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Protocols for estimating multiple functions with quantum sensor networks:
Geometry and performance
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We consider the problem of estimating multiple analytic functions of a set of local parameters via qubit sensors
in a quantum sensor network. To address this problem, we highlight a generalization of the sensor symmetric
performance bounds of Rubio et al., [J. Phys. A 53, 344001 (2020)] and develop an optimized sequential protocol
for measuring such functions. We compare the performance of both approaches to one another and to local
protocols that do not utilize quantum entanglement, emphasizing the geometric significance of the coefficient
vectors of the measured functions in determining the best choice of measurement protocol. We show that, in
many cases, especially for a large number of sensors, the optimized sequential protocol results in more accurate
measurements than the other strategies. In addition, in contrast to the sensor symmetric approach, the sequential
protocol is known to always be explicitly implementable. The sequential protocol is very general and has a wide
range of metrological applications.
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I. INTRODUCTION

It is well established that entanglement in quantum metrol-
ogy often facilitates more accurate measurements compared to
what is possible with unentangled probes [1–5]. This fact has
been demonstrated exhaustively for the cases of measuring
a single parameter [6] or a single analytic function of many
parameters [7–14] using quantum sensor networks, which are
highly general models of quantum metrology. In these models,
one considers an array of d quantum sensors, each coupled
to a local parameter. One then seeks to optimally measure
these local parameters directly (or some functions thereof) by
selecting an initial state ρ0 for the sensors, a unitary evolution
U by which the local parameters are encoded in the state, and a
choice of measurement specified by a positive operator-valued
measure (POVM).

While measuring a single analytic function of multiple pa-
rameters in this setting is a bona fide multiparameter problem,
the fact that one seeks a single quantity makes the problem
of finding the information-theoretic optimum for the variance
of the desired quantity easier than a more general multipa-
rameter problem; in particular, one can make clever use of
rigorous bounds originally derived for the single-parameter
case [7,11,12]. However, when one genuinely seeks to esti-
mate multiple quantities, one must solve the general problem
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of designing provably optimal protocols for multiparameter
quantum estimation. This has proven to be a challenging
problem and has attracted a large amount of interest theo-
retically [5,10,15–36] and experimentally [37–39]. Despite
these extensive research efforts, the general problem has not
yet been solved. Here, we consider another step towards
this goal; in particular, we consider the case of measuring
n � d analytic functions with a quantum sensor network
of d qubit sensors and develop a protocol that outperforms
previously proposed protocols in many cases. We also em-
phasize the geometric aspects of this problem, meaning the
orientations of vectors of coefficients associated with our
functions, and how this geometry determines the protocol
performance.

We begin by noting that, analogous to Ref. [11], one can
reduce the problem of measuring n analytic functions of
the parameters to that of measuring n linear functions. In
particular, one can consider spending some asymptotically
(in total time t) vanishing time t1 measuring the local pa-
rameters to which the sensors are coupled and then the rest
of the time t2 = t − t1 measuring the n linear combinations
that result from a Taylor expansion of each analytic func-
tion about the true values of the local parameters estimated
in the previous step. While provably optimal in the single-
function case (n = 1), this reduction from analytic functions
to linear functions is not necessarily optimal in the multi-
function case. While we conjecture that the optimality of
this reduction from analytic to linear functions does gener-
alize to the multifunction case, as we do not claim general
optimality of the protocols in this work, the reduction may
be freely made without having to prove the veracity of this
conjecture.
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FIG. 1. The protocols for measuring n � d linear functions { f1(θ), . . . , fn(θ)} of d parameters θ = (θ1, . . . , θd ) considered in this work
can be classified into three groups: (a) Local protocols do not utilize entanglement and measure the parameters locally, allowing for large
parallelization. (b) Global protocols simultaneously estimate all functions. (c) Sequential protocols divide the problem into n parts, where
each part is optimized to estimate a single function from the set { f ′

1, . . . , f ′
n}, which may consist of linear combinations of the original set

{ f1, . . . , fn}.

Having made this reduction to the problem of measuring
multiple linear functions in a quantum sensor network, we
can connect to previous works addressing the same problem,
subject to various simplifying constraints [8,10,36]. Leaving
the details of these previous approaches until after we have
introduced more mathematical formalism, we note that we
may qualitatively divide protocols for this problem into three
classes: local, global, and sequential [10]. In a local estimation
protocol, one optimizes only over unentangled input states and
local measurements of the sensors. In a global protocol, one
simultaneously estimates all the desired functions by optimiz-
ing over all (possibly entangled) input states and all (possibly
nonlocal) measurements. Finally, in a sequential protocol, we
divide the experiment into n steps, where in each part we
measure a single function (which may be a linear combination
of the original set { f1, . . . , fn}), preparing a new (optimal)
initial state and performing a new measurement in each step.
See Fig. 1 for diagrammatic representations of these different
protocol types.

For the special case of measuring n = d orthogonal, linear
functions (that is, linear functions such that the vectors of
coefficients defining the linear functions are all mutually or-
thogonal), it has been known for some time that the functions
can be measured optimally with a local protocol [8,10], but
for general functions, proofs of optimal protocols are lack-
ing. In fact, the only entanglement-enhanced approach in the
literature for measuring n > 1 general linear functions in a
quantum sensor network is given in Ref. [36]. The bound on

performance given there is for global protocols and is derived
from the quantum Cramér-Rao bound [15,16,40,41] subject to
the restriction that one considers only a special set of so-called
sensor symmetric states. However, even within this restriction,
beyond the case of d = 2, it is an open question whether the
states and measurements (POVMs) required to saturate the
derived bound exist for all problems [42].

Here, we highlight a generalization of this approach by de-
riving similar bounds using so-called signed sensor symmetric
states. However, the generalized version also does not guaran-
tee that the optimal states and measurements exist in general.
Targeting this shortcoming, we also consider an alternative,
sequential protocol, subject to different restrictions, for which
we can explicitly describe a protocol which achieves its theo-
retical performance. In addition to presenting this alternative
protocol, we lay out how the precise geometric features of
a given problem impact the performance of this sequential
protocol compared to the signed sensor symmetric approach
and the simple local protocol.

II. PROBLEM SETUP

With the general approach established, we now present the
rigorous formulation of the problem. We consider a quan-
tum sensor network of d qubit sensors prepared in some
initial state ρ0. We then encode d local parameters θ =
(θ1, θ2, . . . , θd )T in the sensors via unitary evolution under the
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Hamiltonian

Ĥ = Ĥc(t ) +
d∑

i=1

1

2
θiσ̂

z
i , (1)

with σ̂
x,y,z
i being the Pauli operators acting on the ith qubit

and θi being the local parameter measured by the ith sensor.
The term Ĥc(t ) is a time-dependent control Hamiltonian that
may include coupling to ancilla qubits. When measuring a
single function, this time-dependent control is not necessary
to achieve an optimal protocol [6,7] and therefore may freely
be set to zero; however, one may use such control to design
optimal protocols with simpler requirements on the choice of
input state ρ0 [7]. Using this setup, our goal is to optimally
measure n � d functions f (θ) = ( f1(θ), f2(θ), . . . , fn(θ))T .
In the following, we use i, j = 1, . . . , d to label qubits and
�, m = 1, . . . , n to label functions. Boldface is used to denote
vectors.

To compare the accuracy of the different approaches and
to eventually optimize them, we employ a standard figure of
merit, which we denote as M, given as

M =
n∑

�=1

w�Var f̃�, (2)

where f̃ are estimators of the functions and w =
(w1, . . . ,wn)T is a vector of weights. Since an accurate pro-
tocol should yield small variances, we seek to minimize M.
In this context, given a total evolution time t , a protocol is
defined by the choice of initial state ρ0, control Hamiltonian
Ĥc(t ), measurements, and estimator f̃ for f .

