
PHYSICAL REVIEW RESEARCH 3, 033002 (2021)

Holographic quantum algorithms for simulating correlated spin systems
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We present a suite of “holographic” quantum algorithms for efficient ground-state preparation and dynamical
evolution of correlated spin systems, which require far fewer qubits than the number of spins being simulated.
The algorithms exploit the equivalence between matrix-product states (MPS) and quantum channels, along
with partial measurement and qubit reuse, in order to simulate a D-dimensional spin system using only a
(D − 1)-dimensional subset of qubits along with an ancillary qubit register whose size scales logarithmically
in the amount of entanglement present in the simulated state. Ground states can either be directly prepared
from a known MPS representation or obtained via a holographic variational quantum eigensolver (holoVQE).
Dynamics of MPS under local Hamiltonians for time t can also be simulated with an additional (multiplicative)
poly(t ) overhead in qubit resources. These techniques open the door to efficient quantum simulation of MPS
with exponentially large bond dimension, including ground states of two- and three-dimensional systems, or
thermalizing dynamics with rapid entanglement growth. As a demonstration of the potential resource savings, we
implement a holoVQE simulation of the antiferromagnetic Heisenberg chain on a trapped-ion quantum computer,
achieving within 10(3)% of the exact ground-state energy of an infinite chain using only a pair of qubits.
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I. INTRODUCTION

One of the most promising near-term applications of
quantum computers is the simulation of correlated quantum
systems in which entanglement plays a crucial role, for which
accurate classical simulations are often intractable. Examples
include predicting low-temperature properties of correlated
materials [1], calculating reaction rates or photoabsorption
spectra of large molecules [2], and simulating lattice gauge
theories of particle physics [3]. While these applications have
generated considerable excitement, it is far from clear how
large and how accurate a quantum computer will need to be in
order to address classically hard questions of practical scien-
tific and technological relevance. Many problems of interest
require extracting information about systems in the thermo-
dynamic limit, which often requires finite-size scaling to be
performed on simulation results obtained from systems with
hundreds (if not many thousands) of spins. At present, there
are no circuit-model quantum computers that can directly
simulate spin systems of these sizes.

However, it is well known that system size alone does
not determine the classical hardness of simulating a quantum
system. While the system size N determines the Hilbert space
dimension (D ∼ eN ), which in turn sets the classical complex-
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ity of simulating the system’s wave function by brute force,
the Hilbert space actually explored by physical systems is
highly structured, enabling efficient parametrizations of phys-
ical wave functions. The study of tensor networks over the
past few decades has brought this point into sharp focus: Ten-
sor network simulations generally require resources that scale
no worse than algebraically with the system size and only
suffer an exponential scaling with respect to the amount of en-
tanglement, quantified as the bipartite entanglement entropy.
This realization, and the scaling laws connecting entangle-
ment entropy to equilibrium and nonequilibrium phases of
matter, has made it possible to judge by inspection of general
properties of a model—e.g., whether it is in equilibrium (and
if so if it is at zero or finite temperature), its geometry, its
spacial dimension, or its topological properties—whether it
can be simulated efficiently on a classical computer or truly re-
quires quantum resources to simulate. Situations in which the
latter case is realized are compelling examples of hard (and
practically relevant) problems for which quantum computing
could provide a significant near-term benefit.

In general, the existence of a simple tensor-network repre-
sentation for a state does not guarantee that properties of that
state can be calculated efficiently, because the network may
be difficult to contract. Important examples include when the
size (bond dimension) of the tensors needs to be extremely
large to achieve a good approximation, as happens generically
for matrix-product state (MPS) simulations of higher dimen-
sional systems or long-time evolution, or because the tensor
network topology does not permit an efficient contraction [4].
In the past few years, several proposals have pointed out that
near-term quantum computers may be capable of carrying
out tensor-network calculations that are beyond the reach of
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classical computers [5–9], with a key insight that the size
of that quantum computer can be far smaller than the phys-
ical system described by the tensor network. Very recently,
these ideas have been exploited to provide variational energy
estimates for the 2D Heisenberg model by simulating small
quantum circuits [10].

In this paper, we present a toolbox for constructing and
time-evolving high-bond dimension MPS states on a quantum
computer. We refer to these techniques as “holographic” [6,7]
because they enable simulation of a D-dimensional system
using only a (D − 1)-dimensional cross section’s worth of
qubits by simulating the transfer matrix for the MPS as a
quantum channel [11] (this concept should not be confused
with the common usage of “holography” in the context of
the anti-de Sitter/conformal field theory correspondence).
The channel effectively moves along the MPS by one unit
of distance per channel iteration. Operationally, a purified
version of this channel is implemented via unitary operations
between a cross section of spins (physical qubits) and an
ancillary quantum memory (bond qubits), followed by partial
measurement of the physical qubits. Each iteration of the
quantum channel moves one step along the stacking direction
of the cross sections, with physical qubits reset between iter-
ations and reused without duplication, thereby trading spatial
resources (qubit number) for time resources (circuit depth).
We present a detailed description of these techniques that
applies to systems in any number of spatial dimensions and
then benchmark them via classical simulations of algorithm
performance on solvable one-dimensional (1D) spin chains.

Next, we show that this representation can actually be
made to work by implementing it on a Honeywell trapped-ion
quantum computer and using it to estimate the ground-state
energy of the antiferromagnetic Heisenberg chain. A crucial
technical ingredient required to perform holographic simula-
tions is the ability to selectively measure and initialize a subset
of qubits midcircuit, without affecting the remaining qubits.
The quantum charge-coupled device (QCCD) architecture
[12], in which individual qubits can be dynamically posi-
tioned far from other qubits during the execution of a circuit,
enables individual addressing (including gates, measurement,
and state preparation) with extremely low cross talk [13,14]
and is therefore very well suited for these types of algorithms.

