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Exponential speedup of incoherent tunneling via dissipation
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We study the escape rate of a particle in a metastable potential in the presence of a dissipative bath coupled to
the momentum of the particle. Using the semiclassical bounce technique, we find that this rate is exponentially
enhanced. In particular, the influence of momentum dissipation depends on the slope of the barrier that the
particle is tunneling through. We investigate also the influence of dissipative baths coupled to the position, and to
the momentum of the particle, respectively. In this case the rate exhibits a nonmonotonic behavior as a function
of the dissipative coupling strengths. Remarkably, even in the presence of position dissipation, momentum
dissipation can enhance exponentially the escape rate in a large range of the parameter space. The influence
of the momentum dissipation is also witnessed by the substantial increase of the average energy loss during
inelastic (environment-assisted) tunneling.
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I. INTRODUCTION

In minimization methods, the research of the absolute min-
imum becomes a challenging problem when the landscape
is characterized by many relative minima and energy barri-
ers of comparable size. Classical methods used by classical
computers (e.g., Monte Carlo simulations) generally require
exponentially long times. Quantum adiabatic annealing meth-
ods propose an alternative strategy which is based on the idea
to elevate the classical system to the quantum domain [1–5].
However, such a strategy also poses time constraints. An al-
ternative and optimal strategy could be to exploit the quantum
tunneling effect as an irreversible process [6] by avoiding pos-
sible quantum coherent oscillations between different minima.
This can be in principle realized if the quantum system is
not closed but is dissipatively coupled to an external bath.
The influence of dissipation on quantum annealing has been
recently studied [7–9]. In open quantum systems, contrary to
intuition, dissipation and dephasing can even enhance the rate
of some processes, as in quantum computation via engineered
dissipation [10] or in transport phenomena assisted by noise
in quantum networks and biomolecules [11] and in photo-
synthetic biomolecules [12]. Environment-assisted quantum
transport has been recently studied in a controlled fashion in
a spin network formed by trapped ions [13].

Contrary to the classical case, an isolated quantum particle
at zero temperature in a metastable minimum can escape
into the unbound region of the potential, with a continuous
energy spectrum, beyond the energy barrier [14–17]. In order
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to investigate the crossover from the quantum to the classical
regime, Caldeira and Leggett first considered the metastable
escape in the presence of a dissipative bath coupled to the
position [18] finding that a such coupling leads, indeed, to a
reduction of the escape rate, as intuitively expected. Subse-
quent works in the literature analyzed in details this seminal
problem [19–23]. On the other hand, the problem of the
quantum escape from a metastable well in the presence of
a dissipative bath coupled to the momentum of the particle
has not been studied so far, although previous studies briefly
mentioned a possible enhancement [24,25].

We here investigate the escape rate via quantum tunneling
of a particle trapped in a metastable well and coupled to an
external bath via the momentum operator; see Fig. 1. This
kind of dissipative interaction has been discussed in other po-
tentials [25–31]. We here show that the coupling to an external
bath via the momentum operator increases the escape rate.
The enhancement is obtained even in the presence of a second
dissipative bath coupled to the position operator of the parti-
cle. We note that although we analyze an irreversible escape
process, our results are valid also for asymmetric double-well
potentials [31,32] as long as tunneling is completely incoher-
ent (irreversible) in the regime of strong dissipative coupling
with the two baths and in the limit of low temperature. We also
calculate the average energy loss towards the environments
during the tunneling process and find a crossover in the domi-
nance of the respective environmental couplings as a function
of the slope of the barrier.

II. THEORETICAL MODEL

In the semiclassical limit V0 � h̄ω0, where V0 is the energy
barrier and ω0 the harmonic frequency associated to the rela-
tive minimum, the escape rate � of the particle through the
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FIG. 1. (a) The considered model of a particle in a
(semidouble parabolic) potential and coupled to an external
bath via the momentum operator with coupling constant τp. The
slope of the energy barrier on the right can be changed by varying
the minimum �, the different colored lines correspond to different
values of �. (b) Exponential enhancement E of the escape rate �

as a function of τp. Different lines correspond to different regimes:
� = 0.01V0, � = 104V0, � = ∞; the dotted lines correspond to
analytic expansions (see text). The frequency of the harmonic
well is ω0, whereas ωc is the high-frequency cutoff of the bath
spectral density. In all cases the escape rate increases exponentially.
Parameters V0/h̄ω0 = 12.5 and ωc = 8000 ω0.

barrier is of the form

� = K e− 1
h̄ Scl . (1)

In the path integral formalism, the exponent Scl represents the
Euclidean action on the minimizing (classical) path xcl (τ ) in
the imaginary time τ and the prefactor K is related to the first-
order corrections due to fluctuations around this path [33–35].
In absence of any coupling to an external bath, we denote the
bare escape rate associated to the potential by �0 = K0e− 1

h̄ S(0)
cl .

Generally the prefactor depends on the dissipative couplings.
While K can be enhanced in the presence of momentum
dissipation affecting the trapped particle, i.e., K � K0 (see
Appendix C), the leading dependence is due to the exponential
term. For this reason the present analysis is focused on the
ratio between the two exponential terms

E = e− 1
h̄

(
Scl − S(0)

cl

)
. (2)

For E > 1 the escape rate is increased due to the presence of
dissipative couplings, whereas it is reduced for E < 1.

Choosing a suitable shape of the metastable potential al-
lows us to obtain analytic results also in the presence of
dissipation. For simplicity, we model the potential by V (x) =

FIG. 2. (a) Example of the inverted potential −V (x) for the mo-
tion of the minimizing (classical) path xcl (τ ). (b) Different paths
xcl (τ ) for different values of � in the nondissipative case γ = τp =
0. The path shrinks with increasing �. For � = ∞ the particle is
instantly reflected at the turning point xesc.

mω2
0x2/2 for x < a and V (x) = mω2

0(x − xm)2/2 − � for a <

x < xm, as shown in Fig. 1(a). From the second minimum
the potential remains flat, with V (x) = −� for x � xm which
controls the slope on the right side of the barrier. The matching
condition at x = a yields mω2

0(a − xm)2/2 − � = V0, relating
xm to a. We also calculated the action for a more general po-
tential, showing that the obtained results represent the general
case; see Appendix E.

Integrating out the baths to which the particle is coupled
via the momentum and position operators, the action in the
exponential of Eq. (1) can be split into two parts S = S0 + Sdis,
with [36]

S0[x(τ )] =
∫ β

2

− β

2

dτ
[m

2
ẋ2(τ ) + V [x(τ )]

]
(3)

and the dissipative part as [31]

Sdis[x(τ )] = 1

2

∫∫ β

2

− β

2

dτ dτ ′F (x)(τ − τ ′)x(τ )x(τ ′)

+ 1

2

∫∫ β

2

− β

2

dτ dτ ′F (p)(τ − τ ′)ẋ(τ )ẋ(τ ′), (4)

where the limit β → ∞ has to be performed at the end.
Assuming Ohmic spectral densities for the two baths, the
two time-dependent functions read F (x)(τ ) =∑l F (x)

l eiωl τ /β

and F (p)(τ ) =∑l F (p)
l eiωl τ /β, with the Matsubara frequency

components F (x)
l = γ m|ωl | fc(ωl ) and F (p)

l = m{−1 + [1 +
τp|ωl | fc(ωl )]−1}, respectively, where ωl = 2π l/β (with l
integer) [31] and fc(ωl ) = (1 + |ωl |/ωc)−1 is a Drude cut-
off function with a frequency cutoff ωc (note that ωc � ω0

throughout this article) [37]. The parameters γ and τp are the
coupling constants associated to the position and the momen-
tum dissipation, respectively.

