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Mean field analysis of reverse annealing for code-division multiple-access multiuser detection
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Code-division multiple-access (CDMA) multiuser detection is a kind of signal recovery problem. The main
problem of CDMA multiuser detection is to estimate the original signal from the degraded information. In
CDMA multiuser detection, the first-order phase transition happens. The first-order phase transition degrades
the estimation performance. To avoid or mitigate the first-order phase transition, we apply adiabatic reverse an-
nealing (ARA) to CDMA multiuser detection. In ARA, we introduce the initial Hamiltonian, which corresponds
to the prior information of the original signal into quantum annealing (QA) formulation. The ground state of the
initial Hamiltonian is the initial candidate solution. By using the prior information of the original signal, ARA
enhances the performance of QA for CDMA multiuser detection. We evaluate the typical ARA performance of
CDMA multiuser detection by means of statistical mechanics using the replica method. At first, we consider
the oracle cases where the initial candidate solution is randomly generated with a fixed fraction of the original
signal in the initial state. In the oracle cases, the first-order phase transition can be avoided or mitigated by
ARA if we prepare for the proper initial candidate solution. We validate our theoretical analysis with quantum
Monte Carlo simulations. The theoretical results to avoid the first-order phase transition are consistent with
the numerical results. Next, we consider the practical cases where we prepare for the initial candidate solution
obtained by commonly used algorithms. We show that the practical algorithms can exceed the threshold to
avoid the first-order phase transition. Finally, we test the performance of ARA with the initial candidate solution
obtained by the practical algorithm. In this case, ARA cannot avoid the first-order phase transition even if the
initial candidate solution exceeds the threshold to avoid the first-order phase transition.
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I. INTRODUCTION

Code-division multiple-access (CDMA) multiuser detec-
tion has been used in various communication systems [1].
The theoretical performance of CDMA multiuser detection
has been analyzed by means of statistical mechanics [2–5].
CDMA multiuser detection is regarded as a type of signal
recovery problem like compressed sensing [6–9]. Statistical-
mechanical analyses for signal recovery problems focus on
the inference of the original information from the degraded
information with noise. The noise can be physically regarded
as thermal fluctuations. By tuning the strength of the thermal
fluctuations, the original signal can be estimated from the
degraded one.

In addition to thermal fluctuations, quantum fluctuations
may be used to estimate the signal. Several studies have
demonstrated that quantum fluctuations such as the transverse
field do not necessarily improve the performance of the in-
ferences for image restoration, Sourlas codes, and CDMA
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[10–12]. The optimal decoding performance with quantum
fluctuations is inferior to that with thermal fluctuations in
Bayes optimal cases. However, in certain non-Bayes opti-
mal cases, for example, where a lower temperature than the
true noise level is set, the decoding performance with finite
quantum fluctuations and thermal fluctuations is superior to
that with only thermal fluctuations. That implies the potential
of the combination of quantum and thermal fluctuations for
inference problems.

The performance of optimization algorithms with quan-
tum fluctuations, which is known as quantum annealing (QA)
[13–18] or adiabatic quantum computation [19,20], is equal to
or better than that of an optimization algorithm with thermal
fluctuations [21,22], which is known as simulated annealing
(SA) [23]. The physical implementation of QA is realized
by the quantum annealer [24–28]. The quantum annealer has
been implemented in numerous applications, such as portfolio
optimizations [29,30], traffic optimization [31], item listing
for ecommerce [32], automated guided vehicles in factories
[33], machine learning [34–38], quantum simulation [39–41],
material design [42], and decoding algorithm [43].

In a closed system, QA begins from the ground state of the
transverse field term, and the transverse field strength is grad-
ually reduced. Following the Schrödinger equation, the trivial
ground state evolves adiabatically into a nontrivial ground
state of the target Hamiltonian, which corresponds to the
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solution of combinatorial optimization problems. The quan-
tum adiabatic theorem guarantees a theoretically sufficient
condition to obtain the ground state in QA [44]. The theorem
indicates that the total computational time for obtaining the
ground state is characterized by the minimum energy gap
between the ground state and first excited state. The energy
gap is related to the order of the phase transition. In the case
of the first-order phase transition, the computational time for
searching the ground state increases exponentially [45–48],
which is the worst case of QA.

To avoid the first-order phase transition, many methods
are proposed, for example, QA with a nonstoquastic Hamil-
tonian [49–52], inhomogeneous driving of the transverse field
[53,54], and reverse annealing (RA) [55,56]. RA is a protocol
to restart the quantum dynamics starting from the resulting
state of the standard procedure of QA. We expect that RA
leads to a closer solution to the ground state as its output. To
assess the performance of RA, we carefully classified its im-
plementation into two methods: adiabatic reverse annealing
(ARA) and iterated reverse annealing (IRA). The main dif-
ference between ARA and IRA is to incorporate the resulting
state. One is to implement the resulting state by modification
of the initial Hamiltonian, and the other introduces it as the
initial condition.

In ARA, we modify the initial Hamiltonian according the
resulting state. We assume that the resulting state is a candi-
date solution, which is sufficiently close to the ground state of
the original problem we wish to solve. We prepare the initial
Hamiltonian in ARA such that its ground state is the candidate
solution. The procedure of ARA is outlined as follows: We
start from the ground state of the initial Hamiltonian. Next,
we gradually increase the effects of quantum fluctuations and
search locally around the candidate solution. Thereafter, we
gradually decrease the effects of quantum fluctuations. When
the effects of quantum fluctuations disappear, the ground state
or lower energy state of the original problem can be obtained.
ARA is rather a theoretical approach for understanding the
property of RA. Theoretical analysis has indeed shown that
ARA can avoid the first-order phase transition for the p-spin
model [57]. However, this protocol has not been implemented
in the current quantum annealer.

The procedure of IRA is slightly different from ARA. The
difference is that IRA starts from a classical state, which
corresponds to the candidate solution without introducing the
additional Hamiltonian. A similar protocol to IRA is feasible
in the current quantum annealer. The performance of IRA can
be analyzed from the dynamics, and it significantly depends
on effect of heat bath. In a closed system, IRA has not en-
hanced the performance of QA [58]. In an open system, IRA
has improved the performance of QA by incorporating the
relaxation mechanisms [59].

In this paper, we focus on ARA because it dramatically
enhances the performance of QA, and its performance can be
analyzed by statistical mechanics. To the best of our knowl-
edge, it remains unknown whether ARA is useful for certain
practical problems. We apply ARA to CDMA multiuser de-
tection, which is a representative example in signal recovery
problems. The CDMA model is mainly characterized by the
ratio of the number of users to that of the measurements,
which is called the pattern ratio. In the low-temperature re-

gions and the intermediate pattern ratio, the CDMA model
has two solutions. This phenomenon reveals the existence of
the first-order phase transition, which degrades the estimation
efficacy. We use ARA to mitigate or avoid the estimation
difficulty. In the ARA process, we set the initial Hamiltonian.
The initial Hamiltonian is interpreted as prior information of
the original signal in the context of the inference problems.
We expect that the prior information of the original signal will
mitigate the estimation difficulty

We consider the marginal posterior mode (MPM) estima-
tion by ARA [60]. The estimated signal corresponds to the
expectation of the signal over the Gibbs-Boltzmann distribu-
tion. The MPM estimation can be performed in the current
quantum annealer, which provides samples from the density
matrix incorporating both thermal and quantum fluctuations
in ∼20 μs [61,62]. We analyze the average MPM estima-
tion performance with ARA at a finite temperature using the
replica method. The MPM estimation with ARA is regarded
as the MPM estimation with quantum fluctuation incorporat-
ing the prior information of the original signal. The typical
performance of the MPM estimation with quantum fluctua-
tions for CDMA multiuser detection has been analyzed in a
previous study [12]. The connection between this paper and
the previous study is presented in Sec. II A.

In ARA, we need to prepare for the initial candidate so-
lution. In the previous study [57,58], how to prepare for the
initial candidate solution was not considered. We investigate
whether we can prepare for the proper initial candidate so-
lution to avoid the first-order phase transition with commonly
used algorithms. We test the performance of ARA with the ini-
tial candidate solution obtained by these practical algorithms.
Although the implementation of ARA in the current quantum
annealer has not yet been realized, our results provide a the-
oretical demonstration of ARA as a practical technique for
signal recovery problems.

The remainder of this paper is organized as follows. In
Sec. II, we review the previous study and present the for-
mulation of the CDMA model with quantum fluctuations.
In Sec. III, we extend the formulation for ARA. We derive
the free energy under the replica symmetry (RS) ansatz and
the static approximation. In Sec. IV, we illustrate the phase
diagrams in ARA. At first, we consider oracle cases where
the initial candidate solution is randomly generated from the
probability distribution, given the fraction of the original sig-
nal in the initial state. To verify the RS solutions, we perform
quantum Monte Carlo simulations. Next, we check whether
we can prepare for the proper initial candidate solution to
avoid the first-order phase transition with commonly used
algorithms. Finally, we test the performance of ARA with
the initial candidate solution attained from these practical
algorithms. In Sec. V, we conclude the study and discuss the
future research directions.