The figure of merit M is lower bounded via the Helstrom
quantum Cramér-Rao bound [15,16,40,41], which yields

M � 1

N

n∑
�=1

w�

[
F−1

Q ( f )
]
��

, (3)

where N is the number of trials (which from now on we set
to 1 for concision and consider just the single-shot Fisher
information) and FQ( f ) is the quantum Fisher information
matrix with respect to the functions f . While this bound is
not generally saturable, in the setting of Eq. (1) it is [43].

While saturable in the setting considered, the right-hand
side of Eq. (3) is not easily evaluated in general. However, it
has been proven [7] that, if we seek to measure a single linear
function f (θ) = α · θ of the parameters θ, we may evaluate
this bound and find that the minimum (asymptotically in time
t and number of trials) attainable variance of an estimator f̃
of f (θ) over all quantum protocols is

Var f̃ = max
i

|αi|2
t2

. (4)

This bound can be explicitly saturated by the protocols given
in Ref. [7]. As previously described, if f (θ) is a more general
analytic function, one may attain a similar bound using a two-
step protocol. In the first (asymptotically negligible) step, one
makes local estimates θ̃ of each of the parameters θ. In the
second step, one uses the rest of the time to optimally measure
the Taylor expansion of f (θ) about this estimate to linear order
in θ [11].

For the case of measuring multiple functions f1, . . . , fn, we
assume without loss of generality that f� are linear functions
in the parameters θ because more general analytic functions
could be similarly linearized in asymptotically negligible
time. We parametrize the linear functions by real coefficient
vectors α� such that

f1(θ) = α1 · θ, (5)
...

fn(θ) = αn · θ. (6)

Defining the matrix elements A�i = (∂ f�/∂θi )θ̃ = (α�)i, i.e.,
αT

� is the �th row of A, we can phrase the problem as that of
optimally measuring the n-component vector

Aθ = (α1 · · ·αn)T θ. (7)

Without loss of generality we assume normalization of the
coefficient vectors,

||α�||2 = 1 for all �, (8)

because any nonunit length can be absorbed into the weights
w in Eq. (2).

Recall the problem of measuring n = d linear functions of
independent parameters with quantum sensor networks has
been considered in the literature in the case where the n
functions are orthogonal (in which case local, global, and se-
quential protocols are equivalent) [8,10] and for general linear
functions for global protocols when the input states ρ0 are
restricted to be sensor symmetric [36]. Here, we generalize the
sensor symmetric approach and derive a performance bound
when using so-called signed sensor symmetric input states
(defined rigorously below). We refer to the variance obtained
by the signed sensor symmetric protocol as Mss.

In this work, we also introduce an optimized sequen-
tial protocol for solving the n function estimation problem.
We consider dividing our protocol into n sequential steps
where, within each step, the protocol is provably information-
theoretic optimal (i.e., saturates the quantum Cramér-Rao
bound). In particular, for each step � ∈ {1, . . . , n} taking time
t�, we measure a single function optimally using the protocols
from Refs. [7,11]. We cannot, however, prove that the full pro-
tocol is optimal in an information-theoretic sense. The naive
version of this protocol is to measure the n given functions
{ f1, . . . , fn} one after another with some optimal choice of the
time t� spent on each function. We denote the figure of merit
of the naive sequential protocol by Mnaive.

However, the naive sequential protocol is not the only
option for sequentially measuring multiple functions. Indeed,
the coefficient vectors {α1, . . . ,αn} span a linear subspace of
Rd , and we may instead sequentially measure any set of linear
functions whose vectors of coefficients {α′

1, . . . ,α
′
n} span the

same subspace and then (after the measurements) calculate
the original functions { f1, . . . , fn}. To help us understand this
visually, this approach is depicted in the diagram in Fig. 2 for
n = 2 functions and d = 3 sensors. We denote the figure of
merit obtained via this method by Mopt.

To be explicit, define the n × n matrix C encoding the
change in linear functions via

A = CA′, (9)
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FIG. 2. A visualization for n = 2 functions and d = 3 sensors of
how we can optimally select a set of functions to measure whose
coefficient vectors {α′

�} span the same subspace as the coefficient
vectors {α�} of the functions we care about. The vectors are the
coefficient vectors, and the planes indicate the subspace they span.
The axes are labeled by standard basis unit vectors {e1, e2, e3}.

where A′ = (α′
1, . . . ,α

′
n)T is the matrix whose rows are the

coefficient vectors of the new linear functions we measure.
The variance of measuring any individual α′

� is given by the
optimal linear protocol [7]

M� = μ′
�

2

t2
�

, (10)

where we introduce

μ′
� = ||α′

�||∞ = max
j

|α′
�, j | = max

j

∣∣∣∣∣
n∑

m=1

(C−1)�mAm j

∣∣∣∣∣. (11)

Note that this corresponds to Eq. (4) for every �. We denote by
μ′ the vector with entries μ′

� and by μ the analogous vector for
the original functions [obtained by setting C = I in Eq. (11)].
The figure of merit for estimating the original functions f with
the optimized sequential protocol is then formally given by

Mopt = min
C

min
{t1,...,tn}

[
n∑

�=1

n∑
m=1

wmC2
m�

(
μ′

�

t�

)2
]
, (12)

which takes into account optimization over C and over the di-
vision of the total time into time steps t�; the factor C2

m� comes
from the standard expression for a linear combination of vari-
ances and accounts for the linear change in functions. A more
practical form of Mopt will be derived below. If the naive
sequential protocol were optimal, then the minimum of Mopt

would be attained at C = I . However, we will show in the fol-
lowing that choosing suitable C �= I often gives a significant
improvement. This matches one’s intuitive expectations—for
example, if the coefficient vectors of all the functions are
nearly aligned, we might expect that the optimal approach is
to spend most of the time measuring a single function whose
coefficient vector is in that general direction and the rest of the
time measuring functions with orthogonal coefficient vectors
to distinguish the small differences in the functions we care
about. We will see that this intuition is correct.

Furthermore, we note that for this approach, we do not
consider taking advantage of potential parallelization that may
arise for certain choices of functions to measure—in particu-
lar, those sets of functions that depend on completely disjoint
sets of sensors. More formally, when one chooses functions to
measure such that A′ is the direct sum of matrices representing

linear functions on disjoint sets of qubits, one could simul-
taneously measure functions that depend on disjoint sets of
sensors and thus spend more time measuring them, improving
the accuracy. Therefore, purposefully choosing functions to
measure that allow for such parallelization could potentially
(although not necessarily) perform better than our protocol,
which does not take this possibility into account. However,
improved performance via parallelization is not guaranteed
as Eq. (12) depends on both the time t� spent measuring
a function and the infinity norm of the coefficient vector,
μ′

� = ||α′
�||∞—whereas parallelization improves the former,

it may worsen that latter.
We note that, when n = d , the local strategy is a spe-

cial case of such parallelization as it consists of measuring
the local parameters all in parallel and therefore a com-
pletely diagonal A′. As another simple example, suppose α1 =
(1, 1, 1)T /

√
3, α2 = (1,−1, 1)T /

√
3, and α3 = (0, 0, 1)T .

One way (among several) that this could be parallelized
would be choosing to measure α′

1 = (1, 1, 0)T /
√

2, α′
2 =

(1,−1, 0)T /
√

2, and α′
3 = (0, 0, 1)T ; with this choice, one

could, in parallel, estimate the sets of functions {α′
1,α

′
2} and

{α′
3}.
At this point, we have commented on four approaches

to our problem: (1) the local strategy with variance Mlocal

[defined in Eq. (13)], (2) the (global) signed sensor symmetric
strategy generalized from Ref. [36] with variance Mss, (3) the
naive sequential strategy with variance Mnaive, and (4) the op-
timized sequential strategy with variance Mopt. Importantly,
none of these strategies is optimal in general. Depending on
the geometry of the linear functions to be measured, each
of these strategies could be the preferable one (excluding
the naive strategy, which, of course, in the best case, has
Mnaive = Mopt). The term “geometry” here refers to the ab-
solute and relative orientations of the coefficient vectors {α�}.
The question of what is the ultimate information-theoretic
limit on M for multiple linear functions remains open. Here,
we demonstrate cases in which each of these known strategies
is preferable with an emphasis on the geometric interpreta-
tion. We emphasize that, in many instances, both the signed
sensor symmetric and the optimized sequential strategy can
outperform the local unentangled strategy, which is of great
importance for practical applications.