In the semiclassical path integral method for the quantum
decay, the minimizing path xcl (τ ) of the action S is the so-
lution of the classical equation of motion with the inverted
potential −V (x). At zero temperature (β → ∞) a nontrivial
solution xcl (τ ) �= 0 is called the bounce path: The particle
starts at the minimum of the well at x(τ =−β/2)|β→∞ = 0,
reaches the turning point x(τ =0) = xesc, and then returns to
x(τ =β/2)|β→∞ = 0. Examples of xcl (τ ) for the bare poten-
tial γ = τp = 0 are reported in Fig. 2; for the ones in the
presence of dissipation we refer to Appendix B. The imag-
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FIG. 3. (a) Particle in a metastable well in the presence of both dissipative couplings. (b) Logarithmic plot of E as a function of γ , at fixed
ratio τpω

2
0/γ = 0.5 and for different values of �. The gray area and the violet and black lines correspond to the shape in panel (a). The dashed

line is the analytical result shown in Appendix B. (c) Logarithmic plot of E as a function of γ , for � = 2V0 and different values of the ratio
τpω

2
0/γ . (d) E as a function of � and γ , at fixed ratio τpω

2
0/γ = 0.5. For (b), (c), and (d) we used V0/h̄ω0 = 12.5.

inary time spent in the region a < x(τ ) < xesc is called the
bounce time ξB, which turns out to depend strongly on the
slope of the potential and ultimately vanishes in the limit of
sharp potential. This characteristic timescale is determined by
the integral equation [38]

1

ω2
0

1√
1+�/V0+1

= 1

π

∫ ∞

0
dω

sin(ωξB)

ω
[

ω2

1+τpω fc (ω) +ω2
0 +γω fc(ω)

] .
(5)

The analytic solution for the action Scl is given by

Scl = − 2ω2
0V0(

√
1 + �/V0 + 1)2

π

×
∫ ∞

0
dω

1 − cos (ωξB)

ω2
[

ω2

1+τpω fc (ω) + ω2
0 + γω fc(ω)

]
+ 2V0(1 +

√
1 + �/V0)ξB. (6)

We note that the dependence on the bounce time ξB implies
a change of the action when the slope of the right side of the
potential barrier is varied.

III. RESULTS

Our main results are summarized in Figs. 1 and 3. In
Fig. 1 we show the results for pure momentum dissipation
of coupling strength τp, for different slopes of the right side
of the barrier. In presence of pure momentum dissipation,
the action decreases as a function of the coupling parameter
τp leading to the enhancement of the escape rate observed
in Fig. 1(b). In contrast, for pure position dissipation in a
metastable well one obtains an exponential suppression of the
escape rate [18–20,22,23].

A simple picture for the observed exponential speedup of
the escape rate can be given in the limit of infinite slope [see
Fig. 1(a)], which is obtained by taking the limit � → ∞ [20].
As a consequence, the particle is instantly reflected at xesc = a
leading to a vanishing bounce time ξB → 0 [see Fig. 2(b)].
In this case, Scl/h̄ ≡ a2/(2〈x2〉), with a the position of the
barrier maximum and 〈x2〉 the harmonic quantum fluctuations
of the particle in the well. As the momentum dissipation
increases the quantum fluctuations 〈x2〉 [26,27,30], the escape
rate is enhanced as a consequence. In the weak coupling limit

ω0τp � 1, the expansion of 〈x2〉 in the action Scl yields

E (�=∞)
γ=0 ≈

(
ωc

ω0
√

e

) 4
π h̄ V0τp

ω0τp � 1, ωcξB � 1. (7)

The escape rate E is limited by the cutoff frequency ωc as 〈x2〉
diverges in the limit ωc → ∞ [30]. This simple form provides
a good approximation also for a sharp barrier with a finite
slope (and small ξB) as long as ωcξB � 1.

For a finite slope of the barrier, the classical action
is not anymore simply related to the harmonic quantum
fluctuations Scl/h̄ �= a2/(2〈x2〉). However, the exponential
enhancement still persists in this more realistic situation
shown in Fig. 1(b) and in particular is not affected by the
presence of conventional (position) dissipation, as will be
discussed in the following. The exponential enhancement
of the rate in the presence of momentum dissipation strongly
depends on the steepness of the barrier. As shown in Fig. 1(b),
the effect is maximal for a sharp barrier (� = ∞), which
represents an upper theoretical bound, and then becomes less
pronounced. A qualitative understanding is provided by the
following physical picture: The presence of the momentum
dissipation gives rise to an anomalous friction force in the
equation for the minimal path xcl . Such a force is proportional
to the acceleration through a memory friction function (i.e.,
nonlocal in time); see Appendix B. As the acceleration is
strongly controlled by the conservative force ∼dV (x)/dx, the
anomalous friction force becomes important at the turning
point xesc, viz., when dx2(τ )/d2τ becomes large; see the ex-
ample of Fig. 2. Notice that the turning point xesc also depends
on the dissipative couplings and does not coincide with the
zero of the potential V (x0) = V (0) = 0 as in the case of no
dissipation (see Appendix B). Finally, we remark that even
in the limit dV (x)/dx|x=xesc

= −∞, the results for the action
remain finite as the friction is nonlocal in time.

For finite value of �, an intermediate regime is identified
by a reduced slope of the potential for � � V0 and an in-
creased bounce time ωcξB � 1 (but still ω0ξB � 1). In this
case, the action is not limited anymore by the cutoff frequency
ωc. The escape rate still depends exponentially on the dissipa-
tive momentum interaction, but with an explicit dependence
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on �,

E (��V0 )
γ=0 ≈

(
k1

�

V0

) 2
π h̄ V0τp

ω0τp � 1, ωcξB � 1, (8)

where k1 = e2(1−C)/4 ≈ 0.81 with C the Euler constant. Equa-
tion (8) corresponds to the (gray) dotted line in Fig. 1(b).

A further interesting regime corresponds to � � V0, for
a finite slope and bounce time [39]. In the limit � � V0

the problem becomes equivalent to the solution of a slightly
asymmetric double well in the incoherent overdamped limit,
discussed in [32] for pure position dissipation. In a such limit
the exponential enhancement is described by

E (��V0 )
γ=0 ≈ e

4
π h̄ V0τp, ω0τp � 1, ω0ξB � 1. (9)

We note that the different regimes of � described by
Eqs. (7)–(9) present characteristic base functions, whereas the
exponent controlling the effect of momentum dissipation is
the same.

The analytical solutions for E presented so far are restricted
to pure momentum dissipation (γ = 0). The respective curves
are displayed in Fig. 1 and agree well with the numerical
results of Eqs. (5) and (6) in the respective regimes. Further
analytical expressions in the presence of both dissipative cou-
plings are reported in Appendix B in various regimes of ω0ξB,
ωcξB and �/V0 and they also agree well with the numerical
results [an example is given in Fig. 3(b)]. The main result
analyzed for pure momentum dissipation also holds in the
presence of both baths when position dissipation dominates,
as shown in Fig. 3. In general, the presence of both dissipa-
tive couplings (momentum and position) leads, however, to
a nonmonotonic behavior as a function of γ /ω0 (or τpω0)
clearly visible in E shown in Figs. 3(b)–3(d) for a fixed
ratio τpω

2
0/γ . Again, a simple physical picture is obtained

in the limit � = ∞ in which E is determined uniquely by
the harmonic quantum fluctuations 〈x2〉 of the harmonic well.
Such harmonic quantum fluctuations exhibit a nonmonotonic
behavior as a function of the coupling strengths [30]. This is
reflected in the results for E shown in Fig. 3(b) for a fixed
ratio τpω

2
0/γ and different values of �. We note that, in the

regime of sharp potential � � V0, the effect of momentum
dissipation dominates over the range of γ /ω0 shown in the
figure. This is due to the strong dependence of the momentum
dissipation on the slope as explained previously. In Fig. 3(c)
we show E for a given value of � = 2V0 and for different
values of the ratio τpω

2
0/γ . We observe that the exponential

speed-up still persists in a wide range of γ /ω0 which depends
on τpω

2
0/γ .

Finally, we also calculate the average energy loss during
the tunneling process. Such average energy induced by the
dissipative couplings is defined as 〈
E〉 = V (0) − V (xesc)
[32,40]. In absence of dissipative interaction, the returning
point xesc of the bounce path is simply given by the condition
V (xesc) = V (0) = 0; see Fig. 2(a). However, by increasing
the dissipative coupling, xesc shifts to larger values (see Ap-
pendixes B and D), indicating that the particle escapes the
barrier, on average, at an energy V (xesc) < V (0); see Fig. 4(a).
In Fig. 4(b) we plot 〈
E〉 as a function of � for different
dissipative cases. Considering pure position dissipation we
find that the loss saturates already for moderate � ∼ V0 be-

FIG. 4. (a) Average energy loss during the tunneling process
〈
E〉 = V (0) − V (xesc ) for a particle coupled to two baths via the
momentum and the position operators. (b) The quantity 〈
E〉 as a
function of � for different dissipative cases. The solid (purple) line is
for both dissipative couplings, whereas the dashed (red) line and the
dotted (blue) line are in the presence of a single bath with coupling
through the momentum and the position, respectively.

coming independent of the barrier. For small � the energy
loss into a single momentum dissipative bath is smaller than in
the presence of pure position dissipation. However, the latter
energy loss increases by increasing � and eventually becomes
larger as in the position dissipative counterpart. This is again a
consequence of the explained increasing influence of momen-
tum dissipation as a function of �. By further increasing �,
〈
E〉 eventually saturates to a value determined by the cutoff
frequency ωc (see Appendix D for the details). In presence
of both dissipative couplings and � � V0 the loss coincides
with the value of pure position dissipation as can be seen from
Fig. 4(b). For larger values of �, the energy losses simply
add up. From the crossing point in Fig. 4(b) we can deter-
mine the values in parameter space for which both dissipative
baths become equally important. Further, the average energy
loss as a function of the dissipative coupling saturates to the
same asymptotic value in the overdamped limit γ /ω0 � 1
and τpω0 � 1 as we display in Appendix D. Note that the
asymptotic values in Fig. 4(b) satisfy 〈
E〉a < � since the
expected maximum energy loss is V (0) − V (xm) = � [40].

