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Driving quantum systems periodically in time plays an essential role in the coherent control of quantum states.
The rotating-wave approximation (RWA) is a good approximation technique for weak and nearly resonance
driven fields. However, these experiments sometimes require large detuning and strong driving fields, for which
the RWA may not hold. In this work, we experimentally, numerically, and analytically explore strongly driven
two-mode Josephson circuits in the regime of strong driving and large detuning. Specifically, we investigate
beam-splitter and two-mode squeezing interaction between the two modes induced by driving a two-photon
sideband transition. Using numerical simulations, we observe that the RWA is unable to correctly capture
the amplitude of the sideband transition rates. We verify this finding using an analytical model that is based
on perturbative corrections. We find that the breakdown of the RWA in the regime studied does not lead
to qualitatively different dynamics, but gives the same results as the RWA theory at higher drive strengths,
enhancing the coupling rates compared to what one would predict. This is an interesting consequence compared
to the carrier transition case, where the breakdown of the RWA results in qualitatively different time evolution
of the quantum state. Our work provides an insight into the behavior of time-periodically driven systems beyond
the RWA. We also provide a robust theoretical framework for including these findings in the calculation and
calibration of quantum protocols in circuit quantum electrodynamics.
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I. INTRODUCTION

Time-periodic driving is a prominent technique for the in
situ coherent control of quantum dynamical processes. How-
ever, exactly solving the quantum dynamics of the system
with time-varying Hamiltonian is particularly difficult [1,2].
As long as the drive is weak enough and nearly resonant
with the quantum state transition of a target observable, then
the rotating-wave approximation (RWA) may provide a good
estimate of the dynamics [3,4]. It is, however, necessary to
understand the physics of quantum systems beyond the RWA
from both a fundamental and a practical perspective. In the
realm of faithful quantum information processing (QIP), the
need for fast gates to suppress quantum errors requires drive
strengths that could exceed those that are valid for the RWA.
Motivated by this problem, theoretical effort has been directed
to understand quantum driven systems beyond the RWA [1,2],
along with many experimental works that have used strong
driving across many different physical systems [5-12]. Al-
though the previous studies have explored driven systems
beyond the RWA, they focus on a single driven mode and
do not address the coupling of different degrees of freedom
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(e.g., the use of driving fields to induce sideband transitions
between modes).

Sideband transitions ubiquitously appear in a variety of
physical systems [13-22]. Driving systems with appropriately
chosen frequencies can yield engineered interactions among
different degrees of freedoms. To engineer a specific inter-
action, it is important to accurately estimate the transition
rates. In many cases the driving parameters for sideband tran-
sitions typically satisfy the requirements of the RWA, such
as trapped ions, cavity optomechanics, and Raman transi-
tions [18-21]. However, this is not always the case for the
circuit quantum electrodynamics (cQED) platform, one of the
most promising QIP platforms in recent years, where a strong
and far-off-resonant driving beyond the RWA is sometimes
required [23]. Nonetheless, current approaches to quantitative
analysis still rely on the application of the RWA. When the
sideband driving frequencies are far off resonant from the
transition frequencies of the system, in which the conditions
for the application of the RWA should not hold, it may not cur-
rently be possible to make reliable predictions of the transition
rates.

In this paper, we study the sideband transition rates in a
two-mode Josephson circuit that is induced by strong external
time-periodical driving. The circuit comprises a transmon [24]
that is dispersively coupled to a resonator mode. Specifically,
we study beam-splitter (BS) and two-mode squeezing (TMS)
interactions between each mode, which are the simplest forms
of sideband transitions in these two-mode systems. For our
device, the required driving parameters are close to (TMS
coupling), or far beyond (BS coupling) the RWA regime. We
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confirm a simple relationship between the transition rates and
frequency shifts, which explains the data in both regimes.

We perform numerical simulations to support our findings.
We also derive an analytical perturbation expansion that goes
beyond the RWA, which is validated by our numerical results.
Our findings indicate that although the RWA is clearly vi-
olated, and significantly underestimates the mode frequency
shifts and the sideband transition rates for a known driv-
ing strength, the breakdown of the RWA does not result in
qualitatively different behavior but instead its effects in our
measurements can be reproduced by the RWA theory using a
larger drive field. Although the confirmation of a breakdown
of the RWA is only possible to observe experimentally in an
accurate independent calibration of the drive field, our results
show the importance of including counter-rotating terms for
accurate calculations of the sideband transition rates.

II. THEORETICAL DESCRIPTION

We derive an analytical expression taking a similar
approach in [16,25] but breaking the RWA. The total Hamil-
tonian on the laboratory frame is given by

A ~(o” + x")a'a + oV BB + g& +a"(B + B
—x@+ahH*2. 4))

Here, a) ) and ' are the resonant frequencies of each mode.
& and B are the mode destruction operators of the trans-
mon and the resonator modes, respectively. x, is a Duffing
nonlinearity of the transmon mode. g is a transverse cou-
pling between the transmon mode and the resonator mode.
In addition to Hs(}(,)s), there is the driving Hamiltonian H © —
Qg coswyt (& + &™), where Q4 and w, are the driving amph—
tude and frequency, respectlvely The total Hamiltonian Ht(ot)
is then given by A + A"

It is often useful to rewnte this Hamiltonian in the normal-
mode basis (the normal-mode annihilation operators are a
and b):

HD ~ (a)(l) + X )ATA + a)(l)bTb

sys
— L@+ ah+ e+ @

With typical circuit QED parameters, x; is approximately the
same as Xz( ). x, is the inherited Duffing nonlinearity to the
resonator mode by the coupling g. In the dispersive coupling
regime (Jo, — w,| > g), @ in Hy can be approximated by
alle, 26] Then, the driving Hamiltonian can be approximated
to beH D=q, coswgt(a+a').

