 depicts the quantum state transfer between two
generic quantum memories in block 1 (S1) and block 2
(S2). The aim is to transfer the quantum information initially
stored in the long-decoherence memory state of block 1
(S1) to the long-decoherence memory state of block 2 (S2).

FIG. 1. A schematic for general quantum state transfer between
two disparate generic memory blocks. [b1, b2, annihilation operators
for the long-decoherence memory states; a1, a2, annihilation oper-
ators for the intermediate states that couple with the input and the
output of the memory blocks; g1(t ), g2(t ), the adjustable coupling
between the memory states and the intermediate states; �i,1, �i,2, the
intrinsic loss rates of the memory states; κi,1, κi,2, the intrinsic loss
rates of the intermediate states].

As for the stored quantum information, we will assume a qubit
composed of the two basis states |g〉 and |e〉, representing
vacuum and singly excited states, respectively. Intermediate
quantum states in memory blocks, which couple with the
input and the output of the memory blocks, mediate the
quantum information to and from the memory states when
the coupling mechanism [g1(t ), g2(t )] is turned on.

To start the analysis, we establish a Hilbert space composed
of a tensor product of the memory state for S1, the memory
state for S2, the intermediate quantum state for S1, and the
intermediate quantum state for S2, represented by the annihi-
lation operators b1, b2, a1, a2 and creation operators b†

1, b†
2,

a†
1, a†

2, respectively. The S1 memory is initially in an arbitrary
superposition of ground and excited states, corresponding to
the coefficients cg and ce. Therefore the initial state of the
overall system can be expressed as follows:

|�(ti)〉 = (cg|g〉 + ce|e〉)|g〉|00〉
= cg|gg〉|00〉 + ce|eg〉|00〉. (1)

The two slots of the first ket are the memory states of S1
and S2, respectively, and those of the second ket are the
intermediate states of S1 and S2. Here, we assume that the
memory states are qubits. Our goal is to faithfully transmit
the excitation in b1 to b2, such that the final state becomes

|�(t f )〉 = cg|gg〉|00〉 + ce|ge〉|00〉. (2)

Note that as long as the system starts with 0 or 1 excitation in
the S1 memory mode and vacuum in all other modes, energy
conservation ensures that the total number of excitations in the
system at any given time can never exceed 1, thus restricting
the Hilbert space to five dimensions, spanned by |gg〉|00〉,
|eg〉|00〉, |gg〉|10〉, |gg〉|01〉, and |ge〉|00〉. This ensures that
the probability that the b2 mode will be multiply occupied
at the end of the transfer process is always zero. Furthermore,
the fact that the total excitation number is capped at 1 also
makes our model valid for both bosonic modes and two-level
fermionic or fermionlike modes (for example, Cirac et al. [5]
use a two-level atom for each memory mode).

Next, we determine the Hamiltonian governing this system.
Our system consists of two blocks i = 1, 2, with the following
self-energy Hamiltonian for each:

H (i)
self = h̄ωc(a†

i ai + b†
i bi ). (3)
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Note that we have engineered the system such that the mem-
ory state and the intermediate quantum state for each block
are resonant with each other. This accords with the treatment
by Cirac et al. [5] and is justified by the need to maximize
the quantum state transfer efficiency. Specifically, detuning
between the states would sharply attenuate the effective inter-
action rate and thus massively slow down the quantum state
transfer. Furthermore, also in accordance with Cirac et al., we
engineer the S1 and S2 modes to be resonant with each other.
This is also due to the need to maximize the transfer efficiency,
since any detuning between the intermediate quantum state
of S1 and that of S2 would sharply hinder absorption of the
output of S1 into S2.

Given a time-varying interaction g(t ) between the memory
state and the intermediate quantum state, we consider a class
of memory blocks that couples the mediating cavity field and
the long-term memory field via the following beam-splitter
interaction Hamiltonian, per Cirac et al. [5]:

H (i)
int = −h̄gi(t )(a†

i bi + aib
†
i ). (4)

We note that this form for the interaction Hamiltonian applies
to all systems for which the interaction processes conserve
the total number of quanta. In fact, this model covers a
vast majority of quantum memory configurations since in
most quantum memories the read and write function is ac-
complished via such a beam-splitter coupling Hamiltonian
between the mediating cavity field (photons or phonons) and
the long-term memory state. We note that this model covers
both the direct coupling, such as dipole coupling between
a cavity photon field and the spin memory state, and the
parametric coupling between the photon field and the phonon
memory states in an optomechanical system. In addition, prac-
tical quantum memories featuring beam-splitter atom-photon
interaction have already been realized [22,23]. For the ex-
ample of optomechanical oscillators as the memory block,
g(t ) = g0

√
n̄(t ) with the single-photon coupling coefficient

g0 = Gxzpf . G = −∂ωcav/∂x is the slope of the photonic res-
onance frequency over the displacement x of the mechanical
system, and xzpf is the zero-point-fluctuation parameter of the
mechanical system. Varying the control g(t ) is accomplished
through varying the photon population n̄(t ) at a red-detuned
driving frequency, while varying g0 is also possible as we
will explain later. For another example of the neutral atoms
as the memory block, g(t ) is the Rabi oscillation frequency, a
function of dipole moment and an adjustable driving electro-
magnetic field amplitude.

Adding the self-energy and the interaction Hamiltonian
yields the following total Hamiltonian for each block in the
static frame:

H (i) = H (i)
self + H (i)

int

= h̄ωc(a†
i ai + b†

i bi ) − h̄gi(t )(a†
i bi + aib

†
i ). (5)

Due to the resonance among the modes, it is convenient to ex-
press it in the rotating frame, which leaves only the interaction
terms:

H (i) = −h̄gi(t )(a†
i bi + aib

†
i ). (6)

Next, it is essential to consider the various loss channels from
these blocks, which we will model using Lindblad operators.

In particular, the state transfer process utilizes the output
channel of the first memory block to connect to the second
memory block’s input channel. We will label the rates for this
coherent extrinsic loss process as κex,1 and κex,2 for S1 and
S2, respectively. In addition, we will need to account for the
incoherent intrinsic losses from the blocks. For the respective
blocks, we label the loss rates for the intermediate quanta as
κi,1 and κi,2 and the decay rates for the memory storage quanta
as �i,1 and �i,2. The Lindblad operators for the two blocks are
thus expressed in the following manner:

L1 =
⎛
⎝

√
κex,1a1√
κi,1a1√
�i,1b1

⎞
⎠, L2 =

⎛
⎝

√
κex,2a2√
κi,2a2√
�i,2b2

⎞
⎠. (7)

We now consider the overall system consisting of the two
blocks. Per Gardiner and Collett [24], for a mode n coupled to
a bath via a single input-output channel, the relationship be-
tween the mode annihilation operator an, output annihilation
operator aout,n, and input annihilation operator ain,n is given as
follows:

aout,n = ain,n + √
κex,nan, (8)

where n = 1, 2. The input to the intermediate quantum state
in the second block is identical to the output of that in the first
block, except for an appropriate time delay. One can eliminate
the time delay effectively from all formulas by introducing the
time-delayed operators for the operators in S2 [5]. Applying
this time adjustment, one can set ain,2(t ) = aout,1(t ) with the
implicit understanding of ain,2(t ) → ãin,2(t )[= ain,2(t − τ )],
where τ is the time delay. The output operator for S2, rep-
resenting a loss channel for the system, then takes the form
of a superposition of the two intermediate state annihilation
operators and the bath input operator for S1:

aout,2 = √
κex,1a1 + √

κex,2a2 + ain,1. (9)

We assume that the bath temperature is sufficiently low and
thus the input fields are in vacuum states. Then, ain,1 returns
a null value when applied on the system state. According to
the series connection rule of the SLH formalism [18], the
connected system’s Hamiltonian HT and Lindbladian LT take
the following form:

HT = −h̄g1(t )(a†
1b1 + a1b†

1) − h̄g2(t )(a†
2b2 + a2b†

2)

+ ih̄

2
√

κex,1κex,2(a†
1a2 − a1a†

2), (10)

LT =

⎛
⎜⎜⎜⎜⎝

√
κi,1a1√
�i,1b1√

κex,1a1 + √
κex,2a2√

κi,2a2√
�i,2b2

⎞
⎟⎟⎟⎟⎠. (11)

One way to physically explain the above result is as fol-
lows: the subprocesses corresponding to extrinsic loss from
the individual blocks are split into a part representing coher-
ent coupling between blocks, which we incorporate in the
composite Hamiltonian HT , and a part represented by aout,2

corresponding to system loss due to reflection of the propa-
gating wave packet from the second block, which enters into
the Lindbladian LT .
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III. ANALYTICAL SOLUTION

It is useful to incorporate the Lindblad operators into the
Hamiltonian in order to model the nonunitary time evolution
of the wave function in the basis of the excited states. In
general, for a set of loss channels labeled n, the effective
Hamiltonian takes the following form [5]:

H eff = H −
∑

n

i

2
L†

nLn. (12)

Since coherent reflection aout,2 serves as the dominant loss
channel, we start by expanding the Hamiltonian to incorporate
the corresponding Lindblad operator:

H ′ = HT − ih̄

2
(
√

κex,1a†
1 + √

κex,2a†
2)(

√
κex,1a1 + √

κex,2a2).

