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Classification of magnetic vortices by angular momentum conservation
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Superfluid vortices are quantum excitations carrying a quantized amount of orbital angular momentum in
a phase where global symmetry is spontaneously broken. We address a question whether magnetic vortices
in superconductors with dynamical gauge fields carry nonzero orbital angular momentum or not. We provide
the answer in view of the angular momentum conservation in several distinct classes of examples from
interdisciplinary fields of physics across condensed matter, dense nuclear systems, and cosmology. The angular
momentum carried by gauge field configuration around the magnetic vortex plays a crucial role in satisfying
the principle of the angular momentum conservation. Based on various ways on how the angular momentum
conservation is realized, we provide a general scheme of classifying magnetic vortices in different phases of
matter.
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I. INTRODUCTION

When a superfluid with a macroscopic condensate of iden-
tical bosons is under rotation, superfluid vortices emerge.
Each microscopic constituent in a superfluid vortex carries the
same amount of quantized orbital angular momentum, i.e., an
integer multiple of fundamental quantum h̄. This is a remark-
able way to store macroscopic amount of angular momentum
in a highly coherent quantum state. Not only in table-top
physical systems of superfluids such as 4He, the superfluid
vortex can also be an important constituent in rotating nuclear
matter found inside a neutron star, where the extremely high
matter density causes a nonzero order parameter that signifies
spontaneous breaking of global baryon number U (1)B sym-
metry. In a more interesting scenario of dense quark matter
in quantum chromodynamics (QCD), this order parameter
is also responsible for the superconducting phase of color
gauge interactions, most likely the color-flavor-locked (CFL)
superconducting phase [1]. There exist interesting nontrivial
vortices in the CFL phase, called non-Abelian CFL vortices
[2], that involve dynamics of both the global baryon and the
local color gauge symmetries; see Ref. [3] for a comprehen-
sive review.

As seen in the example of a non-Abelian CFL vortex,
the symmetries involved in vortex contents are often entirely
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or partially gauge symmetries in many interesting physical
systems. The prototypical example is of course the magnetic
vortex in type-II superconductors. In these cases the vortex
profile is fundamentally different from that of the purely su-
perfluid vortex; a magnetic flux is threaded into the vortex
core. Among many differences between a superfluid vortex
and a gauged magnetic vortex, one may ask a question of the
angular momentum they carry. Surprisingly to us, we find that
this simple question has not been properly addressed in the
literature. As we try to answer the question in various exam-
ples across different fields of physics, we discover surprisingly
diverse situations. It is the purpose of this article to present
a compelling list of examples where the answers are quite
different from each other, and also to provide an overarching
physics explanation of why the answers can be so diverse.
We will demonstrate that the angular momentum conservation
offers a key guiding principle to understand the physics origin
of the different answers. Our detailed analysis in the main text
shows that the angular momentum, carried by not only the
matter sector of the system but also by the dynamical gauge
fields surrounding the vortex, should be considered in order
to fulfill the principle of angular momentum conservation.
Building upon this principle, we attempt a general classifica-
tion scheme of magnetic vortices in different phases of matter
that can hopefully be applied to other physical systems.

A natural starting point of our discussion is the vortices
in type-II superconductors. Quite generally, it is easy to see
that the vortex should carry a nonvanishing orbital angular
momentum. Due to one of the Maxwell equations ∇ × B =
j (where we choose a natural unit in which the magnetic
permeability μ0 is the unity), a smooth and finite ranged
profile of magnetic flux means the existence of the azimuthal
component of the current density j. Under a fairly general
assumption that the charge and momentum carriers are non-
relativistic quasielectrons in the conduction band forming the
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Fermi surface with a superconducting gap, the current and the
momentum are linearly related as an operator relation, holding
for all states: j = − e

m P, where P is the momentum density
operator, m is the effective mass of conduction electrons, and
−e is the charge of electrons. Since j �= 0, we have P �= 0 and
the finite sized vortex should carry a finite angular momentum
by L = ∫

x x × P �= 0.
The linear relation between the current and the mo-

mentum for nonrelativistic electrons is a consequence of
Galilean invariance, and is not necessarily universal. Even
though the dispersion relation deviates from the nonrelativis-
tic Galilean invariant one, the current and the momentum are
still negatively correlated, and there is no reason to exclude
nonvanishing angular momentum. This discussion also im-
plies that the quantization of the angular momentum in units
of h̄ may not be universal. To complicate the situation more
nontrivially, some vortices may also carry a localized electric
charge [4,5], and the resulting electromagnetic (EM) field
around such a vortex gives rise to a nonvanishing Poynting
vector around the vortex core axis. The total angular momen-
tum should then include a contribution from the EM field
around the vortex.

Although the above features are robust, one can consider
the following thought experiment that is somewhat similar
to the Feynman’s angular momentum paradox. One places
a solenoid below a superconductor sample, and turns on an
external magnetic field to create magnetic vortices piercing
the superconductor. The process can be implemented in an
azimuthal symmetric way, and should not change the total
angular momentum which is zero initially. Since the created
vortices carry a finite amount of angular momentum, where
can the compensating angular momentum be found?

The answer to this question is easy to guess: the back-
ground of solid crystal and the electrons in valence bands
should carry the compensating angular momentum. Their in-
ertia is infinitely large and their rotation may not be detectable,
but the torque acting on them during the vortex creation pro-
cess should impart to them precisely the negative amount of
the angular momentum of the created vortices. In Sec. II A
we will be able to confirm this expectation quantitatively, in
a concrete model which is simple and yet general enough to
carry out the analysis of charged magnetic vortices. In this
case the angular momentum carried by EM field also needs to
be counted in the total angular momentum, and the angular
momentum conservation holds true quite nontrivially only
after including this EM contribution. We note that the EM
field is localized and attached to the vortex, so one should
think of it as a part of the vortex profile.

As a continuation of the above thought experiment, we ask
an obvious next question: what would happen in a system
where there is no background matter to absorb the angular
momentum? A concrete example of such a system is provided
by a relativistic field theory which is self-consistent by itself
without any other degrees of freedom: it could be identified as
the electroweak sector of the standard model with Higgs field
condensate, or more simply, a theoretical model by Nielsen
and Olesen [6]. For this class of examples, our previous argu-
ment of angular momentum conservation becomes powerful
enough to dictate that any magnetic vortices, either charged
or not, should carry zero angular momentum. We call them

“spinless vortices.” We will show that this statement is indeed
true for the Nielsen-Olesen model. In showing this for the
charged vortex case, it is again critical to include the EM or
gauge field contribution to the total angular momentum. For
a similar conclusion for the dyonic solitons, see Refs. [7–9].
We make a remark that Appendix C of the well-known ref-
erence, Ref. [10], contains an erroneous statement on this for
the charged vortex case, which we will rectify in Sec. III A.
This showcases the nontriviality of our argument based on the
angular momentum conservation.

What would happen if the vortex is a combination of
magnetic vortex of a gauge symmetry and superfluid vortex
of a global symmetry? To answer this question, we study
in Sec. III B the previously mentioned example of the “non-
Abelian vortex” [2,11] in the CFL superconducting phase of
dense quark matter, which may be relevant for the physics
of neutron star cores. The non-Abelian CFL vortices also
play a role in the idea of quark-hadron continuity [12] in
the high density region of a QCD phase diagram [13–16]
(see, however, Refs. [17–19] for recent debates on the idea
of quark-hadron continuity). For such an object of composite
nature, one can imagine a creation process by an external mag-
netic field for the gauge symmetry, together with a physical
rotation to create the superfluid vortex part of the global sym-
metry. Our angular momentum conservation argument then
predicts that the total angular momentum should be given only
by the superfluid part of global symmetry without any con-
tribution from the gauged symmetry part. We will explicitly
confirm this expectation in a highly nontrivial manner.