III. THE STRATEGIES

In this section, we determine the figure of merit M for the
four strategies considered in this work. We emphasize that
while the local and sequential strategies have explicit proto-
cols to obtain the corresponding figure of merit, the figure
of merit for the signed sensor symmetric is not proven to be
always attainable beyond d = 2.

A. Local strategy

First, we consider the local strategy, which does not utilize
entanglement. Since we can measure each local parameter θi

simultaneously, with a variance of 1/t2 [44], we arrive at

Mlocal =
n∑

�=1

w�

||α�||2
t2

= 1

t2

n∑
�=1

w� = N
t2

, (13)
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where we use the normalization of α� and introduce

N =
n∑

�=1

w�. (14)

We emphasize that the local protocol performs independently
of the geometry of the measured linear functions.

B. Signed sensor symmetric strategy

Next we review the results of Ref. [36] for the sensor
symmetric approach, using our notation, and emphasize a
generalization of their approach to what we call signed sensor
symmetric states. We emphasize that, given the restriction
to (signed) sensor symmetric states, this approach gives a
rigorous lower bound on the figure of merit M. However, as
previously discussed, unlike the local or sequential strategies,
for d > 2 one cannot guarantee that the figure of merit Mss

obtained via this approach is saturable [36].
Define the generators of translations in parameter space as

K = (K1, . . . , Kd )T , where Ki = i(∂U/∂θi)U † for evolution
under the unitary U . Following Ref. [36], for this strategy, we
specifically consider the Hamiltonian in Eq. (1) with Ĥc(t ) =
0, so that U = exp(−iĤt ) and Ki = σ̂ z

i t/2. This restriction of
Eq. (1) to evolution under a time-independent Hamiltonian is
not necessary for the sequential protocols considered later.
However, the single linear function results from Ref. [7],
which we use as a subroutine of our sequential protocol,
presents two protocols, one that matches this restriction and
one that does not (see Sec. IV therein). Therefore, when
explicitly comparing the sequential protocol to the signed
sensor symmetric problem, we assume we are considering the
former.

Given the generators of translations Ki, we define the inter-
sensor correlations [8,22] by

Ji j = 〈KiKj〉 − 〈Ki〉〈Kj〉
�Ki�Kj

(15)

for i �= j, where we have used (�Ki )2 = 〈K2
i 〉 − 〈Ki〉2. Given

this definition, we define sensor symmetric states as those such
that for all i �= j, Ji j = J = c/v, with

v = 〈K2
i

〉− 〈Ki〉2, c = 〈KiKj〉 − 〈Ki〉〈Kj〉. (16)

Specifically, for evolution under the time-independent version
of Eq. (1), we have

v = t2

4

(
1 − 〈σ z

i

〉2)
, c = t2

4

(〈
σ z

i σ z
j

〉− 〈σ z
i

〉〈
σ z

j

〉)
(17)

for all i �= j. The authors of Ref. [36] defined such states in
analogy with path-independent states in optical interferom-
etry [22,45], which, in addition to the analytic accessibility
provided by such states, motivates this construction. The case
of uncorrelated sensors, of course, is included for J = 0.

Now we turn to a generalization of the sensor symmetric
states considered in Ref. [36] that we call signed sensor sym-
metric states. This generalization is natural as the (unsigned)
sensor symmetric state construction of Ref. [36] picks out
functions with coefficient vectors α aligned along the vector
of all ones, 1 = (1, 1, . . . , 1)T , as being favorable, but we
know the positive orthant is not special, and one can immedi-

ately generalize from 1 being the favorable orientation to any
ω ∈ {−1, 1}d (of which 1 is just one example). The reason
such functions are most favorable is also intuitively clear—
entanglement is most helpful when one measures global,
averagelike quantities, which is precisely what functions with
coefficient vectors aligned along some ω are. We emphasize
this generalization is very direct, as one can consider map-
ping any problem using a general ω to the case of Ref. [36]
merely by applying a Pauli-X operator on all qubit sensors
corresponding to negative elements of ω and, correspondingly,
flipping the signs of all corresponding coefficients specified
by α�. However, to fairly compare this sensor symmetric ap-
proach to the sequential protocol, it is important we consider
all such ω, as different choices can lead to an improved figure
of merit. Therefore, we relax the restriction on the numerator
of Ji j as presented in Ref. [36] by defining

ci j = 〈KiKj〉 − 〈Ki〉〈Kj〉 (18)

and then restrict our consideration to states such that

ci j = c(ωωT )i j = c 	i j, (19)

where ω ∈ {−1, 1}d is a vector with all entries ±1 and c is a
constant. The entries of 	i j are also ±1, and so ci j = ±c. We
keep the definition J = c/v for our newly defined c but note
that now Ji j = ci j/v = ±J .

When restricted to the (unsigned) sensor symmetric initial
states, i.e., when ω = 1 with 1 = (1, . . . , 1)T , the vector of all
ones, the authors of Ref. [36] were able to evaluate the quan-
tum Cramér-Rao bound and determine the minimal achievable
value for M, given the requirement of sensor symmetric input
states. For the signed sensor symmetric states, the calculation
is similar to that in Ref. [36], so we just state the result
for our generalized approach here and present the details in
Appendix A.

First, define the ω-dependent geometry parameter G(ω),
which encodes the geometric relationship between the coef-
ficient vectors {α�} of the n linear functions and the vector ω.
We have

G(ω) = 1

N

n∑
�=1

w�(d cos2 φω,� − 1). (20)

Here, φω,� is the angle between the vectors α� and ω. Thus,
cos φω,� = α� · ω/

√
d . Note that G(ω) ∈ [−1, d − 1]. Again,

we note that the relevance of this geometric quantity is in-
tuitively clear as entanglement provides the biggest benefit
when measuring functions aligned along some ω—that is,
those functions for which φω,� ≈ 0. The ω-dependent lower
bound on the figure of merit is found to be

Mss(ω) = min
J

N
t2

1 + [d − 2 − G(ω)]J
(1 − J )[1 + (d − 1)J ]

, (21)

where we have used 4v = t2 as in Ref. [36] to obtain the low-
est bound. Under this condition on v and the assumption that
J ∈ (1/(1 − d ), 1), so that the quantum Fisher information is
invertible, the minimum is attained for

Jopt (ω)= 1

G(ω) + 2 − d

[
1−
√

[G(ω)+ 1][d − 1 − G(ω)]

d− 1

]
.

(22)
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One can then obtain the theoretical best performance for a
signed sensor symmetric strategy as

Mss = min
ω

Mss(ω). (23)

Importantly, the obtainable accuracy is intimately related
to the geometry of the linear functions we seek to measure.
In particular, one finds the best performance for this strategy
when G is approximately d − 1; that is, when φω,� ≈ 0. This
corresponds to the situations where the sensor symmetric
states have the largest intersensor correlations Jopt (i.e., are
most entangled). We emphasize again that there is no guar-
antee that this performance is always achievable, although in
Ref. [36] it was proven for d = 2 and demonstrated for a large
set of problems for d > 2.

C. Naive sequential strategy

In the naive sequential protocol, we sequentially measure
the n linear functions { f1, . . . , fn} using an optimal single
linear function protocol [7]. For this, we determine the optimal
times t� spent to measure the �th function by minimizing
Eq. (12) for C = I with respect to {t1, . . . , tn} under the con-
straint

∑
� t� = t . The solution to this Lagrange multiplier

problem, presented in Appendix B, reads

Mnaive = 1

t2

(
n∑

�=1

[
w�μ

2
�

]1/3

)3

. (24)

As an important example, consider equal weights, w� ≡
N /n. Then we have

n2N
dt2

� Mnaive �
n2N

t2
. (25)

Indeed, the upper bound is obtained for unfavorable func-
tions { f�} such that μ = 1n (“worst case”), with 1n being
the n-component vector of ones, whereas the lower bound is
obtained for favorable functions { f�}, with μ = 1n/

√
d (“best

case”). These are the two extreme possible cases. Compared
to the local protocol figure of merit of N /t2 for any choice
of w�, we see that in the worst case, the local protocol is
always superior to the naive sequential protocol. Furthermore,
even in the best case, we must have d > n2 to obtain an
advantage from the naive sequential protocol compared to the
local protocol, implying a relatively large number of sensors.
This shows that the naive sequential protocol, with C = I , is
not very competitive. On the other hand, as we show now, by
optimizing over C a significant gain in accuracy over the local
protocol can be achieved.

