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Magnetoelectric torque and edge currents in spin-orbit coupled graphene nanoribbons
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For graphene nanoribbons with Rashba spin-orbit coupling, the peculiar magnetic response due to the presence
of a magnetization and geometric confinement are analyzed within a tight-binding model. We observe a sizable
transverse susceptibility that can be considered as a gate-voltage-induced magnetoelectric torque without the
need of a bias voltage, with different directions for zigzag and armchair ribbons. The local torque generates
noncollinear spin polarization between the two edges and/or along the ribbon, and the net torque averages to
zero if the magnetization is homogeneous. Nevertheless, a nonzero net torque can appear in partially magnetized
nanoribbons or in nanoflakes of irregular shapes. The equilibrium spin current produced by the spin-orbit
coupling also appears in nanoribbons, but the component flowing in the direction of confinement is strongly
suppressed. Even without the magnetization, an out-of-plane polarized helical edge spin current is produced,
resembling that in the quantum spin Hall effect. Moreover, a magnetization pointing perpendicular to the edge
produces a laminar flow of edge charge currents, whose flow direction is symmetric (nonchiral) or antisymmetric
(chiral) between the two edges, depending on whether the magnetization points in-plane or out-of-plane.

DOI: 10.1103/PhysRevResearch.3.033021

I. INTRODUCTION

The celebrated Rashba spin-orbit coupling (RSOC) has a
strong impact on the physical properties of two-dimensional
(2D) metals with parabolic bands [1,2], especially their mag-
netic response and charge to spin interconversion. A number
of these features originate from the RSOC-induced spin-
momentum locking, such as the Edelstein effect that causes
a bias-voltage-induced nonequilibrium in-plane spin polar-
ization [3]. In magnetized 2D systems, this effect can be
exploited to induce magnetization dynamics known as the
spin-orbit torque [4-9], whose feasibility has been demon-
strated extensively in experiments [10-12]. In addition to
these properties, RSOC also modifies the equilibrium proper-
ties of 2D metals, most notably causing an in-plane polarized
spin current flowing throughout the system [13-15].

Besides these effects occurring in infinitely extended 2D
metals or electron gases (2DEGs), RSOC also causes peculiar
effects at the boundary of geometrically confined mesoscopic
2D systems. A notable example is the generation of out-
of-plane polarized equilibrium edge spin currents [16,17].
Furthermore, in-plane spin polarization perpendicular to the
edge can induce a persistent charge current decaying and
oscillating in sign away from the edge [18]. This behavior is
very similar to that found in other spin-momentum locking
systems in proximity to a magnet, such as for topological
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insulator/ferromagnetic metal junctions (TI/FMMs) [19,20].
The tunability of RSOC by a gate voltage may provide a
means to control such phenomena and engineer dedicated
devices.

In this paper, we use a tight-binding model to explore the
spin torque and equilibrium currents caused by RSOC and
geometric confinement in graphene nanoribbons. Numerous
peculiarities make graphene nanoribbons a particularly in-
triguing system to study: (1) the linear dispersion near the
two Dirac points that causes a unique spin-momentum locking
profile [21-26], (2) the emergence of zero-energy edge states
in zigzag-terminated ribbons [27-34], (3) the opening of an
energy gap depending on the ribbon width for armchair rib-
bons [35—40], and (4) the pronounced magnetic response at
some sample edges [41-43]. Moreover, it is important to note
that an enhanced and gate-tunable spin-orbit coupling (SOC)
has been demonstrated in graphene/transition-metal dichalco-
genide (TMD) heterostructures [44—50]. In graphene/yttrium
iron garnet (YIG) [51-54] and graphene/Co [55] heterostruc-
tures, both SOC and ferromagnetism are induced, which
might be used as the stage for the phenomena we are going to
discuss. Finally, the RSOC and magnetization are also known
to cause quantum spin Hall (QSHE) and quantum anomalous
Hall effects (QAHE) in graphene [56-58].