(13)

By default, this effective Hamiltonian is non-Hermitian for the
overall Hilbert space. However, we can design the couplings
g1(t ) and g2(t ) such that the system remains in a dark state
throughout the transfer process so that the system states evolve
coherently [5].

We first ignore the intrinsic losses. Defining the dimension-
less constant ε = κex,2/κex,1, we derive the dark mode (whose
annihilation operator is represented by ad ) by superposing a1

and a2 for the intermediate modes so that applying the anni-
hilation operator ad = a1 + √

εa2 onto the dark state returns
a null value. To solve for this dark mode, we construct the
following generic superposition of a1 and a2 modes:

|dark〉 = c1|10〉 + c2|01〉. (14)

Applying ad to this state and setting the output to 0, we derive
the following equation relating c1 and c2:

c1 + √
εc2 = 0. (15)

The coefficients c1 and c2 must also satisfy the normalization
condition:

(1 + ε)|c2|2 = 1. (16)

Solving the above two equations and substituting into
Eq. (A2), we find the dark mode wave function in terms of
the two cavity modes:

|dark〉 = 1√
1 + ε

(|01〉 − √
ε|10〉). (17)

We note that this dark state produces zero quanta in the S2
output channel (no information leakage) as the connected
system’s Lindblad operator produces a null result on this
state.

It is also necessary to define the bright mode (whose an-
nihilation operator is represented by ab) as orthogonal to the
dark mode:

|bright〉 = 1√
1 + ε

(
√

ε|01〉 + |10〉). (18)

The bright state produces nonzero S2 output quanta, losing
quantum information from the connected system, and there-
fore we want to avoid such a bright state in order to maximize
the quantum state transfer fidelity.

Next, we construct ladder operators corresponding to the
new basis for the intermediate state Hilbert subspace, so that
we can then rewrite the Hamiltonian in terms of those oper-
ators. We denote the annihilation operators for the dark and
bright modes as

ad = |00〉〈dark|, (19)

ab = |00〉〈bright|, (20)

respectively. These ladder operators can be related to a1 and
a2 by applying the required Hilbert space rotation:

ad = 1√
1 + ε

(a2 − √
εa1), (21)

ab = 1√
1 + ε

(
√

εa2 + a1). (22)

The Hamiltonian H ′ is thus expressed in terms of the new
intermediate state basis as follows:

H ′ = h̄g1(t )

√
ε√

1 + ε
(a†

d b1 + ad b†
1) − h̄g1(t )

1√
1 + ε

(a†
bb1 + abb†

1) − h̄g2(t )
1√

1 + ε
(a†

d b2 + ad b†
2)

− h̄g2(t )

√
ε√

1 + ε
(a†

bb2 + abb†
2) + ih̄

κex,1

2

√
ε(a†

bad − aba†
d ) − ih̄

κex,1

2
(1 + ε)a†

bab. (23)

Note that for the kernel of the a†
bab operator (i.e., the reduced

Hilbert space where applying a†
bab produces a null result for

all elements), H ′ becomes Hermitian because the system does
not decohere. Given the initial composite state described in
Eq. (1), the time-dependent composite state can be expressed
in terms of generic coefficients α1(t ), α2(t ), and βα (t ):

|�(t )〉 = cg|gg〉|00〉 + ce[α1(t )|eg〉|00〉
+ α2(t )|ge〉|00〉 + iβα (t )|gg〉|dark〉]. (24)

Next, we introduce the intrinsic, decohering loss processes
to the effective Hamiltonian. Since we design both blocks

such that these intrinsic loss rates are equally minimal, we
assume that κi = κi,1 = κi,2 and �i = �i,1 = �i,2 for simplic-
ity. However, we note that this simplifying assumption can be
removed, and it is straightforward to derive the general result
in the case of asymmetric intrinsic losses. This results in the
effective Hamiltonian

H eff
T = H ′ − ih̄

κi

2
(a†

bab + a†
d ad ) − ih̄

�i

2
(b†

1b1 + b†
2b2).

(25)

Now that we have decoherence in the system, by breaking the
Hermiticity of the Hamiltonian, the intrinsic losses introduce
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nonunitarity to the time evolution in the Hilbert space of the
excited states, such that |α1(t )|2 + |α2(t )|2 + |βα (t )|2 < 1 for
any time t > ti. Conceptually, the decline of the normalization
value over time corresponds to the increasing probability that
the system has collapsed to the vacuum state |gg〉|00〉, which
effectively increases the value of |cg|2.

Applying the Schrödinger equation, we obtain the dynam-
ically coupled differential equations:

α̇1(t ) =
√

ε√
1 + ε

g1(t )βα (t ) − �i

2
α1(t ), (26)

α̇2(t ) = − 1√
1 + ε

g2(t )βα (t ) − �i

2
α2(t ), (27)

β̇α (t ) = 1√
1 + ε

g2(t )α2(t ) −
√

ε√
1 + ε

g1(t )α1(t )

− κi

2
βα (t ). (28)

To prevent the system from entering the bright mode, we
constrict the range of coupling profiles g1(t ) and g2(t ) such
that

〈gg, bright|H eff
T |�(t )〉 = 0. (29)

This yields a fourth equation for the coefficients:

0 =
√

ε√
1 + ε

g2(t )α2(t ) + 1√
1 + ε

g1(t )α1(t )

+ κex,1
√

ε

2
βα (t ). (30)

Appendixes A–C demonstrate the method for solving the time
evolution of the coefficients, defining t = 0 as the halfway
point of the process. To reduce the range of possible coupling
profiles, we set g1(t ) and g2(t ) as constant for t � 0 and
t � 0, respectively, following Cirac et al. [5]. The reasoning
is that in the second (first) half of the process, the excited
population will largely be in S2 (S1), and therefore changes
in the coupling for S1 (S2) will not substantially alter the state
populations. It is worth noting that Xu et al. [25] used a linear
combination of Gaussian functions to construct the coupling
profiles but also obtained an approximately flat shape for the
driving field for segment 1 (2) when the excited population
was largely in segment 2 (1). For t � 0, we derive the follow-
ing expressions (see the Appendix B:

α1(t ) = e− 1
4 (κex,1+κi+�i )t

C

[
α1(0)C cosh

(
C

4
t

)
+ B′

2 sinh

(
C

4
t

)]
, (31)

βα (t ) = e− 1
4 (κex,1+κi+�i )t

C

[
βα (0)C cosh

(
C

4
t

)
− B′

1 sinh

(
C

4
t

)]
, (32)

α2(t )2 = e− 1
2 (κex,1+κi+�i )t

16g1(0)2

{(
κex,1βα (0)2 + 2g1(0)√

ε(1 + ε)
α1(0)βα (0)

)
A1(t ) +

[
2κex,1B′

1βα (0)

+ 2g1(0)√
ε(1 + ε)

(
α1(0)B′

1 − βα (0)B′
2

)]
A2(t ) +

(
κex,1B′2

1 − 2g1(0)√
ε(1 + ε)

B′
1B′

2

)
A3(t )

}
+ Ge−�it . (33)

Here, C = √
(�i − κex,1 − κi)2 − 16g1(0)2. Note that as t increases, α1(t ) and βα (t ) converge to zero as expected, since the

system should eventually either transition fully to the b2 memory mode or decay to the vacuum state. The functions A1(t ), A2(t ),
and A3(t ) are defined as

A1,3(t ) = ∓C2 − C(�i − κi − κex,1) sinh
(

C
2 t

) + (�i − κi − κex,1)2
[

cosh
(

C
2 t

) ± 1
]

C1∓1(�i − κi − κex,1)
, (34)

A2(t ) = −(�i − κi − κex,1) sinh
(

C
2 t

) + C cosh
(

C
2 t

)
C

, (35)

and the constants B′
1 and B′

2 are

B′
1 = 4

√
1 + ε

ε
g1(0)α1(0) + βα (0)(κex,1 + κi − �i ), (36)

B′
2 = 4

√
ε

1 + ε
g1(0)βα (0) + α1(0)(κex,1 + κi − �i ). (37)

Regarding the term Ge−�it , it is useful to note that �i �
κex,1, κi due to the extremely long memory decoherence time.
Therefore, over the timescale of the transfer process, e−�it

will approximately equal 1, resulting in G ≈ α2
2 (t f ), which

represents the fidelity of quantum state transfer.