D. Optimal sequential strategy

Finally, we consider the optimal sequential protocol. The
minimization over time in Eq. (26) proceeds as in the naive
case but with a general C. Therefore, again leaving details to
Appendix B, we obtain for the optimal sequential protocol

Mopt = min
C

1

t2

⎡
⎣ n∑

�=1

(
n∑

m=1

wmC2
m�

) 1
3

μ′
�

2/3

⎤
⎦3

, (26)

with optimal time to measure the �th function given by

t� = t

(∑n
m=1 wmC2

m�

)1/3
μ′

�
2/3∑n

p=1

(∑n
m=1 wmC2

mp

)1/3
μ′

p
2/3

. (27)

Inserting the definition of μ′
� from Eq. (11), we arrive at

Mopt

= min
C

1

t2

⎡
⎣ n∑

�=1

(
n∑

m=1

wmC2
m�

) 1
3

max
i

∣∣∣∣∣
n∑

m=1

(C−1)�mAmi

∣∣∣∣∣
2/3
⎤
⎦3

.

(28)

Note that due to the appearance of both C and C−1 in the
expression with the same powers, the result is invariant under
a change in the normalization of the columns of C. Therefore,
we may fix these column normalizations and introduce the
constraint that

n∑
m=1

wmC2
m� = 1 (29)

for each �. Under this constraint, we obtain the simpler ex-
pression

Mopt = min
C

1

t2

[
n∑

�=1

max
i

∣∣∣∣∣
n∑

m=1

(C−1)�mAmi

∣∣∣∣∣
2/3]3

, (30)

with optimal time per function given by

t� = t
μ′

�
2/3∑n

m=1 μ′
m

2/3 . (31)

Geometrically, the constraint in Eq. (29) corresponds to
restricting the columns of C to the surface of an (n − 1)-
dimensional ellipsoid [or (n − 1) sphere if wm = N /n ∀ m].
The columns of C can then be efficiently parametrized by
elliptical (or spherical) coordinates, and the optimization
amounts to finding the best choice of corresponding angular
variables. We emphasize that this choice of normalization can
be made without loss of generality.

We have now fully characterized our optimized sequential
protocol. In particular, one can numerically perform the mini-
mization over matrices C in Eq. (28) subject to the constraint
in Eq. (29). However, while for practical purposes we have
solved the problem, many questions of a more general nature
arise at this point. In particular, what kind of advantage is
provided by the optimized sequential protocol over the naive
one? What geometries of coefficient vectors correspond to
the best performance for the sequential protocol? How does
it compare to the signed sensor symmetric approach? These
questions will be addressed in the following section. All of
the figures of merit calculated in this section are summarized
in Table I.

IV. PERFORMANCE AND GEOMETRY

To compare the performances of the different strategies, we
first study some analytically accessible limits and then turn to
a numerical analysis of the related optimization problem.
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TABLE I. Summary of figures of merit. Recall that for all strategies other than the signed sensor symmetric strategy, we have an explicit
physical protocol to achieve the given figure of merit. For the signed sensor symmetric strategy, beyond d = 2, we are not necessarily
guaranteed that a state exists that achieves the figure of merit, and therefore, it is a lower bound, given the signed sensor symmetric state
restriction.

Local Naive sequential Signed sensor symmetric Optimized sequential

M N
t2

1
t2 (

n∑
�=1

[w�μ
2
�]1/3)3

min
ω

N
t2

1+[d−2−G(ω)]Jopt

(1−Jopt )[1+(d−1)Jopt ]

Jopt (ω) = 1
G(ω)+2−d [1 −

√
(G(ω)+1)[d−1−G(ω)]

d−1 ]

G(ω) = 1
N

n∑
�=1

w�(d cos2 φω,� − 1)

min
C

1
t2 [

n∑
�=1

max
i

|
n∑

m=1
(C−1)�mAmi|2/3]3

subject to
n∑

m=1
wmC2

m� = 1

A. Geometrically symmetric limit

We begin by considering what we refer to as the geometri-
cally symmetric limit of the signed sensor symmetric strategy.
This limit will be useful for making a comparison to the
optimized sequential protocol in the following sections. For
this, we consider a situation where the coefficient vectors α�

are all approximately the same angle φ′ from some ω, which
we recall is a vector with all elements ±1. This results in
a particularly useful simplification of the expression for the
geometry parameter G. We then define the parameter

εω,� = φω,� − φ′, (32)

so that εω,� may be treated as a small parameter for a pertur-
bative expansion (see Fig. 3).

The geometry parameter of the signed sensor symmetric
strategy then reads

G(ω) =Gφ′ (ω)

+ 1

N

n∑
�=1

w�d
[− 2εω,� sin φ′ cos φ′ − ε2

ω,� cos(2φ′)
]

+ O
(
ε3
ω,�

)
. (33)

Here, we expand in powers of εω,� and define

Gφ′ (ω) = 1

N

n∑
�=1

w�(d cos2 φ′ − 1) = d cos2 φ′ − 1, (34)

the geometry parameter for measuring a single function at
an angle φ′ from ω. The condition on how small εω,� needs

e3

e2

e1

(a) (b)

FIG. 3. (a) A visualization for n = 2 functions and d = 3 sensors
of geometrically symmetric functions. In particular, the coefficient
vectors lie near the surface of a cone centered on some ω. (b) The
opening angle of the cone is given by φ′, and the angular displace-
ment from φ′ for a particular α� is specified by εω,�, as defined in
Eq. (32).

to be depends on φ′, but for any particular problem we can
determine the necessary condition. In general, as long as
εω,� � 1/

√
d , the corrections will be negligible.

Next we consider Eq. (21) in the large-d limit and obtain

Mss = N
t2

(
1 − G(ω)

d

)

+ O

( N
dt2

√
[1 + G(ω)][d − G(ω) − 1]

d − 1

)
(35)

for arbitrary values of ω. We substitute Eq. (33) and obtain,
to leading order in the geometrically symmetric limit and for
large d , that

Mss(ω) ≈ N
t2

(
1 − Gφ′ (ω)

d

)
≈ N

t2

(
sin2 φ′ + 1

d

)
. (36)

Note that, for φ′ = 0, i.e., when all functions are nearly
aligned with ω, this reduces to the expected optimal scaling
N /(t2d ).

We will use these results in the following sections as we
compare the signed sensor symmetric strategy to the opti-
mized sequential strategy.

B. Nearly overlapping functions

Next consider the case when all the vectors α� are “close”
in each component; that is, we consider measuring a set of
n nearly identical functions. Intuitively, one would expect
the optimal sequential strategy in this case to be spending
almost all the time measuring the linear combination pointing
towards the average of these functions and then spending a
small amount of time measuring in other directions in order
to distinguish the small variations in the functions. We find
that this intuition is rigorously true. We also find that, in this
case, we can analytically determine a scaling advantage (in
d) for this protocol relative to the signed sensor symmetric
strategy (and, of course, the unentangled strategy). Finally,
we consider a particular example from Ref. [36] and find
that its implication about the role of entanglement in proto-
col performance—namely, that it can be disadvantageous in
certain circumstances—is limited to the consideration of just
the (unsigned) sensor symmetric strategy and is not generally
true.