We first elaborate on the feature that, in contrast to
the usual longitudinal in-plane susceptibility in an infinitely
large graphene, a transverse in-plane susceptibility develops
in nanoribbons due to the RSOC and geometric confine-
ment. The controllability of the RSOC suggests that this
transverse susceptibility serves as a gate-voltage-induced
magnetoelectric torque on the magnetization without the need
of a bias voltage, contrary to the current-induced spin-orbit
torque [55,59-63]. While this torque averages to zero for a
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homogeneously spin-polarized system, well-designed local
variations in the magnetization can yield a net torque sig-
nal available to practical purpose. We further investigate the
pattern of equilibrium spin currents in nanoribbons, espe-
cially concerning the symmetry of flow directions between
the two edges, e.g., distinguished helical and nonhelical struc-
ture. Charge currents induced by spin polarization exist in
nanoribbons too, whose variability on the direction of the
magnetization will be a point of attention.

We start by introducing the lattice model for graphene with
RSOC and spin magnetization, and then calculate the persis-
tent spin current to show how the spin-momentum locking
is modified by the presence of the magnetization in Sec. II.
In Sec. III, we use a two-site toy model to demonstrate
analytically the existence of a transverse susceptibility due
to geometric confinement, which is then transferred to the
discussion of both zigzag and armchair ribbons. In addi-
tion, we characterize the patterns and chiralities of persistent
charge and spin currents, and also use a specific example to
demonstrate that these phenomena also survive in graphene
nanoflakes. Section IV summarizes our results.

II. EXTENDED TIGHT-BINDING MODEL OF GRAPHENE

In order to emphasize the impact of geometric confine-
ment, we start by addressing the spintronics-related effects
due to RSOC for an infinite graphene sheet, before discussing
the same physics for graphene ribbons and nanoflakes. As
indicated in Fig. 1(a), three lattice vectors (in units of bond
length @ = 1) characterize the honeycomb lattice,
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connecting neighboring lattice sites belonging to the two dif-
ferent sublattices, A and B. We now formulate the following
tight-binding model that incorporates both RSOC and spin
polarization [64—68]:

H=—t Z cz,cj(7 + Jex Z S c;raao,ﬁc,-ﬁ
(

ij),o La.p

tidg Yl (up x dijYcip— Y ] cio ()
(ij).a. B io

Here cl.Ta (cis ) creates (annihilates) an electron of spin o on
the lattice site i, where sums with (ij) run over nearest-
neighbor lattice sites. The hopping matrix element is —f,
Ag is the RSOC coupling constant, 0 = (0%, 07, 0'%) are the
spin Pauli matrices, d;; is the vector connecting the site i to
J» Jex 1s the exchange coupling between the magnetization
S = S(sin 8 cos ¢, sin 6 sin ¢, cos #) and the spin, and p is the
chemical potential. The bipartite structure of our system al-
lows us to use a sublattice formulation with I = {A, B}, where
we define the basis v = (A 1, B 1,A |, B |), and the elec-
tron operators in Eq. (2) can be split into ¢;; = {Cais, CBic }»
where i now denotes the position of each unit cell containing
an A and B lattice site. After Fourier transformation ¢y, =
>k € Cing, the Hamiltonian H = Y"1 €l Hiasp(K)cigs
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FIG. 1. (a) The definition of coordinates in our honeycomb lat-
tice. (b) The resulting band structure in the presence of RSOC
without magnetization S = 0. (c) The spin-momentum locking pro-
file of the lowest eigenstate |uy;) in the absence S = 0 and presence
S || {%, ¥, 2} of the magnetization.

defines the matrix

Hyyp(k)
Jex S° tZ* JxS e™ ARY*
| ez JexS* ARX* JexSie? 3)
| JexS1e? AgX —JexS? tZ* ’
ARY JoxS 1 e tZ —Jex S*
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Z=e +e+es,
—1-iVv3 —1+iV3
X = 3 2 5 e; + ¢,
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Y = + lfel lfez —es, €]
2 2
where we have defined e¢,=¢%% and S, =

()2 + ()2 = Ssin® (0 € [0, ]).
we choose the parameters

In the followin

Jx =02, =02, wpn=0.5, kT =0.03, (5
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with # = 1 as the energy unit, such that the magnetic response
is more pronounced, but we emphasize that their patterns are
fairly robust against variation of these parameters.