The total Hamiltonian in the normal-mode basis is then
given by H')) = =H{)+H; D This can be perturbatively diag-
onalized by taklng Schrleffer-Wolff (SW) transformation [27]
U@t)=¢ with an appropriate generator S = S ®a' @) —
E@)*a. When A > x;, we can choose &(¢) = " e”“’d’ +
gzg ¢t Here, A = 0" + x, — wq and & = a),(l) + X + wq.
In this work, we treat beam-splitter (ab' + a'b) and two-mode
squeezing (ab + a'b') interactions induced by two-photon
driving. These appear with frequency matching conditions
204 ~ | £ 0],

After taking Schrieffer-Wolff transformation, collecting
only the original and relevant derived terms yields

A5 ~ (0" + 8w + x)a'a + (0P + 80 V)b b
AF 4 y
- sl @+a) + 1 G+ + He,  (3)
where Hy, = QiL) /2(abt e 4 aThe=2)  when 2w, ~
lotV — @], and Ay, = Q) /2(abe®" + &' bt e=i20t) when
2wy ~ " + o], Here, QS,) is the interaction rate for both

the BS and TMS interactions. sw'"”, swV, and QS)) can be
expressed by

sV = lQ?ini'f‘i-i-L,
2 A2 AT X2

sl = Lor (L4 24 L @)
2\ A2 T A T2 )

1 1 2 1
QU — _Z 2y a1 2oy
LA A\mTtas T
In the low-excitation limit, the total Hamiltonian can be
reduced to

Jlow PN pg A JEEN
Hg" ~ (0, +dw;)a'a + (w, + dw,)b'b — ?a a'aa
A, fpppan A aRER N
— ?b'b bb —2A,.a'ab'b+ Hg,. (®)]

.y and A; .4 (A = /A/A,) correspond to the transition
frequencies and anharmonicities that we observe in the ex-
periments. We can obtain A, ,;» by numerically diagonalizing
Eq. (2) [28]. The difference between A; ,;, and ¥, is due to
the off-diagonal elements in Eq. (3).

The discrepancy between A, ;- and x; . suggests that the
off-diagonal elements also affect the derived quantities after
taking the (SW) transform. We hereby invoke an assumption
that the effects of the off-diagonal terms can be captured by
replacing x;;, with A; .. This assumption leads to a con-
clusion that 8(,(),(},) and Qiz) in Eq. (4) should be renormalized
to Sy » and 2g,:

1, 1 2 1
A\t Azt e)

1 1 2 1
Q= —=Q2AY4 14 — + ).
sb 7 S2A A, A2+A2+2 (6)

(Swt,r =

We provide the supporting information for this finding in
Appendix D. When applying the RWA, they are given by

RWA 1 1
Swf(,r ) _ _EszflA,,,,—Az,
(7)
RWA) _ 1 5 54,04 1
Q) = —5 %A AY e

It is also interesting to investigate the case where only the
counter-rotating terms in H, affect the system. In this case,
the frequency shifts and sideband transition rates are given by

1

1
bR = __ @24, —
2 »2’ @)
(CR) 1 1

Loz asaqne b
Q,, —5 A A
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The detailed derivation is provided in Appendix A. If S, is
known, then replacing A and ¥ with A + §w; and X + S,
will provide a more accurate estimate. It is worth pointing out
here that many of the previous studies do not seriously dis-
tinguish between y; ;- and A, ;.. However, the discrepancies
between y; .- and A, ,;, are sometimes significant, depending
on the system’s parameters. Renormalization of dw; , and 2,
is therefore of great importance for the accurate prediction of
the frequency shifts and sideband transition rates.

Equations (6) and (7) suggest that the RWA significantly
underestimates dw; , and €25 when A ~ X but the ratios
among them are identical, regardless of whether or not we use
the RWA. It is also interesting to note that there is a correlation
between the corotating and counter-rotating terms in Eq. (6),
which makes a significant contribution to the frequency shifts
and sideband transition rates.

III. EXPERIMENT

Both the BS and the TMS interactions are schematically
described in Figs. 1(a) and 1(b). Two black wavy arrows
indicate the two-photon drive. Figures 1(c) and 1(d) denote
energy diagram descriptions. In all of the descriptions, the
resonator and the transmon mode are colored green and ma-
genta, respectively. In addition to the two-photon drive, we
have a weak probe field (green) through the resonator mode to
estimate €2, through the resonator’s response. The decay rates
of both modes are x and y, respectively. The energy levels of
the resonator mode are denoted by |0), |1), |2), ... and those
of the transmon mode are denoted by |g), |e) , . ... Figure 1(e)
depicts a simplified circuit diagram of the system. We drive
the transmon mode through a direct driveline and we probe
the resonator mode through another feedline coupled to the
resonator. Figures 1(f) and 1(g) show how the probe transmis-
sion through the resonator varies with increasing €2, for both
BS [Fig. 1(f)] and TMS [Fig. 1(g)] interactions. The curves
are obtained by solving a numerical model based on Eq. (5)
with dissipation operators. The decay rates of the resonator
and transmon modes in the calculation are « /27w ~ 10.2 MHz
and y /2w & 129 kHz. These parameters are similar to those
in the experiment. 24,/27 is set by 2, 4, and 6 MHz in both
BS and TMS interactions. The detailed information on the
experimental setup and device is provided in Appendix C 1.

In the experiment, we deliberately design a large « to
facilitate the detection of the interactions through the res-
onator’s transmission, even with small Q. Our system
satisfies the condition for electromagnetically induced trans-
parency (EIT) [29] as long as 2 is smaller than |y — «|.
In this regime, 2, and the other parameters independently
shape the transparency window in the middle of the transmis-
sion spectrum of the resonator. Thereby, we extract 2y, by
fitting the resonator’s transmission. The resonator’s linewidth
is overwhelmingly larger than the linewidth of the qubit and
therefore the system is in the EIT condition as long as 2 is
less than around 10 MHz.

The observed w;, are 2w x 6.8112 and 4.0755 GHz,
respectively. The observed A, is 27 x 150 MHz and A,
can be deduced by A, ~ +/A;A,. Since the resonator has
a broad linewidth, we cannot simply extract A, from the
photon number by splitting the resonator or the transmon

(© §§ ()
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FIG. 1. Overview of the experiment. (a), (b) Schematics of the
beam-splitter and two-mode squeezing interactions. Black, magenta,
and green wavy arrows indicate driving, transmon mode, and res-
onator mode photons, respectively. (a) Beam-splitter interaction.
A photon in the transmon mode is converted to the resonator
mode by two-photon driving. (b) Two-mode squeezing interaction.
Two-photon driving creates both transmon and resonator photons si-
multaneously. (¢), (d) Energy-level diagrams. Dashed arrows indicate
decay of transmon and resonator. The solid green arrow represents
probe tone through the resonator. (e) Simplified circuit diagram of
the device. (f), (g) Electromagnetically induced transparency (EIT)
spectrum of the resonator calculated by the numerical model in (5)
when Q,,/27 is 2, 4, and 6 MHz, respectively (from top to bottom).
Red and blue curves correspond to the BS and the TMS interaction,
respectively. See main text for detail simulation conditions.

spectrum. We obtained A,,/2m =~ 497 kHz from another
calibration method in Appendix C2. From these observa-
tions, we can calculate the system’s parameters in Egs. (1)
and (2). The obtained values are (w”, 0@, 0", 0, g) =
2 x (6.8131, 4.0823, 6.81755, 4.075953, 0.1207) GHz and
(Xe> Xir) = 2 x (137.4,0.384) MHz.