There is a logical exception to the above argument for
spinless vortices in a system with no background. During the
above considered creation process by an external solenoid,
a finite amount of angular momentum may diffuse away to
spatial infinity, resulting in an opposite amount of angular
momentum localized around the vortex. The total angular
momentum is conserved and zero, but the part at infinity is not
visible, and should not be thought of as a contribution to the
angular momentum of the localized vortex. The vortex then
carries a leftover angular momentum that is finite. What dis-
tinguishes this case from our first case with background matter
is that the opposite angular momentum to the one carried by
the vortex strictly resides at spatial infinity, or more precisely
at the boundary of the system far away from the vortex. This
makes a contrast to the previous case with background matter,
where the bulk of the background absorbs a finite angular
momentum.

In Sec. II B we discuss an instructive example of this
class of vortex that is provided by the magnetic vortex on
the surface of a time-reversal invariant (i.e., T invariant)
strong topological insulator (TI) in a setup recently studied
in Ref. [20]. Although the authors of Ref. [20] considered an
interface between TI and a superconductor, we will focus on
the TI part to account clearly for the physics origin of the net
fractional (in units of h̄) angular momentum of the vortex. We
will show that the total angular momentum solely arises from
the gauge field configuration surrounding the vortex on the TI
surface, without any TI matter contributions. We will argue
for this peculiar feature that the topological nature of the TI is
responsible for moving apart a finite angular momentum to the
(infinitely separated) boundary, which characterizes this class
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of example. Ubiquitous topological vortices with fractional
angular momentum in topological phases of matter as found in
Refs. [21–23] should belong to this class of magnetic vortex.

The final class of vortex in our classification is from the
last logical possibility: a vortex may not be created by our
thought experiment with an external solenoid in a way that
conserves angular momentum, and additional operations to
violate angular momentum conservation must be performed to
create a vortex. This class of vortex is rather exotic and rarely
found in the literature: one example we address in this paper
is an object called the “charged semilocal vortex” of Abraham
[24]. Since this class of vortex simply falls outside of our prin-
ciple of angular momentum conservation, they may or may
not carry an angular momentum: in our example the charged
semilocal vortex carries a finite angular momentum. It is an
inhomogeneous profile along the vortex axis that makes it
impossible to create this kind of vortices by simply piercing an
external magnetic flux: an additional “twisting” or “spinning”
along the axis is needed to create such a vortex profile.

In summary, we have the following distinct classes of vor-
tices in regard to angular momentum conservation and their
creation processes:

(1) Class Ia (spinful vortices): They carry a finite angular
momentum due to the existence of background matter that can
absorb angular momentum. Examples are the vortices in type-
II superconductors.

(2) Class Ib (topological vortices): They carry a finite an-
gular momentum, but no background matter exists in the bulk.
The angular momentum resides only on the boundary. The
angular momentum carried by the surrounding gauge fields
must be counted for the total angular momentum. Examples
are the vortices on the surface of topological phases of matter.

(3) Class II (spinless vortices): They do not carry a net
angular momentum due to the angular momentum conser-
vation. The angular momentum carried by the surrounding
gauge fields should be included. Examples are the vortices in
relativistic field theories and cosmology.

(4) Class III (exotic vortices): They have an inhomoge-
neous profile along the vortex axis, so that they cannot be
created by a simple procedure of piercing magnetic flux. They
may or may not carry angular momentum. An example is the
charged semilocal vortex.

In the following sections we present detailed analysis on
the concrete examples that belong to each of the above classes.

II. CLASS I: CASE STUDY OF MAGNETIC VORTICES
WITH NONZERO ANGULAR MOMENTUM

In this section we discuss the case of magnetic vortices
that carry a nonzero angular momentum. Because the angular
momentum should be conserved as long as rotational symme-
try is preserved, the angular momentum of magnetic vortices,
if it is nonzero, should be balanced by other contributions.
According to the types of such balancing contributions, we
further classify them into two distinct subclasses; namely,
class Ia and class Ib.

A. Class Ia: Incomplete cancellation due to background matter

The most familiar magnetic vortices in a type-II supercon-
ductor belong to class Ia. The magnetic vortices can carry a

nonzero angular momentum but its value is not quantized in
units of h̄, unlike the angular momentum carried by superfluid
vortices. Explicit calculations as shown below make clear
where the difference appears.

For an explicit demonstration we shall consider a relativis-
tic scalar field theory in the Higgs phase of U (1) symmetry,
so that gauged magnetic vortices emerge. We then take the
nonrelativistic reduction and find the equations of motion that
are familiar in condensed matter physics describing magnetic
vortices in type-II superconductors. The Lagrangian density
we study in the natural unit system (h̄ = c = 1) reads as

L = (Dμ�)†(Dμ�) − U (�†�) + 1
2 E2 − 1

2 B2 − qA0,

(2.1)

where Dμ = ∂μ + ieneAμ is the covariant derivative, with ne

being the electric charge carried by � in units of e > 0.
As usual, E = −∇A0 − ∂0A and B = ∇ × A are electric and
magnetic fields, respectively. We should choose ne = −2 for
the Cooper pair in electron superconductivity. The last term
qA0, with a background charge density q(x), is introduced to
keep the total electric charge neutrality, which we will simply
refer to as the “background” in the following. For example,
in a solid with conduction electrons, positively charged ions
in the crystal and other electrons in valence bands neutralize
the whole system. We also note that a finite chemical poten-
tial μ is introduced by replacing ieneA0 → ieneA0 − iμ. The
potential U (�†�) is chosen to have a nonzero condensate of
� in the Higgs phase, the simplest choice of which would be
a polynomial form:

U (�†�) = −λ2�
†� + λ4

2
(�†�)2. (2.2)

The equations of motion from the Lagrangian are given by

− (DμDμ)� + λ2� − λ4(�†�) � = 0, (2.3)

− ∂0E + ∇ × B + iene[(D�)†� − �†(D�)] = 0, (2.4)

∇ · E + iene[(D0�)†� − �†D0�] − q = 0, (2.5)

with (D)i ≡ Di, where we note that ∂ i = ∂/∂xi = −∂/∂xi in
our metric convention (+,−,−,−). The magnetic vortices
we consider are the static solutions of the above equations of
motion, so we drop the time derivative terms in the below.
Then Eq. (2.3) takes a form of

[(μ − eneA0)2 + D2 + λ2]� − λ4(�†�)� = 0. (2.6)

Instead of solving this equation directly, we would like to
make the problem close to a more conventional situation in
condensed matter physics, by considering the nonrelativis-
tic reduction. Because the nonrelativistic energy is measured
from the rest mass energy m, we should split the mass term
and rescale the field as

μ → m + μ̃, λ2 → −m2 + 2mλ̃2, � → ψ√
2m

, (2.7)

where μ̃ denotes the nonrelativistic chemical potential. Equa-
tion (2.6) multiplied by 1/

√
2m then becomes

(λ̃2 + μ̃ − eneA0)ψ + D2

2m
ψ − λ4

4m2
|ψ |2ψ = 0, (2.8)
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where we have dropped a subleading term proportional to
(μ̃ − eneA0)2/(2m).

We should solve Eq. (2.8) together with Eqs. (2.4) and (2.5)
for EM fields. The Gauss law (2.5) reads

∇2A0 + ene|ψ |2 + q = −ene

m
(μ̃ − eneA0)|ψ |2 � 0, (2.9)

where we again drop the last term which is subleading accord-
ing to the approximation made in Eq. (2.8), while we still keep
the kinetic term D2/(2m) in Eq. (2.8). For notational brevity,
let us rename our variables as follows:

λ̃2 + μ̃ → μ,
λ4

4m2
→ g, A0 = μ

ene
a, ψ →

√
μ

g
�.

(2.10)

Here we note that this μ is different from the original one
in Eq. (2.6). Together with the Maxwell equation for A in
Eq. (2.4), our equations finally become

(1 − a)� + 1

m2
H

(∇ − ieneA)2� − |�|2� = 0, (2.11)

∇ × (∇ × A) + m2
V

[
A|�|2 − i

2ene
(�∇�† − �†∇�)

]
= 0,

(2.12)

∇2a + 2m2 m2
V

m2
H

(|�|2 + q̃) = 0, (2.13)

where q̃ ≡ (g/eneμ)q, and we also introduce the two typical
mass scales as

m2
H ≡ 2mμ, m2

V ≡ (ene)2μ

mg
. (2.14)

Physically, 1/mH represents the coherent length of the field �,
while 1/mV represents the penetration length of the magnetic
field. If the penetration length is smaller than the coherent
length, mV > mH , the Meissner screening effect is dominant
and the phase separation is more preferred than forming mag-
netic vortices, which corresponds to type-I superconductivity.
We are interested in type-II superconductivity in the opposite
regime with mH > mV .