Diagonalizing the Hamiltonian yields two filled bands
Ex1 < Ex» < 0 and two empty bands 0 < Ex3 < Ex4, with
the corresponding four eigenstates {|uk;), |uk2), |ux3), |uka)}-
These four bands are shown in Fig. 1(b) for zero mag-
netization. In this case the spin expectation value (o), =
(ukp|o|ux,) for each eigenstate has only in-plane components
{{0*)1y» {(07)ky ), as displayed in the vector plots in Fig. 1(c)
for § = 0, where we also see (a)x; = —(0)k2. We see that
the spin texture forms a vortex around each Dirac point,

= (27 /3,27 /3y/3) and K' = (27 /3, =27 /3+/3) with the
same vorticity, but opposite vorticity appears for the vortex
around the origin k = (0, 0). This spin pattern represents the
spin-momentum locking due to the RSOC.

As common in 2D Rashba metals, the presence of a mag-
netization S is expected to distort the profile of the spin pattern
[5,7], as demonstrated for magnetizations along the three
principle directions S || {X, §,2} in Fig. 1(c), which shows
the planar components of (o)x; only. For S || X, the (o)
becomes asymmetric between +k, and —k,, which also causes
an asymmetry in the dispersion in this direction. Analogously,
S || ¥, yields an asymmetry between +k, and —k,, whereas
for S || Z, the planar components basically remain the same
as that in the absence of magnetization. By calculating the
spin polarization in our lattice model with a periodic boundary
condition (PBC), we also verify that the spin polarization on
either sublattice is always longitudinal, i.e., along the direc-
tion of magnetization.

The charge and spin current density operators are con-
structed from the equations of motion of the charge and spin
density operator, respectively, which correspond to continuity
equations [19,20]

i = 1[Ht + Hg. 1]

i
—[H, n] =
h[ n;]

1
|
<
Q
=

i = < [H,m] = %[H, + Hg,

-V .Jq+rfl
__Z ll+7]

where §n = (—6;, —8,, —83) if i € A, and 5 = (§y, &5, &3) if
i € B. Moreover, 1/ = ZJ“ (S X ciwOqpcip)® denotes the spin
torque term as originatmg from the usual Landau-Lifshitz
dynamics. The calculation of the commutators in Eq. (6) is
detailed in the Appendix.

me] + %[H,, m{]

(S X Ctaaaﬁczﬂ) (6)

III. GRAPHENE NANORIBBONS WITH MAGNETIZATION
AND RASHBA SPIN-ORBIT COUPLING

A. Two-site toy model

For deeper insight into the impact of geometrical confine-
ment on properties of graphene with RSOC and magnetiza-
tion, we first present an exactly solvable two-site toy model

to demonstrate the feature of the transverse spin susceptibility
and the persistent spin current. Similar models have been pro-
posed to explain the microscopic mechanism of noncollinear
magnetic order and equilibrium spin currents [69-71], while
we will put emphasis on the spin torque here. The two-site
model Hamiltonian reads

H= Zt(cAacchgcAawex > Si-clyoupcis
i=A,B

+l)\.R ZC;{(O’Q[; X dij)ZCjﬂ, (7)
ij

where the two sites i = {A, B} are assumed to be connected
along d4p = —dp4 || X, and we consider the same magnetiza-
tion on the two sites S4 = Sg. The two sites feature the A and
B sublattice sites in the graphene unit cell connected along the
X direction, as implied in Fig. 1. The 4 x 4 Hamiltonian in the
basis of (cat, ¢y, Cay, CBy) 1S