II. CDMA MODEL WITH QUANTUM FLUCTUATIONS

At first, we review the previous study [12] and show its
relationship with the MPM estimation with ARA in Sec. II A.
Next, we formulate the classical CDMA model and move onto
the quantum system in Sec. II B.
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A. Related Work

The previous study [12] analyzed the performance of the
MPM estimation for the CDMA model with quantum fluctu-
ations under the standard protocol of QA. They shed light on
the difference between quantum and thermal fluctuations. In
other words, they compared the performance between SA and
QA. In the case by SA, one controls the strength of thermal
fluctuation through a parameter of temperature. Depending
on the noise in the received signal, they found the optimal
strength of the thermal fluctuation known as the Nishimori
temperature [63] to retrieve the original signal in the context
of CDMA. In the previous study, they investigated the exis-
tence of the optimal strength of the quantum fluctuation like
the case with thermal fluctuation. They showed that the MPM
estimation with quantum fluctuations could partially improve
its performance compared with the case without quantum
fluctuation. However, the MPM estimation with quantum fluc-
tuations did not archive the optimal MPM performance found
in the case only with thermal fluctuations. In this sense, the
thermal fluctuation is superior to the quantum fluctuation in
the retrieval of the original signal of CDMA. Nevertheless,
one of the crucial bottlenecks of the protocol in both SA and
QA to retrieve the original signal still exists. There is the first-
order phase transition in the case with the intermediate pattern
ratio in the low-temperature region. Here, the temperature is
a control parameter of the MPM estimation. The existence
of the first-order phase transition hampers efficient retrieval
of the original signal and needs the long computation time
of its execution. As shown in the previous study, quantum
fluctuation could not avoid nor mitigate the first-order phase
transition. We thus investigate the potential of ARA, which is
slightly different from the standard protocol of QA, in this
paper. In this sense, this paper is placed in position as an
extension of the MPM estimation with quantum fluctuations
by using a different protocol of standard QA.

B. Formulation

The main concept of the CDMA model is as follows: The
digital signal of each user is modulated and transmitted to
a base station through fully synchronous channels. By de-
modulating the received signal composed of multiuser signals
and noises, we infer the original signal from the provided
information. The following formulation is mainly based on
the previous study of the CDMA model with quantum fluc-
tuations [12]. They add the transverse field to the original
CDMA model and compute the partition function following
the prescription of the statistical mechanics. They used the
Suzuki-Trotter (ST) decomposition to deal with quantum fluc-
tuation written in the transverse field and the replica method
to compute the averaged free energy over the quenched ran-
domness related to the signals and modulation. In this paper,
we employ the same methods to tackle the MPM estimation
of CDMA by using ARA and setting the initial Hamiltonian
depending on the initial candidate solution.

We consider that N users communicate via fully syn-
chronous channels. At the base station, the receiver obtains

the signal as follows:

yμ = 1√
N

N∑
i=1

η
μ
i ξi + εμ, (1)

where ξi ∈ {±1}, (i = 1, . . . , N) is the original information,
and η

μ
i ∈ {±1} (i = 1, . . . , N , μ = 1, . . . , K) is the spreading

code for each user i. The length of the spreading codes for
each user i is represented by K . The channel noise εμ is added
into the received signal. The received signal in Eq. (1) can be
expressed as

y = 1√
N

ηξ + ε, (2)

for which the following notations are used:

y =(y1, . . . , yK )T , ξ = (ξ1, . . . , ξN )T ,

ε = (ε1, . . . , εK )T , (3)

η =

⎛
⎜⎜⎜⎝

η1
1 η1

2 · · · η1
N

η2
1 η2

2 · · · η2
N

...
...

. . .
...

ηK
1 ηK

2 · · · ηK
N

⎞
⎟⎟⎟⎠. (4)

We assume that the spreading codes and original signal are
independently generated from the uniform distribution:

P(η) = 1

2NK
, (5)

P(ξ) = 1

2N
. (6)

We consider the Gaussian channels, and εk is independently
generated from the Gaussian distribution as follows:

P(ε) = P(y|ξ) =
(

1√
2πT0

)K

exp

(
−||ε||22

2T0

)

=
(√

β0

2π

)K

exp

(
−β0

2

∣∣∣∣
∣∣∣∣y − ηξ√

N

∣∣∣∣
∣∣∣∣
2

2

)
, (7)

where T0 = β−1
0 is the true noise scale.

In CDMA multiuser detection, we estimate the original
signal from the received output signal and the spreading codes
that are prepared for each user in advance. Because the output
signal fluctuates owing to noise, we formulate this problem as
Bayesian inference. Subsequently, we introduce the posterior
distribution of the estimated signal σ = (σ1, . . . , σN )T as

P(σ|y) = P(y|σ )P(σ )

TrP(y|σ )P(σ)
. (8)

We define the likelihood as

P(y|σ ) =
(√

β

2π

)K

exp

(
−β

2

∣∣∣∣
∣∣∣∣y − ησ√

N

∣∣∣∣
∣∣∣∣
2

2

)
, (9)

where β = 1/T is the inverse temperature in statistical me-
chanics and corresponds to the estimated channel noise scale.
If the true noise level is known, the estimation perfor-
mance is the best and Bayes optimal. According to Eqs. (8)
and (9), the posterior distribution can be written using the
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Gibbs-Boltzmann distribution with the Hamiltonian H (σ ), as
follows:

P(σ|y) = 1

Z
exp {−β[H (σ ) + Hinit (σ)]}, (10)

Z = Tr exp {−β[H (σ ) + Hinit (σ)]}, (11)

H (σ ) = 1

2N

∑
i, j

K∑
μ=1

η
μ
i η

μ
j σiσ j − 1√

N

N∑
i=1

K∑
μ=1

η
μ
i yμσi, (12)

where Z is the partition function and Hinit (σ) is the initial
Hamiltonian, which represents the prior information of the
estimated signal. We generally assume that the prior of the
estimated signal follows the uniform distribution

P(σ ) = 1

2N
. (13)

In this case, we can omit the initial Hamiltonian from
Eqs. (10) and (11).

To estimate the original signal, we consider the MPM
estimation. The estimation performance can be evaluated by
the overlap between the original and estimated signal asM =
1/N

∑N
i=1 ξisgn〈σi〉, where 〈·〉 is the expectation over the pos-

terior distribution P(σ|y) and sgn(·) is the signum function.
This quantity is expected to exhibit a “self-averaging” prop-
erty in the thermodynamics limit N → ∞. This means that
the observables, such as the overlap for a quenched realization
of the data y, η, and ξ, are equivalent to the expectation of
itself over the data distribution P(η)P(ξ)P(y|ξ). In this case,
the overlap can be expressed as limN→∞M = [ξisgn〈σi〉],
where the bracket [·] indicates the expectation over the data
distribution.

It is straightforward to extend the above formulation into
the quantum mechanical version:

Ĥ = sĤ0 + (1 − s)ĤTF, (14)

Ĥ0 = 1

2N

∑
i, j

K∑
μ=1

η
μ
i η

μ
j σ̂

z
i σ̂ z

j − 1√
N

N∑
i=1

K∑
μ=1

η
μ
i yμσ̂ z

i , (15)

ĤTF = −
N∑

i=1

σ̂ x
i , (16)

where σ̂ z
i and σ̂ x

i are the z and x components of the Pauli
matrices at site i, respectively. In this case, Ĥ0 consists of the
z components of the Pauli matrices, and ĤTF is composed of
the x components of the Pauli matrices. We parametrize the
Hamiltonian in Eq. (14) with the annealing parameter s for
application to ARA.

As in the classical case, we consider the MPM estima-
tion with quantum fluctuations. The posterior distribution

can be written as ρ̂ = exp{−βĤ}/Tr exp{−βĤ}, where Tr
denotes the summation over all possible spin configurations
in the z basis. The performance of the MPM estima-
tion with quantum fluctuations can be evaluated by M =
1/N

∑N
i=1 ξisgn(Trσ̂ z

i ρ̂).

III. MEAN FIELD ANALYSIS

Following Ref. [57], we extend the CDMA model with
quantum fluctuations [12] to the ARA formulation as

Ĥ = sĤ0 + (1 − s)(1 − λ)Ĥinit + (1 − s)λĤTF, (17)

Ĥinit = −
N∑

i=1

τiσ̂
z
i , (18)

where λ (0 � λ � 1) is the RA parameter. The initial candi-
date solution is denoted by τi = ±1(i = 1, . . . , N ), which is
expected to be close to the original signal ξi. We introduce
the probability distribution of the initial candidate solution as
follows:

P(τ) =
N∏

i=1

P(τi ) =
N∏

i=1

[c1δ(τi − ξi ) + c−1δ(τi + ξi )], (19)

where we define c1 = c and c−1 = 1 − c. The number c (0 �
c � 1) denotes the fraction of the original signal τi = ξi in the
initial state as

c = 1

N

N∑
i=1

δτi,ξi . (20)

The prior information can be incorporated through Eq. (19).
The main concept of the MPM estimation with ARA is to
avoid or mitigate the first-order phase transition by controlling
the RA parameter and utilizing the prior information.

The typical behaviors of the order parameters such as the
overlap can be obtained via the free energy. We calculate
the partition function Z = Tr exp(−βĤ ) and derive the RS
free energy in the limit of N, K → ∞, while maintaining
the pattern ratio α ≡ K/N = O(1). The free energy density
f can be evaluated as −β f = limN→∞(1/N )[ln Z], where [·]
denotes the configuration average over the data distribution
P(y|ξ)P(η)P(ξ)P(τ). When computing f , we have two dif-
ficulties. The first one is the noncommutativity of the spin
operator from Eq. (16). We cannot apply the mean-field analy-
sis directly into the partition function of Eq. (17). The second
one is to compute [ln Z]. In general, it is difficult to directly
evaluate [ln Z]. We remove these two difficulties by using two
techniques.