To formally define what we mean by “nearly overlapping,”
we consider angles δ� associated with each vector of coeffi-
cients α� as specified by

cos δ� = α� · ā, (37)
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where ā is a vector, with the Euclidean norm equal to 1, cho-
sen such that the average angle n−1∑n

�=1 δ� is minimized. For
δ� sufficiently small for all �, α� ≈ ā for all �. Furthermore,

max
i

A�i = max
i

āi + O(δ�) (38)

for A�i = (α�)i. Therefore, with δ = max� δ�, we obtain from
Eq. (30) that

Mopt =maxi ā2
i + O(δ2)

t2
min

C

[
n∑

�=1

∣∣∣∣∣
n∑

m=1

(C−1)�m

∣∣∣∣∣
2/3]3

. (39)

Leaving the somewhat tedious details to Appendix C, we find
that this reduces to the expected result that

Mopt = N
t2

max
i

ā2
i + O

(N δ2

t2

)
. (40)

Note that, in general, δ � 1/
√

d ensures that this is a good
leading-order approximation. This is a reduction in the vari-
ance by a factor of approximately (to order δ2) maxi ā2

i ∈
[1/d, 1] compared to the local protocol in Eq. (13) or, when
compared to the naive sequential protocol in Eq. (24), a reduc-
tion in the variance by a factor of order O(1/n2).

To compare the sequential protocol in the nearly overlap-
ping limit to the signed sensor symmetric protocol, we note
that this nearly overlapping case is merely a special case of the
nearly geometrically symmetric case of the sensor symmetric
protocol (provided δ is sufficiently small). In particular, δ

is the relevant expansion parameter for our asymptotic ap-
proximations as εω,� � δ for all �. Therefore, to compare,
we may simply use the previous results from Sec. IV A with
corrections upper bounded by taking εω,� → δ.

Furthermore, we note that, to leading order, Mss =
NM(n=1)

ss , and similarly, Eq. (40) also has the leading-order
expression Mopt = NM(n=1)

opt , where the right-hand sides
correspond to the accuracy N times the single-function es-
timation figure of merit. Therefore, we see that, in order to
compare the accuracy of both protocols for nearly overlapping
functions, it is sufficient to compare their performance for
single-function estimation.

Of course, for a single function, the “sequential” strategy
is provably optimal as we have reduced it to the case of
Ref. [7]. So, at best, the signed sensor symmetric strategy
will perform the same as the “sequential” strategy for a single
function. For example, we note that for the best case for both
strategies—where all functions are oriented along some ω to
order O(δ)—both approaches have a cost to leading order of
N /(t2d ), which is superior to the local protocol by 1/d . Also,
for d = 2, the time-independent protocol of Ref. [7] does
actually utilize sensor symmetric states because the initial
states are chosen from the set

|ψ〉 = 1√
2

(|00〉 + |11〉),

|ψ〉 = 1√
2

(|01〉 + |10〉), (41)

and therefore, for all choices of functions with d = 2 (where
both approaches provide explicitly saturable bounds), the two
protocols are identical and optimal.

For d > 2, on the other hand, as previously discussed, there
may not exist physical states that obtain the figure of merit
provided by the signed sensor symmetric strategy. However,
even if we assume the figure of merit Mss is attainable, we
shall see that the optimized sequential strategy can often be
the superior choice. In this context, we consider two examples.
First, we demonstrate a scaling advantage in d for the sequen-
tial protocol in this nearly overlapping limit. Then we revisit
the example from Eq. (38) of Ref. [36] and demonstrate that
the implication made that entanglement can be detrimental is
an artifact of the (unsigned) sensor symmetric approach and
that for the better performing sequential protocol, as well as
the more general signed sensor symmetric approach, entan-
glement is useful.

Example 1. To demonstrate an example of a scaling ad-
vantage of the sequential protocol over the signed sensor
symmetric strategy, suppose we have n nearly overlapping
functions such that δ � 1/

√
d relative to the vector of coeffi-

cients given by

ā = 1√
(x2 − y2)κ + y2d

(
x, . . . , x︸ ︷︷ ︸

κ

, y, . . . , y︸ ︷︷ ︸
d−κ

)T
, (42)

where the first κ elements are (up to normalization) x ∈ R and
the last d − κ elements are y ∈ R. We assume x, y = O(1) and
κ = O(dβ ) for β ∈ [0, 1). Without loss of generality, suppose
x > y. In this case, the cost of the optimized sequential strat-
egy is straightforwardly obtained from Eq. (40) to be

Mopt = N
t2

(
x2

(x2 − y2)κ + y2d

)
+ O

(N δ2

t2

)

= N
t2

x2

y2d

(
1 − (x2 − y2)κ

y2d

)
+ O

[N
t2

(
δ2 + d2(β−1))],

(43)

where the second line comes from expanding in powers of
κ/d . For the signed sensor symmetric strategy for the same
problem, we pick ω such that ωi = sgn(āi ), which minimizes
the angle between ā and ω. In the large-d limit, we may then
use Eq. (36) with

cos2 φ′ = (ā · ω)2

d
= [(|x| − |y|)κ + |y|d]2

d[(x2 − y2)κ + y2d]
. (44)

We can perform an expansion of the numerator of Eq. (44) in
powers of κ/d as

[(|x| − |y|)κ + |y|d]2

= |y|2d2

[
1 + (|x| − |y|)κ

|y|d
]2

= |y|2d2

[
1 + 2(|x| − |y|)κ

|y|d + O

(
κ2

d2

)]
(45)

and expand the denominator as

1

d[(x2 − y2)κ + y2d]
= 1

y2d2

[
1 + (x2 − y2)κ

y2d

]−1

= 1

y2d2

[
1 − (x2 − y2)κ

y2d
+ O

(
κ2

d2

)]
.

(46)
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TABLE II. Summary of analytic results comparing the signed sensor symmetric strategy and optimized sequential strategy. Recall that the
figure of merit for the local strategy is N /t2.

Setting Signed sensor symmetric Optimized sequential

Geometrically symmetric limit
(large d )

Mss(ω) ≈ N
t2 (1 − Gφ′ (ω)

d ) ≈ N
t2 (sin2 φ′ + 1

d )
φ′ := angle of functions with respect to ω

Nearly overlapping limit Same as geometrically symmetric limit Mopt = N
t2 maxi ā2

i + O(N δ2

t2 ),
functions aligned along ā

Best case,
functions aligned along some ω

Mss = N
dt2 Mopt = N

dt2

Example 1 (scaling),
scaling advantage for Mopt,

functions aligned along Eq. (42)
Mss = O(N κ

dt2 ) = O( N
d1−β t2 ) (note that β ∈ [0, 1)) Mopt = O( N

dt2 )

We then have

sin2 φ′ = 1 − cos2 φ′ = (|x| − |y|)2κ

y2d
+ O

(
κ2

d2

)
, (47)

which we may plug into Eq. (36) for the signed sensor sym-
metric strategy

Mss = N
t2

(|x| − |y|)2κ

y2d
+ O

[N
t2

(
δ2 + d2(β−1))], (48)

which demonstrates a scaling advantage by a factor of
O(κ−1) = O(d−β ) for the optimized sequential protocol in
this problem.

Example 2. Now we consider the example of a single
function from Eq. (38) of Ref. [36] for d = 3 sensors and
coefficient vector [46]

α = 1√
18

⎛
⎝

√
2 + √

3 + 1√
2 − √

3 + 1√
2 − 2

⎞
⎠. (49)

The example was chosen in Ref. [36] such that for ω = 1,
G(ω) = 0, and thus, Jopt (ω) = 0, which in turn implies that
the optimal (unsigned) sensor symmetric state is unentangled.
Equation (21) then implies

Mss(ω = 1) = 1

t2
, (50)

which is larger than the true optimal figure of merit, which is
obtained by the “sequential” protocol:

Mopt = 1

t2

(√
2 + √

3 + 1√
18

)2

≈ 0.9551

t2
. (51)

We also note that, even within the framework of sensor sym-
metric strategies, the result obtained from Ref. [36] is not the
best one can do. If we extend to the signed sensor symmetric
approach, one can consider ω = (1, 1,−1)T and do better. In
particular, in this case, one obtains

Mss(ω) = 0.9554

t2
, (52)

which is only slightly worse than the true optimum and,
crucially, also involves entanglement. Therefore, from this
example, we learn that (1) entanglement is helpful for mea-
suring the function in Eq. (49), just not when we restrict to

(unsigned) sensor symmetric states, and (2) accuracy is (un-
surprisingly) potentially decreased when restricting ourselves
to sensor symmetric states.