In Fig. 2, we present the procedure used for determin-
ing the frequency matching conditions. We define wp, that
satisfies 2wma = |w; £ w,| for both the BS and TMS interac-
tions. In reality, the resonances undergo shifts w; , — o, =
@y, + 8w, and in our system we have dw; > dw, =~ 0. Thus,
we have modified matching conditions 2w/, = @, + w,|.
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FIG. 2. Spectroscopic observation of sideband transitions. (a)—
(f) The cross section of the dashed lines in (g) and (h), respectively.
The y axes refer to the resonator’s transmission. (g) Drive frequency
sweep around the matching condition for beam-splitter (BS) inter-
action. (h) The same for two-mode squeezing (TMS) interaction.
Swmy 1s the deviation of the driving frequencies from the matching

conditions (wg — @/,,)-

We swept the driving frequency w,; and find the condition
wg ~ w;,,,. We obtain the matching conditions when the trans-
parency window is located at the center in the transmission
spectrum. More quantitatively, o/, can be obtained by ex-
tracting w; when fitting the transmission data with numerical
model given in Appendix A 2. Roughly, w] /27 ~ 1.36 and
5.44 GHz are expected for both the BS and the TMS interac-
tion, respectively. For the BS interaction, w;,, is extremely far
off resonant (A/% = 0.6). This regime of the driving param-
eter has not been explored. Meanwhile, for TMS interaction,
;. 18 relatively closer to the RWA regime (A/% ~ 0.11).

In Figs. 3(a) and 3(b), we plot a portion of the transmission
spectrum observed in the experiment. We scan the sideband
driving power preserving the condition w; =~ w],,. The solid
curves are the fits based on the numerical model that we used
in Figs. 1(f) and 1(g). In the fitting process, the free parameters
are Qg, ¥, and Swma, While the other parameters are fixed.
As we increase the driving amplitudes, we can readily see that
the transparency windows behave as expected from Figs. 1(f)
and 1(g). In Fig. 3(c), we plot 2, with respect to the corre-
sponding Sy, both of which are extracted from the fitting. The
statistical errors in extracting €2, from the fitting are around
only 1%, and thus not presented in the figures. We can find a
linear correlation between dw; and $2,,. The slope of the solid
line is obtained from Eq. (6), with no free parameters. It is of
note that both BS and TMS data lie on the same theoretical
plot, although the driving parameters for each lives in distinct
regimes.

To directly identify the breakdown of the RWA, we need to
calibrate €2; from an independent method not relying on the

e Data
Fit (a)
4
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i 0.538
0
€
c
o | 0.861
—
|_
1.407
Qqp/21 = 6.226 (MH2)
sb/2n = 2.414 (MHz)
-5 0 5 -5 0 5
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0
=
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w0
c
(c)
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0 20 40 60 80 100 120
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FIG. 3. Driving power dependence of sideband transition rates.
Left-hand side (red): BS interaction. Right-hand side (blue): TMS
interaction. (a), (b) Resonator transmission spectrum (circle) with in-
creasing driving amplitude (top to bottom) while keeping wy,,,
Solid curves are fits to the data based on numerical model. From
these fits, we extracted Qg and dw,. The probe amplitude 2, is
27 x 130.6 kHz, except that 2, is 10 times larger for the lowest
data set of (a). (c) Observed €2, with respect to corresponding S,
(circles). The solid line indicates a theory based on Eq. (6). Fitting
errors in 2, are around 1% and are not plotted in the figures.

X wg.

transmon frequency shifts. If we know the microwave power
at the device (P;), and the coupling rate between the transmon
and drive line (y,y), then 2, is simply given by /Py y.,/hw,.
However, the uncertainty in the driveline attenuation sets a
challenge. An error of only 1 dB in the attenuation induces
a 10% error in 24, which is critical to our study. In future
research, this challenge can be circumvented by using an
additional “sensor” qubit, as recently demonstrated in [30].

IV. NUMERICAL SIMULATION

We performed a comprehensive numerical analysis with
the experimental conditions. We simulated the system’s time-
domain dynamics by solving the dp/dt = 1[HS(§)S) +AY, p]
without including any dissipation. p is the density matrix
of the system. As in the experiment, we swept the driving
frequency for a given ©2; and find the frequency where a full
oscillation takes place in transitions |e0) <= |gl) (BS) or

|80) <= |el) (TMS). 2y, is then given by the frequency of
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FIG. 4. Influence of counter-rotating terms of the driving on
the sideband transition rates and the mode frequency shifts for
BS (red, left-hand side) and TMS (blue, right-hand side) interac-
tions. Symbols: numerical simulations with A% (circle), under the
rotating-wave approximation (RWA) keeping only corotating terms
in ﬁd(o) (triangle), and keeping only counter-rotating (CR) terms in
A (;0) (squares). Lines: analytical theory for A ;0) (solid), the RWA in
ﬁ{go) (dashed), and only CR terms in A (50) (dotted). Dynamics beyond
the RWA are clearly observed in the transition rates (a) and (b) and
frequency shift (c) and (d) for both red and blue sideband drivings.
For the red sideband, even the purely counter-rotating terms lead to
a nonzero coupling, although the deviation of the full result from the
sum of the RWA and purely CR calculations indicates additional con-
tributions from correlations of the two. (e), (f) Although discarding
the CR terms leads to large correction of the €2, the relationship
between Qg and Sw, for the full A 50) remains the same and falls on
the same line (circles, triangles): the error that arises in discarding
the CR terms is an incorrect value of both 2, and §w, for a given
and known driving strength.

the oscillation. More detailed descriptions on the method of
the numerical simulation are given in Appendix B.