The ansatz for the vortex solution with the winding number
ν is

� = f (r) eiνϕ, a = a(r), Ai = − ν

ene
εi j x j

r2
[1 − h(r)],

(2.15)

where r ≡
√

x2 + y2 and tan ϕ ≡ y/x. Introducing a dimen-
sionless radial coordinate ρ ≡ mV r, we can rewrite the
differential equations (with ′ ≡ d

dρ
) as

− (ρ f ′)′ + ν2h2

ρ
f + λ ρ f ( f 2 − 1 + a) = 0, (2.16)

ρ

(
h′

ρ

)′
− f 2h = 0, (2.17)

1

ρ
(ρ a′)′ + 2

λ

m2

m2
V

( f 2 + q̃) = 0, (2.18)

where λ ≡ m2
H/m2

V > 1. For the total charge neutrality condi-
tion, we impose the condition∫

x
q̃ = −

∫
x

f 2. (2.19)

Here
∫

x refers to the two-dimensional integration on the plane
perpendicular to the vortex axis. This neutrality condition is
demanded by the fact that the static potential would behave
as a(ρ � 1) = Q

2π
log ρ if the total net charge Q is nonzero.

The combination of (μ − eneA0) appears in the equations of
motion and it plays a role of an effective chemical potential.
To have a well-defined effective chemical potential at spatial
infinity, we should impose Q = 0.

We can numerically solve these differential equations with
appropriate boundary conditions. Let us first consider the con-
ventional “locally neutral” vortex solution without coupling to
electric field, so that a(ρ) = 0 simply. This can be achieved by
choosing a space dependent background charge density q̃(x)
that locally neutralizes the net charge; that is, f 2 + q̃ = 0,
leading to a(ρ) = 0 from Eq. (2.18). Most type-II vortices
behave this way, but there are examples where this does not
happen in general; see Refs. [4,5]. The regularity of � at
ρ = 0 requires f (0) = 0, and at infinity it should approach
the vacuum value of f (∞) = 1. In the absence of a, then the
boundary conditions should be

f (0) = 0, f (∞) = 1, h(0) = 1, h(∞) = 0. (2.20)

We can easily obtain the numerical solutions using a technique
called the “shooting method” to satisfy these boundary condi-
tions. The left panel of Fig. 1 shows an example of the profile
of the magnetic vortex for λ = 1.5. We see that h(ρ) extends
more widely than f (ρ), reflecting mH > mV .

As a nontrivial example where the local charge density and
the electric field are nonvanishing, let us consider a constant
background charge density q̃ that is determined by the total
charge neutrality condition (2.19) as

q̃ = −1

S

∫
x

f 2, (2.21)

with S ≡ ∫
x as the transverse area. In the limit of an infinitely

large system q̃ would approach the negative unity. In the
present case we should revise the boundary conditions accord-
ingly. That is, f needs not be unity at large ρ, but f 2 − 1 + a
should be vanishing as ρ gets large. Also, we physically re-
quire vanishing electric field at ρ = 0 and ρ → ∞. Therefore,
we impose the following boundary conditions:

f (0) = 0, f (∞) =
√

1 − a(∞), h(0) = 1,

h(∞) = 0, a′(0) = 0, a′(∞) = 0. (2.22)

Actually, these boundary conditions are not sufficient to de-
termine the numerical solution uniquely, but a shift of a(ρ) →
a(ρ) + c with a constant c still exists. This shift would change
the value of μ, and the magnitude of condensate would also
be modified, which would result in a different value of q̃ in
Eq. (2.21). In other words, we can adjust q̃ to make a constant
shift on a(ρ). To fix this freedom, a natural condition to
impose would be to set a → 0 at large ρ, so that the effective
chemical potential at infinity, by definition, remains to be μ.
We choose λ = 1.5 and m2/m2

V = 1 to find that a(∞) → 0
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FIG. 1. (Left panel) Profile of the conventional elementary (ν = 1) magnetic vortex; f and h without coupling to a for λ = 1.5. (Right
panel) Profile of the elementary vortex with the electric field; f , h, and a for λ = 1.5 and m2/m2

V = 1.

is realized with q̃ � −0.985. In the right panel of Fig. 1 we
present the numerical solution with these parameters. This
explicitly demonstrates that nontrivial solutions with nonzero
local charge density and electric field certainly exist. We see
that the profile of the condensate slightly shrinks as compared
to the locally neutral case shown in the left panel.

Let us now compute the angular momentum carried by
the matter and the EM fields. The matter part of the angular
momentum per unit vortex length is

Lmatter
z =

∫
x

ψ†

(
h̄

i
Dϕ

)
ψ, Dϕ ≡ ∂ϕ − iene

h̄
Aϕ,

Aϕ ≡ εi jxiA j = ν h̄

ene
[1 − h(r)], (2.23)

where we reinstate h̄ as a common unit for the angular
momentum and also change the variables back to r and
ϕ. We note that the boundary condition (2.22) guarantees
Dϕ[ f (r)eiνϕ] → 0 as r → ∞, and the above integral is con-
vergent. With the explicit forms of the vortex profile and
the associated vector potential, the matter part of the angular
momentum per unit vortex length becomes

Lmatter
z = ν(2π h̄)

μ

g

∫ R

0
dr r h(r) f 2(r). (2.24)

Let us next consider the EM contribution, i.e.,

Lgauge
z =

∫
x

[x × (E × B)]z. (2.25)

Plugging the explicit forms of E and B into the above, we find
Lgauge

z as

Lgauge
z = −(2π h̄)

νμ

(ene)2

∫ R

0
dr

[
r

da(r)

dr

]
dh(r)

dr
. (2.26)

In Fig. 2 the integrand corresponding to the local angular
momentum density is plotted, where the variables are made
dimensionless again. The angular momentum distribution is
peaked around ρ ∼ 1 and decays at large ρ. We can perform
an integration by part and use the equation of motion to

transform the above expression into

Lgauge
z = − (2π h̄)

νμ

(ene)2

{
r

da(r)

dr
h(r)

∣∣∣∣
R

0

+ 2
m2

λ

∫ R

0
dr r h(r)[ f 2(r) + q̃(r)]

}
. (2.27)

Because of the boundary conditions (2.22), the surface contri-
bution vanishes. Using λ = m2

H/m2
V we can simplify the above

expression into

Lgauge
z = −ν(2π h̄)

μ

g

∫ R

0
dr r h(r) [ f 2(r) + q̃(r)]. (2.28)

Comparing with the matter contribution Lmatter
z in Eq. (2.24),

the first term is remarkably equal to −Lmatter
z , and the total

kinetic angular momentum is thus

Ltotal
z = −ν(2π h̄)

μ

g

∫ R

0
dr r h(r)q̃(r). (2.29)

We see that Ltotal
z is proportional to q̃ and this nonzero value

of the total angular momentum is attributed to the presence of
the background. If we had no background, q̃ = 0, then Lmatter

z
and Lgauge

z would have perfect cancellation, but we then allow

FIG. 2. The integrand of Eq. (2.26) in terms of dimensionless
variables for λ = 1.5 and m2/m2

V = 1, which represents the local
distribution of the EM angular momentum.
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for a “charged” magnetic vortex. This might be possible due to
finiteness of the system bounded by R. A natural realization of
this possibility will be discussed as class II in the next section.