Finally, we extend these ideas to the simulation of quench
dynamics starting from a holographically generated MPS.
Naively, one would expect the simulation of N initially cor-
related qubits evolving for a time t under a local Hamiltonian
to require a circuit of width w = N and depth d ∼ poly(t ).
A constructive algorithm achieving such scaling for k-local
Hamiltonians was found more than 20 years ago [15], and in
the years since the dependence of the circuit depth d on t , N ,
and the error tolerance have all improved (see Refs. [16,17]
and references therein). It might seem that the circuit width re-
quirement w ∼ N is fundamental, or even tautological. While
w = N is indeed required in certain worst-case scenarios, in
this paper we explore how far fewer than N qubits suffice
in many cases of practical interest. Consider, for example, a
one-dimensional (1D) system initially in a state with max-
imum bipartite entanglement entropy S: Time evolution of
this state by a local Hamiltonian can be implemented by a
circuit of width poly(t ) + S and depth N × poly(t ). In other

words, the required number of qubits is determined by the
evolution time (with a modest constant offset to accommo-
date the initial entanglement of the state), while the physical
size of the system being simulated can be accommodated by
increasing the depth of the circuit. Moreover, if the initial state
has a finite correlation length ξ , the N → ∞ limit can be
well approximated by a circuit of depth ∼ξ × poly(t ). This
reshuffling of resources from circuit width to circuit depth is
what we mean by the term “holographic.”

II. HOLOGRAPHIC SIMULATION OF
MATRIX PRODUCT STATES

The basis for our quantum simulation algorithms will be
the MPS representation of quantum states, which provides an
efficient compressed approximation of quantum states with
less than maximal entanglement. We will construct methods
for simulating ground-state properties and quench dynamics
of local lattice models, defined on a Hilbert space H that
decomposes into a tensor product of “sites” as H = ⊗�

i=1Hi.
Here the sites are arranged along a 1D line with open bound-
ary conditions and have finite local dimension |Hi| = Q, and
by local we mean that interactions act on at most k sequential
sites. Note that this class of systems includes not only 1D
spin chains, where each site simply represents a single spin,
but also D-dimensional models that can be sliced into a 1D
stack of (D − 1)-dimensional cross sections (e.g., for a D-
dimensional cube � = N1/D).

MPS describe quantum states on such 1D stacks using
far fewer parameters—∼O(�Qχ2), with χ being the bond
dimension—than the worst-case Q� required to specify a
generic state, and describe a very special class of states
with entanglement entropy across any cut bounded above by
log2 χ . For ground states of 1D or quasi-1D systems, MPS
states can be implemented using classical resources that scale
at worst polynomially in the desired accuracy and system size
and provide efficient classical algorithms for simulating low-
dimensional ground states and short-time dynamics. However,
classical MPS methods fail for 2D and 3D systems, and for
longer time dynamics where substantial amounts of entan-
glement have been generated. Nevertheless, many of these
systems have far less than the maximal amount of entangle-
ment obtained by random states, and the MPS description
provides a dramatic compression. Our goal is to devise an
efficient method to prepare and time evolve an MPS repre-
sentable state on a quantum computer with an economical use
of qubit resources, which gives access to MPS with classically
inaccessible bond dimension, while still leveraging the eco-
nomical MPS representation for states with less than maximal
entanglement.

To set the stage for these algorithms, we first briefly review
a few key properties of MPS that are essential to understand-
ing how they can be represented holographically on a small
quantum computer.

A. Brief review of MPS formalism

An MPS with open boundary conditions can be written

|�〉 =
∑

σ1,...,σ�

LT V [1]
σ1

V [2]
σ2

· · ·V [�]
σ�

R |σ1, . . . , σ�〉 . (1)
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FIG. 1. Graphical description of an MPS. (a) An individual ten-
sor, (b) the MPS wave function as a contraction over such tensors,
and (c) the contraction of a tensor network to compute a correlation
function.

For each site j, V [ j]
σ j is a set of Q square matrices [18],

or equivalently a rank-3 tensor with “physical” index σ j =
1 . . .Q and “bond” indices α, β = 1 . . . χ , where χ is referred
to as the bond dimension. The χ -dimensional vectors L and R
specify the left and right boundary conditions, respectively.
The standard graphical representation of an MPS is shown in
Fig. 1. An individual tensor is drawn as a box with a leg for
each index, as in Fig. 1(a). Joined legs imply contraction of the
associated tensor indices, such that Fig. 1(b) gives the wave
function components of |�〉 [the contractions are implied as
matrix-matrix or matrix-vector multiplication in Eq. (1)].

One can imagine creating an �-site MPS as a physical
state of a quantum computer by letting an ancilla register
(containing “bond qubits”) interact unitarily and sequentially
with � physical registers [11], each representing one site of
the MPS, as in Figs. 2(a)–2(c). In these circuit diagrams and
elsewhere, open circles denote initialization of a qubit (or
register of qubits) to the |0〉 state. To implement this construc-
tion with unitary circuit elements, one must exploit the gauge
redundancy of the MPS description [19] to place the MPS in
right canonical form (RCF) such that

∑

σ

V [ j]
σ V [ j]†

σ = 1 ∀ j. (2)

FIG. 2. MPS as a quantum circuit. (a) An MPS, assumed to be in
right canonical form. The right canonical condition [Eq. (2)] guaran-
tees that V is an isometry from Cχ → Cχ ⊗ CQ, and it can therefore
be embedded in a unitary UV acting on Cχ ⊗ CQ but restricted to a
fixed input of the physical qubit (denoted with an open circle), as
in panel (b). The unitary evolution in panel (b) is equivalent (up to
simply rearranging the lines) to the circuit diagram in panel (c).

The relationship between RCF and unitary embedding [20]
will be discussed further in the next section, but for now we
simply want to emphasize that the aforementioned MPS gauge
redundancy ensures that we can, without loss of generality,
assume that Eq. (2) holds for the state in Eq. (1). Note that
this definition of RCF is slightly nonstandard: The boundary
tensors are typically also canonical, but we choose this version
of RCF because it simplifies much of what follows. While this
choice imposes some limitations on how faithfully the right-
boundary condition can be imposed in a quantum circuit, bulk
physics will be unaffected. Note also that for a normalized
state |�〉, the imposition of RCF implies that in general both
L and R cannot be simultaneously normalized. Without loss of
generality, we take L to be normalized but not necessarily R.