IV. CONCLUSIONS

Momentum dissipation leads to an exponential enhance-
ment of the escape rate of a particle in a metastable potential.
In presence of position dissipation, we find a nonmonotonic
behavior as a function of the dissipative coupling strengths.
Depending on the barrier, momentum or position dissipa-
tion can be dominant. For a sharper barrier, the region of
momentum dissipation induced enhancement increases. The
particle’s average energy loss during the tunneling process
shows a strong dependence on the interplay between momen-
tum dissipation and the slope of the potential. We verified
that the discussed physical implications do not depend on
the specific form of the potential and the qualitative behavior
corresponds to the general case (see Appendix E).

To summarize, we propose a method that rapidly releases
the system from a relative (metastable) minimum exploiting
quantum tunneling as a pure, irreversible, and inelastic pro-
cess, assisted by the environment. Our theoretical findings
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can be directly tested in superconducting quantum circuits
[41–43] in which dissipative position and momentum inter-
action translate to dissipative phase or charge couplings. In
particular, momentum/charge dissipation can be readily im-
plemented simply using capacitances and resistances [44].
Further, our results are important for quantum numerical
minimization methods in which the escape rate from a rela-
tive minimum plays a key role in setting the computational
timescale [6,45].
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APPENDIX A: GENERAL FORMULA FOR THE DECAY
RATE IN THE SEMICLASSICAL APPROXIMATION

In this Appendix, we recall the theoretical method for
calculating the amplitude (or matrix element) Z0 which can be
related to the escape rate of a particle placed in the metastable
well, in the zero temperature limit. We generalize this ap-
proach in the presence of position and momentum dissipation.

1. The Hamiltonian of the system

The system discussed in the main text is described the
Caldeira-Leggett Hamiltonian with two dissipative harmonic
oscillator baths

H = Hsys + H(x)
B + H(p)

B . (A1)

Here Hsys = p2/2m + V (x) is the system Hamiltonian with
momentum p and position x, H(x)

B is the bath Hamiltonian
including the bilinear coupling to the position, reading

H(x)
B = 1

2

∑
i

[
P2

i

Mi
+ Miω

2
i

(
Xi − λi

Miω
2
i

x

)2]
, (A2)

where Pi, Xi, Mi and ωi are the momentum, the position, the
mass and the frequency of one harmonic oscillator in the
bath, respectively. Further, λi denotes the linear coupling to
x, and the counter term canceling the renormalization of the
potential is included. H(p)

B yields a bilinearly coupling to the
momentum, reading

H(p)
B = 1

2

∑
j

[
(Pj − μ j p)2

Mj
+ Mjω

2
j X

2
j

]
, (A3)

where the subscripts j denote the coordinates, the mass, and
the frequency of the bath coupled to the momentum and μ j

is the linear coupling strength. Integrating out the bath in the
path integral language leads to the action in Eqs. (3) and (4).

2. The semiclassical method

Because the potential is metastable, Z0 has an imaginary
part � which corresponds to the escape rate. One can calculate

Z0 via the imaginary time path integral method, specifically
using the instanton-bounce method [15,17,21,34,35]. The
starting point of this theoretical approach is the amplitude in
the imaginary time

Z0 = 〈x0|e− β

h̄ H|x0〉 =
∮

D[x(τ )]e− 1
h̄ S[x(τ )], (A4)

where S[x(τ )] = S0 + Sdis is the action of the open quantum
system given in the main text. In particular Sdis is the dissi-
pative action and x(τ ) is a generic periodic path with x0 =
x(β/2) = x(−β/2). In the limit β → ∞, one can set x0 = 0
such that Z0 is proportional to the density of probability (in
the imaginary time) to find the particle at the origin, which
corresponds to the minimum of the metastable well.

One can calculate Z0 in the semiclassical approximation by
finding the so-called classical path xcl (τ ) that minimizes the
action and using the expansion x(τ ) = xcl (τ ) + δx(τ ) leading
to S[x(τ )] = Scl [xcl (τ )] + Sδ[δx(τ )]. This path, in the zero
temperature limit β → ∞, starts and ends in the minimum
of the well, x(±β/2)|β→∞ = 0. Beyond the trivial solution
x(0)

cl (τ ) = 0, there exists the so-called bounce path x(1)
cl (τ ) in

which the particle moves from the minimum x = 0, gets re-
flected at the returning point xesc and comes back to its origin;
see Fig. 5. The matrix element of a single bounce path x(1)

cl can
be written in the semiclassical limit as

z(1)
0 = e− 1

h̄ Scl [x
(1)
cl (τ )]

∮
D[δx(τ )]e− 1

h̄ S(1)
δ [δx(τ )], (A5)

with the fluctuations around the classical path satisfying
δx(−β/2) = δx(β/2) = 0 and S(1)

δ being the expansion of the
action over the single bounce path x(1)

cl :

S(1)
δ [δx(τ )] =

∫ β

2

− β

2

dτ

{
m

2
δẋ2(τ ) + 1

2

d2V [x(τ )]

d2x

∣∣
x(1)

cl
δx2(τ )

}
+ Sdis[δx(τ )]. (A6)

One can express the generic fluctuations path as δx(τ ) =∑∞
q=0 cqyq(τ ) in which we use as basis the eigenfunctions of

the following eigenvalue equation:[
−m

d2

dτ 2
+ V

[
x(1)

cl

]]
yq(τ ) +

∫ β

2

− β

2

dτ ′F (x)(τ − τ ′)yq(τ ′)

−
∫ β

2

− β

2

dτ ′F (p)(τ − τ ′)
d2

dτ ′2 yq(τ ′) = λ(B)
q yq(τ ), (A7)

where we set V[x(1)
cl ] = d2V [x(τ )]

dx2 |x(1)
cl

and λ(B)
q are the eigenval-

ues. Using the eigenvectors decomposition, we can write

S(1)
δ = 1

2

∞∑
q=0

λ(B)
q c2

q. (A8)

A priori, the full matrix element is the sum of all possible
n-bounce paths

Z0 =
∞∑

n=0

z(n)
0 . (A9)
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FIG. 5. (a) Metastable well potential discussed in the present article. (b) Example of a single bounce path which minimizes the action
without dissipation. The bounce time ξB denotes the imaginary time interval in which the path is in the region x > a.

As discussed below, we will use the so-called dilute gas ap-
proximation for the bounces such that the quantities z(n)

0 for
n � 2 can be obtained from the knowledge of z(1)

0 .

3. Discussion on the zero and on the negative eigenvalues

The spectrum {λ(B)
q } contains a zero eigenvalue λ

(B)
0 =

0 with the eigenfunction y0(τ ) = Aτ0 ẋ(1)
cl (τ ) because of the

translational invariance of the bounce on the whole τ axis.
Aτ0 is a constant and ẋcl (τ ) = dxcl (τ )/dτ . There exists also a
negative eigenvalue λ

(B)
1 due to the fluctuations of the bounce

time ξ , which corresponds to the imaginary time in which
the path is in the region a < x < xesc. From a mathematical
point of view, one can consider Eq. (A7) as the Schrödinger
differential equation in which the τ axis is the space and yq(τ )
the wave function. Then the negative eigenvalue λ

(B)
1 can be

seen as the bound energy of the localized ground state [34].
This leads to an imaginary part of the amplitude z(1)

0 as we
show below.