B. Class Ib: Incomplete cancellation due to
topological boundary

Our next example for incomplete cancellation has been
motivated by the physical setup discussed in Ref. [20] where
a fractional angular momentum in the units of h̄ is found to
be carried by the magnetic vortex at the interface between
a superconductor and a T -invariant strong topological insu-
lator (TI).1 We will consider a simplified situation that still
demonstrates the essential physics involved; we will show
that a nonzero and fractional angular momentum is localized
around a magnetic flux on the boundary surface between a
bulk TI and the vacuum outside. Let us think of this situation
from a different perspective. In the same way we discussed
class Ia in the previous section, we can imagine a procedure
to turn on the magnetic field gradually from zero, and yet the
angular momentum conservation guarantees zero total angular
momentum of the whole system. The only way our result of
fractional angular momentum can be consistent with the an-
gular momentum conservation is that the other compensating
angular momentum should be located in the other part of the
TI-vacuum boundary where the magnetic flux leaves out from
the bulk TI. If this boundary region is far separated from the
place where the original incoming flux enters the TI, we can
reasonably neglect this far-away region, and focus only on
the angular momentum localized on the incoming flux alone.
This angular momentum indeed takes a fractional value, as
we confirm in the following discussions. We can say that the
fractional angular momentum is transported from the bound-
ary at infinity to the incoming magnetic flux; this characterizes
the magnetic vortices of class Ib in our classification. Such
magnetic vortices with fractional angular momenta are not
peculiar, but rather ubiquitous in topological phases of mat-
ter; see, for example, Refs. [21–23]. A deeper insight to the
angular momentum conservation from our discussion should
be useful for better understanding of these systems.

Let us consider a situation where we have a TI bulk in the
z > 0 region and the vacuum in z < 0, with an interface at
the z = 0 surface, as illustrated in Fig. 3. It is well known
that the boundary of TI supports massless surface states that
can be described by a single Dirac fermion field. For our
purpose, let us assume that there are T -violating magnetic
impurities on the surface that opens a mass gap for the surface
fermions. Integrating out the massive surface fermion gives
rise to a new term in the effective action in the low energy
limit for the EM fields, which is the Chern-Simons action
with a half integer level ν = 1

2 [25] (which should not be con-
fused with the winding number in the previous subsection).
To capture the essential physics of our discussion, we will
consider an idealized situation that this is the only response of

1We note that our result derived in the following is different by a
factor 1/2 from Ref. [20]. We have identified where this difference
stems from, but it is not essential for our present argument, so we
will not go into that detail.

FIG. 3. Interface between the TI and the vacuum with a localized
flux of magnetic field B. The electric charge Q is stored at the
interface which produces the electric field E.

the TI surface (with T -violating impurities) to an externally
applied EM field. At least in long wavelength and time limit,
the Chern-Simons term becomes dominant over other higher
derivative terms in the action.

From the Chern-Simons action, the charge current in re-
sponse to an applied EM field is obtained as

jμ = −ν

2

e2

h
εμναFνα = − e2

8π h̄
εμναFνα, (2.30)

which in components reads as

Q = e2

4π h̄
Bz, jx = e2

4π h̄
Ey, jy = − e2

4π h̄
Ex. (2.31)

where Q and jx,y are the charge density and the quantum Hall
effect (QHE) current, respectively. Here jx,y, Bz, and Ex,y in
Eq. (2.31) represent three-dimensional (3D) vector compo-
nents without distinction between upper and lower indices.

We consider a magnetic flux that is vertically piercing the
interface and is cylindrically symmetric: B = Bz(r)ẑ, where r
is the radius in the x-y plane. We further assume that Bz(r)
is localized for r � R, so we can regard it as a flux tube like
a magnetic vortex. In fact, we may realize such a magnetic
profile by an external superconducting vortex as postulated in
Ref. [20]. As seen from Eq. (2.31) the magnetic flux induces
a surface charge density Q and this charge gives rise to a
nonzero electric field according to the Gauss law. It is easy
to understand that a nonzero angular momentum emerges
from the resulting EM fields which are indicated by arrows
in Fig. 3.

Before going into the computation of the angular momen-
tum carried by the EM field, we first show that the angular
momentum contribution from the TI matter part at z > 0 is
generally vanishing. The easiest way to confirm this is to
compute the angular momentum that may be transferred to
the TI surface states as we increase the magnetic flux from
zero. This is because the TI bulk is gapped, and only the
surface states may carry angular momentum in response to
the applied EM fields in the system. During the process of
turning on the magnetic flux, we have a tangential electric
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field Eϕ = (xEy − yEx )/r from Faraday’s law,

2πrEϕ (r) = −2π

∫ r

0
dr′ r′ ∂Bz(r′, t )

∂t
. (2.32)

Then, according to Eq. (2.31) in the cylindrical coordinates,
we have the QHE current as jr = (x jx + y jy)/r = e2

4π h̄ Eϕ .
From this we can compute the torque from the EM force
acting on the surface states along the ϕ direction. The EM
force reads

Fϕ = QEϕ − jr Bz, (2.33)

where the second term represents the Lorentz force of j × B.
Using Q = e2

4π h̄ Bz and jr = e2

4π h̄ Eϕ , we see that the force van-
ishes identically, that is, the surface states do not experience
any tangential force, or torque, by the Chern-Simons term. In
fact, it is easy to verify that this result generally holds for any
geometry. We conclude that no angular momentum is carried
by the TI matter and its surface states. The angular momentum
of the whole system resides solely in the EM sector.

Now let us return back to the angular momentum in the EM
sector. For static fields satisfying ∇ × E = 0 and the vector
potential A = Aϕϕ̂/r satisfying ∇ · A = 0, we can rewrite the
angular momentum of EM fields as

Lz =
∫

x
[x × (E × B)]z =

∫
x

(∇ · E ) Aϕ −
∫

Aϕ (E · dS),

(2.34)

where the last term is the surface integral on the exte-
rior boundary. Using the Stokes theorem and the cylindrical
symmetry, we find the vector potential with the boundary
condition Aϕ (0) = 0 to be

2πAϕ (r) = 2π

∫ r

0
dr′ r′Bz(r′). (2.35)

Then, with the Gauss law, ∇ · E = Qδ(z), the first term in the
above expression of Lz becomes

∫
x

(∇ · E ) Aϕ = e2

2h̄

∫ ∞

0
dr rBz(r)

∫ r

0
dr′ r′Bz(r′)

= e2

4h̄

[ ∫ ∞

0
dr rBz(r)

]2

= e2

16π2h̄
�2

0, (2.36)

where �0 is the total magnetic flux. For the second term
we consider a cylindrical boundary at r = R, and the Stokes
theorem leads to

2πAϕ (R) = �0, (2.37)

which takes a constant value along the boundary. Then the
vector potential can be taken out from the integrand, which
gives

−
∫

Aϕ (E · dS) = −�0

2π

∫
E · dS = −�0

2π
Qtot

= − e2

8π2h̄
�2

0, (2.38)

where Qtot = e2

4π h̄�0 from Eq. (2.31) is used. Summing the
above two terms, we get the total angular momentum as

Lz = − e2

16π2h̄
�2

0, (2.39)

with the right sign that can easily be confirmed. We note that
the original integral of the angular momentum is convergent
by itself as Bz(r) is of finite range, and the above way to
split it into two terms is just a mathematical manipulation for
convenience.

We shall suppose that the magnetic flux is quantized as if
it were provided by an adjacent superconducting vortex of the
winding number ν considered in Ref. [20]. We note that the
magnetic vortex in superconductivity does not carry a finite
net angular momentum except for the background contribu-
tion, so that the total angular momentum of our interest is
still given by the above formula. The flux quantization gives
2e
h̄ �0 = 2πν, where the factor 2 of 2e

h̄ originates from the
Cooper pair. This finally leads to

Lz = − ν2

16
h̄. (2.40)

Therefore, the EM field surrounding the magnetic vortex be-
tween a TI and a superconductor carries a nonzero angular
momentum given in Eq. (2.40).

The conservation of the total angular momentum during the
process of turning on the magnetic flux requires the existence
of an opposite and compensating angular momentum some-
where else. To identify where this compensating component
is, let us consider a global geometry of the bulk TI and its
closed boundary. For simplicity we assume that the bulk TI
(which is a blue shaded region in Fig. 3) is a large ball of
radius R and the boundary surface is a sphere of radius R. A
localized magnetic tube with a flux �0 enters the TI at θ = π ,
where θ is the polar angle in 3D spherical coordinates. The
same amount of flux goes out of the TI at other places of
the surface in cylindrically symmetric (i.e., ϕ independent)
way. Let the radial component of the magnetic field at r3D = R
be Br3D (θ ) as a function of θ , where r2

3D = r2 + z2 is the 3D
radius. The flux conservation results in∫ π

0
dθ sin θ Br3D (θ ) = 0. (2.41)

We consider turning on the magnetic field adiabatically from
zero, and the time-dependent magnetic field gives Eϕ as well
as the QHE current jθ , but the net force on the surface states
is vanishing as we saw before. Therefore, the total angular
momentum resides in the EM fields only.