Firstly, to exclude the noncommutativity of the spin oper-
ator, we employ the ST decomposition [64] in the partition
function:

Z = lim
M→∞

Tr

{
exp

[
− β

M
(Ĥ0 + Ĥinit )

]
exp

(
− β

M
ĤTF

)}M

= lim
M→∞

ZM, (21)
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where

ZM = Tr
M∏

t=1

{
1

2
sinh

[
2β(1 − s)λ

M

]} N
2

exp

{
− βs

2NM

∑
i, j

K∑
μ=1

η
μ
i η

μ
j σi(t )σ j (t ) + βs

M
√

N

N∑
i=1

K∑
μ=1

η
μ
i yμσi(t )

+ β(1 − s)(1 − λ)

M

N∑
i=1

τiσi(t ) + 1

2
ln coth

[
β(1 − s)λ

M

] N∑
i=1

σi(t )σi(t + 1)

}
, (22)

in which the symbol t is the index of the Trotter slice, and M is the Trotter number. We impose the periodic boundary conditions,
σi(M + 1) = σi(1) for all i. By using ST decomposition, we can map the quantum system into the identical classical system.
The difficulty from the noncommutativity of the spin operator is removed. In the above expressions, we replace σ z

i (t ) with the
classical spin σi(t ) ∈ {−1,+1}. In this case, the symbol Tr represents the trace over the classical spins. The x component of the
Pauli matrix yields the last term in Eq. (22).

Secondly, to evaluate [ln Z], we exploit the replica method [65]: [ln Z] = limn→0([Zn] − 1)/n. The symbol n denotes the
number of replicas. By using the replica method, we can take the configuration average for the replicated partition function Zn and
the limit of n → 0. When manipulating the configuration average over P(y|ξ)P(η)P(ξ)P(τ), we introduce the order parameters
and their conjugate parameters through the δ function and its Fourier integral representation as follows: the magnetization
ma(t ) = (1/N )

∑N
i=1 ξiσia(t ), the spin glass order parameter qab(t, t ′) = (1/N )

∑N
i=1 σia(t )σib(t ′) (a �= b), and the correlation

between each Trotter slice Ra(t, t ′) = (1/N )
∑N

i=1 σia(t )σia(t ′). The conjugate parameters are denoted by m̃a(t ), q̃ab(t, t ′) (a �= b)
and R̃a(t, t ′). These conjugate parameters appear in manipulation of several integrals over order parameters to compute the
partition function as detailed in Appendix A. The symbols a and b represent the replica indices. Under the RS ansatz and
static approximation ma(t ) = m, qab(t, t ′) = q, Ra(t, t ′) = R, m̃a(t ) = m̃, q̃ab(t, t ′) = q̃, R̃a(t, t ′) = R̃, we can finally obtain the
RS free energy density:

−β fRS = extr
m,q,R
m̃,q̃,R̃

(
α

2

{
− ln[1 + βs(R − q)] + βs

[
(R − 1) + 1 + β0

β0
+ 2m − q − (1 + β−1

0 )

1 + βs(R − q)

]}

− mm̃ − RR̃ + 1

2
qq̃ +

∑
a=±1

ca

∫
Dz ln

∫
Dy2 cosh

√
g2

a + [β(1 − s)λ]2

)
, (23)

where

ga = m̃ + aβ(1 − λ)(1 − s) + √
q̃z +

√
2R̃ − q̃y, (24)

in which Dz means that the Gaussian measure Dz := dz/
√

2πe−z2/2, and Dy is the same as Dz. Here, extr represents the
extremization by changing the order parameters m, q, and R and their conjugate parameters as m̃, q̃, and R̃. The extremum
point is determined by the saddle-point conditions and characterizes the free energy density. The expression in Eq. (23) for
λ = 1 can be reduced to the RS free energy density derived in Ref. [12]. The detailed derivation of Eq. (23) is written in
Appendix A. The saddle-point equations are referred in Appendix B. Below, we investigate the phase transition of the order
parameters while tuning the external parameters as the strength of the transverse field, the pattern ratio, etc. Then we numerically
solve the saddle-point equations for each set of external parameters.

IV. NUMERICAL RESULTS

In this section, we evaluate the typical performance of
ARA based on the results attained in Sec. III. In Sec. IV A, we
consider the oracle cases where the initial candidate solution
is randomly generated from Eq. (19), given the fraction of the
original signal in the initial state. In Sec. IV B, we consider
the practical cases where we prepare for the initial candidate
solution with commonly used algorithms. We compare the
performance of ARA with the oracle cases and the practical
cases.

A. Analysis of ARA in oracle cases

We numerically solve the saddle-point equations in
Eqs. (B1) to (B6) with the temperature T = 0.1. We set the
several RA parameters λ. We start from ARA with λ = 1,
which corresponds to vanilla QA [12]. We show that the

CDMA model has the first-order phase transition in the in-
termediate pattern ratio. Next, we consider the classical case
with λ = 0 to validate the RS ansatz without the static ap-
proximation. Finally, we move onto the finite λ. We exhibit
that ARA can avoid or mitigate the first-order phase transition
if we prepare for the proper initial candidate solution.

1. ARA with λ = 1

Let us begin with ARA with λ = 1. The phase diagrams
for the true noise scale T0 = 0, 0.05, and 0.1 are displayed in
Fig. 1. The blue solid curve and orange dash-dotted curve in-
dicate the spinodal curves where the solutions for each initial
condition disappears in Figs. 1(a)–1(c). Two solutions coexist
between the two spinodal curves. From these figures, we can
establish the existence of the first-order phase transition in the
intermediate pattern ratio and under the weak strength of the
transverse field. The green dotted curve denotes the critical
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FIG. 1. Phase diagram of code-division multiple-access (CDMA) model in adiabatic reverse annealing (ARA) with λ = 1. The horizontal
axis denotes the pattern ratio. The vertical axis represents the annealing parameter. The experimental settings are (a) T0 = 0, (b) T0 = 0.05,
and (c) T0 = 0.1. The “spinodal 1” and “spinodal 2” curves indicate the solutions from the two different branches. The “critical” curve denotes
the point at which the replica symmetry (RS) free energy takes the same value.

point at which the RS free energy takes the same value. In
Fig. 1(c), we do not write down the curve because we cannot
distinguish the critical point from the spinodal points in this
scale. Higher noise results in a narrower region in which
the two solutions coexist. Although the noise mitigates the
first-order phase transition, it decreases the overlap between
the original signal and the estimated one.

Next, we consider why the first-order phase transition is
troublesome in estimating the original signal. The difficulty
of estimating the original signal is related to the free energy
landscape. We take Fig. 1(a) as an example. On the right
side of spinodal curve 2, it is easy to estimate the original
signal because the free energy exhibits a minimum, which is
a good estimator. When we set the pattern ratio as α = 0.6,
we encounter the first-order phase transition at s � 0.8. The
free energy landscape has two valleys. At spinodal curve 2,
the free energy landscape is transformed into a simple valley.
In this case, it is comparatively easy to estimate the original
signal. For α = 0.5, the spinodal curve 2 does not exist. The
free energy landscape maintains two valleys. We cannot ef-
ficiently estimate the original signal because the metastable
state remains. For α = 0.4, the critical point does not exist.
In this case, we cannot obtain the original signal information-
theoretically. The ground state or low energy state does not

FIG. 2. Dependence of the order parameters on the pattern ratio
for the fixed annealing parameter s = 0.9. The vertical axes denote
these order parameters: (a) magnetization and (b) correlation be-
tween Trotter slices. The solid blue and dashed blue curves denote
the two different branches that are obtained from the saddle-point
equations. The circles represent the results obtained by the quantum
Monte Carlo simulations.

correspond to the original signal at s = 1. The minima of the
free energy do not provide us with an effective estimation.

To verify the RS ansatz and the static approximation, we
perform quantum Monte Carlo simulations for the CDMA
model. We set the system size as N = 500, the Trotter number
as M = 50, the temperature as T = 0.1, and the true noise
scale as T0 = 0. We use a 100 000 Monte Carlo step (MCS)
average after 50 000 MCS equilibrations for each instance.
We take the configuration average over the spreading codes
and the original signals by randomly generating 50 instances.
We plot the behavior of the order parameters with respect to
the pattern ratio for the fixed annealing parameter s = 0.9
in Fig. 2 and the annealing parameter for the fixed pattern
ratio α = 0.6 in Fig. 3. The error bar is given by the standard
deviation. The results obtained by the quantum Monte Carlo
simulations are the averages over all Trotter slices. Following
Ref. [66], we adopt the magnetization to quantify the perfor-
mance of the MPM estimation. In this paper, we refer to the
solution representing the “spinodal 1” curve as “branch 1” and
to the solution representing the “spinodal 2” curve as “branch
2.” According to Fig. 2, the results obtained by the quantum
Monte Carlo simulations are consistent with the RS solutions,
with the exception of the low pattern ratio. Figure 3 shows
that the numerical results for the magnetization are consistent
with the RS solutions, except for the intermediate values of the
annealing parameter. The numerical result of the correlation
between the Trotter slices does not follow the RS solutions
other than the large annealing parameter, which is close to
one [67]. To investigate the deviations between the numerical

FIG. 3. Dependence of order parameters on annealing parameter
for fixed pattern ratio α = 0.6. The same symbols as those in Fig. 2
are used.
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FIG. 4. Dependence of magnetization on annealing parameter
with λ = 0. The experimental settings are as follows: (a) α = 0.6
and T0 = 0 and (b) α = 0.62 and T0 = 0.05. Both axes are the same
as those in Fig. 3(a).

results and the RS solutions due to replica symmetry breaking
(RSB), we compute the Almeida-Thouless (AT) condition
and the entropy. The details of these formulas are written in
Appendix B. In these problem settings, the AT condition is not
broken, and the entropy is positive. The deviations between
the the numerical results and the RS solutions probably result
from the breaking of the static approximation.