In Fig. 4, we present the numerical calculation results
(circles, triangles, and squares) and corresponding analytical
calculation results (solid, dashed, and dotted lines). The cir-
cles and solid lines refer to the results with the A + A" In
the plots, triangles and squares refer to the simulation results

dropping the counter-rotating and corotating driving terms in
I-AI(E0 . The analytical calculation is based on the Eq. (6). The
dashed and dotted lines are obtained by Egs. (7) and (8),
respectively.

In Figs. 4(a) and 4(b), we compare the sideband transition
rates obtained by the numerical simulations (circles, triangles,
and squares) with the analytically calculated values (solid,
dashed, and dotted lines). In Figs. 4(c) and 4(d), we present
the frequency shifts of the transmon mode under the matching
conditions for given the driving amplitudes in x axes. The
driving frequencies for each data point are set to satisfy the
matching conditions for the given driving amplitudes. Al-
though the RWA significantly distorts the Q2 and dwy, the
breakdown of the RWA is not visible in the g, versus Swy
relation, as seen in Figs. 4(e) and 4(f). The simulation data
with the RWA perfectly lie on the data without the RWA.
Therefore, a careful treatment is required when estimating 2,
through €2, or dw,. Relying on the RWA results in significant
overestimation of 2.

V. CONCLUSION

In summary, we performed the quantitative investigation of
two-photon assisted four-wave interactions in a superconduct-
ing circuit. Over the entire range of the driving amplitudes
in this work, our theoretical, numerical, and experimental
values agree with each other, which suggests that the faithful
quantitative estimation of sideband transition rates is possible.
This work expands our understanding in the strongly driven
quantum systems. The findings through this work are not
restricted to the system that we investigate here.

Kerr- or Duffing-type nonlinearity ubiquitously appears
in many physics disciplines other than circuit QED, such
as nonlinear optics, cavity optomechanics, and atomic
physics [31-34]. Therefore, we believe our findings can in-
fluence a variety of types of research. This work also uses
multiphoton assisted transition, which is widely adopted when
a desired transition is dipole forbidden [13,14,35-47]. From
the perspective that the studies of multi-photon transition be-
yond the RWA are mainly limited to theoretical cases [48—50],
our work would attract attention.

The data that support the findings of this study are available
in Ref. [51].
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APPENDIX A: THEORETICAL DESCRIPTIONS

1. Schrieffer-Wolff transformation

We perturbatively diagonalize the total Hamiltonian by
applying the unitary transformation U(t) [27] to the total
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TABLE I. List of a portion of the nonrotating terms at the transmon and resonator rotating frame for given w, derived from the fourth

power term of Eq. (A2).

Operator (+ H.c.) Magnitude (x Q2 /4) Matching condition (wy ~)
ata Xir XQas + 25 + 35) None

b'h Xr oz + =& + 37) None

ab’ Pt A‘z + é + ;2> oy — w]/2

atht X3/4X,]/4 ( + E + 22) wt(l) + wil)/z

ab” X Y L 2o — o]

ath? xR+ L 200 + oV

@b 16 G+ ) 20" — o]

ai?bt X+ D 201" + o)

H(” +H(1) where H(l) and H; are de-

fined in the main text. The transformed Hamlltonlan A’ tot 18
given by

Hamiltonian I-?tg)

A% =0A0" +i,0)0". (A1)

Here, U(t) = &3 =500 and g(1) =
U@) simply displaces the field operator a (aT) by —& (—£&%).
Finally, H A

1 N
Ay ~ (0" + x)ata + oVb'h

—EO)—E O+ b+bH] .
(A2)

a —iwgt Qq Jiwgt
A€ + 7€ .

tot can be expressed by

- bl ata

For given wy, collecting the nonrotating terms at the transmon
and resonator rotating frame in Eq. (A2) yields Table I. We
only list the terms that represent the interactions between
different modes or the frequency shifts of each mode.

2. Modeling transmission spectrum

The resonator transmission spectrum is proportional to
Tr, [,?)”l;]. Here, pg is a steady-state density matrix of the
transmon and resonator system, and Tr, indicates trace over
the transmon states. 0Oy can be calculated based on the follow-
ing Eq. (A3):

dp i A N . Yoo KA
== = 2 lHigy + A1), p(0O) + T Dlalp + S DIbl).
(A3)

ﬂp(t) = Q, cos (wpt) is the Hamiltonian of the prove field.
D[O]p is defined by 20pO — OTOp — pOTO. k is the de-
cay rate of the resonator mode, and y is that of the transmon
mode. We neglect the pure dephasing rate of the transmon
mode. Since we employ a single Josephson junction design,
it is expected that the coherence time of the transmon mode
is only limited to the decay time. For a steady state, we have
% = 0, then we can calculate p,, from Eq. (A3).
Transmission spectrum is a function of a set of variables
(wa, wp, Rp, Lgp, @), Wr, Ar, Ay, Ay &, and y). Here, w, is the
independent variable in the fitting process. We fix «, w,, A;,
A,, and A,, by the values we obtain from the independent mea-
surement without driving field. These quantities are hardly
shifted under the driving. w, is given by the experiment. The

free-fitting parameters are w;, 2, $2,,, and y. These quantities
are extracted from the fitting process.

APPENDIX B: NUMERICAL SIMULATIONS

In this Appendix, we describe the detail procedures of
the time-domain numerical simulations. The dynamics of the
system are governed by the equation d pgys/dt = —i[AD +

sys
I-AI(EO)(I), Dsys], where ﬁs(;)s) and 1-750) follow the same definition
in the main text. Here, pyys is density matrix of the transmon
and resonator. We do not take the dissipation into consider-
ation in the time-domain dynamic simulations. Figure 5(a)
shows the simulated dynamics (blue line) when the driv-
ing frequency satisfies the matching condition for two-mode
squeezing (TMS) interaction. The system parameters used in
the simulation are the same with the experimental conditions.
The sideband drive [€2,(¢), green line] is given as a pulse with
10 ns of Gaussian rising and falling. The arrow indicates the
length of the pulse. Figure 5(b) shows the area enclosed by
the dashed square in Fig. 5(a). One can identify the qubit and
resonator states significantly vary during the rising and falling
duration of the sideband pulse. In Fig. 5(c), we sweep the
length of the sideband pulse and plot the states of the system
at the end of the pulse. We obtain a clear sinusoidal curve.
Figure 5(d) shows the area enclosed by the dashed square in
Fig. 5(c).