To compute the EM part of the angular momentum, we
follow the same steps as before. Previously we considered
only the contribution from the incoming magnetic flux, but
if we perform the same computation including the whole TI
boundary surface, the total Lz turns out to be zero as we show
in the following that is consistent with our angular momen-
tum conservation argument. From the spherical symmetry of
the TI geometry and the cylindrical symmetry of the vector
potential, we have

2πAϕ (θ ) = 2πR2
∫ θ

0
dθ ′ sin θ ′ Br3D (θ ′). (2.42)
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The Gauss law gives

∇ · E = e2

4π h̄
Br3D (θ )δ(r3D − R). (2.43)

Then we find the first term in Eq. (2.34) to be∫
x

(∇ · E ) Aϕ = 2πR4 e2

4π h̄

∫ π

0
dθ sin θ Br3D (θ )

×
∫ θ

0
dθ ′ sin θ ′ Br3D (θ ′)

= 2πR4 e2

4π h̄

1

2

[ ∫ π

0
dθ sin θ Br3D (θ )

]2

= 0

(2.44)

using Eq. (2.41). For the second term in Eq. (2.34) we can
still employ Eq. (2.38) with different Qtot. Previously we took
account of Qtot around the incoming magnetic flux only, but if
we sum up all the contributions from the whole TI surface, it
should amount to Qtot = 0 due to Eq. (2.41). In this way we
see that the second term is zero as well. We emphasize that
the original expression of the angular momentum is localized
in the region where B �= 0 and E �= 0, that is, it is localized
around the TI boundary where the magnetic flux either enters
or leaves the TI. Therefore, the fractional angular momentum
localized around the magnetic tube at θ = π is compensated
by the angular momentum carried by the outgoing flux in
other places of the TI boundary which can be taken infinitely
away.

III. CLASS II: CASE STUDY OF MAGNETIC VORTICES
WITH ZERO ANGULAR MOMENTUM

In this section we consider magnetic vortices in relativistic
field theory as examples of self-consistent systems without
any background matter or boundary that could absorb angular
momentum. Such vortices could appear in the standard model
and extensions of the standard model. They have been con-
sidered in the context of high energy physics and cosmology.
A faithful application of our angular momentum conserva-
tion argument to these vortices then dictates that they should
be spinless. We will confirm this claim also in a nontrivial
example where the angular momentum carried by surround-
ing localized gauge fields is essential for the cancellation
of the total angular momentum. We emphasize that these
localized gauge fields around the vortex core should be con-
sidered as a part of the magnetic vortex configuration under
consideration.

A. Example 1: Relativistic Nielsen-Olesen vortices

Let us illustrate our main points in the simplest example
of Nielsen-Olesen vortices in relativistic scalar theory that we
already treated in the previous section. The formulation of the
theory presented below is a standard one, but we would like to
pay a special attention to the cases with nonvanishing charge
density. Consequently, nonzero electric fields accompany the
vortices; we then have a precise description of the charged
vortices, taking proper account of the Gauss law constraint.
This endeavor, which we did not find in the literature in full
generality as we present here, turns out to be crucial to show

the exact cancellation of total angular momenta carried by the
matter and the gauge field parts.

We write down the Lagrangian as

L = (Dμ�)†(Dμ�) − U (�†�) + 1
2 E2 − 1

2 B2, (3.1)

which is Eq. (2.1) without background, i.e., q = 0. Here we
take ne = 1 and Dμ� = (∂μ + ieAμ)� and, as defined in
Sec. II A, we adopt a convention of (D)i = Di. We use the
unit system with c = h̄ = 1 in this section. We also take a
conventional form of the potential same as in the previous
section; U (�†�) = −λ2�

†� + λ4
2 (�†�)2. A finite chemical

potential μ is introduced by replacing eA0 → eA0 − μ (see
Appendix A for introducing a chemical potential via Hamilto-
nian formulation). The equations of motion and the Gauss law
from this action is the same as Eqs. (2.3)–(2.5) with q = 0,
ne = 1.

We do not take the nonrelativistic reduction, so that the
Gauss law reads

∇2A0 = −2e(μ − eA0)�†�. (3.2)

Equations (2.6) and (3.2) together with the Maxwell equation
for A, i.e.,

∇ × (∇ × A) + ie[(D�)†� − �†(D�)] = 0, (3.3)

constitute our final set of closed equations for �, A, and A0

to be solved for classical configurations in relativistic the-
ory. If μ = 0, then it is consistent with A0 = 0, and there
is no electric field. This situation at μ = 0 corresponds to
charge neutral vortices in our problem. For μ �= 0 there
exists nonvanishing charge and the electric field in the so-
lution, which we will refer to as “charged Nielsen-Olesen
vortices.”

We could estimate the angular momentum in the matter
part using an expression like Eq. (2.23), but here we shall
show an alternative physical approach. To compute the matter
contribution to the angular momentum, we need the linear
momentum density, i.e., P, obtained from T 0i component of
the energy-momentum tensor. From the Noether method we
see that T 0i for the static solution is given by

Pi = T 0i = [(Di�)†(D0�) + (D0�)†(Di�)]

= − i[(Di�)†(μ − eA0)� − �†(μ − eA0)(Di�)]. (3.4)

The kinetic angular momentum carried by the matter part is
then

Lmatter
z =

∫
x

[x × P]z. (3.5)

On the other hand, the gauge field contribution to the angular
momentum is easily found from the Poynting vector, namely
from Eq. (2.25).

The charge neutral case at μ = 0 makes the essential dif-
ference from the nonrelativistic case in the previous section.
The above equations of motion for relativistic vortices are
mathematically identical, up to trivial scaling of parameters,
to those of “locally” neutral nonrelativistic vortices without
coupling to electric field: both of them are known as Nielsen-
Olesen vortices. For the charge neutral case, it is algebraically
trivial to see P = E = 0 from μ = A0 = 0, and both the
matter and gauge field contributions to the total angular mo-
mentum are zero, but this conclusion is physically nontrivial;
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FIG. 4. Schematic illustration of the charge neutral Nielsen-
Olesen vortex composed from a particle vortex and an antiparticle
antivortex.

vortices are circulating configurations and yet they have no
angular momentum. Intuitively, the absence of matter con-
tribution to the angular momentum in the relativistic theory
can be understood as a cancellation between particle vortex
and antiparticle antivortex as follows: recall that � ∼ a + b†

and the conjugate momentum � ≡ D0� ∼ i(a − b†) where a
and b are annihilation operators for particle and antiparticle,
respectively. In the superfluid phase of a large occupation
number, we can regard a and b as c numbers as usual. A
vortex profile with winding number ν can be viewed as a su-
perposition of a particle vortex of a ∼ eiνϕ and an antiparticle
antivortex of b ∼ e−iνϕ . In the charge neutral case of � = 0,
their amplitudes are precisely equal, i.e., a = b†, and the an-
tiparticle antivortex contribution to the angular momentum is
precisely opposite to that of the particle vortex as schemati-
cally illustrated in Fig. 4. The absence of antiparticles in the
nonrelativistic vortex in the previous section is the major dif-
ference from the relativistic theory discussed in this section.

For the charged case at μ �= 0, the two systems of equa-
tions are different by terms that we previously neglected in the
nonrelativistic reduction. In addition to this difference for the
charged case, a background charge density that we introduced
as q in the previous section is also absent here. This means
that the net charge of a charged Nielsen-Olesen vortices is
not zero, and the electric field grows logarithmically at large
distance in two-dimensional space perpendicular to the vortex
string in three dimensions. This implies that the line density
of energy of a charged vortex is divergent in infinite space,
and a sensible solution would exist only in a finite transverse
volume. As we will focus on azimuthally symmetric vortex
configurations to apply our angular momentum conservation
argument, we consider a spatial cutoff in transverse space at
a certain distance from the origin, that is, r � R in the radial
direction. We will show that the total angular momentum of
a charged vortex within the volume r � R is always zero for
any cutoff R, when we sum the contributions of both matter
part and the gauge fields.