Correlation functions of local operators, 〈ÔiÔ j〉, can be
computed by contracting the tensor network depicted in
Fig. 1(c). An efficient method to contract such a network for
a long chain is to first contract the physical legs of the tensors
on each site to form transfer matrices

E [k]
αγ ,βδ =

∑

σk

(
V̄ [k]

σk

)
γ δ

(
V [k]

σk

)
αβ

(3)

on each site k 	= i, j (with V̄ being the complex conjugate
of V ) and begin multiplying these transfer matrices from left
to right. When site i is encountered, we apply the modified
transfer matrix

O[i]
αγ ,βδ =

∑

σi,τi

(
V̄ [i]

τi

)
γ δ

〈τi| Ôi |σi〉
(
V [i]

σi

)
αβ

, (4)

and similarly for site j. If we interpret the bond vector space
as the Hilbert space of some quantum system, then the transfer
matrix is a linear superoperator acting on bond-space density
matrices ρβδ (β, δ ∈ {1, 2, . . . χ}) via the mapping

E : ρ →
∑

σ

V †
σ ρVσ . (5)

Together with the RCF conditions in Eq. (2), Eq. (5) estab-
lishes E as a quantum channel (trace-preserving completely
positive map) on the bond space [19], with the MPS matrices
Vσ as the Kraus operators of the channel. In this language,
the contraction depicted in Fig. 1(c) can be expressed as the
overlap of a “time-evolved” initial bond-space density matrix
ρi = |L〉〉〈〈L| (with ket | . . . 〉〉 indicating a state in the bond
Hilbert space) with the final un-normalized state |R〉〉,

〈ÔiÔ j〉=〈〈R|E [�]◦ · · ·O[ j]◦ · · ·O[i]◦ · · · E [1](ρi )|R〉〉. (6)

Indeed, the earliest comprehensive treatment of MPS in the
literature (in which they were called finitely correlated states)
defined them in terms of quantum channels [21].

B. Holographic MPS generation

Equation (6) demonstrates that correlation functions of an
MPS can be encoded in the dynamics of a quantum system
with size independent of �; the spatial structure of the phys-
ical Hilbert space has been converted into a (discrete) time
direction of the bond Hilbert space (see also Ref. [20], where
this mapping is exploited to apply classical open-system simu-
lation techniques to the simulation of infinite-width circuits).
Thus, one can simulate the state of a D-dimensional system
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FIG. 3. A circuit implementing holographic state preparation and correlation function measurement of an MPS. In this simple example,
we use one system qubit (enabling simulation of an infinite 1D spin-1/2 chain) and nb bond qubits for an MPS with bond dimension χ = 2nb .
Measurements are implied to be in the eigenbasis of the operators Ôn and Ôn+r . Averaging over the outcome of this circuit (with the two
measurement results multiplied together) produces the correlation function 〈ÔnÔn+r〉.

using a system of dimension D − 1, inspiring the moniker
“holographic” [5]. However, it is important to keep in mind
that this dynamics is not unitary. The holographic algorithms
described here can be viewed as explicit purifications of this
nonunitary dynamics in the form of quantum circuits. Alterna-
tively, one can understand these algorithms starting from the
known representation of MPS as quantum circuits, previously
described in Sec. II A and illustrated in Fig. 2. From this
perspective, the dimensional reduction can be understood by
looking at the causal structure of that circuit and recognizing
that the physical register corresponding to site j can be mea-
sured and reset before the bond qubit register interacts with
the physical register of site j + 1, implying that only a single
site worth of physical qubits is required to implement the
entire circuit [8]. Despite the constant erasure of information
in the physical qubits, long-range spatial correlations in the
system are retained as memory in the bond qubits.

Generic versions of such holographic algorithms for 2D
systems were previously outlined in Ref. [5], though without
explicit discussion of connections to the MPS formalism,
and the known representation of MPS as quantum chan-
nels. Subsequent work [6,7] revealed an intriguing element
of noise resilience in holographic simulation techniques. Due
to the repeated partial measurement and reset in the holo-
graphic technique, errors do not propagate indefinitely as for
purely unitary circuits. Consequently, a finite density of errors
produces a finite imprecision on the measured correlation
function, in contrast to a purely unitary circuit, for which a
single error can spread and contaminate all outputs.

In what follows, we unify these perspectives with the
framework of MPS and develop concrete variational ground-
state preparation and quantum dynamics simulation tech-
niques using this framework. We begin with a detailed
description of the holographic MPS preparation and measure-
ment protocol, summarized in Fig. 3. This protocol utilizes
a register of nb = log2 χ “bond” qubits (representing the χ -
dimensional bond Hilbert space) initialized in state |L〉〉, and
a register of np = log2 Q “physical” qubits (representing the
Q-dimensional physical Hilbert space of a single lattice site)
prepared in a fixed reference state |0〉. The channel E is re-
alized by applying unitary gates between the physical qubits
and bond qubits and then tracing out (i.e., discarding) the
physical qubit. Such a unitary purification of the MPS chan-
nel can always be constructed via the Stinespring dilation.

Specifically, one can embed each MPS tensor (Vσ )α,β as the
columns of a unitary matrix Uα,σ ;β,σ ′ with fixed index σ ′ = 0,
i.e., (Vσ )α,β = 〈σ |〈〈α|U |0〉|β〉〉. Since, in right canonical form,
V forms an isometry from Cχ → Cχ ⊗ CQ, the columns
with σ ′ = 0 form an orthonormal set, which can always be
completed into a full orthonormal basis for Cχ ⊗ CQ to
obtain U .

Any correlation function, C = 〈�|( ⊗i Ôi )|�〉, of the cor-
responding MPS can be sampled by iterating this quantum
channel to step through the sites of the chain from 1 to � in
the following sequence of steps:

(1) State prep: Start with C = 1. Prepare the bond-qubit
register in a given state |L〉〉, which sets the left boundary
condition for the MPS. Then, starting with site i = 1:

(2) While i � �: Iteratively apply the quantum channel for
the MPS matrix to step along the chain from site 1 toward site
� by the following steps:

(a) Prepare the physical qubit register in a reference
state, |0〉.

(b) Act on the physical qubits and bond qubits with a
unitary circuit U , which is a purification of the MPS on-site
tensor for site i.