For convenience, we summarize the analytic results com-
paring the signed sensor symmetric and optimized sequential
strategies in Table II.

C. Numerical results

In the previous sections, we found that both the optimized
sequential and signed sensor-symmetric strategies perform
identically (and optimally) when measuring many functions
whose coefficient vectors {α�} are aligned along a particular
ω. More generally, the optimized sequential protocol always
performs at least as well as, and typically outperforms, the
signed sensor symmetric strategy when measuring many func-
tions with nearly overlapping coefficient vectors, and in fact,
we can obtain a scaling advantage in d for certain problems
(example 1). However, while informative, the nearly over-
lapping limit considered above is such that the optimized
sequential strategy performs its best. Therefore, it is of interest
to also consider a broader class of examples and to consider
where the signed sensor symmetric strategy outperforms the
optimized sequential strategy.

Unfortunately, however, a full analytic comparison be-
tween the different approaches is beyond reach as far as we
know, so for a general problem, one must therefore compare
the two approaches explicitly to see which one is the correct
choice for a given situation. Here, to better understand the
expected performance in such cases, we turn to numerics on
random problem instances. Our key result is to demonstrate
that generically, for large d , many problems are best ap-
proached using our optimized sequential protocol as opposed
to the sensor symmetric or local strategies.

Numerically, the optimization over C in Eq. (30), subject
to Eq. (29), to obtain the cost of the optimized sequential
protocol can be fairly costly in terms of computation time,
as the optimization is nonconvex and in a high-dimensional
parameter space. This is not necessarily an issue for particular
applications, where only a limited number of such optimiza-
tions must be performed. As an example, consider n = 2
functions, d � n sensors, and equal weights in the figure of
merit (w1 = w2 = 1). The normalization condition (29) im-
plies that the columns of the 2 × 2 matrix C have unit length.
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FIG. 4. Mss versus Mopt for 1000 random samples from the positive orthant of α1, α2 with n = 2, w1 = w2 = 1 for different numbers of
sensors d . Dashed lines correspond to Mlocal. Colors correspond to the geometry parameter for the problem instance. Observe that the signed
sensor symmetric approach is never worse than the local protocol, whereas the optimized sequential protocol can be. However, as d increases,
the optimized sequential protocol is almost always superior. Also recall that for d > 2, Mss is generically just a lower bound, and it is not
guaranteed one can achieve this figure of merit with physical states. Therefore, one can think of Mss as a best-case scenario for a physically
realized signed sensor symmetric protocol.

We can parametrize this by two angles via

C =
(

cos ϕ cos ϕ′
sin ϕ sin ϕ′

)
. (53)

Given the coefficient vectors α1,2 of the two functions to
be estimated, the numerical optimization over ϕ, ϕ′ is ac-
complished straightforwardly. For n = 3 functions, six angles
ϕ1, . . . , ϕ6 are needed, making the optimization more chal-
lenging for larger n.

The two functions, represented by the two normalized co-
efficient vectors α1,2, depend on 2(d − 1) real parameters.
In this context, we randomly sample coefficients for the two
functions from a uniform distribution and calculate the cost
of the signed sensor symmetric strategy and the optimized
sequential strategy. For d = 2k for k ∈ [1, 6], we consider
1000 such problems where for simplicity we assume that α1,2

are sampled from the positive orthant so that the optimal ω is
necessarily 1 and plot the results in Fig. 4.

We observe that the signed sensor symmetric strategy is
never worse than the local protocol, whereas the optimized
sequential protocol can be at small d . In the particular case
of n = d = 2, the sequential strategy is never better than the
signed sensor symmetric strategy. As previously mentioned, it
is well known that, for this problem, when the two functions
are orthogonal, a local protocol obtains the optimal variance
(that is, M = N /t2 is optimal) [8,10]. In this case, as demon-
strated in Ref. [36], the sensor symmetric strategy matches
this known optimal result. In particular, the sensor symmetric
strategy predicts an optimal geometry parameter G(ω) = 0,
corresponding to no intersensor correlations and therefore a
local protocol. We observe this behavior in Fig. 4(a), where
the G = 0 points correspond to Mss = Mlocal = 2. Note that

cases of G ≈ 0 that correspond to nearly orthogonal coeffi-
cient vectors are only those points where Mopt ≈ 4, as can
be concluded from Fig. 5, where we plot Mopt versus α1 · α2.
As d increases, however, the optimized sequential protocol is
almost always superior to both the local and signed sensor
symmetric strategies for these randomized problem instances.

V. CONCLUSION AND OUTLOOK

In this work, we explored the potential of sequential
protocols to measure multiple functions with quantum sen-
sor networks. We highlighted both analytical and numerical

FIG. 5. Mopt versus α1 · α2 for n = 2 functions and d = 2 sen-
sors. Note that the nearly orthogonal case (α1 · α2 ≈ 0) implies
Mopt ≈ 4 (i.e., the worst case for the optimized sequential strategy).
In comparison to Fig. 4(a) we see that in this case Mss ≈ Mlocal = 2.
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aspects and compared the protocol to a generalized version
of the sensor symmetric bounds for the same problem from
Ref. [36]. We find that, when d is large, the sequential pro-
tocol is typically superior for generic problem instances. The
sequential strategy also has the advantage of having an explicit
protocol to obtain its given performance, whereas beyond
d = 2, while shown to be saturable in certain cases [36],
the lower bound when restricted to signed sensor symmetric
states is not guaranteed to always be attainable. However, for
a particular problem, one should compare both strategies, as
neither is always superior.

Our results, together with those in Ref. [36], point to an
intriguing interplay between the geometric configuration of
the functions to be measured and the performance of vari-
ous protocols. In particular, our optimized sequential protocol
performs best with nearly overlapping functions; the signed
sensor symmetric approach performs best when the set {α�}
is nearly aligned along some ω. Beyond carefully tuned ex-
amples, we note that for most problems where we seek to
estimate a collection of analytic functions of local field ampli-
tudes, our protocol is the best-known choice, especially with
more than a small number of sensors d .

Our sequential protocol could directly be extended to the
case where the sensors are each coupled to correlated field
amplitudes as in the recent work by some of the authors [13];
that is, instead of considering independent field amplitudes θi

coupled to the sensors, one could consider the case where θ is
specified by a known analytic parametrization by some set of
k � d parameters.

Our sequential protocol could also be extended to other
physical settings beyond qubit sensors—namely, for any
quantum sensor network where one may measure a single
linear combination of field amplitudes, one can apply our
sequential approach. For example, a collection of d Mach-
Zehnder interferometers could replace the qubit sensors,
where the role of the local fields is played by interferometer
phases [28,47–51]. Here, the limiting resource is the number
of photons N available to distribute among interferometers as
opposed to the total time t . In this context, it was conjectured
in Ref. [9] that one could measure a single function with

variance M = ||w||21
N2 —this replaces Eq. (4), and otherwise,

everything remains the same. However, there are subtleties in
the case where the average number of photons is not known
[52], which we do not consider here. Another relevant setting
is the measurement of linear combinations of field-quadrature
displacements as considered using an entanglement-enhanced
continuous-variable protocol in Ref. [29]. A variation of this
protocol was experimentally implemented in Ref. [53]. One
could also consider a combination of these settings where
some field amplitudes are coupled to qubits, some are coupled
to Mach-Zehnder interferometers, and some are coupled to
field-quadrature displacements.