We use the following change of variable by expressing the
generic path (in the semiclassical limit) as

x(τ ) = x(1)
cl (τ ) +

∞∑
q=0

cqyq(τ ) −→

x(τ, ξ ) = x(1)
cl (τ − τ0, ξ ) +

∞∑
q=2

c̃qyq(τ − τ0, ξ ), (A10)

in which we consider τ0, the center of the bounce, and ξ , the
bounce time, as the new variables instead of c0 and c1. The
Jacobian |dc0/dτ0| is obtained via the overlap of x(τ, ξ ) with
y0(τ ) = Aτ0 ẋ(1)

cl (τ ) yielding

c0(τ0) =
∫ β

2

− β

2

dτx(τ, ξ )y0(τ, ξ )

=
∫ β

2

− β

2

dτ [x(1)
cl (τ − τ0, ξ )Aτ0 ẋ(1)

cl (τ, ξ )

+
∞∑

q=2

c̃qyq(τ − τ0, ξ )y0(τ )]. (A11)

Because of the translational invariance we can expand

x(1)
cl (τ − τ0, ξ ) ≈ x(1)

cl (τ, ξ ) + ẋ(1)
cl (τ, ξ )τ0 (A12)

and analogously yq(τ − τ0, ξ ) ≈ yq(τ, ξ ) + ẏq(τ, ξ )τ0. In-
serting these expressions into (A11) we find

c0(τ0) =
∫ β

2

− β

2

dτ

{
Aτ0

[
x(1)

cl (τ, ξ )ẋ(1)
cl (τ, ξ ) + (ẋ(1)

cl (τ, ξ )
)2]

+
∞∑

q=2

c̃qẏq(τ, ξ )y0(τ, ξ )

}
τ0 (A13)

and hence∣∣∣∣dc0(τ0)

dτ0

∣∣∣∣ = 1

Aτ0

+ Aτ0

∫ β

2

− β

2

dτ

∞∑
q=2

c̃qẏq(τ, ξ )ẋ(1)
cl (τ, ξ ),

(A14)

where we used that

Aτ0 =
{√∫ β/2

−β/2
dτ
[
ẋ(1)

cl (τ )
]2}−1

, (A15)

which follows from the normalization condition∫ β/2
−β/2 y2

0(τ ) dτ = 1.

4. Transformation of the fluctuations path integral for a single
bounce

A priori, we must deal with the integration of the path
integral for the fluctuations. We find for the transformation∮

δx( ±β

2 )=0
D[δx(τ )] −→ N

∞∏
q=0

∫ ∞

−∞

dcq√
2π h̄

, (A16)

where N is a constant. However, the above treatment of ex-
tracting the zero and the negative eigenvalue leads to

∞∏
q=0

∫ ∞

−∞

dcq√
2π h̄

−→
[ ∞∏

q=2

∫ ∞

−∞

dc̃q√
2π h̄

]

×
∫ β/2

−β/2

dτ0√
2π h̄

∣∣∣∣dc0(τ0)

dτ0

∣∣∣∣ ∫ β

0

dξ√
2π h̄

∣∣∣∣dc1(ξ )

dξ

∣∣∣∣.
(A17)
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Now we can write for the full partition function element of a
single bounce as

z(1)
0 = N

[ ∞∏
q=2

∫ ∞

−∞

dc̃q√
2π h̄

]∫ β/2

−β/2

dτ0√
2π h̄

∣∣∣∣dc0(τ0)

dτ0

∣∣∣∣
×
∫ β

0

dξ√
2π h̄

∣∣∣∣dc1(ξ )

dξ

∣∣∣∣e− 1
h̄ Scl [x

(1)
cl (τ,ξ )] e

− 1
h̄

1
2

∞∑
q=2

λ(B)
q c̃2

q

.

(A18)

The Jacobian |dc0(τ0)/dτ0| is provided in Eq. (A14) in which
the second part vanishes because it is linear in c̃q,∫ ∞

−∞
dc̃q c̃q e− 1

2h̄ λqc̃2
q = 0, q � 2. (A19)

Therefore we can replace |dc0(τ0)/dτ0| → 1/Aτ0 and use
Eq. (A15). For the integration over ξ we use the steepest
decent method, namely, we find the fixed bounce time ξB such
that dS(ξ )/dξ |ξB

= 0 leading to

z(1)
0 = e− 1

h̄ Scl [x
(1)
cl (τ,ξB )] Nβ

Aτ0

√
2π h̄

1∏∞
q=2

√
λ

(B)
q

×
∫ ∞

−∞

dϕ√
2π h̄

e− 1
2h̄ λ

(B)
1 ϕ2

, (A20)

in which the last integral corresponds to the contribution of the
breathing mode around ξB with λ

(B)
1 < 0. We denote |λ(B)

1 | =
−λ

(B)
1 > 0. As a consequence the integral of Eq. (A20) di-

verges. This is not surprising as we want to calculate the
eigenvalues for a system that is metastable at the position x =
0 [16]. The integral has to be analytically continued to avoid
this divergence, as discussed in chapter 17 of Kleinert [34],
in the paper of Langer [33], and in Callan and Coleman [16].
The basic idea is to deform a stable action into a metastable
one by keeping track of the eigenvalue λ

(B)
1 leading to

1√
2π h̄

∫
dϕ e

1
2h̄ |λ(B)

1 |ϕ2 = 1

2

i√∣∣λ(B)
1

∣∣ , (A21)

and we obtain the imaginary part previously discussed. Fi-
nally, the single bounce amplitude reads

z(1)
L = e− 1

h̄ Scl [x
(1)
cl (τ,ξB )] Nβ

Aτ0

√
2π h̄

1∏∞
q=2

√
λ

(B)
q

⎛⎝ i

2
√∣∣λ(B)

1

∣∣
⎞⎠

= iβ

2
e− 1

h̄ Scl [x
(1)
cl (τ,ξB )] 1

Aτ0

√
2π h̄

⎛⎝ N∏∞
q=0

√
λ

(0)
q

⎞⎠

×
∏∞

q=0

√
λ

(0)
q∏∞

q=2

√
λ

(B)
q

⎛⎝ 1√∣∣λ(B)
1

∣∣
⎞⎠, (A22)

where we have introduced the product of the eigenvalues for
the harmonic potential associated to the metastable well with
frequency ω0. Then one can notice that

N∏∞
q=0

√
λ

(0)
q

= Z (0)
0 = 1√

2π〈x2〉
e− βEGS

2 (A23)

corresponds to the value of the amplitude for the case of a
harmonic potential in the presence of dissipation, with EGS

the ground state energy and 〈x2〉 the harmonic fluctuations.
We also set

K = 1√
2π h̄

1

Aτ0

√√√√∏∞
q=0 λ

(0)
q∏∞

q=2 λ
(B)
q

1√∣∣λ(B)
1

∣∣ . (A24)

containing the ratio of determinants, the Jacobian prefactor
Aτ0 and the negative eigenvalue. The final formula reads

z(1)
0 = iβ

2
Z (0)

0 Ke− 1
h̄ Scl [x

(1)
cl (τ,ξB )]. (A25)

Recalling Eq. (A9), we must sum over many bounce paths. In
the zero temperature limit we use the dilute gas of bounces in
which the different bounces do not interact with each other
and Scl [x

(n)
cl (τ )] � n Scl [x

(1)
cl (τ )] and, in a similar way, the

integral over the fluctuations paths δx(τ ):

Z0 = Z (0)
0

∞∑
n=0

1

n!

(
iβ

2

)n

Kne−n 1
h̄ Scl [x

(1)
cl (τ,ξB )]. (A26)

Assuming that the amplitude decays exponentially as

Z0 = 1√
2π〈x2〉

e− β

2 ( EGS
h̄ −i�), (A27)

we finally find by comparison between Eq. (A26) and
Eq. (A27)

� = K e− 1
h̄ Scl . (A28)

APPENDIX B: THE BOUNCE PATH AND THE CLASSICAL
ACTION IN THE PRESENCE OF POSITION AND

MOMENTUM DISSIPATION

1. General integral formulas

The parametrization of the metastable potential displayed
in Fig. 5(a) reads

V (x) =
⎧⎨⎩

1
2 mω2

0x2 x < a
1
2 mω2

0(x − xm)2 − � a < x < xm

−� xm < x
. (B1)

We set V0 = mω2
0a2/2 and apply the matching con-

dition mω2
0(a − xm)2/2 − � = V0. We obtain xm = a[1 +√

1 + �/V0] for the point where the potential becomes flat.
We use the Matsubara frequency decomposition for the

classical bounce path that minimizes the action S = S0 +
Sdis defined in the main text. Hereafter we use the notation
x(1)

cl (τ, ξ ) ≡ xcl (τ, ξ ),

xcl (τ, ξ ) = 1

β

∞∑
l=−∞

xl (ξ )eiωl τ , (B2)

with the Matsubara frequency ωl = 2π l/β (l integer) and ξ

is the bounce time as defined in the previous Appendix. From
the condition dS/dxl = 0, we obtain the solution

xl (ξ ) = 2ω2
0a(1 + √

1 + �/V0) sin
(
ωl

ξ

2

)
ωl
(
ω2

l + ω2
0 + F (x)

l
m + ω2

l
F (p)

l
m

) . (B3)
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FIG. 6. Example of bounce paths with the two dissipative couplings for (a) � = V0 and (b) � = 20V0. The returning point xesc shifts to
higher values in both dissipative cases.