JoxS7 t JexS1e™ —AR
H— t ' -,exSZ )"R ‘,exSJ_eii(b , (8)
JoxS1 e AR —JexS° t
—Ag  JxS e t —Jex S7
analogous to Eq. (3). Assuming {Je,Ag,?} >0 and

{Jex, Ar} < t, for any magnetization direction there are two
negative (E;, E») and two positive (E3, E4) eigenenergies.
Suppose the two negative eigenstates |u;) and |u,) are occu-
pied. Then the o component spin expectation value on site
i is given by (o) = (u1|lo|u1) + (uz|o*|uz), which can be
expanded in powers of J.S to obtain the susceptibility along

principle directions X“ﬁ = 3(07)/3(JexSP). We find
XXX Xz)’ X;Z

P = O xr

x5 xs

—Ax 0 1A
1 R R T
=— 0 0 0 |=0")". O
(t2 +)‘12e)3/2 e 0 —Ki ( B )

Thus there is a transverse response {x**, x**} between the x
and z directions, and consequently a spin torque on both sites
due to Landau-Lifshitz dynamics,

dSi Jex
dt
However, because the transverse susceptibility is opposite
on the two sites x;° = —xz°, the net torque > ._, pdS;/dt
vanishes. If we assume a coupling of the two magﬁetic mo-
ments by some exchange interaction Ju5S4 - Sp, then the
transverse spin polarization causes a canting angle G4 ~
2 cos 1( J2 Ar/2J4pt?) between them in the xy plane, realizing
a Dzyaloshlnskn -Moriya interaction (DMI) [72,73]. Note that
A and x5° in Eq. (9) represent the corrections to the longitu-
dinal spin polarization due to RSOC, which must be negative,
since the spins would be fully polarized (o;) = 1 along S if
RSOC were absent. The x;” = 0 means the magnetic response
in the ¥ direction is unaffected.
The local charge and spin current operators in this toy
model can be constructed from the same formalism used in

(o) x S;. (10)
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Sec. II. Denoting the current operator J§ as the one flowing
from site A to B and J, for the opposite direction, we find that
for either S || X or S || Z, the only nonzero expectation value is
the spin current (J*), and it satisfies

<JXB> = _(JgA)
— JexS)"R _ JexS)"R ) (1 1)
\/(r — JexS)2 + A% \/(t + JexS)? 4 A

There is no spin current for S || §. For all cases the charge
current is always absent, but all three components of the spin
current can be nonzero, in general. Moreover, the x and z com-
ponents of the spin currents flowing in the two directions are
not negative of each other (J55) # —(Jz), but the continuity
equation (m%) = (mpy) = 0 is explicitly satisfied, if the spin
torque is taken into account as in Eq. (6).

B. Persistent currents and spin torques in zigzag ribbons

The results in the two-site model suggests the existence
of spin torque and equilibrium spin current in geometrically
confined Rashba systems, which motivates us to investigate
our graphene model in Sec. II in the nanoribbon geometry. We
first consider the zigzag ribbon by taking the open boundary
condition (OBC) in the X direction and the PBC along the
¥ direction for our lattice model in Eq. (2). There are two
kinds of zigzag ribbons as far as the symmetry between the
two edges is concerned, namely the mirror-symmetric and the
glide-plane-symmetric ones, each invariant under the corre-
sponding symmetry operation

PR ={P] 0}, P&, = {P.|V/3/2§), (12)
using the common notation of space group operation, where
P, denotes the mirror reflection in X directions with respect to
the central axis of the ribbon. We find that the symmetries
of the patterns of the currents J* and spin polarization o
in the mirror-symmetric ribbon defined with respect to Pz‘{‘g"
are the same as those in the glide-plane-symmetric ribbon
defined with respect to Pzgilg', so we only present the former
ones for simplicity. In particular, we use the zigzag ribbon of
24-site width as an example, as shown in Fig. 2. The patterns
are translationally invariant along the ribbon direction ¥, and
are either symmetric (labeled SY) or antisymmetric (labeled
AS) under PZ"i‘gir , such that we only show the left half of a
unit cell, with size of the arrows and disks indicating the
magnitude of the currents and spin polarization, respectively.
In addition, to clarify the origin of the edge charge current, for
each eigenstate |ny, k,) we calculate the weight of the wave
function closer to the left (LE) and right (RE) edges