While the importance of geometry is striking, the general
question of the information-theoretic optimal strategy that
minimizes the quantum Fisher information for this problem
remains a pressing open question. Additionally, our results are
asymptotic and ignore the potential effects of decoherence.
Understanding the performance of the sequential protocol in
the nonasymptotic regime (i.e., via Bayesian analysis as con-

sidered in Ref. [36]) and under the effects of decoherence
remains a question of great importance. These limitations
aside, our findings advance the understanding of measuring
multiple functions with quantum sensor networks and pro-
vides an alternative protocol that practically performs better
than previously considered schemes in many instances.
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APPENDIX A: DERIVATION OF SIGNED SENSOR
SYMMETRIC BOUND

In this Appendix, we demonstrate that the explicit calcu-
lation of the inverse of the quantum Fisher information in
Ref. [36] for sensor symmetric states can be extended to the
signed sensor symmetric states of Eq. (19). The calculation
largely follows that in that reference.

Begin by defining the symmetric matrix 	 = ωωT for ω a
vector with all elements ±1, as defined in the main text. For
example,

	 =
⎛
⎝ 1

−1
1

⎞
⎠(1 −1 1) =

⎛
⎝ 1 −1 1

−1 1 −1
1 −1 1

⎞
⎠. (A1)

Now, given an orthonormal basis {êi}i∈[1,d] for the real
space where our vectors of coefficients {αi} are defined, we
can write, for pure signed, sensor symmetric states,

FQ(θ) =
d∑

i, j=1

t2
(〈
σ z

i σ z
j

〉− 〈σ z
i

〉〈
σ z

j

〉)
êiê

T
j

= 4

(
v

d∑
i=1

êiê
T
i + c

∑
i �= j

	i j êiê
T
j

)

= 4[(v − c)I + c	] = 4v[(1 − J )I + J	], (A2)

where FQ(θ) is the quantum Fisher information with respect
to the parameters θ and v and c are defined as in Eqs. (16)
and (19) of the main text. We note this is equivalent to Eq.
(22) of Ref. [36] but with 11T → 	, where 1 is the vec-
tor of d (+1)’s. To invert FQ(θ) and evaluate the quantum
Cramér-Rao bound, we need the Fisher information matrix to
be positive definite—that is, we require its eigenvalues to be
strictly positive. The characteristic equation for the eigenval-
ues λ of FQ(θ) is

det{4v[(1 − J − λ/4v)I + J	]} = 0. (A3)
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We then use the determinant identity [54]: det(X +
xyT ) = (1 + xT X −1y) det(X ), with X = [4v(1 − J ) − λ]I ,
x = 4vJω, and y = ω. With a bit of algebra, we obtain

{4v[1 + (d − 1)J ] − λ}[4v(1 − J ) − λ]d−1 = 0, (A4)

which is identical to Eq. (24) in [36]. Here, we used the
fact that ωT ω = d . Therefore, the eigenvalues of FQ(θ) are
4v[1 + (d − 1)J ] with multiplicity 1 and 4v(1 − J ) with
multiplicity d − 1. If we insist that the eigenvalues are pos-
itive [so that FQ(θ) is invertible], we then have the condition
on J that J ∈ ( 1

1−d , 1).
The inverse of FQ(θ) is given by

F−1
Q (θ) = [1 + (d − 1)J ]I − J	

4v(1 − J )[1 + (d − 1)J ]
. (A5)

We can verify this by computing

F−1
Q FQ = [1 + (d − 1)J ]I − J	

4v(1 − J )[1 + (d − 1)J ]
(4v)[(1 − J )I + J	]

= I, (A6)

where we used 	2 = ωωT ωωT = 	d . We then may evaluate
the quantum Cramér-Rao bound

M �
n∑

�=1

w�

(
F−1

Q (g)
)
��

=
n∑

�=1

w�

(
AF−1

Q (θ)AT )
��

. (A7)

Plugging Eq. (A5) into Eq. (A7) and using 4v = t2 for our
Hamiltonian from Eq. (17), we obtain

M �
n∑

�=1

[1 + (d − 2)J ]w�(AAT )�� − w�J [A(	 − I )AT ]��
t2(1 − J )[1 + (d − 1)J ]

= [1 + (d − 2)J ]N − NJG(ω)

t2(1 − J )[1 + (d − 1)J ]

= N
t2

1 + (d − 2 − G(ω))J
(1 − J )[1 + (d − 1)J ]

, (A8)

where we introduced the generalized geometry parameter

G(ω) = 1

N

n∑
�=1

w�[A(	 − I )AT ]��

= 1

N

n∑
�=1

w�[(AωωT AT )�� − 1]

= 1

N

n∑
�=1

w�[(α� · ω)2 − 1]

= 1

N

n∑
�=1

w�(d cos2 φω,� − 1). (A9)

Here, N is the normalization factor as introduced in Eq. (14)
in the main text, and φω,� is the angle between the linear func-
tions specified by α� and ω. Note that G(ω) ∈ [−1, d − 1].
As in Appendix C of Ref. [36], we can find the optimal J in
Eq. (A8), provided J ∈ ( 1

1−d , 1), is

Jopt (ω)= 1

G(ω)+ 2 − d

[
1−
√

(G(ω)+ 1)(d − 1 − G(ω))

d − 1

]
.

(A10)

The ultimate best bound is found using

Mss = min
ω

Mss(ω). (A11)

APPENDIX B: OPTIMAL TIME ALLOCATION

In this Appendix, we consider the problem of optimal
time division among the n measured functions. In particular,
given some matrix C, we want to compute the optimal times
{t1, . . . , tn} in

M(C) = min
{t1,...,tn}

[
n∑

�=1

n∑
m=1

wmC2
m�

(
μ′

�

t�

)2
]

= min
{t1,...,tn}

[
n∑

�=1

t−2
�

n∑
m=1

km�

]
, (B1)

subject to the constraint
∑n

�=1 t� = t . In the second line, we
define km� = wmC2

m�μ
′
�

2. Introducing a Lagrange multiplier
γ0, we obtain the n + 1 equations

n∑
�=1

t� = t, (B2a)

− 2

t3
�

n∑
m=1

km� = γ0 ∀ �. (B2b)

Solving the latter equations for each t� and inserting the solu-
tion into the first equation yields

t =
(

− 2

γ0

) 1
3

n∑
�=1

(
n∑

m=1

km�

) 1
3

. (B3)

We can rearrange this to find the Lagrange multiplier

γ0 = − 2

t3

⎡
⎣ n∑

�=1

(
n∑

m=1

km�

) 1
3

⎤
⎦3

. (B4)

Together with Eq. (B2b) this equation gives the optimal time
allocation

t� = t

(∑n
m=1 km�

) 1
3∑n

�=1

(∑n
m=1 km�

) 1
3

(B5)

= t

(∑n
m=1 wmC2

m�

)1/3
μ′

�
2/3∑n

k=1

(∑n
m=1 wmC2

mk

)1/3
μ′

k
2/3

(B6)

and the time optimized figure of merit

M(C) = 1

t2

⎡
⎣ n∑

�=1

(
n∑

m=1

km�

) 1
3

⎤
⎦3

. (B7)

For the naive sequential protocol, we have C = 1 and μ′ =
μ, so that

Mnaive = 1

t2

(
n∑

�=1

w
1/3
� μ

2/3
�

)3

. (B8)

033011-12



PROTOCOLS FOR ESTIMATING MULTIPLE FUNCTIONS … PHYSICAL REVIEW RESEARCH 3, 033011 (2021)

APPENDIX C: NEARLY OVERLAPPING FUNCTIONS

Here, we derive Eq. (40) from Eq. (39). For this, consider
the minimization over C in Eq. (39). To bound the expression,
first note that, for any integer � ∈ [1, n], we have

1 =
n∑

m=1

δ�m =
n∑

m=1

n∑
p=1

C�p(C−1)pm

�
n∑

p=1

|C�p|
∣∣∣∣∣∑

m

(C−1)pm

∣∣∣∣∣
⇒ 1 �

(
n∑

p=1

|C�p|
∣∣∣∣∣∑

m

(C−1)pm

∣∣∣∣∣
)2

. (C1)

This inequality is true for all C. Also note that(
n∑

p=1

|C�p|
∣∣∣∣∣∑

m

(C−1)pm

∣∣∣∣∣
)2

�
n∑

p=1

|C�p|2
∣∣∣∣∣∑

m

(C−1)pm

∣∣∣∣∣
2

.