Inserted in Eq. (B2) the path solves the equation of motion

− m
d2

dτ 2
xcl (τ, ξ ) + dV [x(τ )]

dx
|xcl

+
∫ β

2

− β

2

dτ ′F (x)(τ − τ ′)xcl (τ
′, ξ )

−
∫ β

2

− β

2

dτ ′F (p)(τ − τ ′)
d2

dτ ′2 xcl (τ
′, ξ ) = 0, (B4)

where we see that the kernel for momentum dissipation cou-
ples to the acceleration, as mentioned in the main text.

Then, we insert the path into the action S and use the
condition dScl/dξ = 0 to find the relation determining the
saddle point of the bounce time, which we denoted ξB, in the
presence of both dissipative couplings. In the limit β → ∞,
the quantity ξB solves the following integral equation:

1

π

∫ ∞

0

dω

ω

ω2
0 sin(ωξB)[

ω2

1+τpω fc (ω) + ω2
0 + γω fc(ω)

] = 1√
1 + �

V0
+ 1

.

(B5)

The integral equation determining the action reads

Scl = −
2ω2

0V0
(√

1 + �
V0

+ 1
)2

π

×
∫ ∞

0
dω

[1 − cos (ωξB)]

ω2
[

ω2

1+τpω fc (ω) + ω2
0 + γω fc(ω)

]
+ 2V0

(
1 +

√
1 + �

V0

)
ξB. (B6)

Equations (B5) and (B6) for ξB and Scl correspond to the
equations reported in the main text, which we computed nu-
merically in the general case.

Examples of the bounce path are shown in Fig. 6 for two
fixed values of �. The dissipative interaction determines the
path trajectory, in particular the bounce time ξB and the re-
turning point xesc. In Fig. 6 the black solid line corresponds
to the nondissipative case discussed in the main text, the blue
dashed line shows the influence of position dissipation, the
red dotted line of the momentum dissipation and the green
dotted-dashed line to both dissipative interactions. While the

bounce becomes wider in the presence of pure position dis-
sipation, it shrinks for pure momentum dissipation. However,
in both cases the returning point xesc shifts to larger values.
When both dissipative couplings are present, for � = V0 in
Fig. 6, the bounce is similar to the one of position dissipation
only. By increasing � this behavior changes: in Fig. 6(b) the
bounce almost coincides with the one of momentum dissi-
pation. Hence, there is a crossover in the influence of the
two different dissipative interactions which depends on the
steepness of the potential.

2. Analytical formulas and expansions

All analytical formulas are calculated in the limit ωc �
γ , τpω

2
0, ω0 meaning that the cutoff ωc is the largest frequency

in the problem. We will see that, while for pure conventional
dissipation the cutoff is irrelevant in the limit ωc � γ , ω0, it
plays an important role in the case of momentum dissipation.

First, we consider Eq. (B5) and expand the integral using
the roots of the denominator. This yields the exact result

1

π

∫ ∞

0
dω

sin(ωξB)

ω
[

ω2

1+τpω fc (ω) + ω2
0 + γω fc(ω)

]
= 1

2

1

ω2
0

+ 1

πzω2
c

4∑
i=1

Ti f [ξBωc�i], (B7)

where 1/z = (1 + τpωc) and the coefficients

Ti = z − �i(z + 1) + �2
i

�i(�i − � j )(�i − �k )(�i − �l )
with ( j, k, l ) �= i

(B8)

for i, j, k, l = 1, 2, 3, 4, whereas the auxiliary function is de-
fined as

f (zx) = Ci(zx) sin(zx) + 1

2
cos(zx)[π − 2Si(zx)]

=
∫ ∞

0
du

sin(z u)

(x + u)
. (B9)

The roots of the denominator in the limit ωc � γ , τpω
2
0, ω0

are the same as in [30]:

�1,2 = 1

(1 + σ 2)

ω0

ωc
(P+ ±

√
P2− − 1),

�3,4 = 1 − ω0

ωc

P+
(1 + σ 2)

± iσ

[
1 + ω0

ωc

P+
(1 + σ 2)

]
, (B10)
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with

σ 2 = γ τp, P+ = γ + τpω
2
0

2ω0
and P− = γ − τpω

2
0

2ω0
.

(B11)

In the limit ξBω0 � 1 and P2
− > 1, we find

ξBωc�1,2 = ξBω0
1

(1 + σ 2)
(P+ ±

√
P2− − 1) � 1. (B12)

For the case P2
− < 1 we analogously obtain

ξBωc�1,2 = ξBω0
1

(1 + σ 2)
(P+ ± i

√
|P2− − 1|), (B13)

and find in the limit ξBω0 � 1 also Im(ξBωc�1,2) �
1 and Re(ξBωc�1,2)� 1. For the other two roots, we
obtain

ξBωc�3,4 = ξBωc

[
1 ± iσ − ω0

ωc

P+
(1 + σ 2)

± ω0

ωc
iσ

P+
(1 + σ 2)

]
ξBω0�1≈ ξBωc(1 ± iσ ) =

{
Re[ξBωc(1 ± iσ )] � 1, Im[ξBωc(1 ± iσ )] � 1 for ξBωc � 1
Re[ξBωc(1 ± iσ )] � 1, Im[ξBωc(1 ± iσ )] � 1 for ξBωc � 1 . (B14)

Because ξB strongly depends on the shape of the potential, the different regimes in Eq. (B14) depend on � and the cutoff ωc.
We conclude this section giving an analytic formula for Eq. (B6). The integral can be expanded similarly via the same roots

as in Eq. (B10), yielding the action

Scl =
2V0
(√

1 + �
V0

+ 1
)2

ω0π

{
γ

ω0
[C + log(ξBω0)] − ω3

0

zω3
c

4∑
i=1

Ti

�i

[
ln

(
�iωc

ω0

)
+ g[ωcξB�i]

]}
− ξB�, (B15)

where the auxiliary function g is defined as

g(zx) = − cos(zx)Ci(zx) − sin(zx)Si(zx) + 1

2
sin(zx)π =

∫ ∞

0
du

cos (z u)

(x + u)
. (B16)

We see that the arguments of g(x) in Eq. (B15) are the same as
the ones of f (x) in Eq. (B7) and therefore the limits defined in
Eqs. (B12)–(B14) can be used. In the following, we will use
the approximated solution for the roots to expand the auxiliary
functions g(x) and f (x) for the analytical formulas for the
action.

a. The limit ξBω0 � 1 and ξBωc � 1

In the case of � � V0, the bounce time becomes almost
zero and the condition ξBω0 � 1 is always verified as ξB →
0. Moreover, at fixed ωc, increasing � eventually leads to
ξBωc � 1. Then we can expand g(x) and f (x) for small ar-
guments, and we find

ξBω0 = h̄

mω0

1√
1 + �

V0
+ 1

1

〈x2〉 , (B17)

where we introduced the quantum fluctuations in the presence
of both dissipative couplings [30],

〈x2〉 = 〈x2〉0
2

π (1+σ 2 )

{
τpω0

[
ln

(
ωc
ω0

)
+ σ arctan(σ )

+ ln (1 + σ 2)

]
+ (1+τpω0P− )√

|1−P2−| �q,p

}
, (B18)

where

�q,p =
⎧⎨⎩arctan(

√
1 − P2−/P+) for |P−| < 1

arctanh(
√

P2− − 1/P+) for |P−| > 1
. (B19)

Here 〈x2〉0 are the harmonic quantum fluctuations in the
well without dissipation. This result we also find by simply
expanding the numerator sin(ξω) ≈ ξω of the integrand in
Eq. (B5), since it is peaked around ω ≈ 0 as can be seen
from the denominator. From a such expansion, we find the
same integral as in [30] from which we identify the quantum
fluctuations at zero temperature in the presence of dissipation.
We can analogously expand the action in Eq. (B15) and find
by inserting Eq. (B17)

Scl = h̄

2

a2

〈x2〉 . (B20)

This result coincides with the action of the potential with
an infinitely sharp barrier, as expected in the limit � →
∞. Expanding Eq. (B20) in the pure momentum dissipative
case to first order in τpω0 we find Eq. (6). The cutoff fre-
quency ωc in 〈x2〉 is related to the environment coupled to
the momentum, while the effect of the cutoff frequency for
the position bath drops out of the calculation in the limit
ωc � γ , ω0.

b. The limit ξBω0 � 1 � ξBωc

Since we are in the regime ωc � ω0, there exists a regime
ξBω0 � 1 � ξBωc, which we may reach by reducing � with
respect to the case discussed above (note that � � V0 still
holds). In this limit, we can expand the functions f [ξBωc�1,2]
and g[ξBωc�1,2] for small arguments, but f [ξBωc�3,4] and
g[ξBωc�3,4] for large arguments [see Eqs. (B12) and (B14)].
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We find for the bounce time equation