Our conclusion rectifies a misleading statement in the
Appendix C of the well-known literature, Ref. [10], that a
charged Nielsen-Olesen vortex carries a nonzero angular mo-
mentum. Our result of vanishing angular momentum even for
charged vortices is independent of the issue of diverging line
energy density in infinite space. Later, we will more precisely
point out where the misleading conclusion in Ref. [10] stems
from.

The computation in the charged vortex case is more del-
icate than the neutral case, and the detailed mechanism for

cancellation is similar to that in the previous section. First
of all, since � �= 0, the particle vortex and the antiparticle
antivortex have different amplitudes, and the net matter angu-
lar momentum no longer cancels to be zero. From the radial
electric field E �= 0, the gauge fields also contribute to the
total angular momentum. We take the following ansatz:

� = f (r) eiνϕ, A0 = a(r), Aϕ = ν

e
[1 − h(r)], (3.6)

with the boundary condition for vanishing magnetic flux, i.e.,
h(R) = 0 at sufficiently large boundary r = R. Then the equa-
tions of motion and the Gauss law become (with ′ ≡ d

dr )

1

r
(r f ′)′ − ν2

r2
h2 f + (λ2 − λ4 f 2) f + (ea − μ)2 f = 0, (3.7)

(
h′

r

)′
− 2e2

r
f 2h = 0, (3.8)

1

r
(ra′)′ − 2e(ea − μ) f 2 = 0. (3.9)

The matter part of the angular momentum is computed from
Eq. (3.5) as

Lmatter
z = 4πν

∫ R

0
dr rh(r) f 2(r)[−ea(r) + μ] (3.10)

and the gauge field contribution from Eq. (2.25) as

Lgauge
z = − 2πν

e

∫ R

0
dr ra′(r)h′(r)

= 2πν

e

∫ R

0
dr [ra′(r)]′h(r), (3.11)

where in the last equality we performed the integration by part
and used the boundary condition at r = R as in the previous
section. Using the Gauss law (3.9) to replace [ra′(r)]′, we
arrive at

Lgauge
z = −4πν

∫ R

0
dr rh(r) f 2(r)[−ea(r) + μ] = −Lmatter

z ,

(3.12)

which precisely cancels the matter contribution. As a result
the total angular momentum is vanishing. In Appendix C of
Ref. [10], the surface term of Eq. (C3) that was neglected is
nonzero: this can be seen from the description of the solution
below Eq. (C6) with Q �= 0. It can be shown that Eq. (C3) pre-
cisely cancels Eq. (C4), so that the total angular momentum is
zero. This cancellation has its origin in the angular momentum
conservation, and it holds for any R regardless of an issue of
infinite line energy density of the charged solution.

We finish this subsection by pointing out that our finding
of zero angular momentum for magnetic vortices in the U (1)
Abelian Higgs model is consistent with the particle-vortex du-
ality in 2 + 1 dimensions [22,23], where the magnetic vortices
in the Abelian Higgs model are mapped to the elementary
excitations of a dual complex scalar field which are clearly
spinless. Checking the spins of other excitations in the web of
dualities [22] would be interesting.
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FIG. 5. Schematic illustration of the continuity between the
dibaryon vortex in the hadronic phase and the non-Abelian CFL
vortex in CFL quark matter in QCD.

B. Example 2: Non-Abelian CFL vortices

We can test our assertion in a more nontrivial example of
non-Abelian vortices [2,11] in the CFL color-superconducting
phase of QCD quark matter at high baryon density and low
temperature. The diquark condensates in the CFL phase break
both QCD gauge symmetry and the global U (1)B baryon
number symmetry. The non-Abelian vortices arise from cou-
pled dynamics of color fields and U (1)B superfluidity, and
carry fractional winding numbers for both gauge and global
symmetries, such that the total winding number for each color
component of the diquark condensate field is an integer. One
might think that the non-Abelian CFL vortex is peculiar to
QCD, but similar structures can also be found in multicom-
ponent superconductivity, see Ref. [26] for example. The
minimal non-Abelian vortex carries only 1/2 of the U (1)B

winding number (that is equivalent to 1
2 × 2

3 = 1
3 winding

number for the diquark field), so that the non-Abelian CFL
vortices can be considered as fractionalized U (1)B vortices. In
the hadronic phase, on the other hand, the minimal dibaryon
Cooper-pair superfluid vortex also carries the same winding
number 1

2 , so that across the two phases the dibaryon vortex
should transmute to the non-Abelian CFL vortex [15], which
is schematically illustrated in Fig. 5 (see also Ref. [16] for
an alternative scenario). Since the angular momentum must
be conserved during this transmutation process, we expect
the angular momenta of the two vortices to be equal. The
minimal dibaryon vortex of 1/2 of the U (1)B winding number
is a usual superfluid vortex and carries the angular momentum
Lz = NB/2 where NB is the total baryon number. In contrast,
the non-Abelian CFL vortex is also accompanied by color
gauge fields, and in general, its total angular momentum re-
ceives contribution from these localized color fields. It is a
nontrivial check to see that the total angular momentum of the
non-Abelian CFL vortex from both matter part and the gauge
fields is indeed Lz = NB/2, i.e., the same as in the hadronic
phase, as we will show below. Essentially, this means that
the color-magnetic part of the non-Abelian CFL vortex does
not contribute to the angular momentum, and only the U (1)B

superfluid part makes a finite contribution. This situation pro-
vides another example of confirming our assertion that the
gauged magnetic vortex does not carry angular momentum.

The diquark condensate in the CFL phase is described by a
3 × 3 matrix field � = �iα , where i and α are color and flavor

indices, respectively. More precisely, there are two such fields
for left-handed and right-handed diquarks, and we assume that
they share the same configuration in a vortex solution. We can
always perform suitable color rotations, such that the profile
of the non-Abelian CFL vortex appears only in the global
U (1)B and the eighth component of the color field A8

μ with the
generator t8 = 1√

12
diag(−2, 1, 1).2 Therefore, we will show

expressions only in these parts in the following. The QCD
covariant derivative with A8

μ only is

Dμ� = (
∂μ − igA8

μt8 − 2iδ0
μμB/3

)
�, (3.13)

where g is the QCD coupling constant, and μB is the baryon
chemical potential. The coefficient is understood from the
baryon charge 2/3 carried by the diquark field �. We will
work with the Lagrangian in terms of the diquark field
given by

L = tr[(Dμ�)†(Dμ�)] − V [tr(�†�)]

+ 1
2 E8 · E8 − 1

2 B8 · B8, (3.14)

where E8 = −∇A8
0 − ∂0A8 and B8 = ∇ × A8. The concrete

shape of the potential V is not important for our purpose. The
ensuing analysis is very similar to that in the previous subsec-
tion, and we will highlight only the important differences and
the major results. The color charge that appears in the Gauss
law constraint is given by

∇2A8
0 = 2g tr

[
�†t8

(
gA8

0t8 + 2μB/3
)
�

]
, (3.15)

which is easily obtained from the equation of motion for A8
0.