2. ARA with λ = 0

To support the RS ansatz without the static approximation,
we consider ARA with λ = 0. In this case, the quantum part
in Eq. (17) disappears. The experimental settings are the same
as those in Fig. 3. We set α = 0.6 and T0 = 0 in Fig. 4(a)
and α = 0.62 and T0 = 0.05 in Fig. 4(b). We consider three
initial conditions: c = 0.7, 0.8, and 0.95. The initial candidate
solutions are generated from Eq. (19), given a fixed fraction
c. The error bar is given by the standard deviation. Each
curve represents the RS solutions, and each symbol denotes
the numerical results obtained by the Markov-chain Monte
Carlo simulations. It can be observed that the numerical re-
sults are consistent with the RS solutions. We can see that the
deviations between the numerical results and the RS solutions
are not the breaking of the RS ansatz to the breaking of the
static approximation. For λ = 0 with or without noise, ARA
can avoid the first-order phase transition if we prepare for the
proper initial conditions. In the next section, we analyze the
general cases in detail.

3. ARA with finite λ

We consider ARA with finite λ. The experimental settings
are the same as those in Fig. 1(a). Figure 5 presents the
phase diagram of the CDMA model in ARA for α = 0.6 and
0.5. We consider four initial conditions: c = 0.7, 0.8, 0.9, and
0.95. Each curve represents a point of the first-order phase
transition. We can observe from Figs. 5(a) and 5(b) that the
first-order phase transition can be avoided if the initial state
is close to the original signal. As the information regarding
the original signal is increased, the region for avoiding the
first-order phase transition is broadened. In Fig. 5(b), the
region in which the first-order phase transition can be avoided
is narrower than that in Fig. 5(a). For a lower pattern ratio,
further information regarding the original signal is initially
required to avoid the first-order phase transition. We also
investigate the stability of the RS solutions and find that RSB
does not happen for finite λ.

To analyze the extent to which the difficulty in obtaining
the original signal is mitigated by ARA, we plot the differ-
ences in the magnetization 
m between the two local minima
at the first-order phase transition in the case of α = 0.6 and
0.5 in Fig. 6. As discussed in Ref. [57], the rate of quan-
tum tunneling between two local minima in the free energy
landscape is related to 
m. Figure 6 indicates that 
m de-
creases as c increases. For finite λ, 
m is smaller than that
of vanilla QA (λ = 1). Even though ARA cannot eliminate
the first-order phase transition, the two local minima of the
free energy become closer than those of the original one. The
result demonstrates that ARA enhances the effects of quantum
tunneling for the CDMA model. In ARA, we add the bias
toward the original signal through the initial Hamiltonian.
Since the bias removes or softens the free energy barrier, ARA
can avoid or mitigate the first-order phase transition.

We consider the noise effects for the CDMA model in
ARA. The experimental settings are the same as those illus-
trated in Fig. 1(b). Figure 7 displays the phase diagrams of
CDMA in ARA for α = 0.62 and 0.57. The qualitative be-
haviors of the systems are approximately the same as those in
the noiseless cases. The regions in which the first-order phase
transition can be avoided are larger than those of the noiseless
cases because the first-order phase transition is weakened

FIG. 5. Phase diagrams of the code-division multiple-access (CDMA) model in adiabatic reverse annealing (ARA) for four different
values of c. The horizontal axis denotes the reverse annealing (RA) parameter. The vertical axis denotes the annealing parameter. These curves
represent the points at which the first-order phase transitions occur. The experimental settings are (a) α = 0.6 and (b) α = 0.5.

033006-7



ARAI, OHZEKI, AND TANAKA PHYSICAL REVIEW RESEARCH 3, 033006 (2021)

FIG. 6. Differences in magnetization between two local minima at first-order phase transition in Figs. 5(a) and 5(b). The vertical axis
denotes the differences in the magnetization between the two local minima at the first-order phase transition. The horizontal axis denotes the
reverse annealing (RA) parameter. The experimental settings are (a) α = 0.6 and (b) α = 0.5.

owing to the noise effects. Figure 8 presents 
m in the case
of α = 0.62 and 0.57. We can see that 
m is smaller than in
the noiseless cases. In the small noisy cases, the free energy
barrier is lower than in the noiseless cases. ARA works better
in the small noisy cases than the noiseless cases.

To validate the RS solutions under the static approximation
for finite λ, we perform quantum Monte Carlo simulations.
The experimental settings are the same as those in Figs. 3
and 4. We set the RA parameter as λ = 0.8, and the initial
conditions as c = 0.7 and 0.9. In Fig. 9, the order parameters
for c = 0.7 still exhibit a jump. In the case of c = 0.9, it
can be observed that the first-order phase transition can be
avoided. We can see the deviations between the RS solutions,
and the numerical results are the same as in Fig. 3. In these
problem settings, RSB does not happen from the results of the
saddle-point equations. Although the numerical results do not
entirely match the RS solutions, the qualitative behaviors of
the numerical results to avoid the first-order phase transition
are like those of the RS solutions.

B. Analysis of ARA in practical cases

In Sec. IV A, we assume that the initial candidate solution
is randomly generated from Eq. (19) with a fixed c. Practi-
cally, we need to prepare for the initial candidate solution by
some algorithms. At first, we examine whether we can prepare
for the proper initial condition to avoid the first-order phase
transition with commonly used algorithms. Next, we evaluate

the performance of ARA with the initial candidate solutions
obtained by the algorithms.

1. How to prepare for the initial candidate solution

To prepare for the initial candidate solution, we adopt SA,
simulated QA (SQA), and the approximate message passing
(AMP) algorithm [68–70]. To perform SA and SQA, we take
advantage of OpenJij, an open-source library for heuristic
optimization problems in Python [71]. The implementation of
the AMP algorithm is based on Ref. [69]. We perform three
algorithms for 50 different instances. For SA and SQA, we
carry out 51 different initial conditions for each instance. We
set the system size as N = 8, 16, 32, 64, 128, 256, and 512.
We check the dependence of c on N with these algorithms in
Fig. 10. We compute c from the relationship c = (1 +M)/2.
We define the threshold required to avoid the first-order phase
transition as cmin. We calculate cmin from the saddle-point
equations. We consider the region where the spinodal curve
2 does not exist and the critical curve exists, for example,
0.45 � α � 0.57 in Fig. 1. In this region, to avoid or miti-
gate the first-order phase transition is crucial to estimate the
original signal efficiently.

At first, we consider the noiseless case: α = 0.5 and T0 =
0.0. In this case, the threshold cmin ≈ 0.816. Figure 10(a)
shows that the results of the three algorithms almost converge
to the RS solutions creplica � 0.864 as we increase N . These
practical algorithms can lead to the candidate solutions ex-
ceeding cmin. Next, we consider the noisy case: α = 0.57 and

FIG. 7. Phase diagrams of the code-division multiple-access (CDMA) model in adiabatic reverse annealing (ARA) for four different values
of c. Both axes are the same as those in Fig. 5. The experimental settings are (a) α = 0.62 and (b) α = 0.57.
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FIG. 8. The differences of the magnetization between the two local minima at the first-order phase transition in Figs. 6(a) and 6(b). Both
axes are the same as those in Fig. 6. The experimental settings are (a) α = 0.62 and (b) α = 0.57.

T0 = 0.05. The threshold cmin ≈ 0.756. Figure 10(b) exhibits
that these practical algorithms can accomplish cmin in the
noisy case.

2. Performance evaluation

We evaluate the performance of ARA with the initial can-
didate solution attained by the practical algorithms. We adopt
the AMP algorithm to prepare for the initial candidate solu-
tion. The experimental settings are the same as those in Fig. 3.
We set the RA parameter as λ = 0.6. At first, we perform
the AMP algorithm for each instance. We utilize the final
result as the initial candidate solution. We call this setting
“AMP init.” For the same instance, we randomly generate the
initial candidate solution from Eq. (19), with a fixed fraction
c, which is the same as one obtained by the AMP algorithm.
We call this setting “random init.”

We plot the magnetization for two initializations in Fig. 11.
The error bar is given by the standard deviation. We consider
two cases: α = 0.5 and T0 = 0 in Fig. 11(a) and α = 0.57
and T0 = 0.05 in Fig. 11(b). The dashed curves represent
the RS solutions with creplica. In the random init. setting, the
numerical results are consistent with the RS solutions. In
this setting, the first-order phase transition can be avoided by
ARA with and without noise. In the AMP init. setting, the
numerical results do not match the RS solutions. ARA cannot
exclude the first-order phase transition. In Fig. 12, we plot the
histogram of the magnetization at s = 0.99 used in Fig. 11 to
check the existence of the first-order phase transition in detail.
In the random init. setting, only one peak exists at m � 1. In

the AMP init. setting, there are two peaks around m � 1 and
m �= 1. ARA cannot eliminate the first-order phase transition
even though the fraction c obtained by the AMP algorithm
exceeds the threshold cmin. For the other practical algorithms,
similar behaviors seem to occur.