1

π

ξBω0

(1 + σ 2)

[
(1 + τpω0P−)

2
√

P2− − 1
ln

(
�1

�2

)

− τpω0

{
ln(ω0ξB) − 1

2
ln(1 + σ 2) + (C − 1)

]}
= 1√

1 + �
V0

+ 1
, (B21)

which is, in the presence of momentum dissipation, a non-
linear equation to be solved numerically. In the limit here
discussed, the action reads

Scl = V0

ω0

(√
1 + �

V0
+ 1

)
ξBω0

− V0

ω0

(√
�
V0

+ 1 + 1
)2

2π (1 + σ 2)
ξ 2

Bω2
0τpω0. (B22)

Hence, by inserting Eq. (B21) into Eq. (B22), the action
depends logarithmically on the bounce time ξB and there-
fore on �. We also see that this dependence vanishes in the
limit τp = 0, meaning that momentum dissipation induces a
stronger dependence on the shape of the barrier as discussed
in the main text. The combined Eqs. (B21) and (B22) are
displayed via the dashed lines in Fig. 2(b). Further, for the
case γ = 0 expanding (B21) and (B22) to first order in τpω0

leads to Eq. (7).

c. The limit ξBω0 � 1 and ξBωc � 1

Finally we analyze the regime ξBω0 � 1 and ξBωc � 1
which is reached for � � V0. The action can then be approx-
imated as

Scl ≈ ε0

ω0
+ 8

π

V0

ω0

γ

ω0
ln (ξBω0) − �ξB, (B23)

where ξBω0 ≈ 8
π

V0
�

γ

ω0
and

ε0

ω0
= 8

π

V0

ω0

{
γ

ω0

[
C − ln (1 + σ 2)

2

]

−
(

γ

ω0
P− − 1

)
2
√

P2− − 1
ln

(
�1

�2

)}
, (B24)

with C the Euler constant. In particular, in the limit γ = 0 and
τpω0 � 1 we find

Scl ≈ 4V0

ω0
− 4

π
V0τp, (B25)

yielding Eq. (8) for E . Note that for τp = 0 and γ �= 0 we
recover the action for the incoherent decay in a (slightly)
asymmetric parabolic double well in the presence of dis-
sipation [32,46]. In particular, within the steepest decent
approximation, the quantity E can be approximated as

E��V0
τp=0 ≈ e− ε1 (γ )

h̄ω0

(
8

π

γ

ω0

V0

�

)− 8
π

V0
h̄ω0

γ

ω0

, (B26)

with

ε1(τp = 0)

h̄ω0
= 8

π

V0

h̄ω0

γ

ω0
(C − 1)

− 4V0

h̄ω0

⎡⎣ 2

π

(
γ

ω0
P− − 1

)
2
√

P2− − 1
ln

(
�1

�2

)
+ 1

⎤⎦,

(B27)

and the decay is exponentially suppressed in the presence of
pure position dissipation. Equation (B26) shows that E de-
pends on � only via the prefactor of the exponential function
and is independent of the cutoff ωc.

APPENDIX C: THE PREFACTOR K

In this Appendix we present an overview of the calculation
of the prefactor K , defined in Eq. (A24), for the potential
shown in Fig. 5(a). For a more detailed introduction we re-
fer to Ref. [32]. Example of results for the prefactor K are
reported in Fig. 7(d) in which K is scaled with its value in the
absence of dissipation K0. Similarly to the exponential func-
tion, K is enhanced in the presence of momentum dissipation.

1. The ratio between the determinants

We start by calculating the ratio of determinants defined in
Eq. (A24), namely, the ratio between by the two products of
the two sets of eigenvalues

R =
⎛⎝∏∞

q=0

√
λ

(0)
q∏∞

q=2

√
λ

(B)
q

⎞⎠. (C1)

The eigenvalues of the bounce path λ(B)
q are defined via

Eq. (A7), while the eigenvalues λ(0)
q are associated to the

following equation:(
−m

d2

dτ 2
+ mω2

0

)
y(0)

q (τ ) +
∫ β

2

− β

2

dτ ′F (x)(τ − τ ′)y(0)
q (τ ′)

−
∫ β

2

− β

2

dτ ′F (p)(τ − τ ′)
d2

dτ ′2 y(0)
q (τ ′) = λ(0)

q y(0)
q (τ ).

(C2)

Taking the second derivative of the potential in Eq. (A7) along
a bounce trajectory yields V[x(1)

cl ] = d2V [x(τ )]
dx2 |x(1)

cl
. Assuming

that the time τ is the space and y(τ ) the wave function, in
the absence of dissipation, the equation corresponds to the
Schrödinger equation with a potential at constant value mω2

0
containing two delta-potential wells (at the times when the
periodic path crosses the discontinuity at x = a). Each well
has one bound state and the finite size of the bounce (deter-
mined by ξB) leads to a hybridization of the two wells yielding
the two bound states λ

(B)
0 and λ

(B)
1 (denoting the zero mode

due to translational invariance and the negative eigenvalue
of the breathing mode). The rest of the eigenvalues forms a
continuum above mω2

0.
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(a) (b)

(c) (d)

FIG. 7. Change in the quantities contained in the prefactor K due to dissipation for τpω0 = 0.5γ /ω0 and ωc/ω0 = 8000. (a) Ratio of the
determinants scaled with its value without dissipation, (b) prefactor of the Jacobian transformation scaled with its value without dissipation,
(c) negative eigenvalue scaled with its value without dissipation, (d) the prefactor K of the escape rate scaled with its value K0 without
dissipation.

We rewrite the ratio of the determinants containing only
the continuum eigenvalues defined in Eq. (A24) via

R =
⎛⎝∏∞

q=0

√
λ

(0)
q∏∞

q=2

√
λ

(B)
q

⎞⎠ = e
1
2

∫∞
mω2

0
dλ ln (λ)[ρ0(λ)−ρ(λ)]

, (C3)

where we defined the spectral densities ρ(λ) =∑∞
q=2 δ(λ(B)

q − λ) and ρ0(λ) =∑∞
q=0 δ(λ(0)

q − λ). We rewrite
the spectral densities using the (retarded) Green’s functions
of the respective problem

ρ0(λ) = 1

π
Im
(
G(0)

λ (0)
)

and ρ(λ) = 1

π
Im
(
G(B)

λ (0, 0)
)
,

(C4)

in which G(0)
λ is given by

G(0)
λ (τ ) = 1

πm

∫ ∞

0
dω

cos(ωτ )
ω2

1+τpω fc (ω) + ω2
0 + γω − λ

m − iε
,

(C5)

with ε → 0. For simplicity we do not consider a high fre-
quency cutoff for the environment coupled to the position as
it is irrelevant. By contrast, the cutoff for the momentum bath
has to be finite, otherwise R diverges in the limit ω

(p)
c → ∞.

Further, we determine G(B)
λ in terms of G(0)

λ via the Lippmann-

Schwinger equation:

G(B)
λ (τ, τ ′′) = G(0)

λ (τ − τ ′′)

−
∫ ∞

−∞
dτ ′G(0)

λ (τ − τ ′)V
[
x(1)

cl (τ ′)
]
G(B)

λ (τ ′, τ ′′).

(C6)

Following the calculation outlined in [31,32] we find

ln(R) = 1

2π

{
[ln (λ)(φ+

λ + φ−
λ )]∞mω2

0
−
∫ ∞

mω2
0

dλ
1

λ
(φ+

λ + φ−
λ )

}
,

(C7)

with φ±
λ = arg {U −1 − [G(0)

λ (0) ± G(0)
λ (ξB)]} and U =

mω2
0(a + xm)/|ẋcl (

ξB

2 )|. The phases satisfy φ±
mω2

0
= −π

and lim
λ→∞

φ±
λ = 0 (calculated in Appendix C 4) leading to the

result

ln(RB) = ln
(
mω2

0

)− 1

2π

∫ ∞

mω2
0

dλ
1

λ
(φ+

λ + φ−
λ ). (C8)

We display the numerical results for R rescaled with the value
R0 in the absence of dissipation for different values of � in
Fig. 7(a) and as function of the dissipative coupling strength.

2. Determination of the negative eigenvalue λB

We use the above Greens function to obtain the solution for
the negative eigenvalue via the poles of the T-matrix defined
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through the Lippmann-Schwinger Eq. (C6); see Ref. [32]. The
negative eigenvalue is determined by the equation∣∣∣∣ẋcl

(
ξB

2

)∣∣∣∣− mω2
0a
(

1+
√

1+ �
V0

)[
G(0)

−|λ(B)
1 |(ξB)+G(0)

−|λ(B)
1 |(0)

]
= 0.