We sweep the driving frequency for each simulation data
point and find the optimal frequency that yields the resonant
sideband transitions. This procedure is described in Fig. 6. We
chose the w,; when the oscillation has a maximum contrast.
We present the simulation data with different driving Hamil-
tonian in Fig. 7. The solid lines refer to the results with a full
driving Hamiltonian containing both corotating and counter-
rotating terms. The dotted lines (dashed lines) are obtained by
the simulations with only corotating (counter-rotating) terms
in the driving Hamiltonian. See the caption for the detail
conditions in the simulations.

APPENDIX C: EXPERIMENTAL METHODS

1. Experimental setup

An optical microscope image of the device is given in
Fig. 8(a). The device is comprised of a transmon and two
coplanar waveguide resonators. The design of the device is the
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FIG. 5. Illustration of the method of the numerical simulations.
(a) The blue line indicates the dynamics of the system when the driv-
ing frequency satisfies the matching condition of the TMS interaction
for given driving amplitude (2t x 300 MHz). P(el) and P(g0) refer
to the population of each state. We assume the time dependence in
the sideband driving amplitude (green line), with 10-ns rising and
falling time. The definition of the driving pulse length is graphically
depicted by a green arrow. We adjust the pulse length such that
almost a full state transfer from |el) to |g0) takes place. (b) The
area enclosed by the dashed square in (a) is zoomed in. A significant
change in P(e1)-P(g0) can be identified. (c) We repeat the simulation
with a various pulse length and plot P(el)-P(g0) at the end of each
pulse. (d) The area enclosed by the dashed square in (c) is zoomed
in. The fidelity of the state transfer from |el) to |g0) is 99.85%.
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FIG. 6. Driving frequency sweep in the numerical simulation.
(a) Time-domain simulations of TMS interaction with various dwy,,.
(b) Continuously scanning the driving frequency near the matching
condition. Given driving amplitude is 27 x 300 MHz. See the text
for the system parameters that are used in the simulation.
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FIG. 7. Time-domain plots of the numerical simulation results.
The plots in top (a) and bottom (b) panels are time-domain dynamics
of the BS and TMS interactions, respectively. In both cases, " =
2w x 6.5 GHz a)flo) =21 x 4.0 GHz, g/27 =200 MHz, x,/27 =
200 MHz, and 2, /27 = 600 MHz are chosen. Full: simulations with
A®. RWA: with only corotating driving terms in A ;0)_ CR: with only

tot
counter-rotating driving terms in H }0).

same as the one used in our previous work [23]. Only one of
the resonators was used in this experiment. In addition, there is
a drive line directly coupled to the transmon. The base layer of
the circuit is fabricated from 100-nm niobium titanium nitride
(NDbTiN) film on a silicon substrate. The detailed procedure to
prepare the NbTiN film is described in [52]. The transmon is
comprised of a Al-AlOx-Al Josephson junction and a finger
capacitor. The transmon is not flux tunable and therefore the
frequency is insensitive to the external magnetic field noise.
A cryogenic wiring diagram and measurement electronics
are given in Fig. 8(b). The device is mounted at the mixing
chamber plate of a Bluefors LD-400 dilution fridge. The
temperature of the plate is around 10 mK during the mea-
surements. The device is enclosed within a cylindrical cooper
shield to block the infrared radiation. To block the external
magnetic fields, the copper can is enclosed by an aluminum
shield and two Mu metal shields. The shields are not rep-
resented in the figure. We used a vector network analyzer
(Keysight N5222A) to measure the resonator transmissions.
An additional microwave source (Keysight N5183B) was used
for sideband drivings. We used a nondissipative low pass filter
(Minicircuit VFL-3800+) in the drive line (third column).

2. Device parameter extraction

In this section, we provide the procedure to calibrate the
cross anharmonicity (A,,) between the transmon and res-
onator modes in the experiment. We use the fact that the
EIT transmission spectrum of the resonator depends on the
A;, in the nonlinear response regime. In Fig. 9, we simulate
the resonator’s transmission spectrum with a beam-splitter
interaction (2,,/27 1.2 MHz). The model that we used in the
simulation is based on Eq. (3) in the main text including dissi-
pation operators. In addition, we set dwp, /27 by —300 kHz.
In the simulation, the linewidths of the resonator and transmon
modes are the same with those in the experiment. We simulate
in both linear response [Fig. 9(a)] and nonlinear response
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FIG. 8. Experimental setup. (a) An optical microscope image of
the device used in the experiment. (b) A cryogenic wiring diagram
and measurement electronics.
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FIG. 9. Effect of the cross anharmonicity (4,,) in the resonator
transmission when a beam-splitter interaction is applied. The beam-
splitter interaction between the transmon and resonator modes are
applied in the simulation. (a) In the linear response regime (weak
probe, ,/2m = 10 kHz), the cross anharmonicity does not make a
difference in the spectrum. (b) In the nonlinear regime (strong probe,
Q,/2m = 3 MHz), we can easily confirm the effect of the A, from
the spectrum.
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FIG. 10. Calibration of the cross anharmonicity (A,,). (a) The
transmission spectrum of the resonator while scanning probe power
(P;,). The transmon and the resonator modes are coupled by a beam-
splitter interaction. The horizontal dashed and solid lines indicate the
data when P, is 0 and —15 dBm, respectively. (b), (c) The spectrum
at the probe powers indicated in (a) with horizontal lines. The circles
are experimental data and the solid curves are fits based on Eq. (3)
in the main text. From the linear response date (c), we extract 2,
w4, Wy, k, and y by the fitting. When fitting the data in (b), these
quantities are fixed with the extracted values obtained from (c). Then,
we extract 2, and A,,.

[Fig. 9(b)] regimes. In the linear response regime, we cannot
distinguish the A;, from the transmission. Meanwhile, the
effect of the A;, is prominent in the nonlinear response regime.