The deviations between the numerical results of ARA in
the AMP init. setting and the RS solutions are due to the
assumption of the probability distribution of the initial can-
didate solution in our replica analysis. We assume that the
probability distribution of the initial candidate solution fol-
lows Eq. (19). Since the initial candidate solution obtained by
the AMP algorithm is not generated from Eq. (19), we cannot
directly apply our analytical results to the AMP init. setting.

Finally, we consider why ARA in the random init. set-
ting can avoid the first-order phase transition and ARA in
the AMP init. setting cannot. In the AMP init. setting, the
initial candidate solution depends on the original signal, the
received signal, and the spreading codes. Therefore, the initial
candidate solution is correlated with the received signal and
the spreading codes. Meanwhile, in the random init. setting,
the initial candidate solution depends only on the original
signal and does not depend on the received signal and the
spreading codes. The information about the original signal
can be attained through the received signal and the spreading
codes. In the random init. setting, the initial candidate solu-
tion does not have the information about the original signal
included in the received signal and the spreading codes. The
initial candidate solution increases the effective pattern ratio.
As we increase the pattern ratio, the free energy barrier gets
smaller. Thus, ARA in the random init. setting can avoid the

FIG. 9. Dependence of order parameters on annealing parameter with λ = 0.8. Both axes are the same as those in Fig. 3.
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FIG. 10. The dependence of the fraction of the ground state in the estimated signal obtained by simulated annealing (SA), simulated
quantum annealing (SQA), and the approximate message passing (AMP) algorithm on the system size. The experimental settings are as
follows: (a) α = 0.5 and T0 = 0.0 and (b) α = 0.57 and T0 = 0.05.

first-order phase transition. In the AMP init. setting, the initial
candidate solution only has the same information about the
original signal obtained through the received signal and the
spreading codes. Since the effective pattern ratio is the same
as the original one, the free energy landscape in the AMP init.
setting is the same as the original one. Consequently, ARA
in the AMP init. setting cannot eliminate the first-order phase
transition even if the candidate solution obtained by the AMP
algorithm exceeds cmin, which is attained from the saddle-
point equations in oracle cases. To analyze the performance of
ARA in the AMP init. setting appropriately, we should change
the probability distribution of the initial candidate solution in
our replica analysis.

V. CONCLUSIONS

We performed a mean-field analysis of ARA for CDMA
multiuser detection. In CDMA multiuser detection, the first-
order phase transition is encountered in the intermediate
pattern ratio. This first-order phase transition degrades the
estimation performance. To avoid the first-order phase tran-
sition, we applied ARA to CDMA multiuser detection.

Firstly, we considered ARA in oracle cases, where the ini-
tial candidate solution is randomly generated from the original

signal with a fixed fraction c. The first-order phase transition
can be avoided by ARA if we prepare for the proper initial
condition. In ARA, the differences in the magnetization be-
tween the two local minima at the first-order phase transition
were smaller than those in vanilla QA. The prior information
of the original signal avoids or mitigates the first-order phase
transition. To validate our analysis, we performed quantum
Monte Carlo simulations. The numerical results were con-
sistent with the RS solutions under the static approximation,
except for the intermediate values of the annealing parameter.
Although the RS solutions under the static approximation
were invalid in these cases, the results obtained from the RS
solutions that ARA can avoid the first-order phase transition
were consistent with the numerical results. The RS solutions
under the static approximation can be useful for understanding
the qualitative behaviors of ARA.

Next, we considered ARA in practical cases where we
prepare for the initial candidate solution by the practical algo-
rithms. We considered the three algorithms: SA, SQA, and the
AMP algorithms. The fraction c obtained by these practical
algorithms can exceed the threshold cmin to avoid the first-
order phase transition. To evaluate the performance of ARA
with the initial candidate solution attained by the practical
algorithms, we performed quantum Monte Carlo simulations.

FIG. 11. Dependence of magnetization on annealing parameter with λ = 0.6 in the “random init.” and the “AMP init.” settings. The dashed
curve for each case is obtained by the saddle-point equations. The experimental settings are as follows: (a) α = 0.5 and T0 = 0 and (b) α = 0.57
and T0 = 0.05. Both axes are the same as those in Fig. 3(a).
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FIG. 12. Histogram of magnetization in the “random init.” and the “AMP init.” settings at s = 0.99 for 50 instances in Fig. 11. The
experimental settings are as follows: (a) is α = 0.5 and T0 = 0, and (b) is α = 0.57 and T0 = 0.05.

In the AMP init. setting, we prepared for the initial candidate
solution with the AMP algorithm. To compare with the AMP
init. setting, we considered the random init. setting, where
the initial candidate solution was randomly generated from
Eq. (19), with a fixed fraction c, which was the same as the
one obtained by the AMP algorithm for each instance. ARA in
the random init. setting can utilize the additional information
about the original signal not included in the received signal
and the spreading codes. Since the free energy barrier is re-
moved by the additional information about the original signal,
ARA in the random init.setting can avoid the first-order phase
transition. Meanwhile, in the AMP init. setting, the initial
candidate solution was correlated with the received signal
and the spreading codes. The initial candidate solution only
had the same information attained through the received signal
and the spreading codes. Because no additional information
about the original signal existed, the effective free energy
landscape was the same as the original one. Therefore, ARA
in the AMP init. setting cannot avoid the first-order phase
transition. ARA in the AMP init. setting did not match the RS
solutions, whereas ARA in the random init. setting matched.
The deviations between the numerical result of ARA in the
AMP init. setting and the RS solutions were due to the as-
sumption of the probability distribution of the initial candidate
solution in our replica analysis.

In the AMP init. setting, the initial candidate solution was
correlated with the received signal and the spreading codes.
To incorporate the correlation with the received signal and the
spreading codes into the initial candidate solution, we need to
consider an equilibrium configuration governed by the Gibbs-
Boltzmann distribution. Then the free energy is constrained by
the equilibrium configuration. The equilibrium property of the
constrained free energy can be analyzed by the Franz-Parisi
potential, which is developed to study the metastable state
structure for discontinuous mean-field spin glasses [72–76].
In a future study, we will analyze the Franz-Parisi potential
for CDMA to investigate the performance of ARA in practical
cases properly.

Although we cannot directly apply our theoretical results to
the practical cases, we showed that ARA in the random init.
setting can avoid the first-order phase transition for CDMA
multiuser detection. We exhibited that the probability distri-
bution of the initial candidate solution was crucial in ARA.

Our results indicated that the effective free energy landscape
did not change by ARA with the initial candidate solution
obtained by some practical algorithms. In practical cases,
ARA did not enhance the estimation performance for CDMA
multiuser detection. Similar behaviors would occur when we
apply ARA to combinatorial optimization problems.
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APPENDIX A: DERIVATION OF FREE ENERGY

We derive the free energy density under the RS ansatz and
static approximation. Our derivation is based on a previous
study [12]. We introduce the following terms:

uμ
0 = 1√

N

N∑
i=1

η
μ
i ξi, (A1)

uμ
a (t ) = 1√

N

N∑
i=1

η
μ
i σia(t ). (A2)

First, we insert the identity by using the δ function as

∫
duμ

0 δ

(
uμ

0 − 1√
N

N∑
i=1

η
μ
i ξi

)
= 1, (A3)

∫
duμ

a (t )δ

[
uμ

a (t ) − 1√
N

N∑
i=1

η
μ
i σia(t )

]
= 1, (A4)

into the expression of the partition function after performing
the ST decomposition. We here use the Fourier integral rep-
resentation of the δ function and then introduce the integral
variables as ũμ

0 and ũμ
a (t ). The replicated partition function
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can be thus rewritten as
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We perform the average over the spreading codes η in Eq. (A5) as follows:
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where we utilize these relationships as cosh(ix) = cos(x) and ln cos(x) � −x2/2. Here, we find the order parameters in the
expression of the replicated partition function. Again, we introduce the δ function and its Fourier integral representation for the
order parameters as follows:
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After inserting Eqs. (A7)–(A9) into Eq. (A5), the replicated partition function can be represented as
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0

2π

)[∏
μ,a,t

∫
duμ

a (t )dũμ
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∑
t,t ′

ũμ
a (t )ũμ

a (t ′)Ra(t, t ′) − βs

2M

∑
a,t

{[
uμ

a (t )
]2 − 2yμuμ

a (t )
})

, (A11)

eG2 ≡
∑

{ξi=±1}

∑
{τi=±ξi}

P(ξ)P(τ)Tr

{
1

2
sinh

[
2β(1 − s)λ

M

]} nMN
2

× exp

{
1

M

∑
a,t

m̃a(t )
N∑

i=1

ξiσia(t ) + β(1 − s)(1 − λ)

M

∑
a,t,i

τiσia(t ) + 1

M2

∑
a,t,t ′

R̃a(t, t ′)
N∑

i=1

σia(t )σia(t ′)

+ 1

M2

∑
a<b

∑
t,t ′

q̃ab(t, t ′)
N∑

i=1

σia(t )σib(t ′) + 1

2
ln coth

[
β(1 − s)λ

M

]∑
a,t,i

σia(t )σia(t + 1)

}
, (A12)

eG3 ≡ exp

{
− N

M

[∑
a,t

m̃a(t )ma(t ) + 1

M

∑
a,t,t ′

R̃a(t, t ′)Ra(t, t ′) + 1

M

∑
a<b

∑
t,t ′

q̃ab(t, t ′)qab(t, t ′)