(C9)

In the nondissipative case, we can solve the integral (C5)
leading to the following equation for the negative eigenvalue
which only depends on the bounce path via the bounce time
ξ

(0)
B :

1

2ω0

(
1 − e−ω0ξ

(0)
B
)− 1 + e−ξ

(0)
B

√
ω2

0+
|λ(B,0)

1 |
m

2
√

ω2
0 + |λ(B,0)

1 |
m

= 0. (C10)

In Fig. 7(c) we show numerical results for the value λ
(B)
1 in the

presence of both dissipative couplings, for different values of
� and scaled with its value λ

(B,0)
1 without dissipation.

By increasing the dissipation the absolute value of
|λ(B,0)

1 |/|λ(B)
1 | is enhanced, leading to a larger contribution to

the prefactor.

3. The Jacobian prefactor Aτ0

Finally we discuss the result for the Jacobian prefactor
[31,32]

1

Aτ0

=
√∫ β/2

−β/2
dτ
[
ẋ(1)

cl (τ )
]2

. (C11)

In the nondissipative case we find the analytic expression

∫ β/2

−β/2
dτ
[
ẋ(1)

cl (τ )
]2 ≈ a2ω0

2

(√
1 + �

V0
+ 1

)2

× [1 − e−ω0ξ
(0)
B
(
1 + ω0ξ

(0)
B

)]
.

(C12)

The numerical value Aτ0 scaled with A(0)
τ0

is shown in Fig. 7(b).

4. Calculation of the phases φ±
λ

In this section we give a detailed derivation of the quanti-
ties φ±

λ appearing in Eq. (C7).
We start by calculating the Green’s function G(0)

λ (τ ). In
presence of Ohmic momentum dissipation without high-
frequency cutoff this quantity diverges similarly to the
position quantum fluctuations. We recall the dissipative kernel

in Matsubara space for momentum dissipation with cutoff ωc,

F (p)(ω) = −τp|ω|m fc(ω)

1 + τp|ω| fc(ω)
, (C13)

with fc(ω) = (1 + |ω|/ωc)−1. We rewrite Eq. (C5) and find

G(0)
λ (τ ) = 1

πmωc

∫ ∞

0
dx

[1 + (1 + τpωc)x] cos(xωcτ )

−p2�2
c + χ (−p2)x + αx2 + x3 − iε

× (ε → 0), (C14)
with p2 = −1 + λ/mω2

0, �c = ω0/ωc, α = γ /ωc + τpγ + 1,
and

χ (−p2) = −p2�2
c (1 + τpωc) + γ

ωc
. (C15)

The denominator of Eq. (C14) is a cubic polynomial with an
imaginary part. We expand the polynomial into its roots x̃1,2,3

and obtain, by introducing x̃1 = ν1, x̃2 = −ν2 and x̃3 = −ν3,

−p2�2
c + χ (−p2)x + αx2 + x3 = (x − ν1)(x + ν2)(x + ν3),

(C16)

where ν1,2,3 > 0. Because the full form of the quantities ν1,2,3

is not important at this stage, we do not present them here
explicitly but refer to the next section. With this definition we
can perform a principal value integration in Eq. (C14). We
obtain the result

G(0)
λ (τ ) = 1

πmωc

[
3∑

i=1

Ũig(τωcνi ) − Ũ1π sin(τωcν1)

]

+ i

mωc

[1 + (1 + τpωc)ν1] cos(ν1ωcτ )∣∣χ (−p2) + 2αν1 + 3ν2
1

∣∣ , (C17)

where the prefactors Ũi originate from a partial fraction ex-
pansion (defined in the next section) and the auxiliary function
g(x) is defined in the previous section. For the factor U −1 we
have to calculate

ẋ(2)
cl

(
ξB

2

)
= 2ω2

0a0

π

∫ ∞

0
dx

[1 + (1 + τpωc)x][1 − cos(ξBω)]

�2
c + χ (1)x + αx2 + x3

,

(C18)

which has no imaginary part. We calculate the integral by
rewriting the polynomial in the denominator as

�2
c + χ (1)x + αx2 + x3 = (x + k1)(x + k2)(x + k3), (C19)

with Re(ki ) > 0, and find

U −1 = − 1

πmωc

3∑
i=1

T̃i[ln (ki ) + g(kiωcξ )], (C20)

where the prefactors T̃i and the quantities ki are also defined in
the next section. Inserting τ = ξB in Eq. (C17) and calculating
G(0)

p (τ = 0) we obtain the result

n(±)
λ = − 1

πmωc

3∑
i=1

T̃i[ln (ki ) + g(kiωcξB)] + 1

πmωc

{
3∑

i=1

Ũi[ln(νi ) ± g(ξBωcνi )] ∓ Ũ1π sin(ξBωcν1)

}

− i

mωc

[1 + (1 + τpωc)ν1][1 ∓ cos(ν1ωcξB)]∣∣χ (−p2) + 2αν1 + 3ν2
1

∣∣ . (C21)

The phases are then calculated via φ
(±)
λ = arg(n(±)

λ ), and we use φ
(±)
mω2

0
= −π and lim

λ→∞
φ

(±)
λ = 0 in Eq. (C7).
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FIG. 8. (a) The average energy loss 〈
E〉 as a function of the dissipative coupling strength, cs = γ /ω0 for position dissipation and cs =
ω0τp, for two values of �, for pure position dissipation (solid blue line) and for pure momentum dissipation (dashed red line) In the overdamped
limit 〈
E〉 saturate to the same value. (b) Saturation of the energy loss in the presence with pure momentum dissipation as a function of �,
for different ωc at τpω0 = 0.5.

5. Further auxiliary variables

In the previous section we introduced the quantities T̃i, Ũi, νi, and ki. The first two originate from the partial fraction
expansions of the integrands in Eqs. (C14) and (C18). The latter ones are related to the roots of the denominators of G̃(0)

λ (ω) and
U −1. The prefactors read

T̃1 = 1 − (1 + τpωc)k1

(k1 − k2)(k1 − k3)
, T̃2 = −1 + (1 + τpωc)k2

(k1 − k2)(k2 − k3)
, T̃3 = −1 + (1 + τpωc)k3

(k1 − k3)(k3 − k2)
(C22)

and

Ũ1 = 1 + (1 + τpωc)ν1

(ν1 + ν2)(ν1 + ν3)
, Ũ2 = 1 − (1 + τpωc)ν2

(ν1 + ν2)(ν2 − ν3)
, Ũ3 = 1 − (1 + τpωc)ν3

(ν1 + ν3)(ν3 − ν2)
. (C23)

Using the basic formula for the roots of cubic polynomials, we find for the ones of Eq. (C19)

−k1 = −
(

α

3
+ 2

1
3 η(1)

3[�(1) +
√

4η3(1) + �2]
1
3

− [�(1) +
√

4η3(1) + �2(1)]
1
3

3 × 2
1
3

)
,

−k2 = −
(

α

3
− (1 + i

√
3)η(1)

3 × 2
2
3 [�(1) +

√
4η3(1) + �2(1)]

1
3

+ (1 − i
√

3)[�(1) +
√

4η(1) + �2(1)]
1
3

6 × 2
1
3

)
, (C24)

−k3 = −
(

α

3
− (1 − i

√
3)η(1)

3 × 2
2
3 [�(1) +

√
4η3(1) + �2(1)]

1
3

+ (1 + i
√

3)[�(1) +
√

4η(1) + �2(1)]
1
3

6 × 2
1
3

)
,

where we defined η(1) = 3χ (1) − α2 and �(1) = 9αχ (1) − 2α3 − 27�2
c (and used p2 = −1 + λ/mω2

0, �c = ω0/ωc, α =
γ /ωc + τpγ + 1). Further, the roots for the polynomial (C16) read

ν1 = −
(

α

3
+ 2

1
3 η(p2)

3[�(p2) +
√

4η3(p2) + �2(p2)]
1
3

− [�(p2) +
√

4η3(p2) + �2(p2)]
1
3

3 × 2
1
3

)
,

−ν2 = −
(

α

3
− (1 + i

√
3)η(p2)

3 × 2
2
3 [�(p2) +

√
4η3(p2) + �2(p2)]

1
3

+ (1 − i
√

3)[�(p2) +
√

4η3(p2) + �2(p2)]
1
3

6 × 2
1
3

)
, (C25)

−ν3 = −
(

α

3
− (1 − i

√
3)η(p2)

3 × 2
2
3 [�(p2) +

√
4η3(p2) + �2(p2)]

1
3

+ (1 + i
√

3)[�(p2) +
√

4η3(p2) + �2(p2)]
1
3

6 × 2
1
3

)
,

where η(p2) = 3χ (−p2) − α2 and �(p2) = 9αχ (−p2) − 2α3 + 27p2�2
c .