(c) Measure the physical qubits in the eigenbasis of
operator Ôi (which may be the identity operator on most
sites, for which the measurement is unnecessary). Denote
the eigenvalue of Ôi corresponding to the measurement
outcome by λi, and multiply C ← λiCi.

(d) Increment: i ← i + 1.
(3) Measure the bond qubits in a basis containing |R〉〉.
If we postselect on outcomes for which the bond qubits are

found to be in state |R〉〉, then the above algorithm samples the
correlator C in the state |�〉, and the expectation value can
be estimated by averaging over sufficiently many repetitions
to achieve a desired statistical precision [22]. Note that fixing
the right boundary condition through postselection incurs a
multiplicative overhead ∼χ , which will be very large in cases
where quantum computation is required. However, since we
are primarily interested in bulk properties and since correla-
tions decay exponentially in distance from the boundary, it is
generally sufficient to skip this postselection, which provides
a weighted average of the correlation function over the right
boundary condition. If we are interested in boundary effects,
for example, when examining impurity models or boundary
conformal field theories, one can study the left boundary
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(where the boundary condition is set by the state preparation
for the bond register).

C. Holographic entanglement measurements

Measures of entanglement provide detailed insights into
quantum many-body systems beyond what can be drawn
from local correlation functions, revealing nonlocal corre-
lations and topological and symmetry-protected topological
orders [23–25], and diagnosing thermalization, scrambling,
and many-body localization [26]. Methods to measure Rényi
entropies

S(n)
A = 1

1 − n
log2 trρn

A (7)

for a subsystem A, with integer index n, have been developed
based on creating replica copies of the system and mea-
suring operators that cyclically permute the quantum states
of various copies [27], or by examining cross correlations
in randomized measurements to virtually implement the de-
sired replicas [28]. These methods can be directly adapted to
holographically represented states by performing the desired
measurements on the physical qubit registers, as described in
the previous section. Such measurements would enable, for
example, the estimation of free energy from holographically
generated thermofield double states [29,30].

If one is interested in the entanglement entropy of a
bipartition of the chain, it can be directly obtained from
measurements of the bond-qubit register. Namely, since the
holographic simulation method recreates an MPS in right
canonical form, the entanglement spectrum for the physical
qubits bipartitioned by cutting between sites j and j − 1 is
precisely equal to the spectrum of the density matrix for
the bond qubits after j iterations of the holographic simula-
tion algorithm. In this case, the replica-SWAP or randomized
measurement techniques can be applied directly to the bond
qubits, with a number of measurements that grows with χ ,
but not the interval size, offering a potential savings in mea-
surement complexity. For replica-SWAP-based measurements
of entanglement entropy, this holographic method provides a
potentially huge savings in qubits required, as one needs to
replicate only the bond qubits, without replicating an exten-
sive number of physical qubits for every site in the chain.

D. Expressivity of holographic MPS

While a unitary circuit representing the (purified) quantum
channel of any MPS is formally guaranteed to exist, the crux
for practical use of holographic simulation techniques will be
constructing effective methods for implementing channels for
physically relevant systems using low-depth circuits. Namely,
arbitrary unitary synthesis from a local gate set generically re-
quires gate counts that scale exponentially with qubit number
and is clearly not a viable technique for large bond dimension.
However, physical systems with local Hamiltonians are far
from “generic” and have considerable structure that could be
exploited for efficient simulation. This observation poses the
following basic question: What class of quantum states can
be efficiently holographically represented on a quantum com-
puter with exponentially large χ ∼ 2nb , but using low-depth
[i.e., with poly(nb) gates] quantum circuits? Though we can-

not conclusively answer this general question, in the following
we develop holographic algorithms for simulating nonequi-
librium dynamics starting from correlated ground states, and
provide numerical evidence demonstrating that low-depth cir-
cuits may suffice in many situations of practical interest.

III. HOLOGRAPHIC VARIATIONAL QUANTUM
EIGENSOLVER (holoVQE)

A central task for quantum materials simulation is to ac-
curately approximate the ground-state correlations of local
Hamiltonians H = ∑

j h j , where each term h j acts on sites
within a distance at most k from site j. Hybrid classical-
quantum variational algorithms, like the variational quantum
eigensolver (VQE) [31], offer promising methodologies for
attacking this problem on moderate-scale quantum computers.
In VQE, one prepares a trial wave function |ψ (θ )〉 on a quan-
tum computer by evolving a fixed initial state with a quantum
circuit composed of gates parameterized by rotation angles
θ ∈ Rp (p being the number of variational parameters). The
expectation value of the energy, E (θ ) = ∑

j〈ψ (θ )|hj |ψ (θ )〉,
is subsequently estimated by measuring each individual term
in the sum to the desired precision. Then, a classical computer
updates the parameters θ to lower the variational energy in
order to find the best approximation of the true ground state
within the family of states, |ψ (θ )〉.

The holographic representation of MPS on a quantum
computer naturally suggests a holographic extension of VQE
(holoVQE), which uses the MPS representation described in
the previous section with the unitary UV represented by a
parameterized circuit. The expectation value of energy can
be computed by measuring each term in the Hamiltonian us-
ing the above-described procedure for measuring correlation
functions. Then, the variational ansatz can be optimized by
using a classical algorithm to minimize E (θ ).

The implementation of holoVQE is simplified for crys-
talline materials with translation-invariant Hamiltonians,
where there are only a finite number of terms in the
Hamiltonian that must be independently measured in the ther-
modynamic limit. The holographic method produces an MPS
with open boundary conditions which is not translation in-
variant. However, in an MPS the boundary’s influence decays
exponentially with the correlation length ξ , so one can simply
measure the distinct terms in the Hamiltonian a distance r � ξ

from the boundary. In the holographic correspondence, we
move a large distance into the spatial bulk by iterating the
MPS quantum channel for a long time to burn in its steady
state, as in Fig. 3.