LE
o= Y Wk @)

S P

RE __
Mk, = D

Ny/2+1<x<N,

2
’

Wi, 0] (13)

Likewise, to understand the spin current J* at the left edge,
we calculate the spin polarization o at the left edge for each

eigenstate,

mte =y {op (). (14)

1Y, /2

These quantities are represented by colors in the band struc-
ture. The results are summarized below according to different
magnetization directions.

(i) S = 0: In the absence of magnetization, the nonhelical
{J*, J7} flowing along {¥, &} induced by RSOC are present in
the zigzag ribbon, whereby J” is largely suppressed due to
OBC in X [74]. A helical (spin chiral) edge spin current J* is
also produced, as hinted by the results in 2DEG [16,17,75],
although in zigzag ribbons it exists even without a magnetic
field and demonstrates helicity. In Fig. 2 the colored band
structure clarifies the origin of J%: For every left edge (LE)
spin up k, state (blue) there exists a corresponding LE spin
down —k, state (green), yielding counterpropagating spins at
the LE. This is true for all eigenstates, so the finite J* is not
only the result of low-energy states, similar to that which has
been discussed recently for the QSHE in topological insula-
tors [76]. These features for the spin currents remain true even
in the presence of a finite magnetization S # 0.

(@i1) S || X: It is known that in 2DEG with RSOC, an in-plane
magnetization pointing perpendicular to the edge produces
an edge charge current, whose flow direction depends on the
distance away from the edge [18]. S || X corresponds to this
situation, in which we indeed see a charge current JO that
is symmetric (nonchiral) between the two edges. The eigen-
states are not particularly localized at either edge (the band
structure is not particularly red or green), but the band struc-
ture becomes asymmetric E(ny, k) = —E(n,, —k,), which
can cause J° along the ribbon, a mechanism that has been
pointed out for a superconductor/noncollinear magnet [77]
and TI/FMM heterostructures [19,20]. A large transverse
spin polarization o¢ is induced near the edge without any
bias voltage (in contrast to that produced by a bias voltage
[78-85]), similar to that uncovered previously in a low-energy
Dirac model [86], signaling the existence of a local torque
according to the Landau-Lifshitz dynamics in Eq. (10). The
torque is antisymmetric between the two edges and hence
averages to zero, and is expected to cause a noncollinear order
between the two edges as in the two-spin model in Sec. IIT A.
For the parameters in Eq. (5), the largest edge currents are
of the order of ~0.01, in units of et/li ~ 10~* A for J) and
wgt /B~ 10 pp/s for {J*,J7, J%}, where up is the Bohr
magneton, and the largest edge spin polarizations are of the
order of ~0.01 wp.

(iii) S || §: For the case of a magnetization along the ribbon,
we find no charge current J° and no transverse spin polar-
ization o* = ¢* = 0, and hence there is no local torque. The
energy spectrum is half-metallic.

@iv) S || z: Interestingly, we find that an out-of-plane
magnetization also produces a charge current JO, but it is
antisymmetric (chiral) between the two edges. Comparing
with that in the S || % case, this suggests the chirality of J°
can be controlled by the orientation of the magnetization.
This current only occurs when the chemical potential is finite
u # 0, similar to that in the QAHE in Chern insulators [76],
although our spectrum remains gapped. The band structure
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FIG. 2. The band structure E (n,, k,) at zero chemical potential, persistent charge and spin currents J*, and transverse spin polarization o*
(red positive and blue negative) in the mirror-symmetric zigzag ribbon with RSOC at different magnetization directions S. The pattern of these
quantities repeats along the ribbon direction ¥, and is either symmetric (labeled SY) or antisymmetric (labeled AS) under P™* in Eq. (12), so

zig

we only present the left half of a unit cell, except for S = 0, for which we show the entire unit cell. For the absence of magnetization case
S = 0, the colors in the band structure indicate the spin up and down components at the left half space (LE) for the eigenstates |n,, k,), and for
S # 0 cases they indicate the probability of the eigenstates at the left and right (RE) half space. The largest arrow in the figure has magnitude