APPENDIX D: THE TUNNELING AVERAGE ENERGY
LOSS IN THE PRESENCE OF DISSIPATION

As discussed in the main text the returning point can be
used to calculate the average energy loss 〈
E〉 of the particle

during the tunneling in the presence of the dissipative inter-
action with the environment according the equation 〈
E〉 =
V (0) − V (xesc) [32,40].

In Fig. 8(a) we show the results for 〈
E〉 as a function
of the dissipative coupling strength defined as cS = γ /ω0 for
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FIG. 9. (a) Smooth potential studied in this section. By increasing ωB/ω0 the potential becomes comparable to the semidouble parabolic
potential. (b) Perturbative results for E for different ratios ωB/ω0 as a function of τpω0. (c) Comparison between the results for the semidouble
parabolic and for the smooth potential as discussed in the text. Dotted lines correspond to results for the semidouble parabolic potential,
while colored lines are for the smooth potential. (d) Logarithmic plot of the analytical formula (8) and the perturbative results for the smooth
potential. Both potentials have the same slope at the turning point dV (x)/dx|xesc = −700mω2

0.

the position dissipation and as cS = ω0τp for the momentum
dissipation.

In Fig. 8(a) the blue solid line corresponds to pure po-
sition dissipation (cS = γ /ω0, τp = 0) while the red dashed
line to the results for pure momentum dissipation (cS = τpω0,
γ = 0). In the overdamped limit cS � 1 both dissipative envi-
ronments saturate to the same energy loss, at fixed value of �.
For small dissipative couplings, at � = V0 position dissipation
dissipates more energy than momentum dissipation, whereas
for � = 10V0 the situation is reversed: momentum dissipation
has a larger influence.

In Fig. 8(b) we fix the dissipative coupling strength and
show 〈
E〉 as a function of �/V0 for pure momentum dis-
sipation. The loss saturates, similarly to the escape rate, to a
value determined by the high-frequency cutoff ωc.

APPENDIX E: PERTURBATIVE RESULTS FOR SMOOTH
METASTABLE POTENTIALS

In this Appendix, we show that the enhancement of the
escape rate via momentum dissipation, discussed for the semi-
double parabolic potential in the main text, is also valid for
more general metastable potentials. We focus the discussion
on pure momentum dissipation and use a perturbative ap-
proach to find an approximate action. In the analysis presented
here, as in the main text, we neglect the influence of the
prefactor on the decay rate as the exponential part containing
the action is the leading term.

Specifically, we consider a potential having a smooth bar-
rier top, by inverting the parabola on the right side:

V (x) = m

2

{
ω2

0(x + a)2 for x < 0
−ω2

B[(x − ca)2 − 2d] for x > 0
, (E1)

where c = ω2
0/ω

2
B and d = a2c

2 (1 + c). ω0 is the frequency of
the well parabola and ωB the frequency of barrier parabola. We
show the potential in Fig. 9(a): the potential and its derivative
are continuous functions at the point x = 0. In the nondissipa-
tive case the bounce path satisfies the differential equation

−ẍcl (τ ) + ω2
0�(−xcl (τ ))xcl (τ ) − ω2

B�(xcl (τ ))xcl (τ ) = −ω2
0a,

(E2)

where −a is the position of the minimum of the left parabola,
and we find the bounce solution

xcl (τ ) = �(−(τ +τ1))[−a+A(τ1)eω0(τ+τ1 )]

+ �(τ1−|τ |)[ca+B(τ1) cos(ωBτ )]

+ �(τ −τ1)[−a+A(τ1)e−ω0(τ−τ1 )], (E3)

with A(τ1) = (c + 1)a + B(τ1) cos(ωBτ1) and

B(τ1) = ω0(c + 1)a

[ωB sin(ωBτ1) − ω0 cos(ωBτ1)]
. (E4)

Here −τ1 is the point in imaginary time at which the path
crosses from the left to the right parabola and τ1 is the point
of the opposite event, namely, x(−τ1) = x(τ1) = 0. In the
nondissipative regime and in the symmetric case (ωB/ω0 =
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1), we find τ1ω0 = 3/4π . Increasing ωB the barrier thickness
decreases and for large ratios ωB/ω0 � 1 the barrier becomes
comparable to the semidouble parabolic potential of the main
text in the regime �/V0 � 1 (sharp potential), but with a
smooth barrier top. Note that 2τ1 plays the role of the bounce
time in the latter case.

To qualitatively compare the influence of momentum dis-
sipation on both potentials, we choose the limit of low
dissipative couplings τpω0 � 1. In this regime, we assume
that the bounce for the potential (E1), which is parametrized
by Eq. (E3), does not significantly change due to the dissi-
pation. Hence, we insert the nondissipatve bounce (E3) into
the full action containing the momentum dissipation. In the
following results, we fix the barrier height to V0/(h̄ω0) = 12.5
and consider different frequency ratios ωB/ω0. Note that in
this way the position of the minimum changes as (−a) =
−
√

V0

1+ω2
0/ω

2
B
.

Figure 9(b) shows the enhancement E for different ratios of
ωB/ω0 as a function of τpω0. We remark that the enhancement
for the escape still occurs. The influence of momentum dissi-
pation increases by increasing ωB/ω0, as expected from the
analysis given in the main text, namely, the derivative of the
potential at the turning point increases by increasing ωB/ω0.
However, as shown by the red and the black line in Fig. 9(b),
for ωB/ω0 = 1 and ωB/ω0 = 2, the trend of the influence
of momentum dissipation is reversed. The enhancement for
ωB/ω0 = 1 is stronger than for ωB/ω0 = 2, although the latter
potential has a larger slope at the turning point. This can
be explained by the fact that by varying the ratio one also
modifies significantly the shape of the potential leading to a
different parametric prefactor in the action which is important
in the weak dissipative coupling regime. This is an accidental
effect which disappears as long as we consider large ratio
ωB/ω0 � 2.

In Fig. 9(c) we plot the cases ωB/ω0 = 1, ωB/ω0 = 20 and
ωB/ω0 = 140 to compare the results for the smooth potential
(E1) with the semidouble parabolic potential of the main text.
We make a connection between the results for the two dif-
ferent potentials by looking at their slope at the turning xesc.
For ωB/ω0 = 20, we find dV (x)/dx|xesc = −100mω2

0, which

corresponds to �/V0 = 200 for the semidouble parabolic po-
tential. Both results agree well for the regime displayed. In the
case of ωB/ω0 = 140, the slope dV (x)/dx|xesc = −700mω2

0
corresponding to �/V0 = 9800 for the semidouble parabolic
potential. Here we find a good agreement of both result for
values below τpω0 ≈ 0.0025.

The deviations between the two different potentials ap-
pear beyond some value of τpω0, which depends on the ratio
ωB/ω0. For example, we have a good agreement until τpω0 =
0.02 for ωB/ω0 = 20 and until τpω0 ≈ 0.0025 for ωB/ω0 =
140. In Fig. 9(d) we plot the log scale the case ωB/ω0 = 140.
This deviation can be explained by the break down of the
nondissipative bounce approximation. Indeed, the influence
of momentum dissipation on the bounce path is expected to
be relevant when the bounce becomes narrower, e.g., when
ωB/ω0 is increased. As explained in the main text, momen-
tum dissipation additionally squeezes the bounce. Hence, by
inserting the nondissipative bounce, we are underestimating
the effect of the momentum dissipation. For this reason, the
results for the smooth potential deviates from the ones of the
semidouble parabolic potential, in which we take the dissipa-
tive interaction for calculating the bounce path into account.

To summarize, the results presented in the main text ob-
tained for the semidouble parabolic potential—which has a
singular behavior of the derivative at the top barrier—are valid
for the general case as we proved that similar results hold
for a potential with a smooth barrier top. We showed the
comparison only in the weak dissipative interaction limit for
which we have an approximated solution for the potential with
a smooth barrier top. In Fig. 9(d) we directly compare the ana-
lytical result of Eq. (7), which are valid in the limit �/V0 � 1
and τpω0 � 1 (but ξBωc � 1), with the results achievable for
the smooth potential for the case ωB/ω0 � 1. The results
almost coincides for values up to τpω0 ≈ 0.0025 and then
starts to deviate because of the above explained reasons. This
points out that, at least in the small coupling limit, the results
for the smooth potential are the same as for the semidouble
parabolic potential. We also find that the enhancement for the
potential with a smooth barrier top can be even larger than the
enhancement for the semidouble parabolic potential in some
parameters’ range.
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