For t � 0, the coefficient solutions take a simi-
lar form (see Appendix C), with the replacements
α1 ↔ α2, κex,1 → −εκex,1, C → D′ [where D′ =√

(�i + εκex,1 − κi )2 − 16g2(0)2], 2g1(0)/
√

ε(1 + ε) →
−2εg2(0)/

√
1 + ε in the coefficient for α1(t )2, G → G′, as

well as B′
1 → B′

3 and B′
2 → B′

4, where

B′
3 = −4(

√
1 + ε)g2(0)α2(0) + βα (0)(−εκex,1 + κi − �i ),

(38)

B′
4 = − 4g2(0)√

1 + ε
βα (0) + α2(0)(−εκex,1 + κi − �i ). (39)
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TABLE I. Optimal coupling g1(t ) and g2(t ) for t � 0 and t � 0 producing the highest quantum state transfer fidelity attainable.

t � 0 t � 0

g1(t ) − 1
α1(t )

( κex,1
√

ε(1+ε)
2 βα (t ) + √

εg2(0)α2(t )
)

g1(0)

g2(t ) g2(0) − 1
α2 (t )

( κex,1
√

1+ε

2 βα (t ) + 1√
ε
g1(0)α1(t )

)

As previously mentioned, e−�it ≈ 1 for all times ti � t � t f .
Therefore G′ ≈ α1(ti)2, and since the system starts out in the
b1 memory mode, this implies that G′ ≈ 1.

Having found solutions for the time evolution of the co-
efficients α1(t ), α2(t ), and βα (t ) in terms of their values at
t = 0, we can now use these functions along with the known
constants g1(0) and g2(0) to determine the optimal coupling
profile functions. The expressions for g1(t ) and g2(t ) are
shown in Table I (for a detailed derivation, see Appendix D).

IV. NUMERICAL METHODS

In order to determine numerical solutions for the coupling
profiles, we used MATLAB-based computation to calculate
the valid sets of (α1(0), α2(0), βα (0)). Due to the extremely
long memory decoherence time, we can generally set �i ≈ 0.
However, the intrinsic intermediate state loss will measurably
degrade the fidelity, as depicted in Fig. 2. The inverse cor-
relation between the fidelity and the ratio of intrinsic loss to
output coupling rate can be interpreted as follows: The output
coupling corresponds to the rate of transfer from S1 to S2. A
higher rate shortens the time over which the excitation is in
the intermediate form, thus reducing the probability that the
excitation decays due to intrinsic loss.

It is also useful to consider the effect of asymmetry be-
tween the blocks. Figure 3 depicts the optimal fidelity as
a function of the output coupling rates of the two blocks,
with the intrinsic loss rates set at the minimal value, i.e.,
κi = κi,1 = κi,2. As expected, the fidelity declines if either of
the extrinsic loss rates is reduced, approximately fitting an
exponential profile, which follows from the nearly exponential
variation of the fidelity with the reciprocal of the extrinsic loss
as shown in Fig. 2.

As a useful example, we consider empirical val-
ues for optomechanical oscillator blocks. A high-quality

FIG. 2. Optimal fidelity as a function of the ratio of intrinsic loss
rate to output coupling rate, assuming equal output coupling rates for
the two blocks, i.e., κex = κex,1 = κex,2.

optomechanical oscillator features a mechanical damping rate
of �i � 2π × 5 kHz and an intrinsic photon loss rate of κi ≈
2π × 100 MHz, along with an upper bound of 2π × 5 GHz
for the output coupling rates κex,1 and κex,2. The very low
value for the mechanical damping rate meets our requirement
that the memory decoherence be negligible over the timescale
of the process, and we therefore set �i ≈ 0. Having shown
that the fidelity is highest for maximal output coupling, we
also set κex,1 = 2π × 5 GHz = κex,2. For these inputs, our
calculations yield an optimal fidelity of about 96%. For the
choice of g1(0) = κex,1 = g2(0), α1(0) = 0.7, α2(0) = −0.7,
and βα (0) = 0, Fig. 4 depicts the time evolution of the state
populations |α1(t )|2, |α2(t )|2, and |βα (t )|2 and the correspond-
ing pulse profiles. Note that the total population degrades
due to intrinsic loss, with the fidelity represented by the final
population |α2(t f )|2 ≈ 0.96. For the given t = 0 values, it is
also evident that in the first half of the process, half of the pop-
ulation is transferred to the final phonon mode, which is then
repeated with the other half of the population. This indicates
that the process is close to time reversible (though full time
reversibility is prevented by intrinsic loss), corresponding to
the observation that g1(t ) and g2(−t ) closely match each
other.

Next, we consider an example of asymmetric memory
blocks, i.e., two blocks with differing output coupling rates.
Here, we set κex,1 = 2π GHz and κex,2 = 2π × 5 GHz, corre-
sponding to an asymmetry factor ε = 5. Given these inputs,
we find an optimal fidelity of 89.1%. Figure 5 depicts the
time evolution of the state populations and corresponding
pulse profiles for the choice of g1(0) = κex,1 = g2(0), α1(0) =
0.6535, α2(0) = −0.6560, and βα (0) = 0.2970.

It is worth comparing our fidelity result for the case of
asymmetric memory blocks with the result that would be pre-
dicted based on Cirac et al. [5]. Since Cirac et al. specifically
assume two blocks with equal output coupling rates, we apply

FIG. 3. Optimal fidelity as a function of output coupling to in-
trinsic loss ratio for S1 and S2.
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FIG. 4. Evolution of the state populations |α1(t )|2, |α2(t )|2, and |βα (t )|2 (a) and optimal pulse profiles g1(t ) and g2(t ) (b) over time for
κex = κex,1 = κex,2 = 2π × 5 GHz, κi = 2π × 100 MHz, g1(0) = κex = g2(0), α1(0) = 0.7, α2(0) = −0.7, and βα (0) = 0.

their theory to asymmetric blocks by rudimentarily averaging
the rates, deriving the pulse shapes using this averaged value
as the universal output coupling rate, and then applying these
pulse shapes to the actual Hamiltonian featuring the asym-
metric blocks. Intuitively, we would expect that this would
significantly degrade the fidelity, since the dark mode con-
dition is broken and substantial extra loss is incurred due to
reflection of the signal traveling from block 1 to block 2. This
is confirmed by examining the case of κex,1 = 2π GHz and
κex,2 = 2π × 5 GHz discussed above. If the pulse shapes are
solved for by setting the output coupling rate for both blocks
to the average value of κex = 2π × 3 GHz, then a numerical
simulation based on Quantum Toolbox in PYTHON (QUTIP

[26]) reveals that the maximum fidelity becomes 73.5%, well
below the 89.1% fidelity based on the pulse shapes derived
using our method. This example clearly shows that our deriva-
tion for the asymmetric systems is substantially critical in real
practical systems. Also, it shows that the earlier result by Cirac
et al. [5] is not directly applicable to the important examples
of asymmetrical systems.

One issue to be addressed is the physically valid range of
g1(t ) and g2(t ). For the example of optomechanical oscillator
blocks, if we store the phonon memory in a membrane at an
antinode of the cavity wave and then displace the equilib-
rium position using two laser drives highly detuned from the
cavity field, then the coupling coefficient will carry different
signs for opposite displacements [27,28]. For generic mem-

ory blocks, if we set |g1(0)| < |κex,1 + κi|/4 and |g2(0)| <

|εκex,1 − κi|/4, then the constants C and D′ in the coefficient
expressions become real, thereby replacing the oscillatory
behavior of the coupling profiles with a superposition of ex-
ponentials. In that case, we can maintain fully positive values
for g1(t ) and g2(t ) for select values of α1(0), α2(0), and βα (0).
Figure 6 depicts the time evolution of the state populations and
pulse shapes for the previously discussed case of symmetric
memory blocks (κex,1 = 2π × 5 GHz = κex,2) given the pa-
rameters g1(0) = 0.2κex,1 = g2(0), α1(0) = 0.7435, α2(0) =
0.5470, and βα (0) = −0.3650. Here, we see that the Rabi
oscillations have disappeared, and g1(t ) and g2(t ) asymptot-
ically decay to 0.