In the following sections, we demonstrate a simple ap-
plication of the holoVQE technique for approximating the
ground-state energy of an XXZ chain using only a single
ancillary bond qubit, and then physically implement this tech-
nique on a trapped ion quantum computer to analyze the
SU(2)-symmetric Heisenberg point. We show that symme-
try principles can be incorporated into the variational circuit
ansatz to reduce the number of variational parameters and
simplify the optimization. Next, we consider a model with
lower symmetry: the transverse-field Ising model (TFIM). We
apply a more generic circuit ansatz and analyze the scaling
of algorithm performance for ground-state preparation and
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reconstruction of critical correlation functions with increasing
number of bond qubits. For small circuit sizes, we are able
to reproduce the optimal MPS ansatz at bond dimension χ =
2nb , obtaining relative accuracy on the (infinite size) critical
ground-state energy below 10−4 with only a few qubits.

A. Role of symmetries

The crux of effectively implementing a variational pro-
cedure is constructing a good variational ansatz. For present
purposes, this entails identifying a parameterized unitary cir-
cuit family that effectively implements the purified transfer
matrix of the desired MPS approximation to the ground state.
Consideration of symmetries can guide the design of these
circuits.

Symmetries of the model can be strictly enforced on
the variational states by restricting attention to symmetry-
preserving circuit families. Here, by symmetry-preserving
circuit, we mean that we choose a particular linear represen-
tation of the symmetry action on the bond qubits (possibly
including projective representations [32] when dealing with
potential symmetry-protected topological states), and ensure
that parametrizations of the variational circuit preserve the
total symmetry quantum numbers of the physical and bond
qubits together.

We note that it is not always desirable to explicitly en-
force all symmetries of the model. For example, we may
wish to assess whether the ground state spontaneously breaks
symmetries, in which case one could build an ansatz around
various possible symmetry-broken configurations. Moreover,
it is often the case that, for a fixed bond dimension, the low-
est energy state may not preserve the full set of symmetries
possessed by the ground state. For example, when χ = 1 (no
bond qubits), an MPS simply corresponds to a mean-field
(best product state) ansatz, for which energy minimization
often yields symmetry-broken solutions. The examples below
are indicative of these various possibilities.

B. XXZ chain

The XXZ spin chain is a canonical model of strongly
correlated 1D systems, describing both one-dimensional
quantum magnetism and superfluidity (by mapping the spins
to hard-core bosons). For nearest neighbor interactions, the
Hamiltonian is

H = J
∑

i

(XiXi+1 + YiYi+1 + �ZiZi+1), (8)

where (without loss of generality) we take J > 0. The model
has a global U(1) symmetry, enlarged to a full SU(2) symme-
try at the Heisenberg points � = ±1. For � < −1 [� > 1],
the spectrum is gapped and the symmetry-broken ground state
is ferromagnetically [antiferromagnetically] ordered, while
for |�| � 1 the model is gapless and has no long-range spin
order. For all values of �, the model is exactly solvable by
Bethe ansatz [33].

In the antiferromagnetic phase (� � 1), the mean-field so-
lution is antiferromagnetically ordered, spontaneously break-
ing discrete-translational symmetry [and SU(2) symmetry for
� = 1]. Since this state is consistent with the known value
of Sz = 0 for the true ground state, we can build a χ = 2

FIG. 4. Top: Energy per site of the XXZ chain in the thermody-
namic limit. The dashed line is mean-field theory, the solid line is
the exact energy obtained from Bethe ansatz, and the points are from
simulated holoVQE using a single bond qubit (error bars represent
1σ sampling uncertainties). Bottom: Fractional energy error [δE =
|(E − Eexact )/Eexact|] of holoVQE (pink points with error bars) and
mean-field theory (black points), showing that the addition of even
a single bond qubit can drastically improve the ground-state energy
estimate.

MPS by introducing a single-bond qubit and allowing it to
interact with the system qubit via unitaries that conserve to-
tal Sz (note that by breaking discrete translational symmetry,
this χ = 2 MPS achieves the same energy as a χ = 4 trans-
lationally invariant MPS). Choosing U = exp[−iθ (XpXb +
YpYb)] exp[−iφ(ZpZb)], we can now use a holographic repre-
sentation of the MPS to measure the energy for a given choice
of parameters (θ, φ) and minimize using a classical feedback
loop. Using gradient descent and simulating 256 shots per
energy measurement, we obtain the results shown for � � 1
in Fig. 4.

Additional care must be taken when computing the en-
ergy for 0 < � < 1. In this case, the mean-field ground state
breaks the U(1) symmetry of the model by spontaneously
aligning (antiferromagnetically) along some direction in the
XY plane. Since this state does not live in the correct symme-
try sector with respect to U(1), it is not sufficient to restrict
our attention to circuits that conserve total Sz. In these cases,
we find that the idea MPS at χ = 2 can be obtained us-
ing the three-parameter ansatz U = exp[−i(θXpXb + φYpYb +
ψZpZb)].

C. Trapped ion implementation: Heisenberg chain

At the antiferromagnetic Heisenberg point, we implement
the holoVQE procedure experimentally using Honeywell’s
QCCD trapped-ion quantum computer described in Ref. [12].
We utilize a subset of the five designated “gate zones” [orange
and blue in Fig. 5(a)], which suffices to run two parallel
instances of the holographic state preparation protocol with
a single bond qubit for each [34]. At the Heisenberg point, it
can be shown that the two-parameter ansatz described above
for � � 1 is actually unnecessarily flexible, and it suffices to
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FIG. 5. Experimental implementation of holoVQE on a Honey-
well trapped-ion quantum computer. (a) Schematic of the ion trap;
for this experiment we used two neighboring gate zones, each loaded
with two data qubits and two sympathetic cooling ions (not shown).
(b) Decomposition of Gθ into two cZ gates. (c) The circuits used for
holoVQE involve one physical qubit and one bond qubit, though we
utilize the two gate zones to parallelize the data taking. (d) Represen-
tative data from holoVQE.

restrict our attention to φ = 0. Thus, the entangling unitary
between physical and bond qubit is

Gθ = exp[−iθ (XpXb + YpYb)/2]. (9)