(C2)

This inequality is an equality when
∑

m(C−1)pm = 0 for all
but one single p = p∗. When this condition is satisfied, we
consequently have

1 �
n∑

p=1

|C�p|2
∣∣∣∣∣∑

m

(C−1)pm

∣∣∣∣∣
2

. (C3)

Now take a weighted sum over � in Eq. (C3) and obtain

n∑
�=1

w� �
n∑

�=1

w�

n∑
p=1

|C�p|2
∣∣∣∣∣∑

m

(C−1)pm

∣∣∣∣∣
2

=
n∑

p=1

∣∣∣∣∣∑
m

(C−1)pm

∣∣∣∣∣
2

, (C4)

where in the second line we used the normalization from
Eq. (29). Next we use subadditivity,

∑
p |xp| � (

∑
p |xp|1/3)3,

to obtain

n∑
�=1

w� �
[

n∑
p=1

∣∣∣∣∣
n∑

�=1

(C−1)p�

∣∣∣∣∣
2/3]3

(C5)

valid for all C. The expression on the right is the one we
need to minimize (over C) in Eq. (39). Consequently, if we
can saturate the last inequality, we find the minimum of the
expression and arrive at

Mopt = maxm ā2
m

t2

n∑
�=1

w� + O

(N δ2

t2

)
(C6)

for nearly overlapping functions. We can, in fact, saturate the
inequality (C5). Recall that, in order to saturate Eq. (C2), we
require the existence of an index p∗ such that

n∑
�=1

(C−1)p� = 0 (C7)

for p �= p∗ and, otherwise,

(
n∑

�=1

C−1
p∗�

)2

=
n∑

�=1

w�. (C8)

Furthermore, we must satisfy the normalization condition in
Eq. (29) for each column of C. Geometrically, this normaliza-
tion constraint forces each column of C to be on the surface
of an ellipsoid in n-dimensional space.

Suppose the row vector C−1
p∗ = (

√∑n
�=1 w�/n)1T . This

clearly satisfies Eq. (C8). We can satisfy Eq. (C7) by not-
ing that Eq. (C7) can be written as 1 · C−1

p�=p∗ = 0. Therefore,
Eq. (C7) is satisfied if the rows p �= p∗ of C−1 are orthogonal
to C−1

p∗ —that is, they exist in 1⊥.
It remains to be shown that we can choose such a C that

satisfies Eq. (29). We have then that the column vector of C,
Cp∗ = (1/

√∑n
�=1 w�)1T , satisfies both Cp∗ · C−1

p∗ = 1 and

n∑
�=1

w�C
2
�p∗ = 1. (C9)

The remaining columns of C exist in 1⊥ and must exist on the
n-dimensional ellipsoid specified by Eq. (29).

As 1⊥ is a subspace geometrically represented as a hyper-
plane through the origin, it necessarily intersects the ellipsoid
(centered on the origin) specified by Eq. (29), forming an
ellipsoid of dimension n − 1. Therefore, we can satisfy all
constraints and saturate Eq. (C2).

Furthermore, we can confirm this choice of C also saturates
Eq. (C1) as

(
n∑

p=1

|C�p|
∣∣∣∣∣∑

m

(C−1)pm

∣∣∣∣∣
)2

= |C�p∗ |2
∣∣∣∣∣∑

m

(C−1)p∗m

∣∣∣∣∣
2

= 1∑n
�=1 w�

n∑
�=1

w� = 1, (C10)

and so we have confirmed we may obtain the equality as in
Eq. (C6).

[1] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,
Optimal frequency measurements with maximally correlated
states, Phys. Rev. A 54, R4649 (1996).

[2] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B.
Plenio, and J. I. Cirac, Improvement of Frequency Standards
with Quantum Entanglement, Phys. Rev. Lett. 79, 3865 (1997).

[3] L. Pezzé and A. Smerzi, Entanglement, Nonlinear Dynamics,
and the Heisenberg Limit, Phys. Rev. Lett. 102, 100401 (2009).

[4] G. Tóth, Multipartite entanglement and high-precision metrol-
ogy, Phys. Rev. A 85, 022322 (2012).

[5] Z. Zhang and L. Duan, Quantum metrology with
Dicke squeezed states, New J. Phys. 16, 103037
(2014).

[6] S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia,
Generalized Limits for Single-Parameter Quantum Estimation,
Phys. Rev. Lett. 98, 090401 (2007).

033011-13

https://doi.org/10.1103/PhysRevA.54.R4649
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1088/1367-2630/16/10/103037
https://doi.org/10.1103/PhysRevLett.98.090401


JACOB BRINGEWATT et al. PHYSICAL REVIEW RESEARCH 3, 033011 (2021)

[7] Z. Eldredge, M. Foss-Feig, J. A. Gross, S. L. Rolston, and
A. V. Gorshkov, Optimal and secure measurement protocols for
quantum sensor networks, Phys. Rev. A 97, 042337 (2018).

[8] T. J. Proctor, P. A. Knott, and J. A. Dunningham, Networked
quantum sensing, arXiv:1702.04271.

[9] T. J. Proctor, P. A. Knott, and J. A. Dunningham, Multiparame-
ter Estimation in Networked Quantum Sensors, Phys. Rev. Lett.
120, 080501 (2018).

[10] S. Altenburg and S. Wölk, Multi-parameter estimation: Global,
local and sequential strategies, Phys. Scr. 94, 014001 (2018).

[11] K. Qian, Z. Eldredge, W. Ge, G. Pagano, C. Monroe, J. V. Porto,
and A. V. Gorshkov, Heisenberg-scaling measurement protocol
for analytic functions with quantum sensor networks, Phys. Rev.
A 100, 042304 (2019).

[12] J. Gross and C. Caves, One from many: Estimating a function
of many parameters, J. Phys. A 54, 014001 (2020).

[13] T. Qian, J. Bringewatt, I. Boettcher, P. Bienias, and A. V.
Gorshkov, Optimal measurement of field properties with quan-
tum sensor networks, Phys. Rev. A 103, L030601 (2021).

[14] D. Triggiani, P. Facchi, and V. Tamma, Heisenberg scal-
ing precision in the estimation of functions of parameters,
arXiv:2103.08564.

[15] C. W. Helstrom, Quantum Detection and Estimation Theory
(Academic, New York, 1976), Vol. 3.

[16] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum
Theory (Springer, Berlin, 2011), Vol. 1.

[17] G. A. M. Paris, Quantum estimation for quantum technology,
Int. J. Quantum. Inf. 7, 125 (2009).

[18] M. G. Genoni, M. G. A. Paris, G. Adesso, H. Nha, P. L. Knight,
and M. S. Kim, Optimal estimation of joint parameters in phase
space, Phys. Rev. A 87, 012107 (2013).

[19] Y.-R. Zhang and H. Fan, Quantum metrological bounds for
vector parameters, Phys. Rev. A 90, 043818 (2014).

[20] J. Yue, Y. Zhang, and H. Fan, Quantum-enhanced metrology for
multiple phase estimation with noise, Sci. Rep. 4, 5933 (2014).

[21] Y. Gao and H. Lee, Bounds on quantum multiple-parameter
estimation with Gaussian state, Eur. Phys. J. D 68, 347 (2014).

[22] P. A. Knott, T. J. Proctor, A. J. Hayes, J. F. Ralph, P. Kok, and
J. A. Dunningham, Local versus global strategies in multipa-
rameter estimation, Phys. Rev. A 94, 062312 (2016).

[23] T. Baumgratz and A. Datta, Quantum Enhanced Estimation of
a Multidimensional Field, Phys. Rev. Lett. 116, 030801 (2016).

[24] S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański, Compat-
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