We also made an argument earlier that since the system
starts with 0 or 1 excitation, the total number of excitations
in the system is never greater than 1, which enabled us to
restrict the Hilbert space to just the vacuum state and the
singly excited states. Figure 7, based on a full-quantum sim-
ulation of the density matrix evolution performed in QUTIP,
numerically corroborates this analysis, as the final occupation
probability for the states |2〉 and |3〉 in the b2 mode is zero.
Furthermore, the simulations confirm the 96% maximal fi-
delity value calculated for the optomechanical oscillator, since
a transfer process that starts at |1〉 in the b1 mode ends with an
occupation probability of 0.96 for |1〉 in the b2 mode, with a
probability of 0.04 that the system collapses to vacuum due to
the loss channels.

FIG. 5. Evolution of the state populations |α1(t )|2, |α2(t )|2, and |βα (t )|2 (a) and optimal pulse profiles g1(t ) and g2(t ) (b) over time for
κex,1 = 2π GHz, κex,2 = 2π × 5 GHz, κi = 2π × 100 MHz, g1(0) = κex,1 = g2(0), α1(0) = 0.6535, α2(0) = −0.6560, and βα (0) = 0.2970.
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FIG. 6. Evolution of the state populations |α1(t )|2, |α2(t )|2, and |βα (t )|2 (a) and optimal pulse profiles g1(t ) and g2(t ) (b) over time for
κex = κex,1 = κex,2 = 2π × 5 GHz, κi = 2π × 100 MHz, g1(0) = 0.2κex = g2(0), α1(0) = 0.7435, α2(0) = 0.5470, and βα (0) = −0.3650.

Lastly, we make a brief note about the meaning of the
time arguments for the coupling profiles and state coefficient
functions. As initially discussed in Sec. II, since the two
blocks are spatially separated, the intermediate state takes
some time τ to travel from S1 to S2, and therefore the clock
for the S2 functions will lag that for the S1 functions by τ .

V. DISCUSSION AND CONCLUSIONS

We derived the analytical expressions for the coupling
coefficient control sequences that accomplish the optimal
quantum state transfer fidelity for the most general model and
parameters of two disparate memory blocks. The optimality
is verified numerically through comprehensive simulations,
resulting in 96% quantum fidelity of state transfer with prac-
tical system parameters for optomechanical memory blocks.
We also studied the effect of nonidealities: intrinsic losses and
asymmetric parameters of the two blocks. The fidelity exhibits
degradation over the intrinsic losses, yielding a tendency to
exponential decay. The obtained analytical expression for
the coupling controls is widely applicable in any practical
integrated quantum memory blocks with extremely long de-
coherence times and tunable coupling rates. We are currently
in the process of building an integrated system for further
experimental verification.

It is noteworthy that our theory is applicable to an address-
able quantum memory stack with multiple memory blocks.
For example, the quantum information of the S1 memory
block can be transferred to a desired address of quantum
memory through the coherent switching of the output aout,1

to an input ain,n of the Sn memory block via programmable
nanophotonic processors [29,30]. Memory blocks may have
different energy gaps between the two qubit basis states if
the coupling between an and bn fields is achieved through a
parametric process where the mediating classical signal em-
bedded in gn(t ) may have the oscillation frequency to cancel
the frequency difference between an and bn fields.

Recent progress in noise reduction has made quantum state
transfer more feasible for technological applications [31,32].
Furthermore, increasingly sophisticated types of quantum
state transfer, such as frequency-tuning-induced state transfer
[33] and Floquet-engineered state transfer [34], have been
recently reported. More broadly, it has even been theorized
recently that quantum state transfer serves as the mechanism
for photosynthesis [35], thus opening up the potential for the
nexus of quantum mechanics and biology. Perhaps the most
immediate application is in the construction of the quantum
network [36–39]. In particular, an important topic of future
research is to examine the delay and backlog associated with
such a network [40].

FIG. 7. Final occupation probabilities for b2 number states for κex = κex,1 = κex,2 = 2π × 5 GHz, κi = 2π × 100 MHz, g1(0) = κex =
g2(0), α1(0) = 0.7, α2(0) = −0.7, and βα (0) = 0 (a) and κex = κex,1 = κex,2 = 2π × 5 GHz, κi = 2π × 100 MHz, g1(0) = 0.2κex = g2(0),
α1(0) = 0.7435, α2(0) = 0.5470, and βα (0) = −0.3650 (b).
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APPENDIX A: DERIVING THE COEFFICIENT
EQUATIONS

We start with the general case of asymmetric blocks with
unrelated rates of intermediate state extrinsic loss (also re-
ferred to as the output coupling rate elsewhere), i.e., κ ′

ex does
not necessarily equal κex. For the purpose of this analysis,
we will define the dimensionless constant ε = κ ′

ex/κex, which
would reduce to 1 if the two blocks were identical. As dis-
cussed in the main text, we wish to keep the system in a dark
superposition of the intermediate states |10〉 and |01〉 at all
times, such that the wave packet is never reflected from the
second block. The following Lindbladian represents the loss
due to wave-packet reflection:

Lex = √
κexa1 + √

κ ′
exa2

= √
κex(a1 + √

εa2).
(A1)

The goal is for this Lindbladian to return a value of 0 when
applied to the intermediate state part of the system wave func-
tion. To solve for this dark mode, we construct the following
generic superposition of a1 and a2 modes:

|dark〉 = c1|10〉 + c2|01〉. (A2)

Applying the Lindbladian to this state and setting the output
to 0, we derive the following equation relating c1 and c2:

c1 + √
εc2 = 0. (A3)

The coefficients c1 and c2 must also satisfy the normalization
condition:

|c1|2 + |c2|2 = 1. (A4)

Solving the above two equations and substituting into
Eq. (A2), we find the dark mode wave function in terms of

the two cavity modes:

|dark〉 = 1√
1 + ε

(|01〉 − √
ε|10〉). (A5)

In order to complete the photonic Hilbert subspace, it is also
necessary to define the bright mode as orthogonal to the dark
mode:

|bright〉 = 1√
1 + ε

(
√

ε|01〉 + |10〉). (A6)

Next, we construct ladder operators corresponding to the new
basis for the intermediate state Hilbert subspace, so that we
can then rewrite the Hamiltonian in terms of those operators.
We denote the annihilation operator for a dark mode as fol-
lows:

ad = |00〉〈dark|. (A7)

Similarly, the annihilation operator for a bright mode is de-
fined in the following manner:

ab = |00〉〈bright|. (A8)

From the dark and bright mode wave functions, we know
that these ladder operators relate to a1 and a2 through the
following system of equations:

ad = 1√
1 + ε

(a2 − √
εa1), (A9)

ab = 1√
1 + ε

(
√

εa2 + a1). (A10)

We solve this system to find a1 and a2 in terms of ab and ad :

a1 = 1√
1 + ε

(ab − √
εad ), (A11)

a2 = 1√
1 + ε

(
√

εab + ad ). (A12)

We are now in a position to substitute these into the Hamil-
tonian. Assuming equal rates of intrinsic loss (since we
construct both blocks to minimize this rate) but unrelated rates
of extrinsic loss, the Hamiltonian takes the following form in
terms of a1 and a2:

H eff
T = −h̄g1(t )(a†

1b1 + a1b†
1) − h̄g2(t )(a†

2b2 + a2b†
2)

+ ih̄

2

√
κexκ ′

ex(a†
1a2 − a1a†

2)

− ih̄

2
(
√

κexa†
1 + √

κ ′
exa†

2)(
√

κexa1 + √
κ ′

exa2)

− ih̄
κi

2
(a†

1a1 + a†
2a2) − ih̄

�i

2
(b†

1b1 + b†
2b2).