The native two-qubit gate for our architecture (the Mølmer-
Sørensen gate [35]) is local unitary equivalent to a controlled-
Z (CZ) gate, at least two of which are necessary to synthesize
Gθ for arbitrary θ [a minimal decomposition is shown in
Fig. 5(b)]. The holographic MPS circuit is then built by al-
ternating applications of Gθ and G̃θ = XpGθ (this alternation
corresponds to starting with a classical antiferromagnet, as
discussed above), with reinitialization of the physical qubit in
between each entangler [see Fig. 5(c)]. For the small bond
dimension accessed in this example, we find that a “burn
in” distance of four lattice sites is sufficient to approximate
bulk expectation values to well within shot noise. Figure 5(d)
shows the results of holoVQE. Starting with a randomly cho-
sen parameter θ , we use gradient descent with derivatives
estimated from finite differences of the measured energies
E (θ ), increasing the shot count for each energy measurement
from 500 to 2000 as gradient descent proceeds. Error bars are
2σ confidence intervals obtained from a nonparametric boot-
strap resampling of the data. Averaging over the final four data
points (taken at the highest shot counts), we obtain an estimate
of E = −1.59(5)J for the per-site ground-state energy. For
comparison, the mean-field ground state—which lowers the
energy as much as possible without entanglement—achieves
E = −J [blue dot-dashed line in Fig. 5(d)]. The optimal MPS
with bond dimension χ = 2nb = 2 achieves E ≈ −1.712J ,

which the experimental results would converge to if the
circuits were perfectly implemented [purple dashed line in
Fig. 5(d)], while the exact ground-state (χ = ∞) has E =
J (1 − 4 log 2) ≈ −1.773J [from Bethe ansatz, black solid
line in Fig. 5(d)]. Considering the performance metrics for
the computer used to obtain these results [12], we expect
the discrepancy between the VQE estimate and the minimum
energy of a χ = 2 MPS is primarily due to errors on the
two-qubit gates comprising Gθ .

Note that this measured value provides a proper variational
upper bound for the infinite chain, despite being obtained from
a small quantum circuit. To highlight the resource savings
of holoVQE, we note that achieving comparable accuracies
using brute-force simulation of an L-site chain would require
L = 6 (rather than 2) qubits to sufficiently suppress finite-size
effects. If the circuit infidelities were reduced by either im-
proving the gate fidelities or using error mitigation techniques,
the minimum achievable energy with two qubits for holoVQE,
Emin ≈ −1.712J , would require 10 (perfect) qubits to achieve
by brute force.

D. Increasing the bond dimension: Transverse field
Ising model (TFIM)

In the previous examples, we used just a single bond qubit
corresponding to MPS with bond dimension 2. These results
already demonstrate the dramatic compression of resources
enabled by the holographic simulation method in achieving
reasonable accuracy on an infinite, critical spin chain using
only a pair of qubits. However, turning holoVQE into a useful
algorithm requires a method to systematically improve the
accuracy of the simulations. We now explore the performance
of holoVQE upon including additional bond qubits, focusing
on the task of ground-state energy estimation for the 1D
transverse-field Ising model (TFIM), with Hamiltonian

HTFIM = −
∑

j

(JZ jZ j+1 + hXj ). (10)

The TFIM exhibits a ground-state phase transition from an
ordered (h < J) to a disordered (h > J) phase, both of which
are gapped and can be well described by MPS of fixed
(system-size-independent) bond dimension. These phases are
separated by a self-dual critical point at J = h, described by
a conformal field theory (CFT) with central charge c = 1/2,
whose nonconstant entanglement scaling requires a bond di-
mension that grows with system size as χ � Lc/3 = L1/6 to
achieve asymptotically accurate correlations. Nevertheless, it
turns out that the ground-state energy and moderate-range
spin-correlation functions of this model can be captured with
fairly high accuracy using modest bond dimension MPS, even
at the critical point [36].

To explore the efficacy of holoVQE for this paradigmatic
toy model, we numerically simulate the holoVQE procedure
at the critical point (h = J) for a sequence of variationally
parameterized circuits with a variable number of bond qubits.
For nb bond qubits, we construct a “star” circuit that involves
only two-qubit gates that sequentially entangle the physical
qubit and the jth bond qubit for j = 1, . . . , nb, allowing each
individual gate to be an arbitrary ∈ SU(4) two-qubit unitary,
as in Fig. 6(a). The primary challenge in these calculations is
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FIG. 6. (a) Circuits used for holographic MPS representation of
the TFIM ground state. Each arbitrary SU(4) is decomposed into
three native two-qubit gates and eight single-qubit gates, with a
total of 15 real variational parameters (as in Ref. [37]). (b) Energy
obtained using “star” circuits with an increasing number of bond
qubits. The agreement with exact MPS energy minimization at bond
dimension χ = 2nb is excellent, although we were not able to obtain
reliable energies from this ansatz for nb � 3.

to reliably find the global minimum of a constrained nonlin-
ear optimization problem; we were only able to find reliable
results for nb = 0, 1, 2, for which simulated annealing worked
well. We note that classical MPS calculations also suffer
from this challenge, which is typically overcome by breaking
translational invariance in order to make the problem linear
(at the cost of greatly expanding the parameter space). It is
clear that scaling holoVQE to large circuits (and therefore
large effective bond dimension) will require significant further
development along these lines.

The results obtained by brute-force global optimization are
shown in Fig. 6(b), along with those obtained by an uncon-
strained MPS optimization using bond dimension χ = 2nb .
Surprisingly, this simple circuit design finds the best possible
MPS even for nb = 2, for which the parametrization is not
exhaustive of all nb + 1 = 3 qubit unitaries. Because global
optimization strategies did not yield reliable improvements for
nb � 3, we do not know if this feature is generic or restricted
to small circuits.

Part of the challenge in achieving further improvements for
the TFIM is the extremely rapid convergence of variational
energy with bond dimension to the exact ground-state energy.
We note that, in an actual quantum computation, resolving
very small energy differences will become impractical due
to large statistical sampling overhead. This issue is especially
pronounced in the TFIM, likely due to its integrability and
small central charge, c = 1

2 (the smallest of any minimal
model). In particular, assuming a near-optimal variational
ansatz, the effective correlation length scales with the num-
ber of bond qubits like ξ ∼ enb(3/c) log 2 (at criticality), so that
smaller c yields larger correlation length and more rapid con-
vergence of finite-range correlations with the addition of bond
qubits.