Figure 10(a) shows the measured resonator transmission
spectrum while sweeping the probe power. P, is the res-
onator probe power measured at the output port of the vector
network analyzer (VNA). Note that the contrast of the trans-
parency window near the center decreases with increasing
probe power. We first fit the resonator’s transmission data in
the linear response regime (solid line), setting Qg, wy, ;, k,
and y as free parameters. Then, we fit the data in the nonlinear
response regime (dashed line) while fixing all the parameters
obtained from the first fitting and only 2, and A,, are free-
fitting parameters. When fitting the data in the linear response
regime, we set A;, = 0 and Q,/27 = 10 kHz. The choice of
A,, can be justified since we already know A,, hardly affects
the transmission in the linear response regime. The fitting
results in both regimes are given in Figs. 10(b) and 10(c). We
obtain A, /27 =497 kHz and Q,/27w = 4.35 MHz from the
data in the nonlinear regime.

We can also obtain A,, from the fact that the resonator’s
transition frequency depends on the transmon’s quantum
states [38]. Figure 11 shows how the resonator’s transmission
spectrum changes as we populate the transmon’s first excited
state. We drive the transmon mode with its resonant frequency
and increase the power until we cannot see any further shift
in the resonator’s frequency. With this drive power, we can
approximate the transmon’s state 50:50 mixed state between
the ground and first excited states. We observe a frequency
shift of 520 kHz, which can be interpreted as A;,.

Ay, extracted from Fig. 11 is slightly larger than the value
obtained from Fig. 10. The discrepancy of the expected side-
band transition rates based on both is about 2%. In the main
text, we use A, /2w = 497 kHz obtained from Fig. 10.
This approach is advantageous because we can extract the
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FIG. 11. Calibration of the cross anharmonicity (4,,) from the
resonator’s response. The lines indicate the resonator’s transmission
when the transmon is the ground state (solid) and approximately
50:50 mixed state between the ground and first excitation states
(dashed). The resonance is shifted by 520 kHz.

resonator probe power and A;. simultaneously, and conse-
quently it guarantees more consistency.

3. Transmon decay rate analysis

In the fitting process to extract the sideband transition rates,
the free-fitting parameters other than 2, are y and §wyac. We
also present the extracted values for y and Swyy in [S1]. In
this section, we especially focus on the y. Figure 12 shows
the fitted y (dots) with respect to corresponding 2. These
values are consistent with the y from the low-power two-
tone spectroscopy (dashed line) in general. For BS interaction
case, some data points far deviate from the dashed line. We
attribute this to the undesired higher-order sideband interac-
tions. The matching frequency for BS interaction is close to
the matching frequency for single-photon assisted sideband
interaction between |e0) and |g2). Since the resonator mode
has a much larger decay rate, this undesired interaction can
increase the effective decay rate of the transmon mode. The
rightmost two data of TMS interaction case also far deviate

2.5
¢ ---- Two-tone spec
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FIG. 12. Comparison between the qubit decay rates () ) extracted
from the EIT spectrum fitting (dots) and the two-tone spectroscopy
with a low probe and spectroscopy power (solid line).
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FIG. 13. Comparison between analytical and numerical calcula-
tions. All of the contents in the figures are the same as Fig. 4 except
that the lines are obtained based on Eq. (4).

from the solid line. We cannot find the systematic reason for
the discrepancy. We could attribute this to the fluctuation of
the transmon’s decay rate with respect to time.
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FIG. 14. Additional simulation results (£2,,-Sim) and compari-
son to the analytical theory (€24-Th). (a), (b) BS interaction. (c),
(d) TMS interaction. Simulation is performed with four different
system-parameter combinations (see legend). f,@ are defined by
a),(f),.) /2. g/2m in the simulation is 200 MHz. f,f? in (a) and (c) are
6.5 and 4.0 GHz, respectively. £’ in (b) and (d) are 4.0 and 6.5 GHz,

respectively.
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APPENDIX D: ADDITIONAL ANALYTICAL
AND NUMERICAL ANALYSIS

In this Appendix, we confirm that Eq. (6) more accurately
predicts the dw, and 2, than Eq. (4). In Fig. 13, we compare
the analytical calculation based on Eq. (4) and numerical
simulation results in Fig. 4. We can clearly see the discrepancy
between the analytical and numerical results becomes larger
than that in Fig. 4.

In Fig 14, we perform the additional simulation with
various system parameters and compare the numerically sim-
ulated sideband transition rates (£24,-Sim) to the theoretical
calculations (£24-Th). We compare two different theoretical
approaches based on Egs. (4) and (6), respectively. Aside from
one case [Fig. 14(d)], 4-Th based on Eq. (6) are closer to
Qp-Sim. Even in Fig 14(d), ©2,,-Th based on Eq. (6) is more
accurate with low driving amplitudes.

[1] F. Bloch and A. Siegert, Magnetic resonance for nonrotating
fields, Phys. Rev. 57, 522 (1940).

[2] P. Giscard and C. Bonhomme, Dynamics of quantum sys-
tems driven by time-varying Hamiltonians: Solution for the
Bloch-Siegert Hamiltonian and applications to NMR, Phys.
Rev. Research 2, 023081 (2020).

[3] I. I. Rabi, N. F. Ramsey, and J. Schwinger, Use of rotating
coordinates in magnetic resonance problems, Rev. Mod. Phys.
26, 167 (1954).

[4] Rotating-wave approximation (RWA) is also available for time-
independent Hamiltonian in the laboratory frame. In this case,
dropping energy nonconservative terms constitutes the RWA.
Nonetheless, we confine the scope of this work to when the
breakdown of the RWA results from the time-periodical driving
terms.

[5] D. A. Andrews and G. Newton, Observation of Bloch-Siegert
shifts in the 22S)/,-2*P;;» microwave resonance in atomic hy-
drogen, J. Phys. B: At. Mol. Phys. 8, 1415 (1975).

[6] G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans,
and D. D. Awschalom, Gigahertz dynamics of a strongly driven
single quantum spin, Science 326, 1520 (2009).

[7] J. Tuorila, M. Silveri, M. Sillanpéd, E. Thuneberg, Y. Makhlin,
and P. Hakonen, Stark Effect and Generalized Bloch-Siegert
Shift in a Strongly Driven Two-Level System, Phys. Rev. Lett.
105, 257003 (2010).

[8] C. Deng, J.-L. Orgiazzi, F. Shen, S. Ashhab, and A. Lupascu,
Observation of Floquet States in a Strongly Driven Artificial
Atom, Phys. Rev. Lett. 115, 133601 (2015).