(A13)

Substituting Eq. (A11) and (A12) term by term,

a†
1b1 + a1b†

1 = 1√
1 + ε

(a†
bb1 − √

εa†
d b1 + abb†

1 − √
εad b†

1),

(A14)

a†
2b2 + a2b†

2 = 1√
1 + ε

(
√

εa†
bb2 + a†

d b2 + √
εabb†

2 + ad b†
2),

(A15)
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a†
1a2 − a1a†

2 = 1

1 + ε
(a†

bad − aba†
d − εaba†

d + εa†
bad )

= 1

1 + ε
(1 + ε)(a†

bad − aba†
d )

= a†
bad − aba†

d . (A16)

From Eqs. (A9) and (A10),

(a†
1 + √

εa†
2)(a1 + √

εa2) = (1 + ε)a†
bab. (A17)

Since the total intermediate state occupation number for bright
and dark modes is the same as the total for the two cavity
modes,

a†
1a1 + a†

2a2 = a†
bab + a†

d ad . (A18)

These yield the following expression for the Hamiltonian in
terms of the bright and dark state ladder operators:

H eff
T = h̄g1(t )

√
ε√

1 + ε
(a†

d b1 + ad b†
1) − h̄g1(t )

1√
1 + ε

(a†
bb1 + abb†

1) − h̄g2(t )
1√

1 + ε
(a†

d b2 + ad b†
2) − h̄g2(t )

×
√

ε√
1+ ε

(a†
bb2 + abb†

2) + ih̄
κex

2

√
ε(a†

bad − aba†
d ) − ih̄

κex

2
(1+ ε)a†

bab − ih̄
κi

2
(a†

bab + a†
d ad ) − ih̄

�i

2
(b†

1b1 + b†
2b2).

(A19)

Since the system is always in a dark state, it is useful to consider only the matrix elements of the Hamiltonian corresponding to
a dark initial state and thereby omit all terms that annihilate the bright mode or return the bright mode occupation number:

H eff
T |�(t )〉〈�(t )| = h̄g1(t )

√
ε√

1 + ε
(a†

d b1 + ad b†
1) − h̄g1(t )

1√
1 + ε

a†
bb1 − h̄g2(t )

1√
1 + ε

(a†
d b2 + ad b†

2) − h̄g2(t )

√
ε√

1 + ε
a†

bb2

+ ih̄
κex

2

√
εa†

bad − ih̄
κi

2
a†

d ad − ih̄
�i

2
(b†

1b1 + b†
2b2). (A20)

Importantly, the non-Hermitian term corresponding to loss
due to wave-packet reflection, i.e., −ih̄ κex

2 (1 + ε)a†
bab, goes

to 0 for the dark mode, thus validating our original method of
rotating the basis for the photonic Hilbert subspace.

Next, we use the Schrödinger equation to establish a sys-
tem of equations for the time-evolving state coefficients α1(t ),
α2(t ), and βα (t ). Recall that the system wave function at any
time t can be expressed as follows:

|�(t )〉 = cg|gg〉|00〉 + ce(α1(t )|eg〉|00〉
+ α2(t )|ge〉|00〉 + iβα (t )|gg〉|dark〉). (A21)

Solving the matrix Schrödinger equation row by row, we
obtain the following expressions:

ih̄ceα̇1(t ) = 〈eg, 00|H eff
T |�(t )〉

= ce

(
h̄g1(t )

√
ε√

1 + ε
[iβα (t )] − ih̄

�i

2
α1(t )

)
,

(A22)

ih̄ceα̇2(t ) = 〈ge, 00|H eff
T |�(t )〉

= ce

(
− h̄g2(t )

1√
1 + ε

[iβα (t )] − ih̄
�i

2
α2(t )

)
,

(A23)

−h̄ceβ̇α (t ) = 〈gg, dark|H eff
T |�(t )〉

= ce

(
h̄g1(t )

√
ε√

1+ε
α1(t ) − h̄g2(t ) 1√

1+ε
α2(t )

−ih̄ κi
2 [iβα (t )]

)
.

(A24)

It is also necessary for the coupling profiles to satisfy the
following equation in order to prevent the Hamiltonian from

coupling the system into a bright mode:

0 = 〈gg, bright|H eff
T |�(t )〉

= ce

(
−h̄g1(t ) 1√

1+ε
α1(t ) − h̄g2(t )

√
ε√

1+ε
α2(t )

+ih̄ κex
2

√
ε[iβα (t )]

)
. (A25)

Dividing the first two equations by ih̄ce and the latter two by
−h̄ce, we find a system of differential equations for the time
evolution of the coefficients:

α̇1(t ) =
√

ε√
1 + ε

g1(t )βα (t ) − �i

2
α1(t ), (A26)

α̇2(t ) = − 1√
1 + ε

g2(t )βα (t ) − �i

2
α2(t ), (A27)

β̇α (t ) = 1√
1 + ε

g2(t )α2(t ) −
√

ε√
1 + ε

g1(t )α1(t ) − κi

2
βα (t ),

(A28)

0 =
√

ε√
1 + ε

g2(t )α2(t ) + 1√
1 + ε

g1(t )α1(t ) + κex
√

ε

2
βα (t ).

(A29)

APPENDIX B: SOLVING FOR THE SECOND HALF OF
THE PROCESS

We will start by solving the coefficients for t � 0 (i.e., the
second half of the transfer process), setting g1(t ) = g1(0) for
this time range. Since the system in its final state has either
fully entered the b2 phonon mode |ge〉|00〉 or has collapsed
to the vacuum state |gg〉|00〉, α1(t ) and βα (t ) will converge
to 0 as t → ∞, and we therefore start by solving for those
coefficients. The coupling profile g2(t ) can be determined
in terms of the state coefficients and the constant g1(0) by
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rearranging Eq. (A29) as follows:

g2(t ) = −
√

1 + ε√
ε

(
κex

√
ε

2 βα (t ) + 1√
1+ε

g1(0)α1(t )
)

α2(t )

= −
(

κex
√

1+ε

2 βα (t ) + 1√
ε
g1(0)α1(t )

)
α2(t )

. (B1)

Substituting this into Eq. (A28), we find the following expres-
sion for β̇α (t ) in terms of α1(t ) and βα (t ):

β̇α (t ) = 1√
1 + ε

(
− κex

√
1 + ε

2
βα (t ) − 1√

ε
g1(0)α1(t )

)

−
√

ε√
1 + ε

g1(0)α1(t ) − κi

2
βα (t )

= − 1√
1 + ε

(
1√
ε

+ √
ε

)
g1(0)α1(t ) − κex + κi

2
βα (t )

= −
√

1 + ε√
ε

g1(0)α1(t ) − κex + κi

2
βα (t ).

(B2)

Combining Eqs. (A26) and (B2), we express the resulting sys-
tem of differential equations as a matrix ordinary differential
equation (ODE):

(
α̇1(t )

β̇α (t )

)
=

⎛
⎜⎜⎜⎜⎝

−�i

2

√
ε√

1 + ε
g1(0)

−
√

1 + ε√
ε

−κex + κi

2

⎞
⎟⎟⎟⎟⎠

(
α1(t )

βα (t )

)
. (B3)

The eigenvalues turn out to be independent of ε:

λ± = −1

4
(�i + κex + κi ) ± C

4
. (B4)

Here, C =
√

(�i − κex − κi )2 − 16g1(0)2. The corresponding
eigenvectors, on the other hand, vary with ε in the following

manner:

v± =
(

(�i − κex − κi ∓ C)
√

ε

4g1(0)
√

1 + ε

)
. (B5)

Recall that the solutions for a matrix ODE are functions of
the eigenvalues, eigenvectors, and constants that are to be
determined from the boundary values:(

α1(t )

βα (t )

)
= Aeλ−tv− + Beλ+tv+. (B6)

It is worth noting that since the eigenvalues are independent of
ε, the time dependence of the individual terms in the solutions
will also be invariant in ε. Instead, only the constant coeffi-
cient in each term will change. This is evident from expressing
the solutions in the following form:(

α1(t )
βα (t )

)
= e− 1

4 (�i+κex+κi )t
(
Ae− C

4 tv− + Be
C
4 tv+

)

= e− 1
4 (�i+κex+κi )t

[
(Av− + Bv+) cosh

(
C

4
t

)

+ (Bv+ − Av−) sinh

(
C

4
t

)]
. (B7)

The generic matrix ODE solution leads to the following sys-
tem of equations for α1(0) and βα (0) in terms of A and B:

α1(0) = [(�i − κex − κi + C)A + (�i − κex − κi − C)B]
√

ε,

(B8)

βα (0) = 4g1(0)
√

1 + ε(A + B). (B9)

Solving this system of equations, we find the following ex-
pressions for A and B:

A = 1

2C

(
1√
ε
α1(0) − �i − κex − κi − C

4g1(0)
√

1 + ε
βα (0)

)
, (B10)

B = 1

2C

(
− 1√

ε
α1(0) + �i − κex − κi + C

4g1(0)
√

1 + ε
βα (0)

)
. (B11)

We first focus on solving α1(t ) by substituting A, B, v−,1, and
v+,1 into the constant-coefficient expressions in Eq. (B7):

Av−,1 + Bv+,1 = 1

2C

(
1√
ε
α1(0) − �i − κex − κi − C

4g1(0)
√

1 + ε
βα (0)

)
(�i − κex − κi + C)

√
ε

+ 1

2C

(−1√
ε
α1(0) + �i − κex − κi + C

4g1(0)
√

1 + ε
βα (0)

)
(�i − κex − κi − C)

√
ε

= 1

2C

(
2√
ε
α1(0)C

√
ε

)

= α1(0),

(B12)

Bv+,1 − Av−,1 = 1

2C

(−1√
ε
α1(0) + �i − κex − κi + C

4g1(0)
√

1 + ε
βα (0)

)
(�i − κex − κi − C)

√
ε

− 1

2C

(
1√
ε
α1(0) − �i − κex − κi − C

4g1(0)
√

1 + ε
βα (0)

)
(�i − κex − κi + C)

√
ε

= 1

2C

(
− 2(�i − κex − κi )α1(0) + (�i − κex − κi )2 − C2

2g1(0)

√
ε√

1 + ε
βα (0)

)
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= 1

2C

(
2(κex + κi − �i )α1(0) + 16g1(0)2

2g1(0)

√
ε√

1 + ε
βα (0)

)

= 1

C

(
(κex + κi − �i )α1(0) + 4g1(0)

√
ε

1 + ε
βα (0)

)
. (B13)

Substituting these into Eq. (B7), we find the following expression for α1(t ) for t � 0:

α1(t ) = e− 1
4 (�i+κex+κi )t

[
(Av−,1 + Bv+,1) cosh

(
C

4
t

)
+ (Bv+,1 − Av−,1) sinh

(
C

4
t

)]

= e− 1
4 (κex+κi+�i )t

C

[
α1(0)C cosh

(
C

4
t

)
+

(
4

√
ε

1 + ε
g1(0)βα (0) + α1(0)(κex + κi − �i )

)
sinh

(
C

4
t

)]
. (B14)

Note that only the coefficient in the second term in this expression varies with ε. When ε = 1, that coefficient reduces to
2
√

2g1(0)βα (0).
We now complete an analogous set of steps to determine βα (t ). Substituting A, B, v−,2, and v+,2 into the constant-coefficient

expressions in Eq. (B7),

Av−,2 + Bv+,2 = 1

2C

(
1√
ε
α1(0) − �i − κex − κi − C

4g1(0)
√

1 + ε
βα (0)

)
4g1(0)

√
1 + ε

+ 1

2C

(−1√
ε
α1(0) + �i − κex − κi + C

4g1(0)
√

1 + ε
βα (0)

)
4g1(0)

√
1 + ε

= 1

2C

(
2C

4g1(0)
√

1 + ε
βα (0)

)
4g1(0)

√
1 + ε

= βα (0), (B15)

Bv+,2 − Av−,2 = 1

2C

(−1√
ε
α1(0) + �i − κex − κi + C

4g1(0)
√

1 + ε
βα (0)

)
4g1(0)

√
1 + ε

− 1

2C

(
1√
ε
α1(0) − �i − κex − κi − C

4g1(0)
√

1 + ε
βα (0)

)
4g1(0)

√
1 + ε

= 1

2C

(−2√
ε
α1(0) + �i − κex − κi

2g1(0)
√

1 + ε
βα (0)

)
4g1(0)

√
1 + ε

= − 1

C

(
4

√
1 + ε

ε
g1(0)α1(0) + βα (0)(κex + κi − �i )

)
. (B16)

We substitute these into Eq. (B7) to find βα (t ) for t � 0 as follows:

βα (t ) = e− 1
4 (�i+κex+κi )t

[
(Av−,2 + Bv+,2) cosh

(
C

4
t

)
+ (Bv+,2 − Av−,2) sinh

(
C

4
t

)]

= e− 1
4 (κex+κi+�i )t

C

[
βα (0)C cosh

(
C

4
t

)
−

(
4

√
1 + ε

ε
g1(0)α1(0) + βα (0)(κex + κi − �i )

)
sinh

(
C

4
t

)]
. (B17)

Note that only the second term (i.e., the first term in the square brackets) varies with ε. When ε = 1, the coefficient in that term
reduces to 4

√
2g1(0)α1(0).

We finally undertake the process of solving for α2(t ). Substituting the expression for g2(t ) from Eq. (B1) into that for α̇2(t )
from Eq. (A27), we find the following differential equation:

α̇2(t ) = − 1√
1 + ε

( − κex
√

1+ε

2 βα (t ) − 1√
ε
g1(0)α1(t )

)
α2(t )

βα (t ) − �i

2
α2(t )

=
(

κex
2 βα (t ) + g1(0)√

ε(1+ε)
α1(t )

)
α2(t )

βα (t ) − �i

2
α2(t ). (B18)

Multiplying both sides by 2α2(t ), the expression becomes a first-order ordinary differential equation in α2
2:

d

dt
α2(t )2 = 2α2(t )α̇2(t ) =

(
κexβα (t )2 + 2g1(0)√

ε(1 + ε)
α1(t )βα (t )

)
− �iα

2
2 (t ). (B19)
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Note that the time-varying part of each of the constituent terms is invariant in ε. We integrate the equation term by term:

α2(t )2 = e−�it

⎛
⎜⎝κex

∫
e�itβα (t )2dt

+ 2g1(0)√
ε(1 + ε)

∫
e�itα1(t )βα (t )dt + G

⎞
⎟⎠. (B20)

Here, G is a constant that will eventually be calculated from the boundary conditions for α2(t )2. For now, we focus on the
first term inside the parentheses. Our first goal is to examine

∫
e�itβα (t )2dt . The integrand can be expanded by substituting the

expression for βα (t ) from Eq. (B17):

e�itβα (t )2 = e− 1
2 (κex+κi−�i )t

C2

[
βα (0)2C2 cosh2

(
C

4
t

)
− 2B′

1βα (0)C cosh

(
C

4
t

)
sinh

(
C

4
t

)
+ B′2

1 sinh2

(
C

4
t

)]
. (B21)

For each of the terms in Eq. (B21), we integrate the time-dependent part using MATHEMATICA and then multiply by the associated
constant. For the first term, we find the following result:

βα (0)2
∫

e− 1
2 (κex+κi−�i )t cosh2

(
C

4
t

)
= βα (0)2e

1
2 (�i−κex−κi )t

(�i − κex − κi )[(�i − κex − κi )2 − C2]

[
−C2 − C(�i − κex − κi ) sinh

(
C

2
t

)

+ (�i − κex − κi)
2 cosh2

(
C

2
t

)
+ (�i − κex − κi )

2

]
. (B22)

For the second term, we find the following:

− 2B′
1βα (0)

C

∫
e− 1

2 (κex+κi−�i )t cosh

(
C

4
t

)
sinh

(
C

4
t

)

= 2B′
1βα (0)e

1
2 (�i−κex−κi )t

C[(�i − κex − κi )2 − C2]

[
(κex + κi − �i ) sinh

(
C

2
t

)
+ C cosh

(
C

2
t

)]
. (B23)

Finally, the third term yields the following:

B′2
1

C2

∫
e− 1

2 (κex+κi−�i )t sinh2

(
C

4
t

)
= B′2

1 e
1
2 (�i−κex−κi )t

C2(�i − κex − κi )[(�i − κex − κi )2 − C2]

[
C2 − C(�i − κex − κi ) sinh

(
C

2
t

)

+ (�i − κex − κi )
2 cosh2

(
C

2
t

)
− (�i − κex − κi )

2

]
. (B24)

Note that all three of these expressions contain the term (�i − κex − κi )2 − C2 in the denominator, which simply equals 16g1(0)2.
Summing the three expressions, we find the following result for