]}
. (A13)

We compute eG1 , eG2 , and eG3 individually. Firstly, we perform integration for uμ
0 and ũμ

0 in Eq. (A11), and we can obtain eG1

as follows:

eG1 =
[∏

μ,a,t

∫
duμ

a (t )dũμ
a (t )

2π

][
K∏

μ=1

(
1

2π

√
2β0π

1 + β0

)∫
dyμ

]

×
K∏

μ=1

exp

{
β0

2(1 + β0)

[
iyμ −

∑
a,t

ũμ
a (t )ma(t )

]2

+ i
∑
a,t

ũμ
a (t )uμ

a (t ) −
∑
a<b

∑
t,t ′

ũμ
a (t )ũμ

b (t ′)qab(t, t ′)

−1

2

∑
a,t,t ′

ũμ
a (t )ũμ

a (t ′)Ra(t, t ′) − βs

2M

∑
a,t

[(
uμ

a (t )
)2 − 2yμuμ

a (t )
]}

. (A14)

In the above equation, the integration over yμ can be performed as follows:(
K∏

μ=1

∫
dyμ

)
K∏

μ=1

exp

{
− β0

2(1 + β0)
(yμ)2 +

[
βs

M

∑
a,t

uμ
a (t ) − iβ0

1 + β0

∑
a,t

ũμ
a (t )ma(t )

]
yμ

}

=
[

K∏
μ=1

√
2π (1 + β0)

β0

]
K∏

μ=1

exp

{
1 + β0

2β0

[
βs

M

∑
a,t

uμ
a (t ) − iβ0

1 + β0

∑
a,t

ũμ
a (t )ma(t )

]2}
. (A15)

Next, we take the integral over uμ
a (t ) as[∏

μ,a,t

∫
duμ

a (t )

]
K∏

μ=1

exp

{
− βs

2M

∑
a,t

[
uμ

a (t )
]2 + i

∑
a,t

ũμ
a (t )uμ

a (t ) + β2s2(1 + β0)

2β0M2

[∑
a,t

uμ
a (t )

]2

− iβs

M

[∑
a,t

uμ
a (t )

][∑
a′,t ′

ũμ

a′ (t ′)ma′ (t ′)

]}

=
[∏

μ,a,t

∫
duμ

a (t )

]
K∏

μ=1

∫
Dv1

∏
a,t

exp

{
− βs

2M

[
uμ

a (t )
]2 + iũμ

a (t )uμ
a (t ) + βsv1

M

√
1 + β0

β0
uμ

a (t )
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− iβs

M
uμ

a (t )

[∑
a′,t ′

ũμ

a′ (t ′)ma′ (t ′)

]}

=
(∏

μ,a,t

√
2πM

βs

)
K∏

μ=1

∫
Dv1

∏
a,t

exp

⎛
⎝ M

2βs

{
βsv1

M

√
1 + β0

β0
+ iũμ

a (t ) − iβs

M

[∑
a′,t ′

ũμ

a′ (t ′)ma′ (t ′)

]}2
⎞
⎠, (A16)

where we used the Hubbard-Stratonovich transformation to reduce the quadratic term [
∑

a,t uμ
a (t )]2.

To obtain the detailed formulation of the free energy density, we assume that the RS ansatz and static approximation

ma(t ) = m, qab(t, t ′) = q (a �= b), Ra(t, t ′) = R (t �= t ′),

m̃a(t ) = m̃, q̃ab(t, t ′) = q̃ (a �= b), R̃a(t, t ′) = R̃ (t �= t ′). (A17)

Equation (A14) can be expressed as

eG1 =
∏
μ

∫
Dv1

∫
Dv2

∏
a

∫
Dv3

×
(∏

t

√
2πM

βs

∫
dũμ

a (t )

2π
exp

{
βs

2M

1 + β0

β0
v2

1 − M − βs(R − 1)

2βs

[
ũμ

a (t )
]2

+
[

iv1

√
1 + β0

β0
(1 − nβsm) + v2

√
2m − q − nβsm2 + v3

√
q − R

]
ũμ

a (t )

})
, (A18)

where we use the following relationships:

∑
a

∑
t,t ′

ũμ
a (t )ũμ

a (t ′)Ra(t, t ′) = R
∑

a

[∑
t

ũμ
a (t )

]2

− (R − 1)
∑
a,t

[
ũμ

a (t )
]2

, (A19)

∑
a<b

∑
t,t ′

ũμ
a (t )ũμ

b (t ′)qab(t, t ′) = q

2

{[∑
a,t

ũμ
a (t )

]2

−
∑

a

[∑
t

ũμ
a (t )

]2}
, (A20)

as well as the Hubbard-Stratonovich transformation on (
∑

a,t )
2 and

∑
a(
∑

t )
2.

In Eq. (A18), we perform integration over ũμ
a (t ) as follows:

eG1 =
∏
μ

∫
Dv1

∫
Dv2

∏
a

∫
Dv3 exp

(
βs

2

1 + β0

β0
v2

1

)[∏
t

√
2πM

βs

∫
dũμ

a (t )

2π

]

×
[∏

t

exp

(
−M − βs(R − 1)

2βs

{
ũμ

a (t ) − βs

M − βs(R − 1)

×
[

iv1

√
1 + β0

β0
(1 − nβsm) + v2

√
2m − q − nβsm2 + v3

√
q − R

]}2
⎞
⎠

⎤
⎦

× exp

⎧⎨
⎩ βsM

2[M − βs(R − 1)]

[
iv1

√
1 + β0

β0
(1 − nβsm) + v2

√
2m − q − nβsm2 + v3

√
q − R

]2
⎫⎬
⎭

=
∏
μ

∫
Dv1

∫
Dv2

∏
a

∫
Dv3 exp

(
βs

2

1 + β0

β0
v2

1

)[∏
t

√
M

M − βs(R − 1)

]

× exp

⎧⎨
⎩ βsM

2[M − βs(R − 1)]

[
iv1

√
1 + β0

β0
(1 − nβsm) + v2

√
2m − q − nβsm2 + v3

√
q − R

]2
⎫⎬
⎭. (A21)

In the limit of M → ∞, we note that the coefficient terms in Eq. (A21) are reduced to

lim
M→∞

∏
t

√
M

M − βs(R − 1)
= lim

M→∞
exp

{
−M

2
ln

[
1 − βs

M
(R − 1]

)}
� exp

[
βs

2
(R − 1)

]
, (A22)
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lim
M→∞

βsM

2[M − βs(R − 1)]
= βs

2
, (A23)

where we utilize the relationship as ln(1 + x) � x.
We carry out integration over the Gaussian variables v1, v2, and v3 as follows:

eG1 =
∏
μ

∫
Dv1

∫
Dv2 exp

[
βns

2
(R − 1) + βns

2

1 + β0

β0
v2

1

]

×
∏

a

∫
Dv3 exp

⎧⎨
⎩βs

2

[
v3

√
q − R + iv1

√
1 + β0

β0
(1 − nβsm) + v2

√
2m − q − nβsm2

]2
⎫⎬
⎭

=
∏
μ

∫
Dv1

∫
Dv2

[
1

1 + βs(R − q)

] n
2

exp

[
βns

2
(R − 1)

]

× exp

⎛
⎝βns

2

⎧⎨
⎩1 + β0

β0
v2

1 + 1

1 + βs(R − q)

[
iv1

√
1 + β0

β0
(1 − nβsm) + v2

√
2m − q − nβsm2

]2
⎫⎬
⎭

⎞
⎠

�
∏
μ

[
1

1 + βs(R − q)

] n
2

exp

[
βns

2
(R − 1)

]

×
⎛
⎝1 + βns

2

∫
Dv1

∫
Dv2

⎧⎨
⎩1 + β0

β0
v2

1 + 1

1 + βs(R − q)

[
iv1

√
1 + β0

β0
(1 − nβsm) + v2

√
2m − q − nβsm2

]2
⎫⎬
⎭

⎞
⎠

=
∏
μ

[
1

1 + βs(R − q)

] n
2

exp

[
βns

2
(R − 1)

]{
1 + βns

2

[
1 + β0

β0
+ 2m − q − (1 + β−1

0 )

1 + βs(R − q)

]
+ O(n2)

}

� exp

(
αnN

2

{
− ln[1 + βs(R − q)] + βs

[
(R − 1) + 1 + β0

β0
+ 2m − q − (1 + β−1

0 )

1 + βs(R − q)

]})
, (A24)

where we use the Taylor expansion as exp(ax) � 1 + ax and omit the O(n2) term in Eq. (A24).
We calculate eG2 under the RS ansatz and static approximation as follows:

eG2 =
∑

{ξi=±1}

∑
{τi=±ξi}

P(ξ)P(τ )Tr

{
1

2
sinh

[
2β(1 − s)λ

M

]} nMN
2

∫
Dz

× exp

⎧⎨
⎩ m̃

M

∑
a,t,i

ξiσia(t ) + β(1 − s)(1 − λ)

M

∑
a,t,i

τiσia(t ) +
√

q̃

M
z
∑
a,t,i

σia(t ) + 2R̃ − q̃

2M2

∑
a,i

[
M∑

t=1

σia(t )

]2

+ 1

2
ln coth

[
β(1 − s)λ

M

]∑
a,t,i

σia(t )σia(t + 1)