Since the Hamiltonian is composed of nearest neighbor
interactions, the holoVQE procedure only requires measure-
ment of nearest neighbor correlation functions. Once the
circuit is optimized, one can freely use the holographic state
preparation subroutine to extract any desired observables in

FIG. 7. Correlation functions of the transverse (a) and longitudi-
nal (b) spin directions in the 1D TFIM. Black lines are exact from
fermionization, while the points are from holoVQE (blue points for
nb = 1 and red points for nb = 2). In panel (b), the χ = 8 curve is
shown as well (black dashed line), though this has been obtained
from direct MPS optimization as the numerical minimization for an
nb = 3 star circuit was inconclusive.

the variational solution. For example, in Fig. 7 we show the
critical (J = h) transverse and longitudinal connected spin-
spin correlation functions:

CX (r) = 〈XjXj+r〉 − 〈Xj〉2,

CZ (r) = 〈ZjZ j+r〉 − 〈Zj〉2, (11)

where we have assumed translational invariance. The points
are obtained from the holoVQE method, while the solid black
lines are exact results from fermionization. The holoVQE
results show clear signs of the universal scaling behavior
for the Ising transition, CX (r) ∼ r−1, and CZ (r) ∼ r−1/4 over
moderate length scales (as much as 20 sites for the transverse
correlations), despite using no more than three qubits.

IV. DYNAMICS

Calculating the dynamical properties of interacting quan-
tum systems is an essential challenge for practical applications
such as predicting chemical kinetics, computing nonequilib-
rium electronic and optical properties of quantum materials
and devices, and analyzing NMR spectra [38]. Quantum
dynamics also underpins foundational scientific questions
ranging from the nature of thermalization and quantum chaos,
to properties of quark-gluon plasmas in heavy-ion collisions,
to understanding cosmological scenarios for defect produc-
tion. Despite its fundamental importance, simulating quantum
dynamics remains among the most challenging tasks for clas-
sical computers, generically requiring exponential classical
resources even in low-dimensional systems where ground
states can be efficiently simulated. This area is therefore a
promising candidate for achieving a practical quantum advan-
tage on near-term quantum hardware.

In the following, we develop a quantum simulation algo-
rithm that incorporates the holographic representation of MPS
initial states described above to simulate time evolution of an
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initial state under a quantum quench:

|ψ (t )〉 = T
{
e−i

∫ t
0 H (s)ds

}|ψ (0)〉. (12)

Here, the initial state |ψ (0)〉 is represented by an MPS
(potentially with interesting correlations and entanglement),
and H (t ) = ∑

α hα is any geometrically local time-dependent
Hamiltonian, where each term hα acts on at most k adjacent
physical sites. We dub this technique holographic quantum
dynamics simulation (holoQUADS). Together with well-
established interferometric techniques [39,40], HoloQUADS
enables a simulation of arbitrary unequal-time correlation
functions using only ∼poly(t ) log2 Q + log2(χ ) qubits, which
is independent of � [41]. By comparison, the classical re-
sources required to simulate time evolution from MPS initial
states generically scale exponentially with t due to rapid en-
tanglement growth, even in 1D systems [42].

A. Holographic quantum dynamics simulation (holoQUADS)

If the dynamics we care about is naturally generated by
some circuit of depth r, we can proceed immediately with a
holographic circuit construction as detailed below. If we are
concerned with continuous time evolution under a Hamilto-
nian H (t ), the first step is to approximate the resulting unitary
by a circuit consisting of r layers. There are many ways this
approximation can be accomplished (see Refs. [16,17] for a
helpful review of some state-of-the-art Hamiltonian simula-
tion techniques), with different techniques having different
scalings of r with time, qubit number, and desired simulation
accuracy. For our purposes, it suffices to note that algorithms
exist for which, at fixed error, r scales no worse than ∼�εt1+ε

for any ε > 0 [16,43]. We consider this scaling to be es-
sentially linear in t and independent of �. Taking a more
pragmatic approach, we note that simple product formulas
based on Trotterization generally require a number of lay-
ers that is far smaller than most rigorous bounds suggest,
and—at least for local observables like two-body correla-
tion functions—produce accurate results using a modest (and
system-size independent) number of time steps.

Next, we seek a holographic description of the state result-
ing from applying this discretized evolution to the initial MPS.
To do so, it is useful to adopt space-time-inspired terminology
to discuss different geometrical regions of the circuit. Denote
the layer of the circuit by a discrete time index τ and the
position along the spin chain by x. Each wire in the circuit has
an implied directionality, as shown by the arrows in Fig. 8. We
define the past light cone of the point (x, τ ) to be the set of all
points (x′, τ ′) from which one can arrive at (x, τ ) by flowing
along the circuit in a forward direction, exiting gates along any
outgoing wire. Inspection of Fig. 8 shows that measurements
on the first k (k = 2 in this example) sites of the chain depend
on the past light cone of the kth qubit (gray-shaded region of
Fig. 8). The circuit in this region can be implemented using
only the physical qubits for the first r + k − 1 sites (with
r scaling polynomially in t for fixed error) along with the
log2(χ ) bond qubits: First implement the unitary circuits to
prepare the MPS state within the gray-shaded region at τ = 0,
and then apply the layers of gates from τ = 0 to τ = r that
fall within this region. The first k physical qubits at τ = r can
be measured in any desired basis, and then reset and reused

FIG. 8. Holographic time evolution of a matrix product state for
nearest neighbor interactions (k = 2). The circuit can be evaluated by
first executing all gates in the past causal cone (gray shaded region)
of the qubits exiting the top left corner of the circuit. The remaining
slices can be executed in order by (a) resetting the qubits exiting the
top of the previous slice, (b) using the reset qubits to extend the MPS
in space, and (c) applying all time-evolution gates in the current slice.

to represent the next k physical qubits at τ = 0. These can
be initialized into the correct state for the initial MPS by
a horizontal (left-to-right) sequence of interactions with the
bond qubits and then propagated diagonally to τ = r by acting
with the remaining gates lying within the past causal cone of
the 2kth qubit at τ = r, labeled as the diagonal “slice 2” in
Fig. 8.