∫
e�itβα (t )2dt :∫

e�itβα (t )2dt = e
1
2 (�i−κex−κi )t

16g1(0)2

[
βα (0)2A1(t ) + 2B′

1βα (0)A2(t ) + B′2
1 A3(t )

]
, (B25)

where we have defined A1(t ), A2(t ), and A3(t ) as

A1(t ) = −C2 − C(�i − κi − κex) sinh
(

C
2 t

) + (�i − κi − κex)2
[

cosh
(

C
2 t

) + 1
]

�i − κi − κex
, (B26)

A2(t ) = −(�i − κi − κex) sinh
(

C
2 t

) + C cosh
(

C
2 t

)
C

, (B27)

A3(t ) = C2 − C(�i − κi − κex) sinh
(

C
2 t

) + (�i − κi − κex)2
[

cosh
(

C
2 t

) − 1
]

C2(�i − κi − κex)
. (B28)

Next, we examine
∫

e�itα1(t )βα (t )dt . We expand the integrand in a manner analogous to Eq. (B21), this time by substituting
α1(t ) from Eq. (B14) and βα (t ) from Eq. (B17):

e�itα1(t )βα (t ) = e− 1
2 (κex+κi−�i )t

C2

{
α1(0)βα (0)C2 cosh2

(
C

4
t

)
− [α1(0)B′

1 − βα (0)B′
2]

× C cosh

(
C

4
t

)
sinh

(
C

4
t

)
+ (−B′

1B′
2) sinh2

(
C

4
t

)}
. (B29)
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Analyzing Eq. (B29), we observe that the form of the expression is equivalent to that for e�itβα (t )2 in Eq. (B21), with the
replacements βα (0)2 → α1(0)βα (0) in the first term, 2B′

1βα (0) → α1(0)B′
1 − βα (0)B′

2 in the second term, and B′2
1 → −B′

1B′
2 in

the third term. We therefore determine
∫

e�itα1(t )βα (t )dt simply by using Eq. (B25) and implementing these replacements:∫
e�itα1(t )βα (t )dt = e

1
2 (�i−κex−κi )t

16g1(0)2
{α1(0)βα (0)A1(t ) + [α1(0)B′

1 − βα (0)B′
2]A2(t ) − B′

1B′
2A3(t )}. (B30)

Superposing these integrals using the coefficients in Eq. (B20), we find the following result for α2(t )2 for t � 0:

α2(t )2 = e−�it

(
κex

∫
e�itβα (t )2dt + 2g1(0)√

ε(1 + ε)

∫
e�itα1(t )βα (t )dt + G

)

= e− 1
2 (κex+κi+�i )t

16g1(0)2

{(
κexβα (0)2 + 2g1(0)√

ε(1 + ε)
α1(0)βα (0)

)
A1(t )

+
(

2κexB′
1βα (0) + 2g1(0)√

ε(1 + ε)
[α1(0)B′

1 − βα (0)B′
2]

)
A2(t ) +

(
κexB′2

1 − 2g1(0)√
ε(1 + ε)

B′
1B′

2

)
A3(t )

}
+ Ge−�it . (B31)

Regarding the term Ge−�it , it is useful to note that �i �
κex, κ

′
ex, κi. Therefore, given the timescale of the transfer pro-

cess, e−�it will approximately equal 1. Since the first term
in the α2(t )2 expression converges to 0 as t → t f , G will
approximately equal α2

2 (t f ), representing the fidelity of states
for the process.

APPENDIX C: SOLVING FOR THE FIRST HALF
OF THE PROCESS

We now analyze the time range t < 0, representing the first
half of the process. Here, g2(t ) = g2(0) will be constant in
time, whereas g1(t ) will be variable. Since the system is fully
in the b1 mode initially, we know that α2(t ) and βα (t ) will

converge to 0 for the maximally negative value of t . As such,
we start by solving for the time evolution of those coefficients.
Rearranging Eq. (A29) yields the following expression for
g1(t ) in terms of g2(0) and the state coefficients:

g1(t ) = −√
1 + ε

(
κex

√
ε

2 βα (t ) +
√

ε√
1+ε

g2(0)α2(t )
)

α1(t )

= −
(

κex
√

ε(1+ε)
2 βα (t ) + √

εg2(0)α2(t )
)

α1(t )
.

(C1)

Substituting this into Eq. (A28), we find a modified differen-
tial equation for β̇α (t ) in terms of α2(t ) and βα (t ):

β̇α (t ) = 1√
1 + ε

g2(0)α2(t ) −
√

ε√
1 + ε

(
− κex

√
ε(1 + ε)

2
βα (t ) − √

εg2(0)α2(t )

)
− κi

2
βα (t )

= 1√
1 + ε

(1 + ε)g2(0)α2(t ) − κi − εκex

2
βα (t )

= √
1 + εg2(0)α2(t ) − κi − εκex

2
βα (t ). (C2)

The matrix ODE for α̇2(t ) and β̇α (t ) thus takes the following
form:

(
α̇2(t )

β̇α (t )

)
=

⎛
⎜⎜⎝

−�i

2
− 1√

1 + ε
g2(0)

√
1 + εg2(0) −κex − εκi

2

⎞
⎟⎟⎠

(
α2(t )

βα (t )

)
.

(C3)
The eigenvalues are similar to those for t > 0, except for
the replacements κex → −εκex and g1(0)2 → g2(0)2. As such,
they can be expressed in terms of a constant D′ instead of C:

λpm = −1

4
(�i − εκex + κi ) ± D′

4
, (C4)

where D′ is defined as

D′ =
√

(�i + εκex − κi)2 − 16g2(0)2. (C5)

The corresponding eigenvectors vary with ε in the following
manner:

v± =
(

�i + εκex − κi ∓ D′

−4g2(0)
√

1 + ε

)
. (C6)

Recall that the solution set for α2(t ) and βα (t ) takes the
following generic form:(

α2(t )

βα (t )

)
= Aeλ−tv− + Beλ+tv+. (C7)

Since the change in the eigenvalues from the t > 0 case is
fully mediated through the replacements κex → −εκex and
C → D′, the time variance of the individual terms in the
solution can also be determined by simply modifying the
t > 0 case by applying the aforementioned replacements, as
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evidenced by expressing the equations in the following form:

(
α2(t )
βα (t )

)
= e− 1

4 (�i−εκex+κi )t
(
Ae− D′

4 tv− + Be
D′
4 tv+

)

= e− 1
4 (�i−εκex+κi )t

[
(Av− + Bv+) cosh

(
D′

4
t

)
+ (Bv+ − Av−) sinh

(
D′

4
t

)]
. (C8)

We now aim to solve the constants A and B. The generic matrix ODE solution yields the following system of equations for α2(0)
and βα (0) in terms of these constants:

α2(0) = (�i + εκex − κi + D′)A + (�i + εκex − κi − D′)B,

βα (0) = −4g2(0)
√

1 + ε(A + B).
(C9)

From this system of equations, we find the following expressions for A and B:

A = 1

2D′

(
α2(0) + �i + εκex − κi − D′

4g2(0)
√

1 + ε
βα (0)

)
,

B = − 1

2D′

(
α2(0) + �i + εκex − κi + D′

4g2(0)
√

1 + ε
βα (0)

)
. (C10)

Next, we use the values of A, B, v+,1, and v−,1 to calculate the constant coefficients in Eq. (C8) for α2(t ). Starting with the
coefficient in front of cosh (D′t/4),

Av−,1 + Bv+,1 = 1

2D′

(
α2(0) + �i + εκex − κi − D′

4g2(0)
√

1 + ε
βα (0)

)
(�i + εκex − κi + D′)

− 1

2D′

(
α2(0) + �i + εκex − κi + D′

4g2(0)
√

1 + ε
βα (0)

)
(�i + εκex − κi − D′)

= 1

2D′ [2D′α2(0)]

= α2(0). (C11)

For the coefficient in front of sinh (D′t/4),

Bv+,1 − Av−,1 = − 1

2D′

(
α2(0) + �i + εκex − κi + D′

4g2(0)
√

1 + ε
βα (0)

)
(�i + εκex − κi − D′)

− 1

2D′

(
α2(0) + �i + εκex − κi − D′

4g2(0)
√

1 + ε
βα (0)

)
(�i + εκex − κi + D′)

= − 1

2D′

(
2(�i + εκex − κi )α2(0) + (�i + εκex − κi )2 − D′2

2g2(0)
√

1 + ε
βα (0)