}
,

=
N∏

i=1

∑
ξi=±1

∑
τi=±ξi

1

2
P(τi )

∫
Dz

n∏
a=1

∫
Dy

M∏
t=1

Tr

{
1

2
sinh

[
2β(1 − s)λ

M

]} 1
2

× exp

{
1

M

[
m̃ξi + β(1 − s)(1 − λ)τi +

√
2R̃ − q̃y + √

q̃z
]
σia(t ) + 1

2
ln coth

[
β(1 − s)λ

M

]
σia(t )σia(t + 1)

}

=
N∏

i=1

∑
ξi=±1

∑
τi=±ξi

1

2
P(τi )

∫
Dz

{∫
Dy2 cosh

√
g2(τi, ξi ) + [β(1 − s)λ]2

}n

�
N∏

i=1

∑
ξi=±1

1

2
exp

{
n
∫

Dz
∑

τi=±ξi

P(τi ) ln
∫

Dy2 cosh
√

g2(τi, ξi ) + [β(1 − s)λ]2

}
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=
N∏

i=1

1

2

∑
ξi=±1

exp

(
n

{∑
a=±1

ca

∫
Dz ln

∫
Dy2 cosh

√
g2

a(ξi) + [β(1 − s)λ]2

})

= exp

(
nN

{∑
a=±1

ca

∫
Dz ln

∫
Dy2 cosh

√
g2

a + [β(1 − s)λ]2

})
, (A25)

where

g(τi, ξi ) = m̃ξi + β(1 − s)(1 − λ)τi + √
q̃z +

√
2R̃ − q̃y, (A26)

ga(ξi ) = [m̃ + aβ(1 − s)(1 − λ)]ξi + √
q̃z +

√
2R̃ − q̃y, (A27)

in which we utilize the inverse operation of the ST decomposition and take the trace. Here, we use the notation ga(ξi = 1) = ga.
Under the RS ansatz and static approximation, eG3 is expressed as

eG3 = exp

{
nN

[
−mm̃ − mxm̃x − RR̃ − n − 1

2
qq̃ + O

(
1

M

)]}
. (A28)

In the limit of M → ∞, the O(1/M ) term is negligible.
The saddle-point method can be used in the thermodynamics limit N → ∞, and the RS free energy density is expressed as

−β fRS = lim
n→0

lim
N→∞

[Zn] − 1

nN

=extr
m,q,R
m̃,q̃,R̃

(
α

2

{
− ln[1 + βs(R − q)] + βs

[
(R − 1) + 1 + β0

β0
+ 2m − q − (

1 + β−1
0

)
1 + βs(R − q)

]}

− mm̃ − RR̃ + 1

2
qq̃ +

∑
a=±1

ca

∫
Dz ln

∫
Dy2 cosh

√
g2

a + [β(1 − s)λ]2

)
, (A29)

where the order parameters and their conjugate parameters are decided by the saddle-point conditions in the free energy density.
We neglect trivial terms and coefficients in Eq. (A29).

APPENDIX B: THE SADDLE-POINT EQUATIONS AND THE STABILITY CONDITION OF THE RS SOLUTIONS

We present the saddle-point equations and the stability condition of the RS solutions. The extremization of Eq. (A29) yields
the following saddle-point equations:

m =
∑

a=±1

ca

∫
DzY −1

a

∫
Dy

(ga

ua

)
sinh ua, (B1)

q =
∑

a=±1

ca

∫
Dz

[
Y −1

a

∫
Dy

(ga

ua

)
sinh ua

]2

(B2)

R =
∑

a=±1

ca

∫
DzY −1

a

∫
Dy

({
[β(1 − s)λ]2

u3
a

}
sinh ua +

(ga

ua

)2
cosh ua

)
, (B3)

m̃ = αβs

1 + βs(R − q)
, (B4)

q̃ = αβ2s2
(
q − 2m + 1 + β−1

0

)
[1 + βs(R − q)]2

, (B5)

2R̃ − q̃ = αβ2s2(R − q)

1 + βs(R − q)
, (B6)

Ya ≡
∫

Dy cosh ua, (B7)

ua ≡
√

g2
a + [β(1 − s)λ]2. (B8)

The overlap can be written as

M =
∑

a=±1

ca

∫
Dzsgn

[
Y −1

a

∫
Dy

(ga

ua

)
sinh ua

]
. (B9)
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The fraction of the ground state in the estimated signal is calculated by crepica = (1 +M)/2. Basically, we numerically assess
the fixed points of the saddle-point equations by iterating the substitution of the tentative solutions. The fixed points are extrema
of Eq. (A29) and characterize the free energy of the system.

Next, we consider the stability of the RS solutions. In the low-temperature regions, the classical CDMA model exhibits RSB
[5]. Two instabilities exist in the RS solutions: the local and global instabilities of the RS solutions. The local stability condition
of the RS solutions under the static approximation is expressed as

αβ2s2

[1 + βs(R − q)]2

{∑
a=±1

ca

∫
Dz

[[
Y −1

a

∫
Dy

(ga

ua

)
sinh ua

]2

− Y −1
a

(∫
Dy

{
[β(1 − s)λ]2

u3
a

}
sinh ua+

∫
Dy

(ga

ua

)2
cosh ua

)]2}

< 1. (B10)

This condition corresponds to the AT condition [77] in ARA. This result is consistent with the previous result in Ref. [5] for
the classical limit s = 1 and λ = 1. We can attain this condition by considering the perturbations to the RS solutions [78]. The
detailed calculations for deriving the AT condition in Eq. (B10) are presented in Appendix C. The global instability condition of
the RS solutions is related to the negative entropy. The existence of the global instability corresponds to the freezing behavior
[79]. To detect the freezing behavior, we calculate the RS entropy as follows:

S = − ∂

∂T
fRS =−α

2
{ln[1 + βs(R − q)]} + R − q

2
(m̃ − q̃) + R̃R − 1

2
qq̃

+
∑

a=±1

ca

∫
Dz ln 2Ya − β

(∑
a=±1

ca

∫
DzY −1

a

∫
Dyua sinh ua

)
. (B11)

In the case of s = 1 and λ = 1, this result is also consistent with the classical one.

APPENDIX C: DERIVATION OF AT CONDITION

We derive the AT condition for the CDMA model in ARA. The local stability of the RS solutions against the RSB perturbation
is computed from the 1-step RSB (1RSB) solutions. The detailed derivation of the 1RSB solutions is as follows. Following
Ref. [80], we assume the RS ansatz and static approximation for ma(t ), Ra(t, t ′), m̃a(t ), and R̃a(t, t ′). For the spin glass order
parameter and its conjugate parameter, we divide the replicas into two blocks and introduce two order parameters, as follows:

qal bl (t, t ′) =
{

q0 (l �∈ block)
q1 (l ∈ block) , q̃al bl (t, t ′) =

{
q̃0 (l �∈ block)
q̃1 (l ∈ block) , (C1)

where l = 1, 2, . . . , n/m1 is the block number, m1 is Parisi’s breaking parameter, and al , bl = 1, 2, . . . , m1 is the index inside a
block.

By using the 1RSB scheme, we can divide these terms in Eq. (A20) as follows:

∑
a<b

∑
t,t ′

qab(t, t ′)ũμ
a (t )ũμ

b (t ′) = q0

2

[∑
l,al ,t

ũμ
al

(t )

]2

+ q1 − q0

2

∑
l

[∑
al ,t

ũμ
al

(t )

]2

− q1

2

∑
l,al

[∑
t

ũμ
al

(t )

]2

. (C2)

Using Eq. (C2), we can rewrite eG1 as

eG1 =
∏
μ

∫
Dv1

∏
l,al ,t

dũμ
al

(t )

2π

√
2πM

βs
exp

{
βs

2M

1 + β0

β0
v2

1 − M

2βs

[
ũμ

al
(t )

]2 − βsm2

2M

[∑
l,al ,t

ũμ
t (al )

]2

+ iv1

√
1 + β0

β0
ũμ

al
(t )

+ mũμ
al

(t )

⎡
⎣ ∑

l ′,a′
l ,t

′
ũμ

a′
l
(t ′)

⎤
⎦ − iv1

βsm

M

√
1 + β0

β0

⎡
⎣ ∑

l ′,a′
l ,t

′
ũμ

a′
l
(t ′)

⎤
⎦
⎫⎬
⎭

× exp

{
−q0

2

[∑
l,al ,t

ũμ
al

(t )

]2

− q1 − q0

2

∑
l

[∑
al ,t

ũμ
al

(t )

]2

+ q1

2

∑
l,al

[∑
t

ũμ
al

(t )

]2

− R
∑
l,al

[∑
t

ũμ
al

(t )

]2

(R − 1)
∑
l,al ,t

× [
ũμ

al
(t )

]2}
=

∏
μ

∫
Dv1

∫
Dv2

∏
l

∫
Dv3

∏
al

∫
Dv4 exp

(
βsv2

1

2

1 + β0

β0

)∏
t

dũμ
al

(t )

2π

√
2πM

βs

× exp

{
−M − βs(R − 1)

2βs

[
ũμ

al
(t )

]2
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+
[

iv1(1 − nβsm)

√
1 + β0

β0
+ v2

√
2m − q0 − nβsm2 + v3

√
q0 − q1 + v4

√
q1 − R

]
ũμ

al
(t )

}

=
∏
μ

∫
Dv1

∫
Dv2

∏
l

∫
Dv3

∏
al

∫
Dv4 exp

(
βsv2

1

2

1 + β0

β0

)[∏
t

√
M

M − βs(R − 1)