Repeating this process, one implements the full time-
evolution circuit from left to right by sequentially implement-
ing left-facing diagonal slices of the circuit. Effectively, the
top of the circuit is being sheared and reattached to the bottom,
such that the actual circuit fits naturally on the geometry
of a cylinder as drawn in Fig. 9. By measuring the physi-
cal qubits at desired space-time points, one can reconstruct
the time-ordered correlation functions of any local opera-
tors (relevant for dynamical response both near and far from
equilibrium). Further, out-of-time ordered correlators that pro-
vide insight into thermalization, scrambling, and many-body
quantum chaos can be simulated by including intervals of
reverse-time evolution.

One can alternatively view this construction as a gen-
eralization of the holographic-MPS representation obtained
by slicing the time-evolved-MPS circuit into diagonal slices
whose boundaries are left-future-null-trajectories, and con-
sidering all qubit lines entering the slice from the left as
“bond qubits” and those exiting the slice vertically as physical
qubits. With this interpretation, one can measure entangle-
ment Renyi entropies of the physical chain by measuring
the corresponding quantities of the bond qubits as described
above for general holographic MPS.

B. Comparison to classical methods

We now contrast this method with classical time-evolution
techniques for simulating quantum dynamics. In 1D systems,
the leading classical method for simulating time evolution of
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FIG. 9. Circuit for holographic time evolution of an MPS, ob-
tained from Fig. 8 by attaching wires exiting the top of the circuit to
those at the bottom wherever the respective exiting qubits are reset
and reused at the bottom of the circuit. The space direction wraps
diagonally around the cylinder indefinitely (the site of the physical
system at position x is labeled sx), and the circumference of the
cylinder, which determines the required number of qubits, is deter-
mined by the evolution time. A time-ordered correlation function
〈Ô(x1, t1)Ô(x2, t2)〉 is obtained by measuring the corresponding oper-
ators at appropriate places in the circuit, as shown here (green circles
representing measurements) for the example x1 = 2, x2 = 2r + 1.

an MPS is time-evolving block decimation (TEBD). TEBD
works by converting an infinitesimal time evolution step
e−iH�t ≈ (1 − iH�t ) into a matrix-product operator (MPO),
applying the MPO to the initial MPS state, and reinterpreting
the result as an MPS with bond space given by the tensor
product of the MPO and MPS bond spaces.

At each stage, the tensors of the MPS are compressed
(if possible) by discarding subleading singular values below
the target accuracy. The compression step is effective if little
entanglement is generated during the Trotter step compared to
the maximum possible, but does not save classical resources in
cases where significant entanglement is generated during each
Trotter step, e.g., as in a strong quench with a thermalizing
Hamiltonian. In fact, in extreme examples with maximally
entangling dynamics, such as simulating stroboscopic dynam-

ics of random circuits [44,45], no compression whatsoever
can be achieved. In contrast, holoQUADS exhibits polynomial
scaling of the required qubit resources with evolution time re-
gardless of the amount of entanglement generated per Trotter
step, and will exhibit a maximal advantage in cases where
low-rank classical compression is ineffective, or in higher
dimensions where bond dimension can be prohibitively high
for classical simulation from the outset.

As an aside, we note that applying an MPO to an MPS
(which forms the basis of many classical methods) cannot be
directly implemented holographically by unitary circuits plus
measurement, since application of an MPO does not gener-
ally preserve the right canonical form of an MPS. We leave
as an open question for future work whether holoQUADS
can be generalized to incorporate different, non-MPO-based
quantum analogs of such compression schemes that operate
efficiently on exponentially large bond spaces [46–48] to fur-
ther save on qubit resources.

V. DISCUSSION

These holographic methods will provide a quantum ad-
vantage for situations where classical MPS techniques are
intractable due to prohibitively high bond dimension. Phys-
ically relevant examples include ground-state preparation of
systems in dimensions D > 1, and time evolution under ther-
malizing Hamiltonians. State-of-the-art classical techniques
run out of steam for 2D spin systems of widths of around 10
spins (less for gapless systems), or 1D time evolution with
thermalizing dynamics over a few tens of interaction times.
Holographic quantum algorithms might provide quantum ad-
vantage on these tasks with as few as 30–40 qubits, which
are employed to directly tackle the difficult, highly entangled
quantum aspects of these problems, rather than spending these
resources to capture large sections of Hilbert space that are not
accessed in physically relevant systems.

For higher dimensional simulations, the classical simu-
lation cost for MPS techniques grows exponentially in the
system width, even for area-law entangled states. One could
employ a holoVQE method analogous to higher dimensional
DMRG, obtained by slicing the system into a 1D stack of
(D − 1)-dimensional cross-sectional slices, and specifying a
circuit architecture to implement a quantum channel con-
necting one slice to another. The exponentially large bond
dimension of the resulting MPS could be captured with
polynomially many bond qubits. Importantly, for physically
relevant low-energy states, MPS provide an exponential com-
pression over a full wave-function description even in D > 1,
so that the holographic representation affords substantial sav-
ings in qubit resources.

A more intrinsically higher dimensional generalization of
these holographic methods would be to implement holo-
graphic simulation of isometric tensor networks [49]. These
recently constructed higher dimensional generalizations of
MPS capture a broad range of correlated states including
(nonchiral) long-range entangled topological orders [50], and
can be implemented straightforwardly as unitary circuits be-
tween physical qubits (now for each site in the lattice rather
than each cross-sectional slice) and ancillary bond qubits.
The isometric tensor networks invoke an explicit ordering
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of operations and can be recast as a quantum channel that
can be implemented holographically by resetting and reusing
physical qubits that have already completed their participation
in the circuit. The advantage of this technique over the usual
boustrophedonic sweeping for 2D DMRG techniques is that
it imposes a natural geometrically local 2D structure onto the
physical and bond qubits.

It would also be desirable to extend these techniques to
treat fermionic systems, using fermionic MPS representations
[51], in order to simulate electronic materials. Other topics
for future study include identifying effective heuristics for it-

eratively increasing bond dimension to improve the holoVQE
accuracy, and developing a formal and systematic understand-
ing to the class of states that can be efficiently represented
holographically using large qubit numbers, but reasonable
circuit depths, to implement each MPS tensor.
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