[9] A. Laucht et al., Breaking the rotating wave approximation for
a strongly driven dressed single-electron spin, Phys. Rev. B 94,
161302(R) (2016).

[10] I. Pietikdinen, S. Simmons, R. Kalra, G. Tosi, J. P. Dehollain, J.
T. Muhonen, S. Freer, F. E. Hudson, K. M. Itoh, D. N. Jamieson
et al., Observation of the Bloch-Siegert shift in a driven
quantum-to-classical transition, Phys. Rev. B 96, 020501(R)
(2016).

[11] E. J. Sie, C. H. Lui, Y.-H. Lee, L. Fu, J. Kong, and N. Gedik,
Large, valley-exclusive Bloch-Siegert shift in monolayer WS2,
Science 355, 1066 (2017).

[12] J. V. Koski et al., Floquet Spectroscopy of a Strongly Driven
Quantum Dot Charge Qubit with a Microwave Resonator, Phys.
Rev. Lett. 121, 043603 (2018).

[13] P.J. Leek et al., Using sideband transitions for two-qubit oper-
ations in superconducting circuits, Phys. Rev. B 79, 180511(R)
(2009).

[14] P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M.
Fink, M. Goppl, L. Steffen, and A. Wallraff, Cavity Quantum

Electrodynamics with Separate Photon Storage and Qubit Read-
out Modes, Phys. Rev. Lett. 104, 100504 (2010).

[15] L. Verney, R. Lescanne, M. H. Devoret, Z. Leghtas, and M.
Mirrahimi, Structural Instability of Driven Josephson Circuits
Prevented by an Inductive Shunt, Phys. Rev. Appl. 11, 024003
(2019).

[16] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A.
Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J. Hatri, Con-
fining the state of light to a quantum manifold by engineered
two-photon loss, Science 347, 853 (2015).

[17] S. O. Mundhada, A. Grimm, J. Venkatraman, Z. K. Minev,
S. Touzard, N. E. Frattini, V. V. Sivak, K. Sliwa, P. Reinhold,
S. Shankar, M. Mirrahimi, and M. H. Devoret, Experimental
Implementation of a Raman-assisted Six-quanta Process, Phys.
Rev. Appl. 12, 054051 (2019).

[18] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K.
Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W.
Simmonds, Sideband cooling of micromechanical motion to the
quantum ground state, Nature (London) 475, 359 (2011).

[19] A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J.
Kippenberg Resolved-sideband cooling of a micromechanical
oscillator, Nat. Phys. 4, 415 (2008).

[20] C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M.
Itano, D. J. Wineland, and P. Gould, Resolved-Sideband Raman
Cooling of a Bound Atom to the 3D Zero-Point Energy, Phys.
Rev. Lett. 75, 4011 (1995).

[21] M. Hennrichh, T. Legero, A. Kuhn, and G. Rempe, Vacuum-
Stimulated Raman Scattering Based on Adiabatic Passage in a
High-Finesse Optical Cavity, Phys. Rev. Lett. 85, 4872 (2000).

[22] G. P. Fedorov, V. B. Yursa, A. E. Efimov, K. 1. Shiianov,
A. Yu. Dmitriev, I. A. Rodionov, A. A. Dobronosova, D. O.
Moskalev, A. A. Pishchimova, E. I. Malevannaya, and O. V.
Astafiev, Light dressing of a diatomic superconducting artificial
molecule, Phys. Rev. A 102, 013707 (2020).

[23] B. Ann and G. A Steele, Tunable and weakly invasive probing
of a superconducting resonator based on electromagnetically
induced transparency, Phys. Rev. A 102, 053721 (2020).

[24] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from the
cooper pair box, Phys. Rev. A 76, 042319 (2007).

[25] M. J. Reagor, Superconducting cavities for circuit quantum
electrodynamics, Ph.D. thesis, Yale University, 2015.

[26] M. Gely, G. A. Steele, and D. Bothner, Nature of the lamb shift
in weakly anharmonic atoms, Phys. Rev. A 98, 053808 (2018).

[27] J. R. Schrieffer and P. A. Wolff, Relation between the Anderson
and Kondo Hamiltonians, Phys. Rev. 149, 491 (1966)

033004-10


https://doi.org/10.1103/PhysRev.57.522
https://doi.org/10.1103/PhysRevResearch.2.023081
https://doi.org/10.1103/RevModPhys.26.167
https://doi.org/10.1088/0022-3700/8/9/008
https://doi.org/10.1126/science.1181193
https://doi.org/10.1103/PhysRevLett.105.257003
https://doi.org/10.1103/PhysRevLett.115.133601
https://doi.org/10.1103/PhysRevB.94.161302
https://doi.org/10.1103/PhysRevB.96.020501
https://doi.org/10.1126/science.aal2241
https://doi.org/10.1103/PhysRevLett.121.043603
https://doi.org/10.1103/PhysRevB.79.180511
https://doi.org/10.1103/PhysRevLett.104.100504
https://doi.org/10.1103/PhysRevApplied.11.024003
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1103/PhysRevApplied.12.054051
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nphys939
https://doi.org/10.1103/PhysRevLett.75.4011
https://doi.org/10.1103/PhysRevLett.85.4872
https://doi.org/10.1103/PhysRevA.102.013707
https://doi.org/10.1103/PhysRevA.102.053721
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.98.053808
https://doi.org/10.1103/PhysRev.149.491

SIDEBAND TRANSITIONS IN A TWO-MODE JOSEPHSON ...

PHYSICAL REVIEW RESEARCH 3, 033004 (2021)

[28] R. Lescanne, L. Verney, Q. Ficheux, M. H. Devoret, B. Huard,
M. Mirrahimi, and Z. Leghtas, Escape of a Driven Quantum
Josephson Circuit into Unconfined States, Phys. Rev. Appl. 11,
014030 (2019).

[29] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E.
Northup, and H. J. Kimble, Photon blockade in an aptical cavity
with one trapped atom, Nature (London) 436, 87 (2005).

[30] Y. Zhou, Z. Peng, Y. Horiuchi, O. V. Astafiev, and J. S. Tsai,
Tunable Microwave Single-Photon Source Based on Trans-
mon Qubit with High Efficiency, Phys. Rev. Appl. 13, 034007
(2020).

[31] B. Yurke, Squeezed-state generation using a Josephson para-
metric amplifier, J. Opt. Soc. Am. B 4, 1551 (1987).