]

× exp

⎧⎨
⎩ βsM

2[M − βs(R − 1)]

[
iv1(1 − nβsm)

√
1 + β0

β0
+ v2

√
2m − q0 − nβsm2 + v3

√
q0 − q1 + v4

√
q1 − R

]2
⎫⎬
⎭, (C3)

where the Hubbard-Stratonovich transformation is used on (
∑

l,al ,t
)2,

∑
l (
∑

al ,t
)2, and

∑
l,al

(
∑

t )
2. In the limit of M → ∞,

Eqs. (A22) and (A23) hold. By performing the Gaussian integrations over v1, v2, v3, and v4, eG1 can be computed as follows:

eG1 =
∏
μ

∫
Dv1

∫
Dv2 exp

[
βns

2
(R − 1) + βns

2

1 + β0

β0
v2

1

]∏
l

∫
Dv3

×
∏
al

∫
Dv4 exp

⎧⎨
⎩βs

2

[
v4

√
q1 − R + iv1(1 − nβsm)

√
1 + β0

β0
+ v2

√
2m − q0 − nβsm2 + v3

√
q0 − q1

]2
⎫⎬
⎭

=
∏
μ

∫
Dv1

∫
Dv2

[
1√

1 + βs(R − q1)

]n

exp

[
βns

2
(R − 1) + βns

2

1 + β0

β0
v2

1

]

×
∏

l

∫
Dv3 exp

⎧⎨
⎩ βm1s

2[1 + βs(R − q1)]

[
v3

√
q0 − q1 + iv1(1 − nβsm)

√
1 + β0

β0
+ v2

√
2m − q0 − nβsm2

]2
⎫⎬
⎭

=
∏
μ

∫
Dv1

∫
Dv2

[
1√

1 + βs(R − q1)

]n
⎡
⎣ 1√

1 + βm1s(q1−q0 )
1+βs(R−q1 )

⎤
⎦

n
m1

exp

[
βns

2
(R − 1)

]

× exp

⎡
⎣βns

2

⎛
⎝1 + β0

β0
v2

1 + 1

{1 + βs[R − q1 + m1(q1 − q0)]}

[
iv1(1 − nβsm)

√
1 + β0

β0
+ v2

√
2m − q0 − nβsm2

]2
⎞
⎠

⎤
⎦

� exp

[
αnN

2

(
− ln [1 + βs(R − q1)] − 1

m1
ln

[
1 + βm1s(q1 − q0)

1 + βs(R − q1)

]
+ βs

{
(R − 1) + 1 + β0

β0

+ 2m − q0 − (1 + β−1
0 )

1 + βs[R − q1 + m1(q1 − q0)]

})]
. (C4)

We calculate eG2 under the 1RSB scheme and static approximation as follows:

eG2 =
∑

{ξi=±1}

∑
{τi=±ξi}

P(ξ)P(τ )Tr

{
1

2
sinh

[
2β(1 − s)λ

M

]} nMN
2

∫
Dz

× exp

⎧⎨
⎩ m̃

M

∑
l,al ,t,i

ξiσial (t ) + β(1 − s)(1 − λ)

M

∑
l,al ,t,i

τiσial (t ) + 2R̃ − q̃1

2M2

∑
l,al ,i

[
M∑

t=1

σial (t )

]2

+ q̃1 − q̃0

2M2

∑
l,i

[∑
al ,t

σial (t )

]2

+
√

q̃0

M
z

∑
l,al ,t,i

σial (t ) + 1

2
ln coth

[
β(1 − s)λ

M

] ∑
l,al ,t,i

σial (t )σial (t + 1)

}

=
N∏

i=1

∑
ξi=±1

∑
τi=±ξi

1

2
P(τi )

∫
Dz

n
m1∏

l=1

∫
Dy

m1∏
al =1

∫
Dx

M∏
t=1

Tr

{
1

2
sinh

[
2β(1 − s)λ

M

]} 1
2

× exp

{
m̃

M
ξiσial (t ) + β(1 − s)(1 − λ)

M
τiσial (t ) +

√
2R̃ − q̃1

M
xσial (t ) +

√
q̃1 − q̃0

M
yσial (t )
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+
√

q̃0

M
zσial (t ) + 1

2
ln coth

[
β(1 − s)λ

M

]
σial (t )σial (t + 1)

}

=
N∏

i=1

∑
ξi=±1

∑
τi=±ξi

1

2
P(τi )

∫
Dz

(∫
Dy

{∫
Dx2 cosh

√
g(τi, ξi )2 + [β(1 − s)λ]2

}m1
) n

m1

�
N∏

i=1

∑
ξi=±1

1

2
exp

(
n

m1

∫
Dz

∑
τi=±ξi

P(τi ) ln
∫

Dy

{∫
Dx2 cosh

√
g(τi, ξi )2 + [β(1 − s)λ]2

}m1
)

= exp

[
nN

m1

(∑
a=±1

ca

∫
Dz ln

∫
Dy

{∫
Dx2 cosh

√
g2

a + [β(1 − s)λ]2

}m1
)]

, (C5)

where

g(ξi, τi ) = m̃ξi + β(1 − s)(1 − λ)τi + √
q̃0z + √

q̃1 − q̃0y +
√

2R̃ − q̃1x, (C6)

ga = m̃ + aβ(1 − s)(1 − λ) + √
q̃0z + √

q̃1 − q̃0y +
√

2R̃ − q̃1x. (C7)

Under the 1RSB scheme and static approximation, eG3 is expressed as

eG3 = exp

{
nN

[
−mm̃ − RR̃ − n − m1

2
q0q̃0 − m1 − 1

2
q1q̃1 + O

(
1

M

)]}
. (C8)

Finally, we can obtain the 1RSB free energy density of the CDMA model in ARA as follows:

−β f1RSB = extr
m,q0,q1,R
m̃,q̃0,q̃1,R̃

[
α

2

(
− ln [1 + βs(R − q1)] − 1

m1
ln

[
1 + βsm1(q1 − q0)

1 + βs(R − q1)

]

+ βs

{
(R − 1) + 1 + β0

β0
+ 2m − q0 − (1 + β−1

0 )

1 + βs[R − q1 + m1(q1 − q0)]

})

− mm̃ − RR̃ − m1 − 1

2
q1q̃1 + m1

2
q0q̃0 + 1

m1

∑
a=±1

ca

∫
Dz ln

∫
Dy

{∫
Dx2 cosh

√
g2

a + [β(1 − s)λ]2

}m1
]
. (C9)

The extremization condition of the 1RSB free energy density provides us with the saddle-point equations as follows:

m =
∑

a=±1

ca

∫
DzY −1

a

∫
DyX m1−1

a

∫
Dx

(ga

ua

)
sin ua, (C10)

q0 =
∑

a=±1

ca

∫
Dz

[
Y −1

a

∫
DyX m1−1

a

∫
Dx

(ga

ua

)
sin ua

]2

, (C11)

q1 =
∑

a=±1

ca

∫
DzY −1

a

∫
DyX m1−2

a

[∫
Dx

(ga

ua

)
sin ua

]2

, (C12)

R =
∑

a=±1

ca

∫
DzY −1

a

∫
DyX m1−1

a

∫
Dx

({
[β(1 − s)λ]2

u3
a

}
sinh ua +

(ga

ua

)2
cosh ua

)
, (C13)

m̃ = αβs

1 + βs(R − q1)
, (C14)

q̃0 = αβ2s2
(
1 + β−1

0 + q0 − 2m
)

{1 + βs[R − q1 + m1(q1 − q0)]}2 , (C15)

q̃1 = q̃0 + αβ2s2(q1 − q0)

{+βs[R − q1 + m1(q1 − q0)]}[1 + βs(R − q1)]
, (C16)

2R̃ − q̃1 = αβ2s2(R − q1)

1 + βs(R − q1)
, (C17)

Ya =
∫

Dy(Xa)m1 , (C18)
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Xa =
∫

Dx cosh ua, (C19)

ua =
√

g2
a + [β(1 − s)λ]2. (C20)

When we set q0 = q1 = q and q̃0 = q̃1 = q̃, the 1RSB solutions are reduced to the RS solutions. The stability of the RS solutions
is evaluated by the stability analysis of the 1RSB solutions of q0 = q1 = q and q̃0 = q̃1 = q̃ [78]. We introduce 
 = q1 − q0

and 
̃ = q̃1 − q̃0 and take Taylor expansion to them as follows:


 =
(∑

a±1

ca

∫
Dz

[[
Y −1

a

∫
Dy

(ga

ua

)
sinh ua

]2

− Y −1
a

∫
Dy

({
[β(1 − s)λ]2

u3
a

}
sinh ua +

(ga

ua

)2
cosh ua

)]2)

̃ + O(
̃2),

(C21)


̃ � ∂
̃

∂


∣∣∣∣
q0=q1=q


 + O(
2)

� αβ2s2

[1 + βs(R − q)]2

. (C22)

We substitute Eq. (C21) for Eq. (C22). Finally, we can obtain the stability condition:

αβ2s2

[1 + βs(R − q)]2

∑
a±1

ca

∫
Dz

[[
Y −1

a

∫
Dy

(ga

ua

)
sinh ua

]2

− Y −1
a

(∫
Dy

{
[β(1 − s)λ]2

u3
a

}
sinh ua +

∫
Dy

(ga

ua

)2
cosh ua

)]2

< 1. (C23)
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