0.015, and the largest disk 0.011.

is symmetric between +k, and —k, at S || Z, but the wave
function distribution is not: If the +k, state is mostly localized
at the left edge (red), then the —k, state is more localized at
the right edge (green), suggesting counterpropagating charge
currents at the two edges. Note that some of the low-energy
states are inherited from the flat band edge states of the pris-
tine zigzag ribbon, which become dispersive and chiral under
the influence of magnetization and RSOC. Finally, transverse
spin polarizations ¢ occur near the edges, which are opposite
at the two edges and hence average to zero.

We conclude that for magnetization along principle direc-
tions S || {X, ¥, Z}, only {x*°, x**} of the transverse suscepti-
bility are nonzero, which then yield a local spin torque that
requires no bias voltage according to Eq. (10). However, the
transverse spin polarization is always antisymmetric between

the two edges and hence integrates to zero ), dS;/dt = 0, in-
dicating no net torque on a macroscopic scale. These features
are similar to those in the two-site model in Sec. IIT A.

C. Persistent currents and spin torques in armchair ribbons

The armchair ribbons are simulated by imposing PBC
in X and OBC in § to Eq. (2). The symmetry between
the two edges distinguishes the mirror-symmetric and glide-
plane-symmetric armchair ribbons, with the corresponding
symmetry operators

P = {BI0}. Pi, = {P]3/2%},

arm

s)

where P, denotes the mirror operation along § with respect
to the central axis of the ribbon. The symmetry properties of
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FIG. 3. Same quantities as in Fig. 2 but for glide-plane-symmetric armchair ribbon. The pattern is symmetric (labeled SY) or antisymmetric
(labeled AS) as defined with respect to P&l in Eq. (15). The largest arrow and disk in the figure are of the magnitude 0.024 and 0.011,

respectively.

the currents and spin polarization for the mirror- and glide-
plane-symmetric armchair ribbons, defined under P™I and
Pﬁﬁ], respectively, are identical, so we only present the glide-
plane-symmetric case in Fig. 3. The edge spin and charge
operators are analogous to those introduced in Eqgs. (13) and
(14), with an exchange of coordinates x <> y. The results for
different magnetization directions are summarized below.

(i) S = 0: The case S = 0 has both the nonhelical J* and
J? caused by RSOC. However, J* is strongly suppressed due
to OBC in the § direction. The out-of-plane polarized helical
J* at the edge is clearly visible, and also originates from the
counterpropagating spins as can be deduced from the color
codes of the band structure. These features of spin currents
remain valid in the S # 0 cases below.

(i1) S || X: For the magnetization pointing along the rib-
bon, there is no charge current J°, and a spin polarization in

both transverse directions is induced, indicating a spin torque
according to Eq. (10). The oY component is antisymmetric
and, hence, constitutes a noncollinear magnetic order between
the two edges. The % component is symmetric for the two
edges, but has alternating signs along the ribbon, causing
noncollinear magnetic order along the ribbon.

(iii) S || §: For magnetization in-plane but perpendicular
to the ribbon direction, an asymmetric band structure causes
a nonchiral J°, and the spin polarization in both transverse
directions o* and ¢ are induced and are asymmetric between
the two edges.