[32] S.Bose, K. Jacobs, and P. L. Knight, Preparation of nonclassical
states in cavites with a moving mirrow, Phys. Rev. A 56, 4175
(1997).

[33] M. Lugwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt,
Enhanced Quantum Nonlinearities in a Two-mode Optome-
chanical System, Phys. Rev. Lett. 109, 063601 (2012).

[34] S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn,
Cavity Nonlinear Optics at Low Photon Number from Collec-
tive Atomic Motion, Phys. Rev. Lett. 99, 213601 (2007).

[35] G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz,
D. Weiner, and E. J. Woodbury, Stimulated Raman Scattering
From Organic Liquids, Phys. Rev. Lett. 9, 455 (1962).

[36] T. Hidnsch, S. A. Lee, R. Wallenstein, and C. Wieman, Doppler-
Free Two-Photon Spectroscopy of Hydrogen 1S5-2S, Phys. Rev.
Lett. 34, 307 (1975).

[37] P. T. Eles and C. A. Michal, Two-photon two-color nu-
clear magnetic resonance, J. Chem. Phys. 121, 10167
(2004).

[38] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin,
M. H. Devoret, and R. J. Schoelkopf, Quantum-information
processing with circuit quantum electrodynamics, Phys. Rev. A
75, 032329 (2007).

[39] A. Wallraf, D. I. Schuster, A. Blais, J. M. Gambetta, J. Schreier,
L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf,
Sideband Transitions and Two-Tone Spectroscopy of a Su-
perconducting Qubit Strongly Coupled to an On-Chip Cavity,
Phys. Rev. Lett. 99, 050501 (2007).

[40] E. Deppe, M. Mariantoni, E. P. Menzel, A. Marx, S.
Saito, K. Kakuyanagi, H. Tanaka, T. Meno, K. Semba, H.
Takayanagi, E. Solano, and R. Gross, Two-photon probe of the

Jaynes—Cummings model and controlled symmetry breaking in
circuit QED, Nat. Phys. 4, 686 (2008).

[41] S. Gasparinetti, M. Pechal, J.-C. Besse, M. Mondal, C. Eichler,
and A. Wallraff, Correlations and Entanglement of Microwave
Photons Emitted in a Cascade Decay, Phys. Rev. Lett. 119,
140504 (2017).

[42] S. Gasparinetti, J.-C. Besse, M. Pechal, R. D. Buijs, C. Eichler,
H. J. Carmichael, and A. Wallraff, Two-photon resonance flu-
orescence of a ladder-type atomic system, Phys. Rev. A 100,
033802 (2020).

[43] K. S. Kumar, A. Vepsildinen, S. Danilin, and G. S. Paraoanu,
Stimulated raman adiabatic passage in a three-level supercon-
ducting circuit, Nat. Commun. 7, 10628 (2016).

[44] S. Premaratne, F. C. Wellstood, and B. S. Palmer, Microwave
photon fock state generation by stimulated Raman adiabatic
passage, Nat. Commun. 8, 14148 (2017).

[45] A. Vepsildinen, S. Danilin, and G. S. Paraoanu, Superadiabatic
population transfer in a three-level superconducting circuit, Sci.
Adv. 5, eaau5999 (2019).

[46] T. T. Meiling, P. J. Cywinski, and H.-G. Lohmannsroben, Two-
photon excitation fluorescence spectroscopy of quantum dots:
photophysical properties and application in bioassays, J. Phys.
Chem. C 122, 9641 (2019)

[47] Y.-M. He, H. Wang, C. Wang, M.-C. Chen, X. Ding, J. Qin, Z.-
C. Duan, S. Chen, J.-P. Li, R.-Z. Liu et al., Coherently driving a
single quantum two-level system with dichromatic laser pulses,
Nat. Phys. 15, 941 (2019).

[48] A. Quattropani, F. Bassani, and S. Carillo, Two-photon tran-
sitions to excited states in atomic hydrogen, Phys. Rev. A 25,
3079 (1982).

[49] A. P. Saiko, G. G. Fedoruk, and S. A. Markevich, Effective
field and the Bloch-Siegert shift at bichromatic excitation of
multiphoton EPR, JETP Lett. 84, 130 (2006).

[50] W. J. Meath, Bloch-Siegert effects in two-photon excitations:
fixed laser-molecule configurations versus orientational averag-
ing, J. Chem. Phys. 149, 204114 (2018).

[51] B. Ann, Sideband transitions in a two-mode Josephson cir-
cuit driven beyond the rotating wave approximation (2021),
doi:10.5281/zenod0.4568937.

[52] D. J. Thoen, B. G. C. Bos, E. A. F. Haalebos, T. M. Klapwijk,
J. J. A. Baselmans, and A. Endo, Superconducting NbTiN thin
films with highly uniform properties over a @ 100 mm Wafer,
IEEE Trans. Appl. Supercond. 27, 1 (2017).

033004-11


https://doi.org/10.1103/PhysRevApplied.11.014030
https://doi.org/10.1038/nature03804
https://doi.org/10.1103/PhysRevApplied.13.034007
https://doi.org/10.1364/JOSAB.4.001551
https://doi.org/10.1103/PhysRevA.56.4175
https://doi.org/10.1103/PhysRevLett.109.063601
https://doi.org/10.1103/PhysRevLett.99.213601
https://doi.org/10.1103/PhysRevLett.9.455
https://doi.org/10.1103/PhysRevLett.34.307
https://doi.org/10.1063/1.1808697
https://doi.org/10.1103/PhysRevA.75.032329
https://doi.org/10.1103/PhysRevLett.99.050501
https://doi.org/10.1038/nphys1016
https://doi.org/10.1103/PhysRevLett.119.140504
https://doi.org/10.1103/PhysRevA.100.033802
https://doi.org/10.1038/ncomms10628
https://doi.org/10.1038/ncomms14148
https://doi.org/10.1126/sciadv.aau5999
https://doi.org/10.1021/acs.jpcc.7b12345
https://doi.org/10.1038/s41567-019-0585-6
https://doi.org/10.1103/PhysRevA.25.3079
https://doi.org/10.1134/S0021364006150070
https://doi.org/10.1063/1.5053810
https://doi.org/10.5281/zenodo.4568937
https://doi.org/10.1109/TASC.2016.2631948