)

= − 1

2D′

(
2(�i + εκex − κi )α2(0) + 16g2(0)2

2g2(0)
√

1 + ε
βα (0)

)

= 1

D′

(
(κi − εκex − �i )α2(0) − 4g2(0)√

1 + ε
βα (0)

)
. (C12)

We substitute these into Eq. (C8) to find α2(t ) for t � 0:

α2(t ) = e
1
4 (εκex−κi−�i )t

D′

[
α2(0)D′ cosh

(
D′

4
t

)
+

(
− 4g2(0)√

1 + ε
βα (0) + α2(0)(−εκex + κi − �i )

)
sinh

(
D′

4
t

)]
. (C13)

Note that the constant coefficient in the second term (i.e., the first term in the square brackets) reduces to −2
√

2g2(0)βα (0) if
ε = 1.
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We now look to solve βα (t ), starting by substituting the values of A, B, v+,2, and v−,2 to determine the second-row constant
coefficients in Eq. (C8). Starting with the coefficient associated with cosh (D′t/4),

Av−,2 + Bv+,2 = 1

2D′

(
α2(0) + �i + εκex − κi − D′

4g2(0)
√

1 + ε
βα (0)

)
(−4g2(0)

√
1 + ε)

− 1

2D′

(
α2(0) + �i + εκex − κi + D′

4g2(0)
√

1 + ε
βα (0)

)
(−4g2(0)

√
1 + ε)

= 1

2D′

( −2D′

4g2(0)
√

1 + ε
βα (0)

)
(−4g2(0)

√
1 + ε)

= βα (0).

(C14)

For the coefficient associated with sinh (D′t/4),

Bv+,2 − Av−,2 = − 1

2D′

(
α2(0) + �i + εκex − κi + D′

4g2(0)
√

1 + ε
βα (0)

)
(−4g2(0)

√
1 + ε)

− 1

2D′

(
α2(0) + �i + εκex − κi − D′

4g2(0)
√

1 + ε
βα (0)

)
(−4g2(0)

√
1 + ε)

= − 1

2D′

(
2α2(0) + �i + εκex − κi

2g2(0)
√

1 + ε
βα (0)

)
(−4g2(0)

√
1 + ε)

= − 1

D′ [−4(
√

1 + ε)g2(0)α2(0) + (κi − εκex − �i)βα (0)]. (C15)

Substituting these into Eq. (C8), we find βα (t ) for t � 0:

βα (t ) = e
1
4 (εκex−κi−�i )t

D′

{
βα (0)D′ cosh

(
D′

4
t

)
− [−4(

√
1 + ε)g2(0)α2(0) + βα (0)(−εκex + κi − �i )] sinh

(
D′

4
t

)}
. (C16)

If ε = 1, the first term in the square brackets reduces to −4
√

2g2(0)α2(0).
Finally, we work to solve α1(t ) for the first half of the process. Substituting the expression for g1(t ) from Eq. (C1) into that

for α̇1(t ) from Eq. (A26), we obtain the following differential equation:

α̇1(t ) =
√

ε√
1 + ε

( − κex
√

ε(1+ε)
2 βα (t ) − √

εg2(0)α2(t )
)

α1(t )
βα (t ) − �i

2
α1(t )

=
( − κexε

2 βα (t ) − ε√
1+ε

g2(0)α2(t )
)

α1(t )
βα (t ) − �i

2
α1(t ). (C17)

Multiplying both sides by 2α1(t ), the expression becomes a first-order ordinary differential equation in α2
1:

d

dt
α1(t )2 = 2α1(t )α̇1(t )

=
(

− κexεβα (t )2 − 2ε√
1 + ε

g2(0)α2(t )βα (t )

)
− �iα1(t )2.

(C18)

As with the other first-order ODE that we have solved [see Eq. (B20)], we integrate this equation term by term:

α1(t )2 = e−�it

(
− κexε

∫
e�itβα (t )2dt − 2ε√

1 + ε
g2(0)

∫
e�itα2(t )βα (t )dt + G′

)
. (C19)

We observe that α2(t ) and βα (t ) for t � 0 are identical to α1(t ) and βα (t ), respectively, for t � 0 upon making the replacements
C → D′, κex → −εκex, α1(0) → α2(0), B′

1 → B′
3, and B′

2 → B′
4, where B′

3 and B′
4 represent the bracketed expression in the

solution βα (t ) and the parenthetical expression in the solution α2(t ), respectively:

B′
3 = −4(

√
1 + ε)g2(0)α2(0) + βα (0)(−εκex + κi − �i ), (C20)

B′
4 = − 4g2(0)√

1 + ε
βα (0) + α2(0)(−εκex + κi − �i ). (C21)
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We apply the relevant replacements to solve for
∫

e�itβα (t )2dt and
∫

e�itα2(t )βα (t )dt based on the analogous results for t � 0
from Eqs. (B25) and (B30):∫

e�itβα (t )2dt = e
1
2 (�i+εκex−κi )t

16g2(0)2

[
βα (0)2A′

4(t ) + 2B′
3βα (0)A′

5(t ) + B′2
3 A′

6(t )
]
, (C22)

∫
e�itα1(t )βα (t )dt = e

1
2 (�i+εκex−κi )t

16g2(0)2
{α2(0)βα (0)A′

4(t ) + [α2(0)B′
3 − βα (0)B′

4]A′
5(t ) − B′

3B′
4A6(t )}, (C23)

where A′
4(t ), A′

5(t ), and A′
6(t ) are defined by applying the relevant replacements to A1(t ), A2(t ), and A3(t ), respectively:

A′
4(t ) = −D′2 − D′(�i − κi + εκex) sinh

(
D′
2 t

) + (�i − κi + εκex)2
[

cosh
(

D′
2 t

) + 1
]

�i − κi + εκex
,

A′
5(t ) = −(�i − κi + εκex) sinh

(
D′
2 t

) + D′ cosh
(

D′
2 t

)
D′ ,

A′
6(t ) = D′2 − D′(�i − κi + εκex) sinh

(
D′
2 t

) + (�i − κi + εκex)2
[

cosh
(

D′
2 t

) − 1
]

D′2(�i − κi + εκex)
. (C24)

Substituting the above two integrals into Eq. (C19), we find the following expression for α1(t )2 for t � 0:

α1(t )2 = e−�it

(
− κexε

∫
e�itβα (t )2dt − 2ε√

1 + ε

∫
e�itα1(t )βα (t )dt + G′

)

= e− 1
2 (−εκex+κi+�i )t

16g2(0)2

{(
− κexεβα (0)2 − 2ε√

1 + ε
g2(0)α2(0)βα (0)

)
A′

4(t )

+
(

− 2κexεB′
3βα (0) − 2ε√

1 + ε
g2(0)[α2(0)B′

3 − βα (0)B′
4]

)
A′

5(t )

+
(

− κexεB′2
3 + 2ε√

1 + ε
g2(0)B′

3B′
4

)
A6(t )

}
+ G′e−�it . (C25)

Since the system is initially in the b1 mode, and since e−�it ≈ 1 for the timescale of the transfer process, G′ will approximately
equal 1.

APPENDIX D: COMPUTATIONAL METHODS

Having found solutions for the time evolution of the co-
efficients α1(t ), α2(t ), and βα (t ) in terms of their values at
t = 0, our next task is to calculate for the range of possible
zero-point values the corresponding coupling profiles g1(t )
and g2(t ). To this end, we use MATLAB-based computation,
setting predetermined values for g1(0) and g2(0). Starting
by looping over all possible values of α2(0) and βα (0), we
substitute these into Eq. (C25) to determine α1(0) for every
pair of the input zero-point coefficients. To ensure the validity

of the resulting coefficient trios, we only keep the results that
closely match the condition in Eq. (A29) for the given values
of g1(0) and g2(0). Next, we loop over the filtered list of
t = 0 coefficient trios and substitute them into Eq. (B31) to
determine the fidelity α2(t f )2 for each trio. With the conse-
quent knowledge of the time evolution of the coefficients, it
is straightforward to use Eq. (B1) to derive g2(t ) for t > 0
and Eq. (C1) to derive g1(t ) for t < 0. The numerical results
demonstrate that the fidelity is invariant in the choices of g1(0)
and g2(0), while varying specifically with the ratio of intrinsic
loss rate to output coupling rate for each of the blocks.
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