@iv) S || z: The out-of-plane magnetization again causes
a symmetric band structure. For the +k, state that is more
localized at the right edge, we find a corresponding —k, state
at the left edge, which suggests the existence of a chiral J°.
Interestingly, this feature is not obvious at low energy, but
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FIG. 4. The unit cell of partially magnetized zigzag ribbon at
magnetization S || X, where the transverse spin polarization o* is
indicated by the size of disks, with red positive and blue negative.
The region to the left of the dotted line is magnetized, and to the right
is unmagnetized, and hence the panels from top to bottom represent
the magnetization covering 1/2, 1/3, 1/6, and the edge sites of the
ribbon. The average spin polarization per site in the magnetized
region is indicated by o<.

more prominent for the higher-energy states. Comparing this
with the S || § result, we again see that the chirality of J°
can be controlled by the orientation of the magnetization.
The o° component is antisymmetric between the two edges,
while o” is symmetric but with sign-alternating along the
ribbon. Finally, comparing the spin polarization o* in all three
situations S || {X, ¥, Z}, we conclude that every component of
the local susceptibility tensor x*# is nonzero, different from
that of the zigzag ribbon in Sec. III B. Nevertheless, the total
torque vanishes in all cases.

D. Partially magnetized nanoribbons and irregular nanoflakes

To make the magnetoelectric torque observable, one must
overcome the overall canceling of the torque as seen in our
discussion of the nanoribbons. We suggest two situations that
the net torque can be nonzero. The first is to make the magne-
tization spatially varying, e.g., only occupy the region closer
to one edge, such that the other edge is idle. Using a zigzag
ribbon with S || & as an example, in Fig. 4 we indeed see
a nonzero net transverse spin polarization in this situation,
whose average value per site is of the order of o7 ~ 107*

29 ¢* - ¢

€} ‘ Qo AN, (X )

o7 = ® - 'Q: o= ‘.' )
1 @

J° J*

FIG. 5. An L-shaped nanoflake with magnetization S || X, where
we show the transverse spin polarizations o and ¢, charge current
J°, and out-of-plane polarized spin current J*. The 0% represents the
average spin polarization per site.

when the magnetization only covers a region near the left
edge, and it is dramatically enhanced to 0% ~ 1072 if the mag-
netization only exists on the edge sites. Following Eq. (10),
the 6% ~ 10™* and J., ~ 0.1 eV would yield a very large
spin torque dS/dt ~ 10 GHz. Although we likely overesti-
mated this torque due to the large J.x and A in Eq. (5), even
if the torque is reduced by two orders of magnitude to ~0.1
GHz, it is still significant.

The second proposal is to use graphene nanoflakes with
irregular shapes, which may help to generate nonuniform
distribution of spin polarization that does not sum to zero
[87-91], given that the two edges are not equivalent or it
may even be ambiguous to identify two opposite edges. In the
example shown in Fig. 5, we see that the L-shaped nanoflake
indeed yields a net 0¥ and o7 per site of the order of 1073
to 10~ when magnetization points at S || &, indicating a
net torque of significant strength. In addition, despite the
open boundary in all directions, still equilibrium currents
{JO,J*, J7, J?} exist. These currents turn into networks of
local currents, suggesting that they survive even in realistic ex-
perimental situations of small and open boundary nanoflakes.

IV. CONCLUSIONS

In summary, we demonstrate that graphene nanoribbons
due to RSOC and geometric confinement display a peculiar
magnetic response, including a bias-voltage-free spin torque,
chiral and nonchiral edge currents, and equilibrium spin cur-
rents. Using a two-site toy model, we could analytically
show features such as a transverse susceptibility caused by
geometric confinement and linear in the RSOC strength. Nu-
merical calculation suggests that the same features occur in
nanoribbons. Given the controllability of RSOC by gate volt-
age [44-46,48-50], the transverse susceptibility can serve as
a gate-voltage-induced magnetoelectric torque distinct from
the usual current-induced spin-orbit torque. In a zigzag rib-
bon, this torque tends to create noncollinear spin polarization
between the two edges, and in an armchair ribbon the non-
collinear order is not only between the edges but can also
be along the ribbon. Although the net torque sums to zero
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in uniformly magnetized ribbons, it can be nonzero if the
magnetization only covers parts of the ribbon, say, closer to
one edge, or in nanoflakes of irregular shapes. We estimate a
net torque that can reach sub-GHz magnitude, pointing to the
possibility of practical applications.