In the above the term ∝μB should be understood as the unity
matrix in color space. The other equations of motion are

D2� − �V ′[tr(�†�)] + (
gA8

0t8 + 2μB/3
)2

� = 0 (3.16)

and

∇ × (∇ × A8) = igtr[(D�)†t8� − �†t8(D�)]. (3.17)

Equations (3.15), (3.16), and (3.17) form a closed set to solve
for the vortex profile of �, A8, and A8

0. The non-Abelian CFL
vortex solution has the following form [2]:

A8
0 = a(r), A8

ϕ = ν

g

√
12

3
[1 − h(r)], (3.18)

with A8 = A8
ϕϕ̂/r and

� =
⎛
⎝ f (r) eiνϕ 0 0

0 b(r) 0
0 0 b(r)

⎞
⎠. (3.19)

The boundary condition is h(∞) = 0 which ensures

−D� = (∇ + igA8t8)� → i
ν

3

ϕ̂

r
� as r → ∞. (3.20)

This signifies that the vortex carries a superfluid winding
number ν/3 with respect to the diquark global U (1) [which
is equivalent to ν/2 with respect to U (1)B symmetry]. To

2This matrix representation is an unconventional choice; in later
discussions we will focus on the u-quark sector and this choice is
good for that purpose.
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see how the color-magnetic vortex is embedded in the above
solution, we can factorize it as follows:

� = ei ν
3 ϕ

⎛
⎝ei 2ν

3 ϕ 0 0
0 e−i ν

3 ϕ 0
0 0 e−i ν

3 ϕ

⎞
⎠

⎛
⎝ f (r) 0 0

0 b(r) 0
0 0 b(r)

⎞
⎠,

(3.21)

where the overall phase corresponds to the global U (1) and

the middle matrix e−iν
√

12
3 t8ϕ belongs to SU(3), and this is why

this configuration as implemented in Eq. (3.19) is called a
“non-Abelian” vortex.

Using equations of motion (3.15), (3.16), and (3.17) we
find that the matter and gauge parts of the angular momentum
are

Lmatter
z = 2πν

3

∫ R

0
dr r

[
(1 + 2h) f 2

(
− 4g√

12
a + 4

3
μB

)

+ 4(1 − h)b2

(
g√
12

a + 2

3
μB

)]
, (3.22)

Lgauge
z = (2πν)

√
12

3

∫ R

0
dr r

[
g

3
a(2 f 2 + b2)

+ 4

3
√

3
μB(− f 2 + b2)

]
h. (3.23)

For details of the derivation, see Appendix B. Summing up
Lmatter

z in Eq. (3.22) and Lgauge
z in Eq. (3.23), we get the total

angular momentum per unit vortex length to be

Ltot
z = 2πν

∫ R

0
dr r

[
f 2

(
− 2g

3
√

3
a + 4

9
μB

)

+ b2

(
2g

3
√

3
a + 8

9
μB

)]
. (3.24)

One might think that the above result is an involved expres-
sion, but there is an elegant physical interpretation. To this
end, we shall compute the baryon charge density as

QB = − 2
3 i tr[(D0�)†� − �†(D0�)]

= 4
3 tr

[
�†

(
gA8

0t8 + 2μB/3
)
�

]
, (3.25)

from which the total baryon charge per unit vortex length
reads

NB = 2π

∫ R

0
dr r

[
f 2

(
− 4g

3
√

3
a + 8

9
μB

)

+ b2

(
4g

3
√

3
a + 16

9
μB

)]
. (3.26)

Comparing Ltot
z and NB, we see that the following relation

holds:

Ltot
z = ν

2
NB. (3.27)

This confirms that the total angular momentum of the
non-Abelian vortex in the CFL phase contains only the con-
tribution from the global U (1)B vortex; the total angular
momentum (in the unit of h̄) is ν times the number of the
Cooper pairs. We note that this result completely agrees with

Eq. (14) in Ref. [15], but in Ref. [15] only the U (1)B con-
tribution to the angular momentum was postulated without
rigorous justification.

IV. CLASS III: CASE STUDY WITHOUT ANGULAR
MOMENTUM CONSERVATION

The last logical possibility in our classification is that mag-
netic vortices cannot be created by simply turning on external
magnetic flux in an azimuthally symmetric way. What distin-
guishes this case from all previous cases is that the principle
of angular momentum conservation does not naively apply
in the vortex creation process. The vortices classified in this
class are characterized by inhomogeneous profiles along the
vortex axis, which means that not only the external magnetic
flux but also something else are needed to create the vortices:
roughly speaking, a kind of twisting along the axis would be
required. Such vortices do exist as we discuss below, although
they seem to be rare in the literature.

An example that belongs to this class is provided by an
object called “charged semilocal vortex” as constructed by
Abraham in Ref. [24]. This Abraham vortex is an extension of
the semilocal vortex [27] that has been discussed in the con-
text of electroweak strings in cosmology (see Ref. [28] for a
review). They also appear quite commonly as topological BPS
(Bogomol’nyi-Prasad-Sommerfield) objects in supersymmet-
ric gauge theories. The simplest model of the Abraham vortex
consists of two charged scalar fields �a (a = 1, 2), with the
equal charge, and a U (1) gauge field Aμ. The Hamiltonian in
the critical limit reads

H =
∑

a=1,2

(|D0�a|2 + |D�a|2) + g2

2

( ∑
a=1,2

|�a|2 − v2

)2

+ 1

2
(E2 + B2), (4.1)

where Dμ�a = (∂μ − igAμ)�a, and the Gauss law is

∇ · E = ig
∑

a=1,2

[(D0�a)†�a − �†
a(D0�a)]. (4.2)

The vortex solution relies on the following Bogomol’nyi
bound:

H =
∑

a=1,2

(|D0�a ± D3�a|2 + |D1�a ± iD2�a|2)

+ 1

2
|Ex ∓ By|2 + 1

2
|Ey ± Bx|2

+ 1

2

[
Bz ∓ g

( ∑
a=1,2

|�a|2 − v2

)]2

∓αQ2 ∓ v2gBz ∓ ∇ · (EAz ). (4.3)

Here A = (Ax, Ay, Az ), E = (Ex, Ey, Ez ), B = (Bx, By, Bz )
and we imposed additional conditions that ∂3�2 = iα�2 with
a constant α and all other ∂3 is vanishing. We defined Q2 as

Q2 = i[(D0�2)†�2 − �
†
2(D0�2)]. (4.4)
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The equations we obtain from this, for the upper sign, are

D0�a + D3�a = 0, D1�a + iD2�a = 0, Ei = εi jB j,

Bz − g

( ∑
a=1,2

|�a|2 − v2

)
= 0. (4.5)

It can be checked that these solve the original equations
of motion. In Ref. [24] it was also shown that these equa-
tions admit nice solutions with zero net gauged U (1) charge
but nonzero Q2, which are somewhat misleadingly called
“charged” semilocal vortices. These solutions have finite line
energy density, due to the fact that the total U (1) charge is
zero. The solutions are possible only for α �= 0, that corre-
sponds to a “twisting” along the vortex axis. Due to this, the
vortex string carries a net linear momentum along the axis
direction. Although the total U (1) charge is zero, the charge
density profile in space is nonzero, and there exists nontrivial
profile of local electric and magnetic fields. This leads to
a nonvanishing contribution of the electromagnetic fields to
the total angular momentum. As pointed out in Ref. [24],
the solutions carry nonzero total angular momentum, but we
would not go into technicality here, and the readers can di-
rectly consult Ref. [24]. The twisting, parametrized by α, can
be considered as spinning the vortex to give a finite angular
momentum. This is an extra operation that would be needed
to create such a vortex profile by hand, and the angular mo-
mentum conservation cannot be applied to the situation. In
other words, in this peculiar system belonging to this class,
the angular momentum conservation is not satisfied by Lmatter

z
or Lgauge

z or their sum.