We further confirm that the equilibrium edge charge cur-
rent JO predicted for 2DEGs, when the magnetization points
perpendicular to the edge, also exists in Rashba nanoribbons.
Moreover, we discovered that J° can be nonchiral due to the
asymmetric band structure, or chiral due to counterpropagat-
ing eigenstates localized at opposite edges, depending on the
magnetization pointing in-plane or out-of-plane. In addition,
the in-plane polarized persistent spin currents J* and J¥ that
exist ubiquitously in 2D Rashba systems also manifest in
nanoribbons, but the component flowing in the confined di-
rection is strongly suppressed. Besides, the RSOC causes an
out-of-plane polarized helical edge spin current J* even in the
absence of magnetization. This discovery poses a challenge
to distinguish J* from that of purely topological origin in
graphene-based topological insulators containing RSOC, such
as the Kane-Mele model [64,65,92]. Generally, the energy
gap does not affect the existence of these currents and spin
torques, since they are contributed from all the eigenstates
in the Fermi sea, not only the low-energy flat band edge
states that in some cases become dispersive. In addition, all
these currents survive even in nanoflakes that have an open
boundary in every direction. We anticipate that the control-
lability of RSOC by gate voltage and the magnetization by
magnetic field offers a practical way to engineer these effects,
which may help to realize them for practical purposes, such as
building graphene-based spintronic devices [93-95].
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APPENDIX: EXPLICIT FORM OF THE CHARGE
AND SPIN CURRENT OPERATORS

To calculate the commutators in Eq. (6), we observe that
the hopping and the Rashba Hamiltonians take the following
general form,

H+He =) ) D Tohcicions + Tclypcil).
€A n ap

(AD)

where Ta”ﬂ is the hopping amplitude that the spin g at site i +

becomes spin « at site i, and Ta"; is the complex conjugate of
this amplitude. The results of the commutators give

o _ ia 0o+ ne
Tiin = 7 Z {TbCiaCions = Ty CitypCia )
af

ia ;
Ji‘fz’—ﬁ-n = N Z Z {Ta”,saavaifvciuc”ﬂﬂ
af v

* T
- Ta”ﬁ (Suaaﬁvciﬂﬂciv } (A2)

For n = (=48, —8,, —83), the complete list of nonzero hop-
ping amplitudes are

I =T 0 =1 fori={(1.23),

s V3o
T = ”‘R<_7 + _>’

V30
—8 __ -
Iy = ’)‘R<T + 5)’

T = ke, T =k (A3)

and Tjﬂ = —Ta?" for n = (8, 85, 83). The explicit forms of
the current operators are then given by
o _ . i i i
Jiien = E{t CipCitnt — L CippaCit T 1 C; Cigny —1Ciy, Ciy
not nx Lt
T cpcivny — Ty €y Cin

noT nx
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ity = U S St i+t Cid it Citnl i+l “it

not nx Lt

T ¢y — Ty gy il
Nt nx T

T T cpcivmt — Ty cippcinds

J =C—Z{—tcTc' —tcl, e Htchcipy Fic G
i,i+n i i} Ci+nt i+n1 ¢l itCitnl i+nd “it

n .t 1%
— Ty iyCivnt = Ty Cigy Cit

n T nx
T4 Cipcivnt + Ty Cpppeinhs

J? —E{tcﬁc —tcl, e —tchcin +ic
Litn = g i} “itnt i+t Cid it Citnd i+n) ¢t
no nx ¥
T3 circivns — Ty iy Cin

.
f

1 nx F
— TH Ci Citnt T TH chcw}. (A4)

We then evaluate the equilibrium charge and spin current
numerically by their expectation values

() = Y e 1) F(E),

n

(A5)

where |n) is the eigenstate of the lattice Hamiltonian, and
f(E,) = (/%7 4 1)~ is the Fermi distribution function.
Note that this strategy includes all the eigenstates in the Fermi
sea, in contrast to previous theories that consider only the
low-energy states [96,97]. Often times we ignore the bracket
(@) = O of the expectation value for convenience.
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