V. CONCLUSION

In this work we apply the principle of angular momentum
conservation to understand the origin of angular momentum
carried by magnetic vortices in various physical systems in
condensed matter, high energy, nuclear physics, and cosmol-
ogy. We find that this simple principle is powerful enough
to allow us an overarching scheme of classifying the known
examples, according to how the principle of angular momen-
tum conservation is satisfied. We find the four distinct classes
of examples in our classification scheme; spinful (class Ia),
topological (class Ib), spinless (class II), and exotic (class
III) vortices, as already summarized in the Introduction. We
present detailed analyses for these examples, and empha-
size that the angular momentum carried by localized gauge
fields around the vortex core plays a crucial role in satisfy-
ing the angular momentum conservation. We believe that our
study gives a clear answer to the seemingly confusing, but
surprisingly rich, question of angular momentum carried by
magnetic vortices that are ubiquitous in many branches of
physics.
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APPENDIX A: HAMILTONIAN FORMULATION

In this Appendix we introduce the chemical potential via
the Hamiltonian formulation of U (1) gauge theory with the
Lagrangian (3.1). The canonical conjugate field is given by

�† = δL
δ∂0�

= (D0�)†. (A1)

It should be noted that in our convention the above expres-
sion defines �†, not �. The charge density from the Noether
method is

Q = −i[(D0�)†� − �†(D0�)] = −i(�†� − �†�), (A2)

and the Gauss law takes the form of

∇ · E = eQ = −ie(�†� − �†�). (A3)

The Hamiltonian density from the Legendre transformation
(including the EM sector) is obtained as

H = �†(∂0�) + �(∂0�)† − E(∂0A) − L
= �†� + (D�)†(D�) + U (�†�) + 1

2 (E2 + B2)

− ieA0(�†� − �†�) − A0∇ · E

= �†� + (D�)†(D�) + U (�†�) + 1
2 (E2 + B2), (A4)

where we dropped the total derivative term ∇ · (A0E ) in the
second line, and from the second to the last line, we used the
Gauss law to have cancellation between the last two terms.
This should be the case since A0 is not a dynamical degrees of
freedom in the Hamiltonian formulation of gauge theory.

For our convenience we introduce a chemical potential μ

via the free energy to be minimized; F = H − μQ. This is
equivalent to introducing μ in the covariant derivative, once
F in this section is identified as the Hamiltonian density in the
previous section. The free energy is explicitly given by

F = H − μQ = �†� + (D�)†(D�) + U (�†�)

+ 1
2 (E2 + B2) + iμ(�†� − �†�). (A5)

This, together with the Gauss law, constitutes a precise formu-
lation of gauged Ginzburg-Landau description for the cases
with nonzero charge distributions. From the Gauss law we
see that E is not independent but generated through � and
�, albeit in a nonlocal way. The variables �, �, and A are
considered as independent degrees of freedom, with respect
to which the free energy F should be extremized to obtain the
equations of motion.

We are interested in the stationary configurations where
magnetic field is static; ∂0B = 0. In this case, as is familiar
in classical electromagnetism, we can introduce an auxiliary
function or static potential A0 such that E = −∇A0 and, with
a proper boundary condition at spatial infinity, the Gauss law
can be solved nonlocally as

A0 = ie
1

∇2 (�†� − �†�), A0(∞) = 0. (A6)
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This boundary condition is necessary, since a nonzero A0(∞)
would shift our definition of chemical potential μ, that is, the
true chemical potential is μ − eA0(∞), as we have already
seen in the previous section. Using this, one of the terms in F ,
that is, the electric field energy is expressed as

1

2
E2 = e2

2
(�†� − �†�)

1

∇2 (�†� − �†�), (A7)

which is nothing but the Coulomb energy induced by the
charge distributions. The resulting expression for the free en-
ergy F involves only the independent variables �, �, and A,
from which we can proceed to obtain the equations of motion.

From the variation with respect to �†, we get

� + iμ� + e2�
1

∇2 (�†� − �†�) = 0. (A8)

Using the expression for A0, this can be written as

� + iμ� − ieA0� = 0 or � = −i(μ − eA0)�. (A9)

Recalling the relation � = D0� = (∂0 + ieA0)�, this gives
the well-known Josephson relation

∂0� = −iμ�. (A10)

Since F is quadratic in �, one may choose to insert back
the solution for � from Eq. (A8) into F to get a more conven-
tional form of the free energy in terms of � and A only. It is
explicitly given by

F = (D�)†(D�) + U (�†�) − μ(μ − eA0)�†� + 1
2 B2.

(A11)

One should keep in mind that A0 in the above expression
is a functional of � that should be obtained by solving the
Gauss law (A6) together with Eq. (A8), i.e., Eq. (3.2), which is
in general nonvanishing for μ �= 0 corresponding to nonzero
charge distributions in a solution. A more practical way to
approach this problem is indeed what we have described in
the preceding paragraphs, i.e., keeping � as an independent
degree of freedom.

The variation of the free energy with respect to �† gives

−D2� + �U ′(�†�) − iμ� − e2�
1

∇2 (�†� − �†�) = 0,

(A12)
which, upon using the expression for A0, is equivalent to

−D2� + U ′(�†�)� − i(μ − eA0)� = 0, (A13)

and using the solution for �, we finally get to

−D2� + U ′(�†�)� − (μ − eA0)2� = 0. (A14)

This, as it should, agrees with the equation of motion for
� obtained from the Lagrangian, after using the Josephson
relation ∂0� = −iμ�.

APPENDIX B: DERIVATION OF THE ANGULAR
MOMENTUM IN EQS. (3.22) AND (3.23)

We show the detailed derivation of the angular momentum
in Eqs. (3.22) and (3.23). The Gauss law (3.15), with the

ansatz Eqs. (3.18) and (3.19), becomes

1

r
(ra′)′ − g2

3
a(2 f 2 + b2) − 4g

3
√

3
μB(− f 2 + b2) = 0.

(B1)

To compute the matter part of the angular momentum, we
need the momentum density,

Pi = T 0i = tr[(D0�)†(Di�) + (Di�)†(D0�)], (B2)

for which we obtain

P = Pϕϕ̂ = −i tr
[
(D�)†(gA8

0t8 + 2μB/3
)
�

−�†
(
gA8

0t8 + 2μB/3
)
(D�)

]

=
[

ν

3r
(1 + 2h) f 2

(
− 4g√

12
a + 4

3
μB

)

+ 4ν

3r
(1 − h)b2

(
g√
12

a + 2

3
μB

)]
ϕ̂. (B3)

Thus we obtain the matter part of the angular momentum
(3.22),

Lmatter
z = 2π

∫ R

0
dr r(rPϕ )

= 2πν

3

∫ R

0
dr r

[
(1 + 2h) f 2

(
− 4g√

12
a + 4

3
μB

)

+ 4(1 − h)b2

(
g√
12

a + 2

3
μB

)]
. (B4)

The color gauge field contribution is computed as

Lgauge
z =

∫
x

[x × (E8 × B8)]z

= − (2π )

√
12ν

3g

∫ R

0
dr ra′(r)h′(r). (B5)

Integrating by part and using the Gauss law (B1), we arrive at
Eq. (3.23),

Lgauge
z = (2πν)

√
12

3

∫ R

0
dr r

[
g

3
a(2 f 2 + b2)

+ 4

3
√

3
μB(− f 2 + b2)

]
h. (B6)

APPENDIX C: CANONICAL ANGULAR MOMENTUM

The matter part of angular momentum we use in Eq. (2.23)
with covariant derivative Dϕ corresponds to the kinetic an-
gular momentum, that is the angular momentum carried by
matter alone. We could have defined the canonical angular
momentum using ∂ϕ . It is straightforward to find

Lcan,matter
z =

∫
x

ψ†

(
h̄

i
∂ϕ

)
ψ = ν(2π h̄)

μ

g

∫ R

0
dr r f 2(r)

= ν h̄ N, (C1)

where N ≡ μ

g

∫
x f 2 is the total number of particles per unit

vortex length, and R is the size of the system in radial direc-
tion. This expression is identical to the well-known one for the
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quantized angular momentum of a superfluid vortex. There is
also a contribution from the canonical angular momentum of
gauge field:

Lcan,gauge
z =

∫
x

[E · ∂ϕA + (E × A)z], (C2)

which vanishes in the vortex configuration (2.15). The sum
of Lcan,matter

z and Lcan,gauge
z gives the total canonical angular

momentum Lcan
z , which is conserved. On the other hand, in

the main text we instead have considered the other conserved

angular momentum defined by the sum of the gauge invariant
contributions: Lmatter

z and Lgauge
z , i.e., Ltotal

z = Lmatter
z + Lgauge

z .
The difference between Lcan

z and Ltotal
z is only a boundary term,

and which of Lcan
z or Ltotal

z is the relevant angular momentum
depends on the physical setup. In our present setup we can
gradually turn on the magnetic field, so that the magnetic vor-
tex emerges. In this case, it makes sense to consider Ltotal

z , not
Lcan

z . For more discussions on the canonical angular momen-
tum, we refer the readers to a concrete analysis in Ref. [29]
and also a general consideration in Ref. [30].
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